WorldWideScience

Sample records for nonmetallic materials metallic

  1. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  2. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  3. Non-metallic implant for patellar fracture fixation: A systematic review.

    Science.gov (United States)

    Camarda, Lawrence; Morello, Salvatore; Balistreri, Francesco; D'Arienzo, Antonio; D'Arienzo, Michele

    2016-08-01

    Despite good clinical outcome proposals, there has been relatively little published regarding the use of non-metallic implant for patellar fracture fixation. The purpose of the study was to perform a systematic literature review to summarize and evaluate the clinical studies that described techniques for treating patella fractures using non-metallic implants. A comprehensive literature search was systematically performed to evaluate all studies included in the literature until November 2015. The following search terms were used: patellar fracture, patella suture, patella absorbable, patella screw, patella cerclage. Two investigators independently reviewed all abstracts and the selection of these abstracts was then performed based on inclusion and/or exclusion criteria. A total of 9 studies involving 123 patients were included. Patients had a mean age of 33.7 years and were followed up for a mean of 18.9 months. The most common method for fracture fixations included the use of suture material. Good clinical outcomes were reported among all studies. Thirteen patients (10.5%) presented complications, while 4 patients (3.2%) required additional surgery for implant removal. There is a paucity of literature focused on the use of non-metallic implant for patellar fracture fixation. However, this systematic review showed that non-metallic implants are able to deliver good clinical outcomes reducing the rate of surgical complications and re-operation. These results may assist surgeons in choosing to use alternative material such as sutures to incorporate into their routine practice or to consider it, in order to reduce the rate of re-operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  5. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M?Sadoques, George; Carra, Michael; Beringer, Woody

    2012-01-01

    Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.

  6. Economic impact of using nonmetallic materials in low to intermediate temperature geothermal well construction

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Four appendices are included. The first covers applications of low-temperature geothermal energy including industrial processes, agricultural and related processes, district heating and cooling, and miscellaneous. The second discusses hydrogeologic factors affecting the design and construction of low-temperature geothermal wells: water quality, withdrawal rate, water depth, water temperature, basic well designs, and hydrogeologic provinces. In the third appendix, properties of metallic and nonmetallic materials are described, including: specific gravity, mechanical strength properties, resistance to physical and biological attack, thermal properties of nonmetallics, fluid flow characteristics, corrosion resistance, scaling resistance, weathering resistance of nonmetallics, and hydrolysis resistance of nonmetallics. Finally, special considerations in the design and construction of low-temperature geothermal wells using nonmetallics materials are covered. These include; drilling methods, joining methods, methods of casing and screen installation, well cementing, and well development. (MHR)

  7. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  8. Treatment of transverse patellar fractures: a comparison between metallic and non-metallic implants.

    Science.gov (United States)

    Heusinkveld, Maarten H G; den Hamer, Anniek; Traa, Willeke A; Oomen, Pim J A; Maffulli, Nicola

    2013-01-01

    Several methods of transverse patellar fixation have been described. This study compares the clinical outcome and the occurrence of complications of various fixation methods. The databases PubMed, Web of Science, Science Direct, Google Scholar and Google were searched. A direct comparison between fixation techniques using mixed or non-metallic implants and metallic K-wire and tension band fixation shows no significant difference in clinical outcome between both groups. Additionally, studies reporting novel operation techniques show good clinical results. Studies describing the treatment of patients using non-metallic or mixed implants are fewer compared with those using metallic fixation. A large variety of clinical scoring systems were used for assessing the results of treatment, which makes direct comparison difficult. More data of fracture treatment using non-metallic or mixed implants is needed to achieve a more balanced comparison.

  9. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  10. Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials

    Science.gov (United States)

    Bagayoko, D.; Zhao, G. L.; Hasan, S.

    2001-01-01

    We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.

  11. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  12. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  13. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  14. On the determination of various metallic and nonmetallic impurities in sodium metal

    International Nuclear Information System (INIS)

    Schneider, H.; Gruenhaeuser, M.; Nagel, G.; Nold, E.; Schaefer, A.; Schumann, H.

    1976-04-01

    Methods for the determination of various metallic and nonmetallic impurities in sodium metal were developed or tested. Detection limits, reproducibilities and results of analyses are reported. (orig.) [de

  15. Non-metallic gage for gap

    International Nuclear Information System (INIS)

    Hiroki, Hideo.

    1996-01-01

    The present invention concerns a non-metallic gage for detecting a gap which can not be seen from the out side such as a gap between a water pipe and fuel rods without damaging an objective material as to whether the gap is formed within a standard value or not. The gage is made of a synthetic resin, for example, polyacetal having such a hardness as not damaging the objective material and endurable to repeating flexure upon use. The gage comprises a short gage portion having a predetermined standard thickness and an flexible extended connection portion reduced in the thickness. Provision of the extended connection portion enables wide range flexure thereof such as ±60deg relative to insertion direction during insertion operation upon testing to solve a drawback in the prior art such as worry of breakage of the gage, thereby enabling to conduct inspection rapidly at high reliability. (N.H.)

  16. Evaluation of Accelerated Ageing Tests for Metallic and Non-Metallic Graffiti Paints Applied to Stone

    Directory of Open Access Journals (Sweden)

    Patricia Sanmartín

    2017-10-01

    Full Text Available Graffiti are increasingly observed on urban and peri-urban buildings and their removal requires a huge financial outlay by local governments and agencies. Graffiti are not usually removed immediately, but rather over the passage of time, viz. months or even years. In this study, which forms part of a wider research project on graffiti removal, different methods (gravimetric analysis, examination of digital images, colour and infrared measurements were used to evaluate the performance of accelerated ageing tests (involving exposure to humidity, freeze-thawing cycles and NaCl and Na2SO4 salts for graffiti painted on stone. Silver (metallic and black (non-metallic graffiti spray paints were applied to two types of igneous rock (granite and rhyolitic ignimbrite and one sedimentary rock (fossiliferous limestone, i.e., biocalcarenite. The metallic and non-metallic graffiti spray paints acted differently on the stone surfaces, both chemically and physically. Older graffiti were found to be more vulnerable to weathering agents. The ageing test with NaCl and particularly Na2SO4, both applied to granite, proved the most severe on the paints, yielding more detrimental and faster artificial ageing of the type of material under study.

  17. Performance simulation of serpentine type metallic and non-metallic solar collector

    International Nuclear Information System (INIS)

    Al-Sageer, A. A. M.; Alowa, M. I.; Saad, M.

    2006-01-01

    This paper presents a theoretical investigation of metallic and non-metalic solar water collector models for evaluating its performane parameters. The determined parameters include heat removal factor , overall heat loss coefficients, heat gain, daily and hourly efficiencies. The present study reports that, under forced circulation lest, the non-metallic collector has an inferior performance parameters when compared to that of the metallic one. It was also revealed that the overall heat loss coefficients of both collectors show weak dependence on the flow rate variations. It was also noticed that the heat removal factor forboth models is more sensitive to the flow rate variations. Also noticed that the heat removal factor for both models is more sensitive to the flow rate variations. Also, a comparision of performance parameters of the theoretical and experimental studies showed good agreements for most hours of the day, except the results obtained at the early morning and late after noon hours.(Author)

  18. A new non-metallic anchorage system for post-tensioning applications using CFRP tendons

    Science.gov (United States)

    Taha, Mahmoud Reda

    The objective of the work described in this thesis is to design, develop and test a new non-metallic anchorage system for post-tensioning applications using CFRP tendons. The use of a non-metallic anchorage system should eliminate corrosion and deterioration concerns in the anchorage zone. The development of a reliable non-metallic anchorage would provide an important contribution to this field of knowledge. The idea of the new anchorage is to hold the tendon through mechanical gripping. The anchorage consists of a barrel with a conical housing and four wedges. The anchorage components are made of ultra high performance concrete (UHPC) specially developed for the anchorage. Sixteen concrete mixtures with different casting and curing regimes were examined to develop four UHPC mixtures with compressive strengths in excess of 200 MPa. The UHPC mixtures showed very dense microstructures with some unique characteristics. To enhance the fracture toughness of the newly developed UHPC, analytical and experimental analyses were performed. Using 3 mm chopped carbon fibres, a significant increase in the fracture toughness of UHPC was achieved. The non-metallic anchorage was developed with the UHPC with enhanced fracture toughness. The barrel required careful wrapping with CFRP sheets to provide the confinement required to utilize the strength and toughness of the UHPC. Thirty-three anchorages were tested under both static and dynamic loading conditions. The non-metallic anchorage showed excellent mechanical performance and fulfilled the different requirements of a post-tensioning anchorage system. The development of the new non-metallic anchorage will widen the inclusion of CFRP tendons in post-tensioned concrete/masonry structures. The new system will offer the opportunity to exploit CFRP tendons effectively creating an innovative generation of corrosion-free, smart structures.

  19. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  20. Novel measurement method of activation energy of non-metallic materials for NPP

    International Nuclear Information System (INIS)

    Park, Chang-Dae; Lim, Byung-Ju; Song, Chi-Sung

    2008-01-01

    This paper presents novel technique and its applicability for measuring activation energy of non-metallic materials for NPPs (nuclear power plants). The E a is a principal property for life assessment and accelerating thermal aging of equipment during environmental qualification. The E a is conventionally obtained by tensile test using UTM (Universal Testing Machine). However, this conventional method has many difficulties such as lots of big standardized specimens required and long measuring time of at least 3 months. Moreover, this is not only an inapplicable method during inservice inspection but destructive method, which are main obstacles for using UTM. Fortunately, newly developed technique for the E a such as TGA (Thermo-gravimetric Analysis) and DMA (Dynamic Mechanical Analysis) can eliminate almost all the problems of UTM. The common TGA is to measure weight change with time under constant heating rate. TGA was devised to perform the compositional analysis of materials such as rubber, carbon black, filler, volatile, etc., and to determine the thermal stability/decomposition, stoichiometry of reactions, and kinetics of reaction, by weight changes of materials when heated. TGA method has various advantages such as small amount of the sample (e.g. 20 mg), shortened measuring time of approximately 2 days, and virtually non-destructive method. In this study, we have tried to find the justification of TGA utilization for E a measurement by comparing the measured TGA data to UTM data for three cable materials. Considering reasonable consistency of our TGA data with UTM data, we conclude that TGA method gives convenient way to measure the activation energy for EPR, CR, and CSP materials with many merits, such as measuring time, specimen size and quantity required, and test expenses. (author)

  1. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  2. Effects of small defects and nonmetallic inclusions on the fatigue strength of metals

    International Nuclear Information System (INIS)

    Murakami, Y.

    1991-01-01

    The equation for predicting the effects of artificial small defects on the fatigue strength of metals is introduced, and it is applied to the quantitative evaluation of the effects of nonmetallic inclusions on the fatigue strength of high-strength steels. The importance of the concept that nonmetallic inclusions are virtually equivalent to defects, from the viewpoint of fatigue strength and, more practically, are equivalent to small cracks is emphasized. It is shown that nonmetallic inclusions cause relatively low-fatigue strength and large scatter of the fatigue strength of steels with high static strength or high hardness. The statistics of extreme values is used to estimate the expected maximum size of nonmetallic inclusions contained in a definite number of specimens. The lower limit of scatter in the fatigue strength of a high-strength steel is obtained by using the prediction equation for small defects together with the expected maximum size of nonmetallic inclusions

  3. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  4. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  5. Soil effects on GPR detection of buried non-metallic mines

    NARCIS (Netherlands)

    Hendrickx, J.M.H.; Hong, S.H.; Miller, T.; Borchers, B.; Rhebergen, J.B.

    2003-01-01

    Landmines are a major problem in many areas of the world. In spite of the fact that many different types of landmine sensors have been developed, the detection of non-metallic landmines remains very difficult. The objective of this contribution is to synthesize our work related to the effects of

  6. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-03-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  7. Test plan for the irradiation of nonmetallic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M.; Joslyn, C. C.; Venetz, T. J.

    2013-05-01

    A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

  8. Characterization of impact damage in metallic/nonmetallic composites using x-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Green, William H.; Wells, Joseph M.

    1999-01-01

    Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. This makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view

  9. Autoradiographic investigation of the removal of non-metallic inclusions in connection with the steel remelting process in vacuum furnaces

    International Nuclear Information System (INIS)

    Kolaski, H.; Siewierski, J.

    1978-01-01

    The labelled radioactive non-metallic inclusions in steel were obtained through deoxidation of steel with an activated aluminium alloy containing 1% rare earths. Quantity and distribution of the non-metallic inclusions in the steel were determined by applying autoradiography to the longitudinal and cross sections of the steel slabs. After remelting in an electronic furnace the distribution of non-metallic inclusions was determined by autoradiography of the lateral surfaces and the cross section of the slabs. It was found that 50 - 70% of the inclusions could be removed. The results obtained from autoradiographic investigation allow the exploration of the mechanism of the removal of inclusions. (author)

  10. Dielectric relaxations in non-metallic materials related to Y-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bennani, H.; Pilet, J.C. (Lab. Instrumentation, Rennes-1 Univ., 35 (France)); Guilloux-Viry, M.; Perrin, C.; Perrin, A.; Sergent, M. (Lab. de Chimie Minerale B, C.N.R.S., 35 - Rennes (France))

    1990-10-15

    In relation with high Tc superconducting material studies, dielectric measurements have been carried out, in the frequency range 10 Hz - 100 kHz, on two powdered compounds belonging to the Y-Ba-Cu-O system. The non-metallic tetragonal phases YBa{sub 2}Cu{sub 3}O{sub 6+x} exhibit dielectric relaxations: for the studied samples (x<0.4) the activation energy U is observed in the range 0.5material as substrate or buffer layer for preparation of superconducting thin films for high frequency applications. (orig.).

  11. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  12. Non-metallic structural wrap systems for pipe

    International Nuclear Information System (INIS)

    Walker, R.H.; Wesley Rowley, C.

    2001-01-01

    The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)

  13. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  14. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    Science.gov (United States)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  15. Cutting of nonmetallic materials using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Tahir, Bashir Ahmed; Ashiq, M.G. B.; Saeed, M.A.; Ahmed, Rashid; Ahmed, Afaq

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    Science.gov (United States)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  17. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  18. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  19. Growth and Filling Regularities of Filamentary Channels in Non-Metallic Inorganic Coatings Under Anodic Oxidation of Valve Metals. Mathematical Modeling

    Science.gov (United States)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2015-12-01

    Theoretical models are developed for growth and filling processes in filamentary channels of nanostructured non-metallic coatings produced by anodizing and microplasma oxidation. Graphical concentration distributions are obtained for channel-reacting anions, cations, and sparingly soluble reaction products depending on the time of electric current transmission and the length of the filamentary channel. Graphical distributions of the front moving velocity for the sparingly soluble compound are presented. The resulting model representation increases the understanding of the anodic process nature and can be used for a description and prediction of porous anodic film growth and filling. It is shown that the character of the filamentary channel growth and filling causes a variety of processes determining the textured metal - nonmetallic inorganic coating phase boundary formation.

  20. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    Science.gov (United States)

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-06-01

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. ULC/ORD-C80.1 : the standard for aboveground non-metallic tanks for fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, G. [Underwriters' Lab. of Canada, Toronto, ON (Canada)

    2001-09-01

    As a rule, flammable and combustible liquids were stored in aboveground tanks made of steel. Non-metallic materials are now being used for a new generation of aboveground tanks. Corrosion is a problem faced by most tank owners in many parts of Canada. Saltwater mist, sand blasting and bacteria growth formed in the condensation water at the bottom of the tank in the Maritimes affects an aboveground tank installed outdoors and close to the seashore. European non-metallic aboveground tanks for fuel oil first arrived on the North American market, and are now followed by designs from Canada. Requirements for these tanks were developed and tested by the Underwriters' Laboratories of Canada (ULC). It is a not-for-profit, independent organization accredited by the Standards Council of Canada to perform safety, certification, testing, quality registration, and standards development. The minimum criteria for non-metallic aboveground tank construction are contained in the ULC/ORD-C80.1 document. They can be constructed of fiber-reinforced plastic (FRP), single or double wall, or they can be double wall tanks consisting of primary plastic tanks within metallic secondary containment. Other tanks are made of the blow molded high-density polyethylene. To simulate an in-house installation, fire tests were performed where a tank filled with fuel was exposed to pool fire for 30 minutes. A successful test meant the tank had not ruptured nor leaked during and after the test. Testers had to observe that any collapse occurred above the liquid level, and that violent explosion of any part of the tank or its content did not occur. The design requirements were evaluated by performing an analysis of the temperature chart: maximum vapour temperature inside the tank was 358 Celsius, while the liquid reached a maximum temperature of 91 Celsius and the outside temperature reached 600 Celsius. Primary tank pressure did not exceed 17 kilo Pascal. Building simulation of venting installation

  2. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  3. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  4. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  5. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  6. Chemical compatibility of structural materials in alkali metals

    International Nuclear Information System (INIS)

    Natesan, K.; Rink, D.L.; Haglund, R.

    1995-01-01

    The objectives of this task are to (a) evaluate the chemical compatibility of structural alloys such as V-5 wt.%Cr-5 wt.%Ti alloy and Type 316 stainless steel for application in liquid alkali metals such as lithium and sodium-78 wt.% potassium (NaK) at temperatures in the range that are of interest for International Thermonuclear Experimental Reactor (ITER); (b) evaluate the transfer of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen between structural materials and liquid metals; and (c) evaluate the effects of such transfers on the mechanical and microstructural characteristics of the materials for long-term service in liquid-metal-environments

  7. REM effect on nonmetallic inclusion composition and heat resistance in an austenitic steel

    International Nuclear Information System (INIS)

    Farafonov, V.K.; Shtejnberg, M.M.; Kikhtin, M.V.; Cheremnykh, V.P.; Vojnov, V.V.

    1979-01-01

    Studies were made to elucidate the effect of rare earths (lanthanum, neodymium, praseodymium, cerium) on the composition of non-metallic inclusions and heat resistance of an austenitic chromium-nickel steel. Common sulfide and oxide inclusions are shown to be substituted by rare earth sulfide and oxide inclusions at RE metal content in the steel up to 0.1%. Further increase of RE metal content results in increasing non-metallic inclusions containing RE metals, phosphorus and non-ferrous impurities. Creep rate changes insignificantly at RE metal content up to 0.1%, and then it sharply grows with the quantity of non-metallic inclusions in the steel

  8. A Method for Promoting Assembly of Metallic and Nonmetallic Nanoparticles into Interfacial Monolayer Films.

    Science.gov (United States)

    Xu, Yikai; Konrad, Magdalena P; Lee, Wendy W Y; Ye, Ziwei; Bell, Steven E J

    2016-08-10

    Two-dimensional metal nanoparticle arrays are normally constructed at liquid-oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.

  9. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  10. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  11. Dissolution of nonmetallic inclusions at high-temperature heating

    International Nuclear Information System (INIS)

    Gubenko, S.I.

    1983-01-01

    The effect of high-temperature a nnealing on size, distribution and general content of non-metallic inclusions in steels is investigated. It is shown that high-temperature annealing of steel permits to reduce total amount of inclusions, their average size, as well as to control their composition and distribution in steel matrix. Partial or complete dissolution of inclusions takes place in respect to the type of non-metallic inclusions, temperature of annealing and holding duration. Cooling rate affects the investigated parameters. Under quenching the total amount of inclusions in steel is lower and average size of inclusions is larger than those under slow cooling. It is explained by precipitation of disperses ''satellites around the initial inclusions under low cooling. Composition of the satellites slightly differs from that of a ''mother's'' one. Change in composition of inclusions and creation of conditions for transition of unstable inclusions to a more stable state promotes change in properties of non-metallic inclusions that affects steel properties

  12. An overview of recent progress using low-cost and cost-effective composite materials and processes to produce SSC magnet coils and associated non-metallic parts

    International Nuclear Information System (INIS)

    Morena, J.

    1992-01-01

    Thermoplastic and thermoset polymer systems have been used in high-energy physics applications throughout the world for many years. Like other industries and industrial communities, the materials and processes requirements of these polymers have recently taken on new meanings. New accelerators and other machines are pushing all material parameters beyond limits. New polymeric and composite materials are being developed, invented, and formulated, as is new process and application equipment. This is a decade of change. Composite materials are being chosen for performance characteristics and cost-effective processing as well. The information that follows will note some of the recent progress in the development of composite materials and processes for producing low-cost and cost-effective, high-quality, non-metallic composite components for use in SSC magnets and in other accelerators. The materials and methods for making composite molds, tools, and structural parts for magnet coils and other components are demonstrated. New, unique, and innovative approaches for processing thermoset polymers are presented. The formulated polymer systems are used to form semi and structural insulators, spacers, supports, coil end parts, blocks, housings, adhesives, and other composite applications

  13. Formation and Chemical Development of Non-metallic Inclusions in Ladle Treatment of Steel

    OpenAIRE

    Beskow, Kristina

    2003-01-01

    The present study was carried out to investigate theformation and chemical development of non-metallic inclusionsduring ladle treatment of steel. To begin with, an investigation of the deoxidation processand the impact of aluminium addition was carried out. For thispurpose, a new experimental setup was constructed. The setupallowed the examination of the deoxidation process as afunction of time by using a quenching technique. Preliminaryexperiments showed that homogeneous nucleation of alumin...

  14. Ferromagnetism and nonmetallic transport of thin-film α-FeSi(2): a stabilized metastable material.

    Science.gov (United States)

    Cao, Guixin; Singh, D J; Zhang, X-G; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael; Ward, T Z; Mandrus, David; Stocks, G M; Gai, Zheng

    2015-04-10

    A metastable phase α-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on α-FeSi_{2} (111) thin films, while the bulk material of α-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of α-FeSi_{2} obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  15. Regularities of Filamentary Channels Formation During Formation of Nanostructured Non-Metallic Inorganic Coatings in Microplasma Galvanostatic Mode in Solutions

    Science.gov (United States)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Konstantinova, T. A.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2016-04-01

    This paper presents the theoretical models describing the growth of filamentary channels of nanostructured non-metallic coatings formed by anodizing and microplasma oxidation. The authors identified dependences of the number of pores on the coating thickness. The paper presents graphic dependences of the number of filamentary channels on the process time and the coating thickness. These dependences allow calculating through and surface porosity, and in cases, when the pores are filled with functional material, they allow calculating the concentration distribution of this functional material throughout the coating thickness. The theoretical models enhance our understanding of the nature of anode processes and can be used to describe and forecast the growth and filling of porous coatings, so they can also be used to create functional and bioactive materials.

  16. Effectiveness of Shot Peening In Suppressing Fatigue Cracking At Non-Metallic Inclusions In Udimet(Registered Trademark)720

    Science.gov (United States)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, T.; Bonacuse, P. J.

    2006-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced over an order of magnitude by cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens with and without shot peened test sections at 427 C and 650 C. The low cycle fatigue lives and failure initiation sites varied as functions of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with the introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. These inclusions reduced fatigue life by up to 100X, when compared to lives of material without inclusions residing at specimen surface. Large inclusions produced the greatest reductions in life for tests at low strain ranges and high strain ratios. Shot peening improved life in many cases by reducing the most severe effects of inclusions.

  17. Application of the quantitative autoradiography for determination of specific activity of labelled non-metallic inclusions

    International Nuclear Information System (INIS)

    Kowalczyk, J.T.; Wilczynski, A.W.

    1983-01-01

    The knowledge of specific activity of labelled non-metallic inclusions, i.e. the knowledge of the content of the radiotracer in a single inclusion, allows to obtain new information about the mechanism and the kinetics of steel deoxidation. In order to determine this specific activity quantitative autoradiography was used. Fo; this purpose, various standards of aluminium oxides with different amounts of cerium oxide Ce 2 O 3 and an aluminium-cerium alloy were prepared. The standards and the alloy were activated with thermal neutrons. Then several autoradiographs were made for these standards (ORWO AF-3 films were used). The autoradiographs served as the basis for evaluation of the standardization curves: optical density versus dimension of particles for a constant cerium concentration; optical density versus concentration of cerium for a constant dimension of particle. The samples of liquid steel were deoxidated with Al-Ce alloy. After labelled non-metallic inclusions had been isolated, the autoradiographs were made under the same conditions as for the standards. The standardization curves were used to determine the cerium content in the single inclusions. (author)

  18. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    International Nuclear Information System (INIS)

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  19. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  20. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  1. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Science.gov (United States)

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank...

  2. Investigation of Friction Behaviors of Brake Shoe Materials using Metallic Filler

    Directory of Open Access Journals (Sweden)

    E. Surojo

    2015-12-01

    Full Text Available Some vehicles use brake shoe made from semi-metallic materials. Semi-metallic brake shoes are made from a combination of metallic and non-metallic materials. Metallic particles are added in the formulation of brake shoe material to improve composites characteristics. In this paper, friction behaviors of brake shoe material using metallic filler were investigated. Machining chips of cast iron and copper wire of electric motor used were incorporated in composite as metallic fillers with amount 0, 2, and 4 vol. %. Friction testing was performed to measure coefficient of friction by pressing surface specimen against the surface of rotating disc. The results show that cast iron chip and Cu short wire have effect on increasing coefficient of friction of brake shoe material. They form contact plateau at contact surface. At contact surface, the Cu short wires which have parallel orientation to the sliding contact were susceptible to detach from the matrix.

  3. Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry

    Science.gov (United States)

    Zhu, Jian T.

    1991-12-01

    By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.

  4. Formation of non-metallic inclusions and the possibility of their removal during ingot casting

    OpenAIRE

    Ragnarsson, Lars

    2010-01-01

    The present study was carried out to investigate the formation and evolution of non-metallic inclusions during ingot casting. Emphasize have been on understanding the types of inclusions formed and developed through the casting process and on the development of already existing inclusions carried over from the ladle during casting. Industrial experiments carried on at Uddeholm Tooling together with laboratory work and Computational Fluid Dynamics (CFD) simulations. Ingots of 5.8 tons have bee...

  5. Feasibility investigation of non-metallic and light weight metallic materials for light weight compressor pistons

    NARCIS (Netherlands)

    Wentzel, C.M.; Bergsma, O.K.; Eijk, A.

    2014-01-01

    Steel and aluminium have been the traditional materials of choice for pistons. In order to reduce moving mass-related vibrational problems, a feasibility assessment is made of the application of other materials in a project for the research group of the EFRC. In particular, polymer and metal matrix

  6. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  7. The assessment of non-metallic inclusions in steels and nickel alloys for ultra high vacuum applications

    International Nuclear Information System (INIS)

    Meriguet, P.J.-L.

    1992-01-01

    The presence of non-metallic inclusions in steels and nickel alloys may create leak-paths under Ultra High Vacuum conditions. This paper shows the application of the ASTM E45 standard to the assessment of these inclusions and gives some design recommendations. Three case-histories encountered at the Joint European Torus Joint Undertaking and a possible explanation of the phenomenon are also presented. (Author)

  8. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  9. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  10. Standard practice for process compensated resonance testing via swept sine input for metallic and Non-Metallic parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to identify metallic and non-metallic parts’ resonant pattern differences that can be used to indentify parts with anomalies causing deficiencies in the expected performance of the part in service. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the audio, or ultrasonic, resonant frequency ranges, or both. PCRT is used in the presence of manufacturing process variance to distinguish acceptable parts from those containing significant anomalies in physical characteristics expected to significantly alter the performance. Such physical characteristics include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density related anomalies...

  11. Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates

    Directory of Open Access Journals (Sweden)

    S. Henschel

    2015-10-01

    Full Text Available An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 μm exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The e dynamic loading ( 1 0.5 5 s MPam 10   K did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.

  12. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    Science.gov (United States)

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  13. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    -shaped objects. Two-dimensional probe-correction and addition signal processing are applied to the raw probe-data. The probe used in this experiment was an open-ended waveguide operating at S-band. The movements of the probe are controlled by two stepmotors via an RS-232 interface. The probe is connected...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum...

  14. Method of bonding metals to ceramics and other materials

    Science.gov (United States)

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  15. Positron annhilation in nonmetallic solids

    International Nuclear Information System (INIS)

    Cizek, A.; Sob, M.; Dekhtyar, I. Ya.

    1979-01-01

    In positron annihilation investigations of nonmetallic solids, the standard deviation of the gaussian component of the angular correlation curve is elucidated as material constant. It is related to the apparent radius of the chemical unit of the substance in question. (Auth.)

  16. Deformation and fracture properties of metals with non-metallic inclusions; Verformung und Bruch von Metallen mit nichtmetallischen Einschluessen

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Soppa, E. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-12-31

    Microstructural effects due to formation of non-uniform lines of non-metallic inclusions in the matrix are examined with respect to their macro-, meso-, and micromechanical effects in the alloy Al(6061) reinforced by SiC inclusions. A comparative analysis of results obtained with various microstructures reveals essential differences in the formation of shear bands, stress peaks, and strain concentrations in the material structure. The maxima and the distribution of those field variables are determined not only by the arrangement of inclusions clusters in the stringers but also depend on the presence and number of single-particle inclusions in pure matrix material. The banding of the microstructure causes a strongly anisotropic behaviour in terms of stress and strain distributions. (orig./CB) [Deutsch] In diesem Beitrag werden Gefuegeeinfluesse aufgrund unterschiedlich starker zeiliger Anordnungen der Teilchen in der Matrix im Hinblick auf ihre makro-, meso- und mikromechanischen Auswirkungen am Beispiel einer SiC-teilchenverstaerkten Aluminiumlegierung Al(6061) untersucht. Ein Vergleich der Ergebnisse verschiedener Gefuege zeigt wesentliche Unterschiede hinsichtlich der Ausbildung von Scherbaendern, Spannungsspitzen und von Dehnungskonzentrationen im Werkstoffgefuege. Die Maxima und die Verteilung dieser Feldgroessen sind nicht nur abhaengig davon, wie die Teilchen in den Zeilen angeordnet sind, sondern auch davon, ob einzelne Teilchen in reinen Matrixbereichen vorhanden sind. Die Zeiligkeit des Gefueges fuehrt zu einem stark anisotropen Verhalten hinsichtlich Spannungs- und Dehnungsverteilungen. (orig.)

  17. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  18. Economic assessment of using nonmetallic materials in the direct utilization of geothermal energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cabibbo, S.V.; Ammerlaan, T.

    1979-02-01

    The cost effectiveness of nonmetallic materials in three direct-use geothermal applications was assessed. An extensive review of the available literature was conducted in order to ascertain those processes for which sufficient design and cost data had been published to permit this economic assessment to be made. Only three such processes could be found and they are discussed.

  19. Electromagnetic detection and infrared visualization techniques for non-metallic inclusions in molten aluminum

    International Nuclear Information System (INIS)

    Fei Ming; Ludwig, Reinhold; Shankar, Sumanth; Apelian, Diran

    2002-01-01

    The role of detecting non-metallic and weakly conducting inclusions in hot melts during the manufacturing process is of major importance. However, the key impediment to assessing melt cleanliness is the quantification of the level of inclusions. In this paper, we present the theory and practice in using a magnetic force-based detection system capable of monitoring small inclusions of micron-size dimensions. The idea is to force the non-conducting inclusions to a detection location (the free melt surface) by electromagnetic Archimedes forces. Further, an infrared (IR) imaging system can then be applied to detect their thermal signature. Finally, a novel image-processing algorithm is used to analyze the inclusion level on the measurement surface

  20. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad bin Khalifa University, Doha (Qatar)

    2015-01-15

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.

  1. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    International Nuclear Information System (INIS)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S.K.; McKay, Gordon

    2015-01-01

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced

  2. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  3. A mathematical model and an approximate method for calculating the fracture characteristics of nonmetallic materials during laser cutting

    Energy Technology Data Exchange (ETDEWEB)

    Smorodin, F.K.; Druzhinin, G.V.

    1991-01-01

    A mathematical model is proposed which describes the fracture behavior of amorphous materials during laser cutting. The model, which is based on boundary layer equations, is reduced to ordinary differential equations with the corresponding boundary conditions. The reduced model is used to develop an approximate method for calculating the fracture characteristics of nonmetallic materials.

  4. Materials damaging and rupture - Volumes 1-2. General remarks, metallic materials. Non-metallic materials and biomaterials, assemblies and industrial problems

    International Nuclear Information System (INIS)

    Clavel, M.; Bompard, P.

    2009-01-01

    The rupture and damaging of materials and structures is almost always and unwanted events which may have catastrophic consequences. Even if the mechanical failure causes can often be analyzed using a thorough knowledge of materials behaviour, the forecasting and prevention of failures remain difficult. While the macroscopic mechanical behaviour is often the result of average effects at the structure or microstructure scale, the damage is very often the result of the combination of load peaks, of localization effects and of microstructure defects. This book, presented in two volumes, takes stock of the state-of-the-art of the knowledge gained in the understanding and modelling of rupture and damaging phenomena of materials and structure, mostly of metallic type. It gives an outline of the available knowledge for other classes of materials (ceramics, biomaterials, geo-materials..) and for different types of applications (aeronautics, nuclear industry). Finally, it examines the delicate problem, but very important in practice, of the behaviour of assemblies. Content: Vol.1 - physical mechanisms of materials damaging and rupture; rupture mechanics; cyclic plasticity and fatigue crack growth; fatigue crack propagation; environment-induced cracking; contacts and surfaces. Vol.2 - glasses and ceramics; natural environments: soils and rocks; mechanical behaviour of biological solid materials: the human bone; contribution of simulation to the understanding of rupture mechanisms; assemblies damaging and rupture; industrial cases (behaviour of PWR pressure vessel steels, and thermal and mechanical stresses in turbojet engines). (J.S.)

  5. A finite element thermal analysis of various dowel and core materials

    Directory of Open Access Journals (Sweden)

    Shanti Varghese

    2012-01-01

    Conclusion: Non-metallic dowel and core materials such as fibre reinforced composite dowels (FRC generate greater stress than metallic dowel and core materials. This emphasized the preferable use of the metallic dowel and core materials in the oral environment.

  6. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  7. Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems

    International Nuclear Information System (INIS)

    Chen, Yu-Cheng; Huang, Xin-Chun; Luo, Yun-Ling; Chang, Yung-Chen; Hsieh, You-Zung; Hsu, Hsin-Yun

    2013-01-01

    The rapid development in nanomaterials has brought great opportunities to cancer theranostics, which aims to combine diagnostics and therapy for cancer treatment and thereby improve the healthcare of patients. In this review we focus on the recent progress of several cancer theranostic strategies using mesoporous silica nanoparticles and carbon-based nanomaterials. Silicon and carbon are both group IV elements; they have been the most abundant and significant non-metallic substances in human life. Their intrinsic physical/chemical properties are of critical importance in the fabrication of multifunctional drug delivery systems. Responsive nanocarriers constructed using these nanomaterials have been promising in cancer-specific theranostics during the past decade. In all cases, either a controlled texture or the chemical functionalization is coupled with adaptive properties, such as pH-, light-, redox- and magnetic field- triggered responses. Several studies in cells and mice models have implied their underlying therapeutic efficacy; however, detailed and long-term in vivo clinical evaluations are certainly required to make these bench-made materials compatible in real bedside circumstances. (review)

  8. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  9. Metallic and Non-Metallic Materials for the Primary Support Structure

    International Nuclear Information System (INIS)

    RA Wolf; RP Corson

    2006-01-01

    The primary support structure (PSS) is required for mechanical support of reactor module (RM) components and mounting of the RM to the spacecraft. The PSS would provide support and accept all loads associated with dynamic (e. g., launch and maneuvering) or thermally induced loading. Prior to termination of NRPCT involvement in Project Prometheus, the NRPCT Mechanical Systems team developed preliminary finite element models to gain a basic understanding of the behavior of the structure, but optimization of the models, specification of the final design, and materials selection were not completed. The Space Plant Materials team had evaluated several materials for potential use in the primary support structure, namely titanium alloys, beryllium, aluminum alloys and carbon-carbon composites. The feasibility of application of each material system was compared based on mass, stiffness, thermal expansion, and ease of fabrication. Due to insufficient data on environmental factors, such as temperatures and radiation, and limited modeling support, a final materials selection was not made

  10. Recycling of non-metallic fractions from waste printed circuit boards: A review

    International Nuclear Information System (INIS)

    Guo Jiuyong; Guo Jie; Xu Zhenming

    2009-01-01

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  11. Recycling of non-metallic fractions from waste printed circuit boards: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jiuyong; Guo Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  12. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    Science.gov (United States)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  13. Geothermal systems materials: a workshop/symposium

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Sixteen papers are included. A separate abstract was prepared for each. Summaries of workshops on the following topics are also included in the report: non-metallic materials, corrosion, materials selection, fluid chemistry, and failure analysis. (MHR)

  14. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor.

    Science.gov (United States)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon

    2015-01-01

    Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  16. A first-principles study of light non-metallic atom substituted blue phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sa-ke [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); Yu, Jin [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China)

    2015-11-30

    Graphical abstract: - Highlights: • All the impurities are covalently bonded to blue phosphorene (with a single vacancy). • All the substituted systems are semiconductors. • B-substituted system exhibits direct bandgap semiconductor behavior. • The band gaps with spin polarization are found in C and O-substituted systems. • Our works can paves a new route at nanoscale for novel functionalities of optical and spintronics devices. - Abstract: First-principles calculations are implemented to study the geometric, electronic and magnetic properties of light non-metallic atom (B, C, N, O and F) substituted blue phosphorene. All the substituted systems are highly stable. The B-substituted system is a direct bandgap semiconductor with a bandgap size about 1.5 eV. The C, O-substituted systems are promising systems to explore two-dimensional diluted magnetic semiconductors. Magnetism is observed for C and O substitution, while for the other impurities no magnetic moment is detected. Our works paves a new route at nanoscale for novel functionalities of optical and spintronics devices.

  17. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    Science.gov (United States)

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  18. Injury experience in nonmetallic mineral mining (except stone and coal), 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  19. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  20. Fusion materials semiannual progress report for period ending December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G.

    2000-03-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components.

  1. Fusion materials semiannual progress report for period ending December 31, 1999

    International Nuclear Information System (INIS)

    Burn, G.

    2000-01-01

    This is the twenty-seventh in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components

  2. Introduction into modern materials science

    International Nuclear Information System (INIS)

    Brostow, W.

    1984-01-01

    This book is divided into the following headings: Preliminary remarks on mathematics, statistical mechanics, intermolecular interactions; gases and fluids - general fundamentals, liquids and solutions, crystals, metals and alloys, non-metallic solids, composites; thermodynamic properties, mechanical properties, electric conductivity, dielectric and magnetic properties, surface effects, and materials testing - an outline. (orig./MM) With 128 figs., 21 tabs [de

  3. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  4. Influence of crystallization conditions on formation and distribution of nonmetallic inclusions in steels

    International Nuclear Information System (INIS)

    Efimov, V.A.

    1977-01-01

    The processes were studied of the formation and the distribution of nonmetallic inclusions and the chemical inhomogeneity formation during the solidification of h steel. The variation of the character of oxides and sulfides across ingots was shown by considering st 25 and 20 Kh steels. To improve the distribution of inclusions and the stability of properties throughout the body of ingots, it is recommended to throughly deoxidize the metal, to raise the rate of solidification, to reduce the temperature gradient, to employ powder cooling agents, to use casting under a blanket of slag, to modify steel by active elements (r.e.e., Ca, Ba, Zr, B) which affect favourably the nature and the shape of the nonmetallic phase

  5. Failure and damage analysis of advanced materials

    CERN Document Server

    Sadowski, Tomasz

    2015-01-01

    The papers in this volume present basic concepts and new developments in failure and damage analysis with focus on advanced materials such as composites, laminates, sandwiches and foams, and also new metallic materials. Starting from some mathematical foundations (limit surfaces, symmetry considerations, invariants) new experimental results and their analysis are shown. Finally, new concepts for failure prediction and analysis will be introduced and discussed as well as new methods of failure and damage prediction for advanced metallic and non-metallic materials. Based on experimental results the traditional methods will be revised.

  6. Determinants of Electricity Demand in Nonmetallic Mineral Products Industry: Evidence from a Comparative Study of Japan and China

    Directory of Open Access Journals (Sweden)

    Gang Du

    2015-06-01

    Full Text Available Electricity intensity is an important indicator for measuring production efficiency. A comparative study could offer a new perspective on investigating determinants of electricity demand. The Japanese non-metallic mineral products industry is chosen as the object for comparison considering its representative position in production efficiency. By adopting the cointegration model, this paper examines influencing factors of electricity demand in Japanese and Chinese non-metallic mineral products industries under the same framework. Results indicate that although economic growth and industrial development stages are different between the two countries, major factors that affect the sectoral energy consumption are the same. Specifically, economic growth and industrial activity contribute to the growth of sectoral electricity consumption, while R&D intensity, per capita productivity and electricity price are contributors to the decline of sectoral electricity consumption. Finally, in order to further investigate the development trend of sectoral electricity demand, future electricity consumption and conservation potential are predicted under different scenarios. Electricity demand of the Chinese non-metallic mineral products industry is predicted to be 680.53 TWh (terawatt-hours in 2020 and the sectoral electricity conservation potentials are estimated to be 118.26 TWh and 216.25 TWh under the moderate and advanced electricity-saving scenarios, respectively.

  7. Proceedings of the international symposium for research scholars on metallurgy, materials science and engineering

    International Nuclear Information System (INIS)

    2010-01-01

    Topics covered in this symposium are: steels, functional materials posters, computational materials science, casting and solidification, polymer matrix composites, posters electronic materials, environmental degradation processing of non-metallic materials posters, energy materials, materials forming technology, biomaterials, magnetic materials, mechanical behaviour of materials posters, phase transformations and physical metallurgy, surface engineering, nanostructured materials, ceramics, processing of metals, materials joining technology and optical materials. Papers relevant to INIS are indexed separately

  8. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  9. Proceedings of the two day national workshop on advanced materials for engineering applications

    International Nuclear Information System (INIS)

    John Alexis, S.; Jayakumar, S.

    2012-01-01

    The subjects like material preparation, material forming, material properties, materials testing, material mechanics, material structure, metal materials, non-metallic materials, composite materials, medical materials, chemical materials, food materials, electrician/electrical materials, building materials, biological materials, electronic/magnetic/optical materials, advanced materials applications in engineering are included in the workshop. Processing of advanced materials, studies on novel ceramic coatings, high strength, light weight and nanostructured materials are discussed in this proceedings. Papers relevant to INIS are indexed separately

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The crucial point of this project is the certification of the total purity of high purity materials, each representing one element of the periodic table. A variety of different analytical methods was necessary to determine the trace contents of metallic and non-metallic impurities from almost the whole periodic table in the high purity ...

  11. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  12. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  13. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  14. The sixth plenary meeting of the seminar 'Steel and nonmetallic inclusions'

    International Nuclear Information System (INIS)

    Kiseleva, S.A.

    1976-01-01

    The sixth plenary session of the 'Steel and non-metallic inclusions' seminar held in Volgograd in July of 1976 dealt, primarily with the application of rare-earth REM and alkaline earth AEM metals in metallurgy. The following problems were discussed: REM sources, alloyages with REM and AEM rational methods of producing them, industrial application of REM in metallurgy, the effect of REM on the quality of steel and the physicochemical nature of at effect. The seminar ended with a summary of the discussion and recommendations as to the areas of application of REM in metallurgy, as well as a summary of the basic requirements to be met in employing those metals in any field of metallurgy

  15. Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag

    Science.gov (United States)

    Manjili, Mohsen Hajipour; Halali, Mohammad

    2018-02-01

    Samples of INCONEL 718 were levitated and melted in a slag by the application of an electromagnetic field. The effects of temperature, time, and slag composition on the inclusion content of the samples were studied thoroughly. Samples were compared with the original alloy to study the effect of the process on inclusions. Size, shape, and chemical composition of remaining non-metallic inclusions were investigated. The samples were prepared by Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel (ASTM E 768-99) method and the results were reported by means of the Standard Test Methods for Determining the Inclusion Content of Steel (ASTM E 45-97). Results indicated that by increasing temperature and processing time, greater level of cleanliness could be achieved, and numbers and size of the remaining inclusions decreased significantly. It was also observed that increasing calcium fluoride content of the slag helped reduce inclusion content.

  16. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  17. The Method of Manufacturing Nonmetallic Test-Blocks on Different Sensitivity Classes

    Science.gov (United States)

    Kalinichenko, N. P.; Kalinichenko, A. N.; Lobanova, I. S.; Zaitseva, A. A.; Loboda, E. L.

    2016-01-01

    Nowadays in our modern world there is a vital question of quality control of details made from nonmetallic materials due to their wide spreading. Nondestructive penetrant testing is effective, and in some cases it is the only possible method of accidents prevention at high- risk sites. A brief review of check sample necessary for quality evaluation of penetrant materials is considered. There was offered a way of making agents for quality of penetrant materials testing according to different liquid penetrant testing sensibility classes.

  18. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  19. Magnetism and metallurgy of soft magnetic materials

    CERN Document Server

    Chen, Chih-Wen

    2011-01-01

    Soft magnetic materials are economically and technologically the most important of all magnetic materials. In particular, the development of new materials and novel applications for the computer and telecommunications industries during the past few decades has immensely broadened the scope and altered the nature of soft magnetic materials. In addition to metallic substances, nonmetallic compounds and amorphous thin films are coming increasingly important. This thorough, well-organized volume - on of the most comprehensive treatments available - offers a coherent, logical presentation of the p

  20. Metallosis: A diagnosis not only in patients with metal-on-metal prostheses

    International Nuclear Information System (INIS)

    Oliveira, Catarina A.; Candelária, Isabel S.; Oliveira, Pedro B.; Figueiredo, Antonio; Caseiro-Alves, Filipe

    2014-01-01

    Although the real actual incidence of metallosis is unknown, it is described as a rare diagnosis with a 5% estimated incidence in the hip prosthetic replacements. The adoption of non-metallic articular prosthetic devices, made of polyethylene and ceramic, is the main reason to the diminishing number of reported cases. We present a case of metallosis with a clinical systemic presentation in a patient with a non-metallic hip prosthesis, which occurred due to a fracture of the acetabular liner component, leading to abnormal metal–metal contact. The metallic debris leads to a massive local and systemic release of cytokines. Revision is necessary whenever osteolysis and loosening of the prosthesis occur. Imaging evaluation, especially CT, has a central role in diagnosis and planning the surgical treatment

  1. Material efficiency and the 3 Rs

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2015-08-01

    Full Text Available : Total primary material resource use Material/product Total Used (Kt) Quarry products 125,871 Cement, plaster, etc. 97,992 Stone and other non-metallic mineral products 43,631 Bricks and other clay-based products 5,979 Ceramic products 4... 94% of primary material resource use is ascribed to products used essentially in wet works of construction (stone, sand, cement, clay). It is unfortunately also the area most difficult to control. Although gains can be made through modular design...

  2. The presence of antimony in various dental filling materials

    International Nuclear Information System (INIS)

    Molokhia, Anat; Combe, E.C.; Lilley, J.D.

    1985-01-01

    Antimony was determined in a number of non-metallic dental materials currently used for tooth restoration. The method applied was instrumental neutron activation analysis. The concentration of antimony in some of the brands tested was found to be as high as 900 fold that in the normal hard dental tissues. (author)

  3. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  4. NERVA turbopump bearing retainer fabrication on nonmetallic retainer

    Science.gov (United States)

    Accinelli, J. B.

    1972-01-01

    The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.

  5. The electrorheological properties of nano-sized SiO2 particle materials doped with rare earths

    International Nuclear Information System (INIS)

    Liu Yang; Liao Fuhui; Li Junran; Zhang Shaohua; Chen Shumei; Wei Chenguan; Gao Song

    2006-01-01

    Electrorheological (ER) materials of pure SiO 2 and SiO 2 doped with rare earths (RE = Ce, Gd, Y) (non-metallic glasses (silicates)) were prepared using Na 2 SiO 3 and RECl 3 as starting materials. The electrorheological properties are not enhanced by all rare earth additions. The material doped with Ce exhibits the best ER performance

  6. Radiation damage of nonmetallic solids

    International Nuclear Information System (INIS)

    Goland, A.N.

    1975-01-01

    A review of data and information on radiation damage in nonmetallic solids is presented. Discussions are included on defects in nonmetals, radiation damage processes in nonmetals, electronic damage processes, physical damage processes, atomic displacement, photochemical damage processes, and ion implantation

  7. Fusion materials semiannual progress report for the period ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Burn, G. [ed.] [comp.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Fusion materials semiannual progress report for the period ending June 30, 1998

    International Nuclear Information System (INIS)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  9. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  10. Fusion Materials Semiannual Progress Report for Period Ending December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliff, A.F.; Burn, G.

    1999-04-01

    This is the twenty-fifth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the U.S. Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately.

  11. Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.

    Science.gov (United States)

    Gao, Xuehua; Li, Qisheng; Qiu, Jun

    2018-04-01

    Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Analyse and research of nonmetallic inclusions for steel 100Cr6

    Directory of Open Access Journals (Sweden)

    I. Vitez

    2009-01-01

    Full Text Available Steel 100Cr6 belongs to a group of hardened steels, which are applicable for production of rolling element parts. Because of specific working conditions, a proper chemical composition is required with a minimum content of nonmetallic inclusion. In this paper, the research results of presence the nonmetallic inclusions and their chemical composition are presented for the steel produced in vacuum and open induction electric furnace and their influence on the prescribed properties for this steel. The optical and scanning electronic microscope are used to identify presence and the chemical compositions of nonmetallic inclusions.

  13. Fusion Materials Semiannual Progress Report for the Period Ending June 30, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Rowcliffe, A.F.

    1999-09-01

    This is the twenty-sixth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and its reported separately.

  14. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  15. Theory of defects in non-metallic solids. Progress report, 1 August 1985-31 July 1986

    International Nuclear Information System (INIS)

    Kunz, A.B.

    1986-07-01

    A general method based on ab initio quantum mechanical modelling and also utilizing semi-classical modelling of a type introduced by Mott-Littleton in 1938 is being implemented to describe the effects of a point defector impurity and/or their interaction in a solid system in a self consistent way. The initial thrust has been to define the scope of the model: in particular, trying to obtain a general model sufficient for describing any point defect of impurity problem in any non-metallic solid system, in the validation of the several concepts necessary for such a model, in the generalization of some necessary theoretical formalism, and finally in a series of initial studies designed to test both the concepts and the validity of the implementation of them. These latter studies include a study of the excitonic spectrum of several alkali halides, the study of a charged neutral defect system in the alkali halides and a study of whether or not these methodologies are capable of predicting the lattice geometries of several of the alkali halides. These studies are significant in several ways. They establish among other things the size of cluster needed for such a study, the utility norm conserving core replacing pseudopotentials, the need for treating relativistic effects including spin orbit, Darwin and mass velocity terms and the necessity of including multiplet structure in an appropriate way for localized excitations

  16. Chemical sensors for monitoring non-metallic impurities in liquid sodium coolant

    International Nuclear Information System (INIS)

    Ganesan, Rajesh; Jayaraman, V.; Rajan Babu, S.; Sridharan, R.; Gnanasekaran, T.

    2011-01-01

    Liquid sodium is the coolant of choice for fast breeder reactors. Liquid sodium is highly compatible with structural steels when the concentration of dissolved non-metallic impurities such as oxygen and carbon are low. However, when their concentrations are above certain threshold limits, enhanced corrosion and mass transfer and carburization of the steels would occur. The threshold concentration levels of oxygen in sodium are determined by thermochemical aspects of various ternary oxides of Na-M-O systems (M alloying elements in steels) which take part in corrosion and mass transfer. Dissolved carbon also influences these threshold levels by establishing relevant carbide equilibria. An event of steam leak into sodium at the steam generator, if undetected at its inception itself, can lead to extensive wastage of the tubes of the steam generator and prolonged shutdown. Air ingress into the argon cover gas and leak of hydrocarbon oil used as cooling fluids of the shafts of the centrifugal pumps of sodium are the sources of oxygen and carbon impurities in sodium. Continuous monitoring of the concentration of dissolved hydrogen, carbon and oxygen in sodium coolant will help identifying their ingress at inception itself. An electrochemical hydrogen sensor based on CaHBr-CaBr 2 hydride ion conducting solid electrolyte has been developed for detecting the steam leak during normal operating conditions of the reactor. A nickel diffuser based sensor system using thermal conductivity detector (TCD) and Pd-doped tin oxide thin film sensor has been developed for use during low power operations of the reactor or during its start up. For monitoring carbon in sodium, an electrochemical sensor with molten Na 2 CO 3 -LiCO 3 as the electrolyte and pure graphite as reference electrode has been developed. Yttria Doped Thoria (YDT) electrolyte based oxygen sensor is under development for monitoring dissolved oxygen levels in sodium. Fabrication, assembly, testing and performance of

  17. Application of Different Extraction Methods for Investigation of Nonmetallic Inclusions and Clusters in Steels and Alloys

    Directory of Open Access Journals (Sweden)

    Diana Janis

    2014-01-01

    Full Text Available The characterization of nonmetallic inclusions is of importance for the production of clean steel in order to improve the mechanical properties. In this respect, a three-dimensional (3D investigation is considered to be useful for an accurate evaluation of size, number, morphology of inclusions, and elementary distribution in each inclusion particle. In this study, the application of various extraction methods (chemical extraction/etching by acid or halogen-alcohol solutions, electrolysis, sputtering with glow discharge, and so on for 3D estimation of nonmetallic Al2O3 inclusions and clusters in high-alloyed steels was examined and discussed using an Fe-10 mass% Ni alloy and an 18/8 stainless steel deoxidized with Al. Advantages and limitations of different extraction methods for 3D investigations of inclusions and clusters were discussed in comparison to conventional two-dimensional (2D observations on a polished cross section of metal samples.

  18. Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour

    Science.gov (United States)

    Liu, Yucheng; Ma, Yunhai; Che, Junjian; Duanmu, Lingjian; Zhuang, Jian; Tong, Jin

    2018-05-01

    To obtain a natural fibre reinforced non-asbestos organic non-metallic friction composite with good wear resistance and environmental-friendly performances, friction composites reinforced with different lengths of abaca fibre were fabricated by a compression molder equipment and evaluated by using a constant-speed friction test machine. The worn surface morphologies were observed and analyzed using a Scanning Electron Microscopy (SEM). Experimental results show that the length of abaca fibre had no significant effect on the density and hardness, but was obvious on impact strength. The impact strength increased and then decreased with the increasing of length of abaca fibres. Abaca fibres, especially short fibre (lengths of 5 mm, 10 mm), could improve the wear resistance of the friction composites. Meanwhile, the increase of test temperature could result in the increasing of wear rates of the friction composites. A large amount of secondary plateaux presented on the worn surface of specimens FC1 and FC2 which showe relatively smooth worn surfaces and yield the better wear resistance performance.

  19. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  20. Metallic composite materials

    International Nuclear Information System (INIS)

    Frommeyer, G.

    1987-01-01

    The structure and properties of metallic composite materials and composite materials with metallic matrix are considered. In agreement with the morphology of constituent phases the following types of composite materials are described: dispersion-strengthened composite materials; particle-reinforced composite materials; fibrous composite materials; laminar composite materials. Data on strength and electric properties of the above-mentioned materials, as well as effect of the amount, location and geometric shape of the second phase on them, are presented

  1. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  2. Fusion materials semiannual progress report for the period ending June 30, 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. It is divided into the following chapters: vanadium alloys; silicon carbide components; ferritic-martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; radiation effects, mechanistic studies, and experimental methods; dosimetry, damage parameters, and activation calculations; and irradiation facilities, test matrices, and experimental methods. There were no papers for the chapters on solid breeding materials and materials engineering and design requirement. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  3. Fusion materials semiannual progress report for the period ending June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. It is divided into the following chapters: vanadium alloys; silicon carbide components; ferritic-martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; radiation effects, mechanistic studies, and experimental methods; dosimetry, damage parameters, and activation calculations; and irradiation facilities, test matrices, and experimental methods. There were no papers for the chapters on solid breeding materials and materials engineering and design requirement. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    OpenAIRE

    Jing Guo; Keming Fang; Hanjie Guo; Yiwa Luo; Shengchao Duan; Xiao Shi; Wensheng Yang

    2018-01-01

    The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to deter...

  5. Instrument for Measuring Thermal Conductivity of Materials at Low Temperatures

    Science.gov (United States)

    Fesmire, James; Sass, Jared; Johnson, Wesley

    2010-01-01

    With the advance of polymer and other non-metallic material sciences, whole new series of polymeric materials and composites are being created. These materials are being optimized for many different applications including cryogenic and low-temperature industrial processes. Engineers need these data to perform detailed system designs and enable new design possibilities for improved control, reliability, and efficiency in specific applications. One main area of interest is cryogenic structural elements and fluid handling components and other parts, films, and coatings for low-temperature application. An important thermal property of these new materials is the apparent thermal conductivity (k-value).

  6. Metallic materials for medical use

    OpenAIRE

    Illarionov Anatoly; Belikov Sergey; Grib Stella; Yurovskikh Artem

    2017-01-01

    This article provides a brief overview of the metallic materials used as implants in orthopedics, the alloying system and a complex of the physical-mechanical properties for metallic materials certified for medical use, as well as the advantages and drawbacks of using metallic materials as implants. Approaches to improve the quality of an implant made of metallic materials are noted.

  7. First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

    Directory of Open Access Journals (Sweden)

    Carlos O. Maidana

    2017-02-01

    Full Text Available Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  8. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Carlos O.; Nieminen, Juha E. [Maidana Research, Grandville (United States)

    2017-02-15

    Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermo-magnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

  9. Nonmetallic inclusions in JBK-75 stainless steel

    International Nuclear Information System (INIS)

    Brewer, A.W.; Krenzer, R.W.; Doyle, J.H.; Riefenberg, D.H.

    1977-01-01

    Stainless steel alloys that are chemically complex, such as A-286 or JBK-75, are designed to improve such high-temperature properties as strength. This is accomplished by precipitating secondary phases during aging. Such multicomponent systems, however, can also produce undesirable phases that are detrimental to forgeability and final mechanical properties. Cast segregation and numerous nonmetallic inclusions can have a degrading influence on the toughness and ductility of the alloy. Several different heats of A-286 and JBK-75 were studied, and titanium carbide and/or molybdenum carbide [(Ti, Mo)C] plus titanium carbide and/or titanium carbonitride Ti(C,N)-type phases were qualitatively identified as the major nonmetallic constituent in these alloys. The common procedure for rating the microcleanliness of steels does not classify such carbide or carbonitride phases and thus does not provide an appropriate means of controlling in-process inspection. The results of this study are discussed in terms of alternative methods for evaluating the microcleanliness of superalloys

  10. Standard practice for extreme value analysis of nonmetallic inclusions in steel and other microstructural features

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This practice describes a methodology to statistically characterize the distribution of the largest indigenous nonmetallic inclusions in steel specimens based upon quantitative metallographic measurements. The practice is not suitable for assessing exogenous inclusions. 1.2 Based upon the statistical analysis, the nonmetallic content of different lots of steels can be compared. 1.3 This practice deals only with the recommended test methods and nothing in it should be construed as defining or establishing limits of acceptability. 1.4 The measured values are stated in SI units. For measurements obtained from light microscopy, linear feature parameters shall be reported as micrometers, and feature areas shall be reported as micrometers. 1.5 The methodology can be extended to other materials and to other microstructural features. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish app...

  11. Fusion materials semiannual progress report for period ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods.

  12. Fusion materials semiannual progress report for period ending June 30, 1997

    International Nuclear Information System (INIS)

    1997-08-01

    This is the twenty-second in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. Topics covered here are: vanadium alloys; silicon carbide composites; ferritic/martensitic steels; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects mechanistic studies and experimental methods; dosimetry damage parameters; activation calculations; materials engineering and design requirements; irradiation facilities; test matrices; and experimental methods

  13. The liquid metal embrittlement of iron and ferritic steels in sodium

    International Nuclear Information System (INIS)

    Hilditch, J.P.; Hurley, J.R.; Tice, D.R.; Skeldon, P.

    1995-01-01

    The liquid metal embrittlement of iron and A508 III, 21/4Cr-1Mo and 15Mo3 steels in sodium at 200-400 o C has been studied, using dynamic straining at 10 -6 s -1 , in order to investigate the roles of microstructure and composition. The steels comprised bainitic, martensitic, tempered martensitic and ferritic/pearlitic microstructures. All materials were embrittled by sodium, the embrittlement being associated generally with quasicleavage on fracture surfaces. Intergranular cracking was also found with martensitic and ferritic/pearlitic microstructures. The susceptibility to embrittlement was greater in higher strength materials and at higher temperatures. The embrittlement was similar to that encountered previously in 9Cr steel, which depends upon the presence of non-metallic impurities in the sodium. (author)

  14. Energy consumption analysis of Spanish food and drink, textile, chemical and non-metallic mineral products sectors

    International Nuclear Information System (INIS)

    Aranda-Usón, Alfonso; Ferreira, Germán; Mainar-Toledo, M.D.; Scarpellini, Sabina; Llera Sastresa, Eva

    2012-01-01

    This paper provides quantitative information for energy consumption from four different industry sectors based on an energy analysis obtained by means of in-situ energy audits and complementary information. The latter information was taken from Saving Strategy and Energy Efficiency in Spain (Estrategia de Ahorro y Eficiencia Energética en España 2004–2010, E4) documents and the 2009 Industrial Survey of Spain from the National Statistics Institute (Instituto Nacional de Estadística, INE). The results show an estimate of energy consumption for each sector, namely Spanish food, drink and tobacco (9.6%), textile (4.5%), chemical (14.7%), and non-metallic mineral products (24.3%), as well as the degree of inefficiency for each, obtained by means of a stochastic frontier production function model. These results are combined with the energy consumption analysis to identify potential energy saving opportunities around 20.0% of the total energy consumption for all studied sectors. These energy saving opportunities are classified according to thermal or electrical energy consumption and percentage savings of the total energy consumption. -- Highlights: ► This study presents the analysis of four Spanish energy-consuming industrial sectors. ► The four selected sectors account for 33.0% of the total industrial SMEs. ► An audit was carried out in several factories from each analysed industrial sector. ► Stochastic Cobb-Douglas frontiers were used to estimate production frontiers. ► Potential energy saving opportunities around 20.0% of the total energy consumption.

  15. Materials for fusion reactors

    International Nuclear Information System (INIS)

    Ehrlich, K.; Kaletta, D.

    1978-03-01

    The following report describes five papers which were given during the IMF seminar series summer 1977. The purpose of this series was to discuss especially the irradiation behaviour of materials intended for the first wall of future fusion reactors. The first paper deals with the basic understanding of plasma physics relating to the fusion reactor and presents the current state of art of fusion technology. The next two talks discuss the metals intended for the first wall and structural components of a fusion reactor. Since 14 MeV neutrons play an important part in the process of irradiation damage their role is discussed in detail. The question which machines are presently available to simulate irradiation damage under conditions similar to the ones found in a fusion reactor are investigated in the fourth talk which also presents the limitations of the different methods of simulation. In this context also discussed is the importance future intensive neutron sources and materials test reactors will have for this problem area. The closing paper has as a theme the review of the present status of research of metallic and non-metallic materials in view of the quite different requirements for different fusion systems; a closing topic is the world supply on rare materials required for fusion reactors. (orig) [de

  16. Near-field effects and energy transfer in hybrid metal-oxide nanostructures.

    Science.gov (United States)

    Herr, Ulrich; Kuerbanjiang, Balati; Benel, Cahit; Papageorgiou, Giorgos; Goncalves, Manuel; Boneberg, Johannes; Leiderer, Paul; Ziemann, Paul; Marek, Peter; Hahn, Horst

    2013-01-01

    One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL) and oxide nanoparticles. The oxide particles were doped with rare-earth (RE) ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu(3+), since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The experiments are

  17. Precious-metal-base advanced materials

    International Nuclear Information System (INIS)

    Nowicki, T.; Carbonnaux, C.

    1993-01-01

    Precious metals constitute also the base of several advanced materials used in the industry in hundreds of metric tons. Platinum alloys have been used as structural materials for equipments in the glass industry. The essential reason for this is the excellent resistance of platinum alloys to oxidation and electrolytical corrosion in molten glasses at temperatures as high as 1200-1500 C. The major drawback is a weak creep resistance. The unique way for significant improvement of platinum base materials creep resistance is a strengthening by an oxide dispersion (ODS). In the case of CLAL's patented ''Plativer'' materials, 0.05 wt% of Y 2 O 3 is incorporated within the alloy matrix by the flame spraying process. Further improvement of platinum base materials is related, in the authors opinion, to the development of precious metals base intermetallics. Another interesting applications of precious metals are silver base electrical contacts. They are in fact silver matrix composites containing varying amounts of well-dispersed particles of constituents such as CdO, SnO 2 , Ni, WC or C. In the case of such materials, particular properties are required and tested : resistance to arc erosion, resistance to welding and contact resistance. Many other technically fascinating precious metals base materials exist: brazing alloys for assembling metals, superconductors and ceramics; dental materials including magnetic biocompatible alloys; silver composites for superconductor wire jackets. The observation of current evolution indicates very clearly that precious metals cannot be replaced by common metals because of their unique characteristics due to their atomic level properties

  18. Fusion materials semiannual progress report for the period ending December 31, 1996

    International Nuclear Information System (INIS)

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods

  19. Fusion materials semiannual progress report for the period ending December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This is the twenty-first in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The report covers the following topics: vanadium alloys; silicon carbide composite materials; ferritic/martensitic steels; copper alloys and high heat flux materials; austenitic stainless steels; insulating ceramics and optical materials; solid breeding materials; radiation effects, mechanistic studies and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; and irradiation facilities, test matrices, and experimental methods.

  20. Applications of Friction Stir Processing during Engraving of Soft Materials

    Directory of Open Access Journals (Sweden)

    V. Kočović

    2015-12-01

    Full Text Available Friction stir processing has extensive application in many technological operations. Application area of friction stir processing can be extended to the processing of non-metallic materials, such as wood. The paper examines the friction stir processing contact between a specially designed hard and temperature-resistant rotating tool and workpiece which is made of wood. Interval of speed slip and temperature level under which the combustion occurs and carbonization layer of soft material was determined. The results of the research can be applied in technological process of wood engraving operations which may have significant technological and aesthetic effects.

  1. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  2. Drawing of metals inclined to sticking to tools surfaces

    International Nuclear Information System (INIS)

    Vatrushin, L.S.; Osintsev, V.G.

    1975-01-01

    A technological process is described of coating metals and alloys which have a tendency to stick to tools during rolling and drawing of wires and pipes. For electrodeposition it is the best to use chlorides of tin, bismuth, zinc, copper and indium bromide or a combination of metal salts with nonmetallic salts. Such coatings are applied to such stock materials as stainless steel, Kh18N10T and titanium alloys, VT1-0, OT4, VT16, VT20. The speeds employed during wire drawing reach 8-15 m/min and during rolling- 1-3.6 m/min. When applying a mixture of zinc chloride and nonmetallic salt the surface of titanium and zirconium alloys is first coated with a metallic sublayer. In drawing and rolling pipes of T10 alloys, the degree of elongation between the intermediate annealings reach 6.34%, and for alloys 100, VT1-0 and VT22- 23, 10 and 2.3% respectively. The coating has a strong adhesion to base metal and good plasticity characteristics. Industrial-scale tests show that a preliminary zinc coating on zirconium semi-finished stock makes it possible to shorten the technological process 1.5 times and achieve a twofold decrease in labor intensiveness and the cost of the treatment, to obtain a 7% increase in the output of non-detective product and to exclude sandblasting and hand scouring. Preliminary estimates indicate that about 4.4 thousand rubles per ton of wire can be saved by using the coating procedure

  3. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  4. Knowledge-based metals & materials

    OpenAIRE

    Sasson, Amir

    2011-01-01

    This study presents the Norwegian metal and material industry (defined as all metal and material related firms located in Norway, regardless of ownership) and evaluates the industry according to the underlying dimensions of a global knowledge hub - cluster attractiveness, education attractiveness, talent attractiveness, R&D and innovation attractiveness, ownership attractiveness, environmental attractiveness and cluster dynamics.

  5. Metal-silica sol-gel materials

    Science.gov (United States)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  6. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  7. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  8. Characterization of minerals, metals and materials

    CERN Document Server

    Hwang, Jiann-Yang; Bai, Chengguang; Carpenter, John; Cai, Mingdong; Firrao, Donato; Kim, Byoung-Gon

    2012-01-01

    This state-of-the-art reference contains chapters on all aspects of the characterization of minerals, metals, and materials. The title presents papers from one of the largest yearly gatherings of materials scientists in the world and thoroughly discusses the characterization of minerals, metals, and materials The scope includes current industrial applications and research and developments in the following areas:  Characterization of Ferrous Metals Characterization of Non-Ferrous Materials Characterization of Minerals and Ceramics Character

  9. Development of structural materials to enable the electrochemical reduction of spent oxide nuclear fuel in a molten salt electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hur, J. M.; Cho, S. H.; Lim, J. H.; Seo, C. S.; Park, S. W

    2006-02-15

    For the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling a molten salt. In this study, corrosion behavior of Fe-base superalloy, Ni-base superalloy, non-metallic material and surface modified superalloy were investigated in the hot molten salt under oxidation atmosphere. These experimental data will suggest a guideline for the selection of corrosion resistant materials and help to find the operation criteria of each equipment in aspects of high temperature characteristics and corrosion retardation.

  10. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Shielded Metal Arc Welds by Analytical Transmission Electron Microscopy.

    Science.gov (United States)

    1998-06-01

    transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure

  11. Non-Contact Measurements of Creep Properties of Refractory Materials

    Science.gov (United States)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  12. Industrial application of liquid steel filtration out of dispersed nonmetallic phase in the continuous casting machine

    Directory of Open Access Journals (Sweden)

    K. Janiszewski

    2013-01-01

    Full Text Available Hitherto existing investigations concerning the ceramic filter use in the steel making processes (both of laboratory and industrial scale have given good results. The obtained results of filtration (in the laboratory have proved that this method may be used as an effective and cheap way of steel filtration from non-metallic inclusions. Placing filters in the tundish is the best location in consideration of limiting the possibility of secondary pollution of steel. Yet, the results presented in this paper, of an experiment prepared and carried out in the industrial environment, are the only positive results obtained, which are connected with so much quantities of liquid steel processed with use of the multi-hole ceramic filters.

  13. Individual analysis of nonmetallic Inclusions in Steel by using the gallium focused ion beam secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    Tomiyasu, Bunbunoshin; Inami, Akihiro; Abe, Masakazu; Nihei, Yoshimasa.

    1995-01-01

    Nonmetallic inclusions frequently exert a lot of unfavorable influences on the quality of steel. The size of nonmetallic inclusions in current steel products is less than a few μm in diameter. It is desirable to make clear the origin and generation process of such small particles of nonmetallic inclusion. In order to measure the shape, size, composition and inner elemental distribution, development of characterization methods for each inclusion particle is required. By employing a gallium focused ion beam (FIB) as a primary ion beam of secondary ion mass spectrometry (SIMS), the particle analysis with high spatial resolution is easily achieved. In this paper, we present the novel individual analysis of nonmetallic inclusions in steel by gallium FIB SIMS. We analyzed in two ways the nonmetallic inclusion particles segregated by electron beam melting. (1) By cross-sectioning of the particle using a gallium FIB, elemental maps of cross-section were obtained. The elements were distributed inhomogeneously on the cross-section. (2) We carried out the compositional analysis for several particles individually. Ten particles were analyzed by the shave-off analysis and the multivariate cluster analysis. Based on the composition of each particle, the inclusions were classified into six types. (author)

  14. Recovering metallic fractions from waste electrical and electronic equipment by a novel vibration system

    International Nuclear Information System (INIS)

    Habib, Muddasar; Miles, Nicholas J.; Hall, Philip

    2013-01-01

    Highlights: ► This work focuses on demonstrating a new scaled up technology to separate the metallic and non-metallic fractions of PCBs. ► PCBs comminuted to <1 mm in size resulted in metallic grade concentration of 95% in some of the recovered products. ► Good separation was observed at 40 mm particle bed height due to the formation of well-structured global convection currents. ► The work reported here contributes to the development of a new approach to dry, fine particle separation. - Abstract: The need to recover and recycle valuable resources from Waste Electrical and Electronic Equipment (WEEE) is of growing importance as increasing amounts are generated due to shorter product life cycles, market expansions, new product developments and, higher consumption and production rates. The European Commission (EC) directive, 2002/96/EC, on WEEE became law in UK in January 2007 setting targets to recover up to 80% of all WEEE generated. Printed Wire Board (PWB) and/or Printed Circuit Board (PCB) is an important component of WEEE with an ever increasing tonnage being generated. However, the lack of an accurate estimate for PCB production, future supply and uncertain demands of its recycled materials in international markets has provided the motivation to explore different approaches to recycle PCBs. The work contained in this paper focuses on a novel, dry separation methodology in which vertical vibration is used to separate the metallic and non-metallic fractions of PCBs. When PCBs were comminuted to less than 1 mm in size, metallic grades as high as 95% (measured by heavy liquid analysis) could be achieved in the recovered products

  15. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    Science.gov (United States)

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  16. Brazing of special metallic materials and material combinations using a special material

    International Nuclear Information System (INIS)

    Lison, R.

    1981-01-01

    The special materials include metals of groups IVa, Va and VIa of the periodic tables and their alloys. Their particular properties have won them applications in many highly specialized industries. For these materials to be used, mastery of thermal joining methods appropriate to their characteristics is necessary. High-temperature brazing is one such method for joining special materials. This paper presents variants of this technique suitable for each individual special material. Compatibility tests between various brazing metals and various special materials have been carried out by simulating the temperature/time cycle involved in brazing procedures. Special materials are relatively expensive, and their special properties are not required at every point in a structure: elsewhere they can be replaced by a different special material or by other metals or alloys. This means that joints must be made between two special materials or between a special material and a conventional material. When certain conditions are fulfilled, such joins can be made by high-temperature brazing. This paper also shows the extent to which the geometry of the join determines the choice of process. Example of applications are also given. (orig.)

  17. Management of metal arising from an Italian Nuclear Facility: techniques for clearance and unconditional release - Management of metals resulting from an Italian nuclear facility: techniques for clearance and unconditional release

    International Nuclear Information System (INIS)

    Baldassarre, Leonardo; Varasano, Giovanni; Bruno, Salvatore Gaetano

    2014-01-01

    The start of the decommissioning of nuclear plants in Italy lead to an appreciable increase in the volume of metal materials that will need to radiological characterization for the unconditional release. The nuclear fuel reprocessing plant ITREC, located in Rotondella (MT) in the south of Italy, is currently undergoing safety maintenance. As part of these activities was necessary the replacement of approximately 5000 m of radioactive liquid effluents discharge's pipeline. The entire pipeline is undergoing treatment within a small Waste Management Facility suitably equipped for the cutting, the separation of non-metallic residue and decontamination. 100% of the pipe portions are characterized through measurements of gross-beta and high resolution gamma spectrometry in order to verify the clearance of materials. The target levels of surface activity and specific activity, prescribed by the National Regulatory Authority, is verified through measurement activities implemented according to specific MQOs defined for the specific process. Activities, subject to National Regulatory Authority control, allow the unconditional release of metallic materials originated from the removal of the radioactive liquid effluents discharge's pipeline in nuclear fuel reprocessing plant ITREC managed by SOGIN SpA. The methodology described provides a good example of management, treatment and decontamination of metallic materials for unconditional release. (authors)

  18. Development of fire resistant, nontoxic aircraft interior materials

    Science.gov (United States)

    Haley, G.; Silverman, B.; Tajima, Y.

    1976-01-01

    All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant, nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts, and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Preliminary data on the physical characteristics of various thermoplastic materials to be considered for either compression molded, injection molded, or thermoformed parts were obtained.

  19. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  20. Nanocomposite of graphene and metal oxide materials

    Science.gov (United States)

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  1. Metallic materials for mechanical damping capacity applications

    Science.gov (United States)

    Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.

    2016-08-01

    Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.

  2. Standard test method for galling resistance of material couples

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers a laboratory test that ranks the galling resistance of material couples using a quantitative measure. Bare metals, alloys, nonmetallic materials, coatings, and surface modified materials may be evaluated by this test method. 1.2 This test method is not designed for evaluating the galling resistance of material couples sliding under lubricated conditions, because galling usually will not occur under lubricated sliding conditions using this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Metal-binding silica materials for wastewater cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Kroh, F.O. [TPL, Inc., Albuquerque, NM (United States)

    1997-10-01

    In this Phase I Small Business Innovation Research program, TPL, Inc. is developing two series of high-efficiency covalently modified silica materials for removing heavy metal ions from wastewater. These materials have metal ion capacities greatly exceeding those of commercial ion exchange resins. One series, containing thiol groups, has high capacity for {open_quotes}soft{close_quotes} heavy metal ions such as Hg, Pb, Ag, and Cd; the other, containing quaternary ammonium groups, has high capacity for anionic metal ions such as pertechnetate, arsenate, selenite, and chromate. These materials have high selectivity for the contaminant metals and will function well in harsh systems that inactivate other systems.

  4. Corrosion performance of advanced structural materials in sodium.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux

  5. Corrosion performance of advanced structural materials in sodium

    International Nuclear Information System (INIS)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-01-01

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and

  6. Materials Compatibility Testing in RSRM ODC: Free Cleaner Selection

    Science.gov (United States)

    Keen, Jill M.; Sagers, Neil W.; McCool, Alex (Technical Monitor)

    2001-01-01

    Government regulations have mandated production phase-outs of a number of solvents, including 1,1,1-trichloroethane, an ozone-depleting chemical (ODC). This solvent was used extensively in the production of the Reusable Solid Rocket Motors (RSRMs) for the Space Shuttle. Many tests have been performed to identify replacement cleaners. One major area of concern in the selection of a new cleaner has been compatibility. Some specific areas considered included cleaner compatibility with non-metallic surfaces, painted surfaces, support materials such as gloves and wipers as well as corrosive properties of the cleaners on the alloys used on these motors. The intent of this paper is to summarize the test logic, methodology, and results acquired from testing the many cleaner and material combinations.

  7. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.

    1985-01-01

    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  8. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  9. Chemistry of liquid metal coolants and sensors

    International Nuclear Information System (INIS)

    Gnanasekaran, T.

    2015-01-01

    Liquid sodium is the coolant of choice for the current generation fast breeder reactors. When sodium contains low levels of dissolved non-metallic impurities, it is highly compatible with structural steels. When the dissolved oxygen level is high, corrosion and mass transfer in sodium-steel circuits are enhanced and this involves formation of NaxMyOz type of species (M = alloying components in steels). Experience has shown that this enhancement of corrosion in a sodium circuit with all austenitic steel structural materials would not be encountered if oxygen level in sodium is below ~ 5ppm. For understanding this observation, a complete knowledge on the phase diagrams of Na-M-O systems and the thermochemical data of all relevant NaxMyOz compounds is essential. This presentation would highlight the work carried out at IGCAR on the chemistry of liquid sodium and heavy liquid metal coolants. Work carried out on various sensors for their use in these liquid metal circuits would be described and their current status would be discussed

  10. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  11. Space-Spurred Metallized Materials

    Science.gov (United States)

    1990-01-01

    Spurred R&D toward improved vacuum metallizing techniques led to an extensive line of commercial products, from insulated outdoor garments to packaging for foods, from wall coverings to window shades, from life rafts to candy wrappings, reflective blankets to photographic reflectors. Metallized Products, Inc. (MPI) was one of the companies that worked with NASA in development of the original space materials. MPI markets its own metallized products and supplies materials to other manufacturers. One of the most widely used MPI products is TXG laminate. An example is a reflective kite, the S.O.S. Signal Kite that can be flown as high as 200 feet to enhance radar and visual detectability. It offers a boon to campers, hikers, mountain climbers and boaters. It is produced by Solar Reflections, Inc. The company also markets a solar reflective hat. Another example is by Pro-Tektion, Inc. to provide protection for expensive musical equipment that have sensitive electronic components subject to damage from the heat of stage lights, dust, or rain at outdoor concerts. MP supplied the material and acceptance of the covers by the sound industry has been excellent.

  12. Properties of structural materials in liquid metal environment

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1991-12-01

    The proceedings contain 16 contributions to the following topics: 1. Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; 2. Behaviour of Materials in Liquid Metal Environment under Off-Normal Conditions; 3. Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; and 4. Crack Propagation in Liquid Sodium. (MM)

  13. Composite metal foil and ceramic fabric materials

    Science.gov (United States)

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  14. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  15. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  16. A vanadium alloy for the application in a liquid metal blanket of a fusion reactor

    Science.gov (United States)

    Borgstedt, H. U.; Grundmann, M.; Konys, J.; Perić, Z.

    1988-07-01

    The vanadium alloy V3Ti1Si has been corrosion tested in liquid lithium and the eutectic alloy Pb-17Li at 550°C. This alloy has a comparable corrosion resistance to the alloy V15Cr5Ti in lithium. In this molten metal it is superior to stainless steel AISI 316. In the Pb-17Li melt it is even superior to martensitic steels. The alloy has only a weak tendency to be dissolved. It is sensitive to an exchange of non-metallic elements, which causes the formation of a hardened surface layer. These chemical effects are influenced by the mass and surface ratios of the vanadium alloy to the molten metals and other structural materials. These ratios are unfavorable in the two test loops. The effects might be less pronounced in a vanadium alloy/liquid metal fusion reactor blanket.

  17. Fusion materials semiannual progress report for the period ending December 31, 1997

    International Nuclear Information System (INIS)

    Burn, G.

    1998-03-01

    This is the twenty-third in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. The other major element of the program is concerned with the interactions between reactor materials and the plasma and is reported separately. The Fusion Materials Program is a national effort involving several national laboratories, universities, and industries. A large fraction of this work, particularly in relation to fission reactor experiments, is carried out collaboratively with their partners in Japan, Russia, and the European Union. The purpose of this series of reports is to provide a working technical record for the use of the program participants, and to provide a means of communicating the efforts of materials scientists to the rest of the fusion community, both nationally and worldwide

  18. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  19. Untitled

    Indian Academy of Sciences (India)

    . TWA2 Surface chemical analysis Wide ranging reference materials, metallic UK and non-metallic. TWA3 Ceramics Alumina, zirconia-alumina USA. TWA4 Polymer blends Polycarbonate/polyethylene blend, Canada. Orgalloy R-6000 ...

  20. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  1. Sorption of tritium and tritiated water on construction materials

    International Nuclear Information System (INIS)

    Dickson, R.S.; Miller, J.M.

    1991-11-01

    Sorption and desorption of tritium (HT) and tritiated water (HTO) on materials to be used in the construction of fusion facilities were studied. In ∼ 24-hour exposures in argon or room air, metal samples sorbed 8-200 μCi/m 2 of tritium from atmospheres of 5-9 Ci/m 3 HT, and non-metallic samples sorbed 60-800 μCi/m 2 from atmospheres of 14 Ci/m 3 HT. Sorption of HTO varied much more widely than HT sorption for different samples, ranging from 4 μCi/m 2 for glass to 1,300,000 μCi/m 2 for concrete samples, in 24-hour exposures to 1 Ci/m 3 HTO in room air. Time dependence of desorption in dry air showed a rapid initial process and a slower secondary process. (Author) (10 refs., 4 figs., 2 tabs.)

  2. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  3. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  4. Biofilms associated with poultry processing equipment.

    Science.gov (United States)

    Lindsay, D; Geornaras, I; von Holy, A

    1996-01-01

    Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.

  5. Cast bulk metallic glass alloys: prospects as wear materials

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Dogan, Omer N.; Shiflet, Gary J. (Dept. of Materials Science and Engineering, University of Virginia, Charlottesville, VA)

    2005-01-01

    Bulk metallic glasses are single phase materials with unusual physical and mechanical properties. One intriguing area of possible use is as a wear material. Usually, pure metals and single phase dilute alloys do not perform well in tribological conditions. When the metal or alloy is lightweight, it is usually soft leading to galling in sliding situations. For the harder metals and alloys, their density is usually high, so there is an energy penalty when using these materials in wear situations. However, bulk metallic glasses at the same density are usually harder than corresponding metals and dilute single phase alloys, and so could offer better wear resistance. This work will discuss preliminary wear results for metallic glasses with densities in the range of 4.5 to 7.9 g/cc. The wear behavior of these materials will be compared to similar metals and alloys.

  6. PERSPECTIVE NONMETALLIC RAW MATERIALS AND THEIR UTILIZATION

    Directory of Open Access Journals (Sweden)

    Havelka Jaroslav

    1997-10-01

    Full Text Available It is the existence of the domestic base of raw materials and stable or growing markets that are a precondition for the prospectiveness industrial minerals. Traditional and non-traditional prospective nonmetal-liferous raw materials can be distinguished. The main trends in new industrial applications of industrial minerals are being stated. In the Czech Republic, the following may be ranked among the traditional prospective nonme-talliferous raw materials: kaoline, refractory clays, ceramic and expandable clays, glass and foundry sands, li-mestones, building stones, gypsum, cast basalt, bentonite, diatomite, feldspars, graphite. Alkali rocks, industrial garnets, flaky mica, wollastonite and yet unmined staurolite, minerals of the sillimanite group and others belong to the non-traditional prospective industrial minerals.

  7. Leading research on super metal. 3. Amorphous and nanostructured metallic materials; Super metal no sendo kenkyu. 3. Kogata buzai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Very fine structure control technique for amorphous and nanostructured metallic materials was reviewed to exceed the marginal performance of small metallic member materials. In Japan, high strength alloys and anticorrosion alloys are currently developed as an amorphous structure control technique, and ultra fine powder production and nano-compaction molding are studied for nanostructured materials. Fabrication of amorphous alloy wire materials and metal glass in USA are also introduced. Fabrication of metallic nanocrystals deposited within gas phase in Germany are attracting attention. The strength and abrasion resistance are remarkably enhanced by making nanostructured crystals and dispersing them. It may be most suitable to utilize amorphous and nanostructured metallic materials for earth-friendly materials having anticorrosion, and catalyst and biomaterial affinities, and also for magnetic materials. It is important for controlling micro-structures to clarify the formation mechanism of structures. For their processing techniques, the diversity and possibility are suggested, as to the condensation and solidification of gaseous and liquid phase metals, the molding and processing of very fine solid phase alloys, and the manufacturing members by heat treatment. 324 refs., 109 figs., 21 tabs.

  8. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  9. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  10. Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites

    Science.gov (United States)

    Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.

    2018-04-01

    Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.

  11. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  12. Metal Matrix Composite Material by Direct Metal Deposition

    Science.gov (United States)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  13. Properties of structural materials in liquid metal environment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Borgstedt, H U [ed.

    1991-12-15

    The International Working Group on Fast Reactors (IWGFR) Specialists Meeting on Properties of Structural Materials in Liquid Metal Environment was held during June 18 to June 20, 1991, at the Nuclear Research Centre (Kernforschungszentrum) in Karlsruhe, Germany. The Specialists Meeting was divided into five technical sessions which addressed topics as follows: Creep-Rupture Behaviour of Structural Materials in Liquid Metal Environment; Behaviour of Materials in Liquid Metal Environments under Off-Normal Conditions;Fatigue and Creep-Fatigue of Structural Materials in Liquid Metal Environment; Crack Propagation in Liquid Sodium; and Conclusions and recommendations. Individual papers have been cataloged separately.

  14. Enhanced angular overlap model for nonmetallic f -electron systems

    Science.gov (United States)

    Gajek, Z.

    2005-07-01

    An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.

  15. Seminar of the expert committee ultrasonic testing. Abstracts

    International Nuclear Information System (INIS)

    2017-01-01

    This seminar volume contains 13 papers focusing on the following topics: 1. Test methods in the automotive sector, 2. Characterization of metallic and non-metallic materials, 3. Industrial test approaches, 4. Fiber composite materials and structures, and 5. Defect characterization using imaging techniques. One paper was separately analyzed for this database. [de

  16. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to determine the three-dimensional morphologies and inner structures of non-metallic inclusions in Al-killed steel, Si-killed steel, and ductile cast iron. The inclusions were first extracted without any damage to the inclusions, and then the collected inclusions were wrapped and cut through Cu ion deposition. The results revealed that the inclusions in Al-killed steel had an irregular morphology, that those in the Si-killed steel were mainly spherical, and that almost all the spheroidal graphite in the ductile cast iron featured a uniform globular morphology. In addition, nucleation was not observed in the inner structures of the inclusions in the Al-killed steel, while some dendritic or rod-like MnS phase precipitates appeared on the silicate inclusion surfaces, and some silicate-rich phases were detected in their inner matrix. For spheroidal graphite, rare-earth oxides (one particle or more were observed as nuclei in the center of almost every graphite particle. The formation and evolution of inclusions in these types of metals can be better understood by means of the two developed methods.

  17. Vacuum Baking To Remove Volatile Materials

    Science.gov (United States)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  18. Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system

    International Nuclear Information System (INIS)

    Ko, Won-Seok; Lee, Byeong-Joo; Kim, Nack J

    2012-01-01

    An interatomic potential for pure phosphorus, an element that has van der Waals, covalent and metallic bonding character, simultaneously, has been developed for the purpose of application to metal-phosphorus systems. As a simplification, the van der Waals interaction, which is less important in metal-phosphorus systems, was omitted in the parameterization process and potential formulation. On the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) interatomic potential formalism applicable to both covalent and metallic materials, a potential that can describe various fundamental physical properties of a wide range of allotropic or transformed crystalline structures of pure phosphorus could be developed. The potential was then extended to the Fe-P binary system describing various physical properties of intermetallic compounds, bcc and liquid alloys, and also the segregation tendency of phosphorus on grain boundaries of bcc iron, in good agreement with experimental information. The suitability of the present potential and the parameterization process for atomic scale investigations about the effects of various non-metallic impurity elements on metal properties is demonstrated. (paper)

  19. Nonmetallic and composite materials as solid superleaks

    International Nuclear Information System (INIS)

    Goldschvartz, J.M.

    1982-01-01

    This chapter discusses the devices in general solid porous materials in which the so-called diameter of the pores, gaps, inter-crystalline spaces, or small channels, etc, are equal or smaller than 100 0 A. Examines silicon carbide, wonderstone, talc-stone, rocks as superleaks, magnetic superleaks, the onset point of a superleak, determination of the onset point, and some applications of superleaks (as a filter, as an isotope separator, as a separator in the 3 He- 4 He dilution refrigerator, in a vortex refrigerator, in a servo-valve for liquid helium two (the cocatron), method of measuring the size of sub-microscopic pores, ultra cold neutrons, superconductors pressed into porous materials)

  20. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  1. New solution of driving systems with the torsionally flexible metal coupling

    Directory of Open Access Journals (Sweden)

    Krzysztof FILIPOWICZ

    2008-01-01

    Full Text Available At work a conception was presented of structure of the new type of driving systems with the metal flexible torsional coupling. Depending on needs, from the type it coupled machines, applied in driving arrangements, it can have a different structural form. the advantages of the new coupling among others is the great permanence of a lack of non-metallic susceptible elements, possibility of moving great torques and considerable relieving momentary overload.

  2. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  3. Ab Initio Studies of Metal Hexaboride Materials

    Science.gov (United States)

    Schmidt, Kevin M.

    Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron

  4. Charge transport in metal oxide nanocrystal-based materials

    Science.gov (United States)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  5. Metal-Organic Framework-Derived Materials for Sodium Energy Storage.

    Science.gov (United States)

    Zou, Guoqiang; Hou, Hongshuai; Ge, Peng; Huang, Zhaodong; Zhao, Ganggang; Yin, Dulin; Ji, Xiaobo

    2018-01-01

    Recently, sodium-ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium-ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal-organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF-derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium-ion storage performances of MOF-derived materials, including MOF-derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF-derived materials in electrochemical energy storage are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry

    International Nuclear Information System (INIS)

    Lin, Boqiang; Ouyang, Xiaoling

    2014-01-01

    As the high energy-consuming manufacturing industry, electricity consumption of nonmetallic mineral products in China accounted for 7.93% of industrial, 5.84% of national and 1.33% of global electricity consumption in 2010. This study attempts to specify the determinants of sectoral electricity demand, forecast future electricity consumption by creating a model using the Johansen cointegration methodology and estimate the sectoral electricity conservation potential. Results indicate that GDP per capita is the leading force explaining the sectoral electricity consumption increase, while value-added per worker, R and D intensity and electricity price are the main factors contributing to the sectoral electricity consumption decrease. Results demonstrate that sectoral electricity consumption in 2020 will be 369.79–464.83 billion kWh under the low-growth scenario and 530.14–666.39 billion kWh under the high-growth scenario. Moreover, under the low-growth scenario, the sectoral electricity conservation potential in 2020 will be 33.72–95.03 billion kWh, accounting for 0.45–1.26% of China's total electricity demand in 2020; under the high-growth scenario, the sectoral electricity conservation potential in 2020 will be 48.34–136.24 billion kWh, accounting for 0.26–0.74% of world's total electricity consumption in 2010 respectively. Finally, we provide some policy recommendations for encouraging energy conservation in China's nonmetallic mineral products industry. - Highlights: • A long-term relationship of electricity demand in nonmetallic minerals industry is established. • Determinants of the sectoral electricity consumption are specified. • The sectoral electricity demand and saving potential are analyzed using scenarios analysis. • Electricity saving potential will be 48.34–136.24 billion kWh under the high-growth scenario

  7. 29 CFR 1910.399 - Definitions applicable to this subpart.

    Science.gov (United States)

    2010-07-01

    ... Classification Code for Petroleum Installations, Model Code—Part 15, Institute for Petroleum; and Electrical... moisture-resistant, flame-resistant nonmetallic material, covered with an overlapping spiral metal tape and...

  8. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  9. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    Energy Technology Data Exchange (ETDEWEB)

    Gorondy-Novak, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Jomard, F. [Groupe d' Etude de la Matière Condensée, CNRS, UVSQ, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Prima, F. [PSL Research University, Chimie ParisTech – CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Lefaix-Jeuland, H., E-mail: helene.lefaix@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs{sup +} primary ion beam coupled with CsHe{sup +} molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, {sup 4}He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  10. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  11. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    International Nuclear Information System (INIS)

    Holcomb, M.J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material is disclosed. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy

  12. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    Science.gov (United States)

    Holcomb, Matthew J.

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  13. Soft Multifunctional Composites and Emulsions with Liquid Metals.

    Science.gov (United States)

    Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel

    2017-07-01

    Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. On the occurrence of metallic character in the periodic table of the chemical elements.

    Science.gov (United States)

    Hensel, Friedrich; Slocombe, Daniel R; Edwards, Peter P

    2015-03-13

    The classification of a chemical element as either 'metal' or 'non-metal' continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373: , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes; Herzfeld KF. 1927 Phys. Rev. 29: , 701-705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Heat-processing method and facility for helium-containing metal material

    International Nuclear Information System (INIS)

    Kato, Takahiko; Kodama, Hideyo; Matsumoto, Toshimi; Aono, Yasuhisa; Nagata, Tetsuya; Hattori, Shigeo; Kaneda, Jun-ya; Ono, Shigeki.

    1996-01-01

    Electric current is supplied to an objective portion of a He-containing metal material to be applied with heat processing without causing melting, to decrease the He content of the portion. Subsequently, the defect portion of the tissues of the He-containing metal is modified by heating the portion with melting. Since electric current can be supplied to the metal material in a state where the metal material is heated and the temperature thereof is elevated, an effect of further reducing the He content can be obtained. Further, if the current supply and/or the heating relative to the metal material is performed in a vacuum or inert gas atmosphere, an effect of reducing the degradation of the surface of the objective portion to be supplied with electric current can be obtained. (T.M.)

  16. Melt-drop technique for the production of high-purity metal powder

    International Nuclear Information System (INIS)

    Aldinger, F.; Linck, E.; Claussen, N.

    1977-01-01

    The production of high-purity powders of metals and alloys such as beryllium, titanium alloys, or superalloys is a problem. Oxidation of these materials cannot be avoided. Oxidation occurs in inert gases and even in reducing atmospheres when any gas impurities are present. Therefore, the powder production of these materials has to be performed either in high vacuum or at least in a static atmosphere of inert gas purified immediately before coming into contact with the disintegrating material. These requirements are very well met by the melt-drop technique presented in this paper, especially for coarse powders which must not necessarily be cold-workable. This is true, for example, for superalloys where high-temperature applications require large grain sizes; or in titanium alloys because the final microstructure will be achieved by a thermomechanical treatment. In the case of beryllium and beryllium alloys, where grain sizes <5 μm are desired, further milling is necessary. But the melt-drop technique offers a simple and clean method directly from the purifying process of vacuum melting. In melt-drop processes a liquid metal flows through a nozzle at the bottom of a crucible or the melt is just poured through a sieve. The theory of disintegration of a liquid jet into droplets, dates back to the 19th century. More recent investigations attempted to produce uniformly sized droplets by applying a capillary wave of given wave length to the jet. But this has been done only with non-metallic materials. Evidence is presented to prove the theory and show that this concept is applicable to the production of metal powders with controlled particle size

  17. Performance ratio hardness characteristics polystyrene-metal composite materials

    International Nuclear Information System (INIS)

    Klepikov, V.F.; Prokhorenko, E.M.; Lytvynenko, V.V.; Zakharchenko, A.A.; Hazhmuradov, M.A.

    2015-01-01

    The methods of measuring the hardness of layered polystyrene-metallic composite materials. It is proposed to use powder-like tungsten and powder-like steel as radiation-protective layer. A measurement of the hardness of composites of different composition, and given its dependence on the particle size and their form. The possibility of increasing the hardness of the composites reinforced with metallic additives. Radiation-protective characteristics were calculated for the studied species of composite materials. Influence of the quantitative composition of the metal components is studied on the change of the absorbed dose of gamma radiation

  18. Corrosion of metal materials embedded in concrete

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.

    2010-01-01

    Carbon steel is the material most frequently used to strengthen reinforced concrete structures; however, stainless steel and galvanized steel reinforcements are also used in construction concretes; and they are not often used in Latin America. Meanwhile, there are other metals that are embedded in the concrete forming part of the openings (aluminum) or in tubing systems (copper and lead). The use of concrete as a cementing material is also useful for immobilizing wastes, such as for example those generated by the nuclear industry. There is a great deal of research and development on the corrosion of steel reinforcements, but the same is not true for the behavior of other metals embedded in concrete and that also undergo corrosive processes. This work aims to study the corrosion of different metals: copper, lead, aluminum, zinc, stainless steel and carbon steel; embedded in concrete with and without the presence of aggressive species for the metal materials. Test pieces were made of mortar containing rods of different materials for testing, and with chlorides added in concentrations of 0; 0.3 % and 1% (mass of chloride per mass of cement). The test pieces were exposed to different conditions; laboratory environment with a relative humidity (RH) of 45%, a controlled atmosphere with 98% RH and submerged in a solution of 3.5% NaCl. The susceptibility to corrosion of the different metals was evaluated using techniques to monitor the corrosion potential, the resistivity of the mortar and the polarization resistance (PR). The rods were weighed before being placed inside the test pieces to later determine the loss of weight generated by the corrosion process. Polarization curves for the metals were also traced in a simulated pore solution (SPS) and in SPS with added chloride. The results obtained to date show that, of all the metals analyzed, aluminum is the most susceptible to corrosion, and that the test specimens with 0% and 1% of chloride exposed to the laboratory

  19. Interatomic interaction of additive elements and their influence on the processes in the double metal solutions

    Directory of Open Access Journals (Sweden)

    Марина Анатоліівна Рябікіна

    2016-07-01

    Full Text Available Modern industry uses a lot of elements as additives to improve the service characteristics of metal products that are to be used for various purposes. These elements can be divided into two groups: the first group includes the elements interacting with iron and improving its characteristics (alloying elements, and the second group includes the elements, that modify the characteristics of the structure and properties in an undesirable direction. These are trace elements: S, P, O, As, and others in steel. The negative impact of these elements shows itself as banding, the formation of non-metallic inclusions, flakes, grain boundary segregations et al. The influence of the elements of the both groups on the properties of steel depends on the nature and level of interatomic interaction in the alloy. Computational and analytical study of the major impurity elements in steel impact on the interatomic bond strength and the probability of forming complexes, clusters, and chemical compounds with the basic alloying elements in the steel has been carried out in the work. The theoretical parameter which defines the strength of the ion-covalent bond of two atoms: non-metallicmetallic is the electronegativity of elements. The electronegativity difference of the metal and non-metallic elements increasing, the ionic bonding and thermodynamic stability of these compounds  increase. On the other hand, concentration of valent electrons is a universal characteristic of an atomic element which determines many of its properties, and especially the energy of interatomic interaction. Energy calculations of pairwise interatomic impurity elements: H, C, N, S, P, As interaction with Fe and major alloying elements in steel: Mn, Cr, Si, V, Al, Ti, W, Cu, Mo, Nb were made. It has been stated that all the impurity elements except phosphorus, hydrogen and arsenic have sufficient high adhesion with the majority of the metal elements in the modern steels. Phosphorus does

  20. Concept Study of Multi Sensor Detection Imaging and Explosive Confirmation of Mines

    National Research Council Canada - National Science Library

    Stolarczyk, Larry

    1998-01-01

    ...) cannot detect non-metallic mines and detection sensitivity degrades in magnetic soil. Because metal detection sensitivity can be increased to detect low metal content in some non-metallic mines, some alarms significantly increase...

  1. New Porous Material Made from Industrial and Municipal Waste for Building Application

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2014-09-01

    Full Text Available The aim of this study was to find a new method for usage of the hazardous waste coming from recycling industry. Two hazardous wastes – aluminium recycling final dross or non-metallic product (NMP and lead – silica glass (LSG were investigated. It is generally considered that NMP is a process waste and subject to disposal after residual metal has been recovered from primary dross. NMP is impurities which are removed from the molten metal in dross recycling process and it could be defined as a hazardous waste product in aluminium recycling industry. LSG comes from fluorescence lamp recycling plant and could be classified as hazardous waste due to high amount of lead in the composition and re-melting problems. The new alkali activated material, which can be defined as porous building material, was created. Composition of this material consisted of aluminium recycling waste, recycled fluorescent lamp LSG, sintered kaolin clay as well as commercially available alkali flakes (NaOH and liquid glass (Na2SiO3 + nH2O. Physical and mechanical properties of the obtained material were tested. Density of the obtained material was from (460 – 550 kg/m3 and the total porosity was from 82 % – 83 %. The compressive strength of the material was in range from 1.1 MPa to 2.3 MPa. The thermal conductivity was determined. The pore microstructure was investigated and the mineralogical composition of porous material was determined. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4330

  2. Exploring China's materialization process with economic transition: analysis of raw material consumption and its socioeconomic drivers.

    Science.gov (United States)

    Wang, Heming; Tian, Xin; Tanikawa, Hiroki; Chang, Miao; Hashimoto, Seiji; Moriguchi, Yuichi; Lu, Zhongwu

    2014-05-06

    China's rapidly growing economy is accelerating its materialization process and thereby creating serious environmental problems at both local and global levels. Understanding the key drivers behind China's mass consumption of raw materials is thus crucial for developing sustainable resource management and providing valuable insights into how other emerging economies may be aiming to accomplish a low resource-dependent future. Our results show that China's raw material consumption (RMC) rose dramatically from 11.9 billion tons in 1997 to 20.4 billion tons in 2007, at an average annual growth rate at 5.5%. In particular, nonferrous metal minerals and iron ores increased at the highest rate, while nonmetallic minerals showed the greatest proportion (over 60%). We find that China's accelerating materialization process is closely related to its levels of urbanization and industrialization, notably demand for raw materials in the construction, services, and heavy manufacturing sectors. The growing domestic final demand level is the strongest contributor of China's growth in RMC, whereas changes in final demand composition are the largest contributors to reducing it. However, the expected offsetting effect from changes in production pattern and production-related technology level, which should be the focus of future dematerialization in China, could not be found.

  3. Hand Book of Metal Material Contrast

    International Nuclear Information System (INIS)

    Park, Yeong Hui

    1989-06-01

    This book first gives descriptions of using of this hand book and contents. It tells of steel such as bar steel, section steel, and steel sheet which are steel for general structure and steel for pressure vessel, a steel pipe, carbon steel for machine structure and alloy steel, steel for special things, stainless steel, heat resisting steel, tool steel, spring steel, forging, steel casting, nonferrous metal such as aluminium and aluminium alloy, casting, list of similar steel per metal, list of steel like ASTM, AISI per number, and list of collecting standard per metal material.

  4. Compatibility of materials with liquid metal targets for SNS

    International Nuclear Information System (INIS)

    DiStefano, J.R.; Pawel, S.J.; DeVan, J.H.

    1996-01-01

    Several heavy liquid metals are candidates as the target in a spallation neutron source: Hg, Pb, Bi, and Pb-Bi eutectic. Systems with these liquid metals have been used in the past and a data-base on compatibility already exists. Two major compatibility issues have been identified when selecting a container material for these liquid metals: temperature gradient mass transfer and liquid metal embrittlement or LME. Temperature gradient mass transfer refers to dissolution of material from the high temperature portions of a system and its deposition in the lower temperature areas. Solution and deposition rate constants along with temperature, ΔT, and velocity are usually the most important parameters. For most candidate materials mass transfer corrosion has been found to be proportionately worse in Bi compared with Hg and Pb. For temperatures to ∼550 degrees C, ferritic/martensitic steels have been satisfactory in Pb or Hg systems and the maximum temperature can be extended to ∼650 degrees C with additions of inhibitors to the liquid metal, e.g. Mg, Ti, Zr. Above ∼600 degrees C, austenitic stainless steels have been reported to be unsatisfactory, largely because of the mass transfer of nickel. Blockage of flow from deposition of material is usually the life-limiting effect of this type of corrosion. However, mass transfer corrosion at lower temperatures has not been studied. At low temperatures (usually < 150 degrees C), LME has been reported for some liquid metal/container alloy combinations. Liquid metal embrittlement, like hydrogen embrittlement, results in brittle fracture of a normally ductile material

  5. All-Metallic Vertical Transistors Based on Stacked Dirac Materials

    OpenAIRE

    Wang, Yangyang; Ni, Zeyuan; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Ye, Meng; Yu, Dapeng; Shi, Junjie; Yang, Jinbo; Lu, Jing

    2014-01-01

    It is an ongoing pursuit to use metal as a channel material in a field effect transistor. All metallic transistor can be fabricated from pristine semimetallic Dirac materials (such as graphene, silicene, and germanene), but the on/off current ratio is very low. In a vertical heterostructure composed by two Dirac materials, the Dirac cones of the two materials survive the weak interlayer van der Waals interaction based on density functional theory method, and electron transport from the Dirac ...

  6. Achieving Innovation and Affordability Through Standardization of Materials Development and Testing

    Science.gov (United States)

    Bray, M. H.; Zook, L. M.; Raley, R. E.; Chapman, C.

    2011-01-01

    The successful expansion of development, innovation, and production within the aeronautics industry during the 20th century was facilitated by collaboration of government agencies with the commercial aviation companies. One of the initial products conceived from the collaboration was the ANC-5 Bulletin, first published in 1937. The ANC-5 Bulletin had intended to standardize the requirements of various government agencies in the design of aircraft structure. The national space policy shift in priority for NASA with an emphasis on transferring the travel to low earth orbit to commercial space providers highlights an opportunity and a need for the national and global space industries. The same collaboration and standardization that is documented and maintained by the industry within MIL-HDBK-5 (MMPDS-01) and MIL-HBDK-17 (nonmetallic mechanical properties) can also be exploited to standardize the thermal performance properties, processing methods, test methods, and analytical methods for use in aircraft and spacecraft design and associated propulsion systems. In addition to the definition of thermal performance description and standardization, the standardization for test methods and analysis for extreme environments (high temperature, cryogenics, deep space radiation, etc) would also be highly valuable to the industry. Its subsequent revisions and conversion to MIL-HDBK-5 and then MMPDS-01 established and then expanded to contain standardized mechanical property design values and other related design information for metallic materials used in aircraft, missiles, and space vehicles. It also includes guidance on standardization of composition, processing, and analytical methods for presentation and inclusion into the handbook. This standardization enabled an expansion of the technologies to provide efficiency and reliability to the consumers. It can be established that many individual programs within the government agencies have been overcome with development costs

  7. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  8. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  9. Influence of metal dental materials on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi [Nippon Medical School, Tokyo (Japan). Main Hospital; Nakata, Minoru; Fujita, Isao

    1998-11-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  10. Influence of metal dental materials on MR imaging

    International Nuclear Information System (INIS)

    Tsuchihashi, Toshio; Chiba, Michiko; Yoshizawa, Satoshi; Sasaki, Sadayuki; Maki, Toshio; Kitagawa, Matsuo; Suzuki, Takeshi; Nakata, Minoru; Fujita, Isao

    1998-01-01

    Differences in magnetic susceptibility produce artifacts and signal loss in magnetic resonance imaging (MRI). This study was undertaken to compare the degree of artifacts on MRI caused by metallic dental materials. The influence on MRI of six types of dental alloys, a dental implant, orthodontic appliance, and magnetic attachment was investigated. Among the dental metals, nickel-chromium alloy and cobalt-chromium alloy, which have ferromagnetism, caused significant metal artifacts. Gold-platinum alloy, gold-silver-palladium alloy, silver alloy, and amalgam alloy produced slight metal artifacts. The orthodontic appliance mainly consisted of iron, and the keeper for its magnetic attachment was made of stainless steel. For these reasons, marked metal artifacts and signal loss could be seen in both of them owing to their ferromagnetism. These results suggest that orthodontic appliances and magnetic attachments impair evaluation of the GRE and EPI techniques. It is therefore preferable to use predominantly diamagnetic or paramagnetic dental materials for MRI of the head and neck. Removable keepers should be used more widely to prevent metal artifacts and enhance safety on MRI. (author)

  11. Magnetocaloric cooling: the phenomenon and materials

    Science.gov (United States)

    Pecharsky, Vitalij

    2015-03-01

    The discovery of the giant magnetocaloric effect in Gd5Si2Ge2 and other R5T4 compounds (R = rare earth metal and T is a Group 14 element) generated a broad interest in the magnetocaloric effect and magnetic refrigeration near room temperature in particular, and in magnetostructural transitions in general. Reports on the giant magnetocaloric effect in other systems soon followed. These include MnFePxAs1-x and related compounds, La(Fe1-xSix)13 and their hydrides, Mn(AsxSb1-x) , CoMnSixGe1-x and related compounds, Ni2MnGa and some closely related Heusler phases, and a few non-metallic systems. A common feature observed in all giant magnetocaloric effect materials is the enhancement of the magnetic entropy change by the overlapping contribution from the lattice. In addition to the interplay between magnetic and lattice entropies, both of which are intrinsic materials' parameters that in principle can be modeled theoretically from first principles, extrinsic parameters such as microstructure and nanostructure, have been found to play a role in controlling both the magnetostructural transition(s) and magnetocaloric effect. Both the intrinsic and extrinsic parameters are, therefore, important in order to maximize magnetocaloric effect. The role of different control parameters and the potential pathways towards materials exhibiting advanced magnetocaloric effect will be discussed. This work is supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University.

  12. Chemical and physical analysis of core materials for advanced high temperature reactors with process heat applications

    International Nuclear Information System (INIS)

    Nickel, H.

    1985-08-01

    Various chemical and physical methods for the analysis of structural materials have been developed in the research programmes for advanced high temperature reactors. These methods are discussed using as examples the structural materials of the reactor core - the fuel elements consisting of coated particles in a graphite matrix and the structural graphite. Emphasis is given to the methods of chemical analysis. The composition of fuel kernels is investigated using chemical analysis methods to determine the heavy metals content (uranium, plutonium, thorium and metallic impurity elements) and the amount of non-metallic constituents. The properties of the pyrocarbon and silicon carbide coatings of fuel elements are investigated using specially developed physiochemical methods. Regarding the irradiation behaviour of coated particles and fuel elements, methods have been developed for examining specimens in hot cells following exposures under reactor operating conditions, to supplement the measurements of in-reactor performance. For the structural graphite, the determination of impurities is important because certain impurities may cause pitting corrosion during irradiation. The localized analysis of very low impurity concentrations is carried out using spectrochemical d.c. arc excitation, local laser and inductively coupled plasma methods. (orig.)

  13. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Unknown

    Experimental results show that high electronic excitation can also induce structural modifications in metallic sys- tems similar to those in non-metallic systems. This means that all Se-dependent effects induced in different materials are probably related to some basic energy transfer mecha- nism between the incident ion and ...

  14. Influence of hole transport material/metal contact interface on perovskite solar cells

    Science.gov (United States)

    Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming

    2018-06-01

    Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.

  15. Resource Efficient Metal and Material Recycling

    Science.gov (United States)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  16. Synthesis of PdO/MCM-41 nanocomposites using trans-[PdCl2(PEt3)2] as the source of metal

    International Nuclear Information System (INIS)

    Hernandez-Pineda, Jessica; Rio, Jose Manuel del; Carreto, Enrique; Terres, Eduardo; Montoya, J. Asencion; Zuniga-Gonzalez, Maria de Jesus; Morgado, Jorge

    2009-01-01

    Three PdO/MCM-41 nanocomposites containing PdO species that are dispersed on an MCM-41 support have been prepared using trans-[PdCl 2 (PEt 3 ) 2 ] as the source of metal. Thermal gravimetric analysis of the decomposition of this complex in air reveals a remarkable mass loss of all nonmetallic elements centered at 300 deg. C. The materials were characterized with X-ray powder diffraction (XRPD), nitrogen sorption and TEM, which showed that the PdO nanoparticles were present inside the pores of MCM-41. XRPD analysis confirms formation of PdO (palladinite) nanocrystals, as the sole crystalline phase present in the nanocomposites.

  17. Model of bidirectional reflectance distribution function for metallic materials

    International Nuclear Information System (INIS)

    Wang Kai; Zhu Jing-Ping; Liu Hong; Hou Xun

    2016-01-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials. (paper)

  18. Model of bidirectional reflectance distribution function for metallic materials

    Science.gov (United States)

    Wang, Kai; Zhu, Jing-Ping; Liu, Hong; Hou, Xun

    2016-09-01

    Based on the three-component assumption that the reflection is divided into specular reflection, directional diffuse reflection, and ideal diffuse reflection, a bidirectional reflectance distribution function (BRDF) model of metallic materials is presented. Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection, the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection. This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials. Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.

  19. Failure of metals III: Fracture and fatigue of nanostructured metallic materials

    International Nuclear Information System (INIS)

    Pineau, André; Amine Benzerga, A.; Pardoen, Thomas

    2016-01-01

    Pushing the internal or external dimensions of metallic alloys down to the nanometer scale gives rise to strong materials, though most often at the expense of a low ductility and a low resistance to cracking, with negative impact on the transfer to engineering applications. These characteristics are observed, with some exceptions, in bulk ultra-fine grained and nanocrystalline metals, nano-twinned metals, thin metallic coatings on substrates and freestanding thin metallic films and nanowires. This overview encompasses all these systems to reveal commonalities in the origins of the lack of ductility and fracture resistance, in factors governing fatigue resistance, and in ways to improve properties. After surveying the various processing methods and key deformation mechanisms, we systematically address the current state of the art in terms of plastic localization, damage, static and fatigue cracking, for three classes of systems: (1) bulk ultra-fine grained and nanocrystalline metals, (2) thin metallic films on substrates, and (3) 1D and 2D freestanding micro and nanoscale systems. In doing so, we aim to favour cross-fertilization between progress made in the fields of mechanics of thin films, nanomechanics, fundamental researches in bulk nanocrystalline metals and metallurgy to impart enhanced resistance to fracture and fatigue in high-strength nanostructured systems. This involves exploiting intrinsic mechanisms, e.g. to enhance hardening and rate-sensitivity so as to delay necking, or improve grain-boundary cohesion to resist intergranular cracks or voids. Extrinsic methods can also be utilized such as by hybridizing the metal with another material to delocalize the deformation - as practiced in stretchable electronics. Fatigue crack initiation is in principle improved by a fine structure, but at the expense of larger fatigue crack growth rates. Extrinsic toughening through hybridization allows arresting or bridging cracks. The content and discussions are based on

  20. Liquid metal reactor core material HT9

    International Nuclear Information System (INIS)

    Kim, S. H.; Kuk, I. H.; Ryu, W. S. and others

    1998-03-01

    A state-of-the art is surveyed on the liquid metal reactor core materials HT9. The purpose of this report is to give an insight for choosing and developing the materials to be applied to the KAERI prototype liquid metal reactor which is planned for the year of 2010. In-core stability of cladding materials is important to the extension of fuel burnup. Austenitic stainless steel (AISI 316) has been used as core material in the early LMR due to the good mechanical properties at high temperatures, but it has been found to show a poor swelling resistance. So many efforts have been made to solve this problem that HT9 have been developed. HT9 is 12Cr-1MoVW steel. The microstructure of HT9 consisted of tempered martensite with dispersed carbide. HT9 has superior irradiation swelling resistance as other BCC metals, and good sodium compatibility. HT9 has also a good irradiation creep properties below 500 dg C, but irradiation creep properties are degraded above 500 dg C. Researches are currently in progress to modify the HT9 in order to improve the irradiation creep properties above 500 dg C. New design studies for decreasing the core temperature below 500 dg C are needed to use HT9 as a core material. On the contrary, decrease of the thermal efficiency may occur due to lower-down of the operation temperature. (author). 51 refs., 6 tabs., 19 figs

  1. Influence of refining time on nonmetallic inclusions in a low-carbon, silicon-killed steel

    International Nuclear Information System (INIS)

    Fernandes, Marcolino; Pires, Jose Carlos; Cheung, Noe; Garcia, Amauri

    2003-01-01

    Nonmetallic inclusions are harmful to the mechanical properties of every kind of steel produced worldwide. The greater the size of the inclusion present in the structure of a determined kind of steel, the greater its negative effect on the quality of the steel. Therefore, the objective of this work was to investigate the size, the quantity, the shape and the chemical composition of nonmetallic inclusions formed throughout the refining process of silicon-killed, low-carbon steel, as a function of the treatment time in a ladle furnace, trying to ensure the flotation of inclusions bigger than 25 μm. This investigation was carried out using a scanning electron microscope (SEM), with an analysis system using energy dispersive spectometry (EDS). Based on this work, it was possible to know more precisely the nature of the inclusions, the necessary time to ensure flotation of large inclusions, the efficiency of the slag to capture the inclusions, and the inclusion level of the steel throughout its refining process to try to obtain a higher quality steel product

  2. IAEA INTOR workshop report, group 6

    International Nuclear Information System (INIS)

    Shiraishi, Kensuke; Kondo, Tatsuo; Nasu, Shoichi; Takamura, Saburo; Oku, Tatsuo

    1979-10-01

    For materials data base assessment, selected properties of the materials important in INTOR are evaluated on the basis of data obtained in Japan. Materials covered are austenitic steels, non-magnetic steels, and titanium alloys as structural materials; helium and water for coolant; lithium oxide for breeder; aluminum and copper for stabilizer and organic insulator as magnet materials; graphite for non-metallic materials. (author)

  3. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Davis, P.R.; Bozack, M.J.; Swanson, L.W.

    1983-01-01

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO 2 or stabilized ZrO 2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr 2 O 3 -A1 2 O 3 ) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  4. Use of radioactive indicators for the quantitative determination of non-metall inclusions in steel

    International Nuclear Information System (INIS)

    Rewienska-Kosciuk, B.; Michalik, J.

    1979-01-01

    Methods of determining and investigating the sources of non-metal inclusions in steel are presented together with some results of radiometric investigations. The experience of several years of research in industries as well as profound studies of world literature were used as a basis for systematic and critical discussion of the methods used. Optimum methods have been chosen for the quantitative determination of oxide inclusions and for the identification of their origin (e.g. from the refractory furnace lining, the tap-hole, the runner, the ladle or mold slag). Problems of tracers (type, quantity, condition, activity), of the labelling method suitable for the various origins of inclusions, of sampling, of chemical processing of the material sampled, as well as of radiometric measuring techniques (including possible activation) are discussed. Finally, a method for the determination of inclusions resulting from the deoxidation of steel is briefly outlined. (author)

  5. Atomic scale modelling of materials of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Bertolus, M.

    2011-10-01

    This document written to obtain the French accreditation to supervise research presents the research I conducted at CEA Cadarache since 1999 on the atomic scale modelling of non-metallic materials involved in the nuclear fuel cycle: host materials for radionuclides from nuclear waste (apatites), fuel (in particular uranium dioxide) and ceramic cladding materials (silicon carbide). These are complex materials at the frontier of modelling capabilities since they contain heavy elements (rare earths or actinides), exhibit complex structures or chemical compositions and/or are subjected to irradiation effects: creation of point defects and fission products, amorphization. The objective of my studies is to bring further insight into the physics and chemistry of the elementary processes involved using atomic scale modelling and its coupling with higher scale models and experimental studies. This work is organised in two parts: on the one hand the development, adaptation and implementation of atomic scale modelling methods and validation of the approximations used; on the other hand the application of these methods to the investigation of nuclear materials under irradiation. This document contains a synthesis of the studies performed, orientations for future research, a detailed resume and a list of publications and communications. (author)

  6. Microporous Metal Organic Materials for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  7. Laser assisted embedding of nanoparticles into metallic materials

    International Nuclear Information System (INIS)

    Lin Dong; Suslov, Sergey; Ye Chang; Liao Yiliang; Liu, C. Richard; Cheng, Gary J.

    2012-01-01

    This paper reports a methodology of half-embedding nanoparticles into metallic materials. Transparent and opaque nanoparticles are chosen to demonstrate the process of laser assisted nanoparticle embedding. Dip coating method is used to coat transparent or opaque nanoparticle on the surface of metallic material. Nanoparticles are embedded into substrate by laser irradiation. In this study, the mechanism and process of nanoparticle embedding are investigated. It is found both transparent and opaque nanoparticles embedding are with high densities and good uniformities.

  8. Successes and failures of Ni-Cr-Mo family alloys in FGD systems of coal-fired power plants

    International Nuclear Information System (INIS)

    Agarwal, D.C.

    1986-01-01

    At first glance, operation of a typical limestone FGD system seems deceptively simple. However, the first generation scrubbers of the early to mid 70's proved to be a financial and operational disaster due to metals corroding in a rather short time period and non-metallic linings failing by blistering, debonding, cracking, flaking and peeling. Extensive research programs at various institutions and utilities to find better construction materials led to higher alloys up the ladder of the Ni-Cr-Mo family, other materials and new non-metallic coatings. This paper describes case histories showing both success and failures of the various alloys in the Ni-Cr-Mo family. This information will not only be useful to the various scrubber system suppliers and A/E's, but should be of value to utility corrosion/scrubber engineers and maintenance personnel who, on a day-to-day basis, are involved in keeping their systems functional in a cost-effective manner

  9. Metal-ceramic materials. Study and prediction of effective mechanical properties

    International Nuclear Information System (INIS)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-01-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  10. Filter materials for metal removal from mine drainage--a review.

    Science.gov (United States)

    Westholm, Lena Johansson; Repo, Eveliina; Sillanpää, Mika

    2014-01-01

    A large number of filter materials, organic and inorganic, for removal of heavy metals in mine drainage have been reviewed. Bark, chitin, chitosan, commercial ion exchangers, dairy manure compost, lignite, peat, rice husks, vegetal compost, and yeast are examples of organic materials, while bio-carbons, calcareous shale, dolomite, fly ash, limestone, olivine, steel slag materials and zeolites are examples of inorganic materials. The majority of these filter materials have been investigated in laboratory studies, based on various experimental set-ups (batch and/or column tests) and different conditions. A few materials, for instance steel slag materials, have also been subjects to field investigations under real-life conditions. The results from these investigations show that steel slag materials have the potential to remove heavy metals under different conditions. Ion exchange has been suggested as the major metal removal mechanisms not only for steel slag but also for lignite. Other suggested removal mechanisms have also been identified. Adsorption has been suggested important for activated carbon, precipitation for chitosan and sulphate reduction for olivine. General findings indicate that the results with regard to metal removal vary due to experimental set ups, composition of mine drainage and properties of filter materials and the discrepancies between studies renders normalisation of data difficult. However, the literature reveals that Fe, Zn, Pb, Hg and Al are removed to a large extent. Further investigations, especially under real-life conditions, are however necessary in order to find suitable filter materials for treatment of mine drainage.

  11. Small polarons and c-axis transport in highly anisotropic metals

    International Nuclear Information System (INIS)

    Ho, A.F.; Schofield, A.J.

    2002-09-01

    Motivated by the anomalous c-axis transport properties of the quasi two-dimensional metal, Sr 2 RuO 4 , and some of its relatives, we have studied the interlayer hopping of single electrons that are coupled strongly to c-axis bosons. We find a c-axis resistivity that reflects the in-plane electronic scattering in the low and very high temperature limits (relative to the characteristic temperature of the boson T boson ). For temperatures near the T boson , a broad maximum in the resistivity can appear for sufficiently strong electron-boson coupling. This feature may account for the observed 'metallic to non-metallic crossover' seen in these layered oxides, where the boson may be a phonon. (author)

  12. Application of self-propagation high-temperature synthesis for immobilization of hard radioactive wastes in ceramet materials

    International Nuclear Information System (INIS)

    Ilyin, E.; Pashkeev, I.; Senin, A.; Gerasimova, N.

    2001-01-01

    The possibility of self-propagating high-temperature synthesis (SPHTS) application for an immobilization of solid high level wastes (HLW) in cermet materials is considered. The schemes of multilayer cermet blocks formation are offered. Such blocks consist of a ceramet core with immobilized HLW and a protective cover - ceramet without HLW. The influence of the base components form (pure Ti and Si, ferrotitanium and ferrosilicon), metallic components (Ni, Cu, Cr, Fe, ferrochromium) and nonmetallic components (SiO 2 , Al 2 O 3 , TiO 2 ) on burning rate and cover ceramet structure is investigated in compositions on a basis of Ti+B, Ti+Si, Ti+C systems. Model samples of multilayer cermet blocks are manufactured using of HLW simulators. (authors)

  13. The Effects of Heteroatom Adsorption on the Electronic Properties of Phosphorene

    OpenAIRE

    Sun, Mengyao; Wang, Zhiyong; Zhao, Yayun; Jin, Junchao; Xiao, Jianrong; Wang, Liu

    2017-01-01

    A new 2D material, phosphorene, has several remarkable advantages; various superiorities make phosphorene a research hotspot. This paper provides comprehensive information about the structure and electronic and magnetic properties of phosphorene adsorbed with atoms, including alkali and alkaline-earth metal atoms, nonmetallic atoms, noble metal atoms, and transition-metal atoms. Phosphorene adsorbed with alkali and alkaline-earth metal atoms, such as Li and Na adatoms, becomes an n-type semic...

  14. New multifunctional lightweight materials based on cellular metals - manufacturing, properties and applications

    International Nuclear Information System (INIS)

    Stephani, Guenter; Quadbeck, Peter; Andersen, Olaf

    2009-01-01

    Cellular metallic materials are a new class of materials which have been the focus of numerous scientific studies over the past few years. The increasing interest in cellular metals is due to the fact that the introduction of pores into the materials significantly lowers the density. These highly porous materials also possess combinations of properties which are not possible to achieve with other materials. Besides the drastic weight and material savings that arise from the cell structure, there are also other application-specific benefits such as noise and energy absorption, heat insulation, mechanical damping, filtration effects and also catalytic properties. Cellular metallic materials are hence multi-functional lightweight materials.

  15. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  16. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  17. Design of multi materials combining crystalline and amorphous metallic alloys

    International Nuclear Information System (INIS)

    Volland, A.; Ragani, J.; Liu, Y.; Gravier, S.; Suéry, M.; Blandin, J.J.

    2012-01-01

    Highlights: ► Elaboration of multi materials associating metallic glasses and conventional crystalline alloys by co-deformation performed at temperatures close to the glass transition temperature of the metallic glasses. ► Elaboration of filamentary metal matrix composites with a core in metallic glass by co extrusion. ► Sandwich structures produced by co-pressing. ► Detection of atomic diffusion from the glass to the crystalline alloys during the processes. ► Good interfaces between the metallic glasses and the crystalline alloys, as confirmed by mechanical characterisation. - Abstract: Multi materials, associating zirconium based bulk metallic glasses and crystalline metallic alloys like magnesium alloys or copper are elaborated by co-deformation processing performed in the supercooled liquid regions (SLR) of the bulk metallic glasses. Two processes are investigated: co-extrusion and co-pressing. In the first case, filamentary composites with various designs can be produced whereas in the second case sandwich structures are obtained. The experimental window (temperature, time) in which processing can be carried out is directly related to the crystallisation resistance of the glass which requires getting information about the crystallisation conditions in the selected metallic glasses. Thermoforming windows are identified for the studied BMGs by thermal analysis and compression tests in their SLR. The mechanical properties of the produced multi materials are investigated thanks to specifically developed mechanical devices and the interfaces between the amorphous and the crystalline alloys are characterised.

  18. Plasmarc technology for the treatment of metallic radwaste

    International Nuclear Information System (INIS)

    Hoffelner, W.; Weigel, H.

    1999-01-01

    The Plasmarc incineration and melting technology is suitable for processing radioactive wastes arising from the fields of medicine, industry and research, and from the operation and maintenance of nuclear power plants. Combustible wastes can be thermally decomposed and metals melted in the same facility together, and the incineration products and metals are thus turned into a form suitable for disposal in one step. In secondary metallurgy the Plasmarc technology can be used for melting scrap metal and recovering usable metals from metalliferous wastes, particularly composites of different metals and ceramics and metals and plastics. In the case of special wastes, it is possible to thermally decompose otherwise problematic residues in an oxygen free atmosphere at high temperatures. Material construction in the incineration mode could be in 200-litre standard drums with a total weight up to 300 kilograms if an average processing efficiency of 200 kilograms of mixed waste per hours is assumed. Melting: In the melting mode for metals, the drums coming from the storage rack are placed in the slowly rotating furnace using a grabbing device. Because of the low speed of rotation, the central outlet is initially blocked with a stopper. The drums, with contents, are then molten in the plasma arc. As soon as there is a melted mass, the speed of rotation of the furnace is increased until there is no material outflow when the stopper is removed. The stopped is then removed and the speed of rotation is reduced once again to allow the melt to flow out, exactly as in the incineration mode. Mixing: In the mixing mode, metallic/nonmetallic mixtures (e.g. reinforced concrete) can be processed. The meltable components are melted and the organic components are thermally decomposed. Because of differences in density, the inorganic residues float on the surface of the molten metal and can be vitrified using additives. These different operating modes of the Plasmarc furnace allow various

  19. An Overview on Impact Behaviour and Energy Absorption of Collapsible Metallic and Non-Metallic Energy Absorbers used in Automotive Applications

    Science.gov (United States)

    Shinde, R. B.; Mali, K. D.

    2018-04-01

    Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.

  20. Comparison of properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Ćosović V.

    2012-01-01

    Full Text Available Changes in physical properties such as density, porosity, hardness and electrical conductivity of the Ag-SnO2 and Ag-SnO2In2O3 electrical contact materials induced by introduction of metal oxide nanoparticles were investigated. Properties of the obtained silver-metal oxide nanoparticle composites are discussed and presented in comparison to their counterparts with the micro metal oxide particles as well as comparable Ag-SnO2WO3 and Ag-ZnO contact materials. Studied silvermetal oxide composites were produced by powder metallurgy method from very fine pure silver and micro- and nanoparticle metal oxide powders. Very uniform microstructures were obtained for all investigated composites and they exhibited physical properties that are comparable with relevant properties of equivalent commercial silver based electrical contact materials. Both Ag-SnO2 and Ag- SnO2In2O3 composites with metal oxide nanoparticles were found to have lower porosity, higher density and hardness than their respective counterparts which can be attributed to better dispersion hardening i.e. higher degree of dispersion of metal oxide in silver matrix.

  1. Recent Advances as Materials of Functional Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Xiao-Lan Tong

    2013-01-01

    Full Text Available Metal-organic frameworks (MOFs, also known as hybrid inorganic-organic materials, represent an emerging class of materials that have attracted the imagination of solid-state chemists because MOFs combine unprecedented levels of porosity with a range of other functional properties that occur through the metal moiety and/or the organic ligand. The purpose of this critical review is to give a representative and comprehensive overview of the arising developments in the field of functional metal-organic frameworks, including luminescence, magnetism, and porosity through presenting examples. This review will be of interest to researchers and synthetic chemists attempting to design multifunctional MOFs.

  2. 75 FR 52614 - Special Conditions: Embraer Model ERJ 170-100 SU Series Airplanes; Seats With Non-Traditional...

    Science.gov (United States)

    2010-08-27

    ... being mostly fabric and metal, the contribution to a fire in the cabin had been minimized and was not..., non-metallic panels that would affect survivability during a post-crash fire event. The applicable..., seats were designed with a metal frame covered by fabric, not with large, non-metallic panels. Seats...

  3. Study on corrosion of metal materials in nitrate molten salts

    Science.gov (United States)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  4. Changes in surface properties caused by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1987-01-01

    This report outlines various aspects of ion implantation. Major features of ion implantation are described first, focusing on the structure of ion implantation equipment and some experimental results of ion implantation into semiconductors. Distribution of components in ion-implantated layers is then discussed. The two major features of ion implantation in relation to the distribution of implanted ions are: (1) high controllability of addition of ions to a surface layer and (2) formation of a large number of lattice defects in a short period of time. Application of ion implantation to metallic materials is expected to permit the following: (1) formation of a semi-stable alloy surface layer by metallic ion implantation, (2) formation of a semi-stable ceramic surface layer or buried layer by non-metallic ion implantation, and (3) formation of a buried layer by combined implementation of a different metallic ion and non-metallic ion. Ion implantation in carbon materials, polymers and ceramics is discussed next. The last part of the report is dedicated to macroscopic properties of an ion-implanted layer, centering on surface modification, formation of a conductive surface layer, and tribology. (Nogami, K.) 60 refs

  5. Laser-induced change of electrical resistivity of metals and its applications

    Science.gov (United States)

    Pawlak, Ryszard; Kostrubiec, Franciszek; Tomczyk, Mariusz; Walczak, Maria

    2005-01-01

    Applying of laser alloying for modification of electrical resistivity of metals with significant importance in electrical and electronic engineering and utilization of this method for producing passive elements of electric circuit have been presented. The alloyed metals were obtained by means of laser beams with different wave length and various mode of working (cw or pulse), by different methods for the supplying of alloying elements. It was possible to form alloyed layers of metals forming different types of metallurgical systems: with full (Cu-Au, Cu-Ni) or partial solubility (Mo-Ni, W-Ni, Cu-Al, Ag-Sn), insoluble (Mo-Au and Cu-Cr) and immiscible (Ag-Ni and Ni-Au) metals, with metallic as well as non-metallic additions (oxide). It has been shown as well that it is possible to achieve resistive elements modified in whole cross section, in a single technological process. The results of systematic investigations into the resistivity of alloyed metals in the temperature range of 77-450 K have been presented. The alloyed layers, obtained, were characterised by a range of resistivity from 2.8 x 10-8 Ωm (Cu-Cr) to 128 x 10-8 Ωm (W-Ni). The microstructure and composition of alloyed layers were examined by means of SEM-microscopy and EDX analyser. In selected cases it was shown how results of investigations could be utilized for modification of surface layer of contact materials or to optimize the resistance of laser welded joints. In addition the results of investigations of new developed microtechnology -- producing micro-areas with extremely high resistivity -- have been presented.

  6. Cermet materials prepared by combustion synthesis and metal infiltration

    Science.gov (United States)

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  7. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  8. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  9. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  10. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  11. Comparative study of material loss at the taper interface in retrieved metal-on-polyethylene and metal-on-metal femoral components from a single manufacturer.

    Science.gov (United States)

    Bills, Paul; Racasan, Radu; Bhattacharya, Saugatta; Blunt, Liam; Isaac, Graham

    2017-08-01

    There have been a number of reports on the occurrence of taper corrosion and/or fretting and some have speculated on a link to the occurrence of adverse local tissue reaction specifically in relation to total hip replacement which have a metal-on-metal bearing. As such a study was carried out to compare the magnitude of material loss at the taper in a series of retrieved femoral heads used in metal-on-polyethylene bearings with that in a series of retrieved heads used in metal-on-metal bearings. A total of 36 metal-on-polyethylene and 21 metal-on-metal femoral components were included in the study all of which were received from a customer complaint database. Furthermore, a total of nine as-manufactured femoral components were included to provide a baseline for characterisation. All taper surfaces were assessed using an established corrosion scoring method and measurements were taken of the female taper surface using a contact profilometry. In the case of metal-on-metal components, the bearing wear was also assessed using coordinate metrology to determine whether or not there was a relationship between bearing and taper material loss in these cases. The study found that in this cohort the median value of metal-on-polyethylene taper loss was 1.25 mm 3 with the consequent median value for metal-on-metal taper loss being 1.75 mm 3 . This study also suggests that manufacturing form can result in an apparent loss of material from the taper surface determined to have a median value of 0.59 mm 3 . Therefore, it is clear that form variability is a significant confounding factor in the measurement of material loss from the tapers of femoral heads retrieved following revision surgery.

  12. Development of a Flexible Non-Metal Electrode for Cell Stimulation and Recording

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2016-09-01

    Full Text Available This study presents a method of producing flexible electrodes for potentially simultaneously stimulating and measuring cellular signals in retinal cells. Currently, most multi-electrode applications rely primarily on etching, but the metals involved have a certain degree of brittleness, leaving them prone to cracking under prolonged pressure. This study proposes using silver chloride ink as a conductive metal, and polydimethysiloxane (PDMS as the substrate to provide electrodes with an increased degree of flexibility to allow them to bend. This structure is divided into the electrode layer made of PDMS and silver chloride ink, and a PDMS film coating layer. PDMS can be mixed in different proportions to modify the degree of rigidity. The proposed method involved three steps. The first segment entailed the manufacturing of the electrode, using silver chloride ink as the conductive material, and using computer software to define the electrode size and micro-engraving mechanisms to produce the electrode pattern. The resulting uniform PDMS pattern was then baked onto the model, and the flow channel was filled with the conductive material before air drying to produce the required electrode. In the second stage, we tested the electrode, using an impedance analyzer to measure electrode cyclic voltammetry and impedance. In the third phase, mechanical and biocompatibility tests were conducted to determine electrode properties. This study aims to produce a flexible, non-metallic sensing electrode which fits snugly for use in a range of measurement applications.

  13. Injury experience in metallic mineral mining, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  14. Injury experience in metallic mineral mining, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  15. ROCKS & MINERALS DETERMINATION AND ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    20150204 Abaydulla Alimjan(Department of Chemistry and Environmental Sciences,Kashgar Teachers College,Kashgar 844006,China);Cheng Chunying Non-Metallic Element Composition Analysis of Non-Ferrous Metal Ores from Oytagh Town,Xinjiang(Rock and Mineral Analysis,ISSN0254-5357,CN11-2131/TD,33(1),2014,p.44-50,5illus.,4tables,28refs.)Key words:nonferrous metals ore,nonmetals,chemical analysis,thermogravimetric analysis Anions in non-ferrous ore materials

  16. Compliance of Bombardier's Challenger 604 and CRJ200 to FAR25.856(a) : flame propagation of thermal/acoustic insulation materials and future trends in aircraft materials fire safety

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.R. [Bombardier, Montreal, PQ (Canada); Schofield, C.M.A. [Transport Canada, Ottawa, ON (Canada)

    2007-07-01

    This paper provided details of a testing program designed to ensure the compliance of Bombardier's Challenger 604 to new rules established to improve flammability standards for thermal and acoustic insulation materials. The rule applied to both pressurized and unpressurized sections of the fuselage, as well as to ducting, sound damping foams, and insulation bags. Test samples of all non-metallic insulation components were collected. Testing of the samples was conducted in a chamber with an ignition source as well as a controlled heat flux provided by a radiant panel. The new rules were discussed as well as challenges faced by industry which will have to show compliance for flame propagation requirements. Issues related to the in-service replacement of thermal and acoustic insulation materials were reviewed along with potential changes to flammability regulations. Materials used by Bombardier for compliant constructions were also listed. It was concluded that the safety of airplane occupants will be improved through compliance to new testing methods under harsher fire threat conditions, with more stringent pass and fail criteria. 15 refs., 5 figs.

  17. Leading research on super metal. 2. Aluminium materials; Super metal no sendo kenkyu. 2. Ogata sozai (aluminium kei)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Aluminum materials were surveyed to improve aluminum materials drastically so as to play an important role as prospective materials in response to the changing social environment. Aluminum materials have become the following metal materials to iron materials due to their light weight, durability, and profitability. Based on their merits and demerits, it was made clear how the aluminum materials contribute to the future resource saving, energy saving, and global environmental protection. Review was made on the two research and development themes which contribute to the creation of super metals. Hence, the themes proposed are focused on the creation of new aluminum mill products with ultra fine grain structure using very low temperature processing and on the creation of super-formability aluminum alloy sheets by advanced texture control using processing which can enhance the shearing stress. Results of the research and development are expected to provide wide applicability for other metals, ceramics, and polymers. 433 refs., 315 figs., 56 tabs.

  18. Proposed industrial recovered materials utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recycling targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)

  19. Computational dynamics of laser alloyed metallic materials for improved corrosion performance: computational dynamics of laser alloyed metallic materials

    CSIR Research Space (South Africa)

    Fatoba, OS

    2016-04-01

    Full Text Available Laser alloying is a material processing method which utilizes the high power density available from defocused laser beam to melt both metal coatings and a part of the underlying substrate. Since melting occur solitary at the surface, large...

  20. GCR and SPE Radiation Effects in Materials

    Science.gov (United States)

    Waller, Jess; Rojdev, Kristina; Nichols, Charles

    2016-01-01

    This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.

  1. FBR metallic materials test manual (English version)

    International Nuclear Information System (INIS)

    Odaka, Susumu; Kato, Shoichi; Yoshida, Eiichi

    2003-06-01

    For the development of the fast breeder reactor, this manual describes the method of in-air and in-sodium material tests and the method of organization the data. This previous manual has revised in accordance with the revision of Japanese Industrial Standard (JIS) and the conversion to the international unit. The test methods of domestic committees such as the VAMAS (Versailles Project on Advanced Materials and Standards) workshop were also refereed. The material test technologies accumulated in this group until now were also incorporated. This English version was prepared in order to provide more engineers with the FBR metallic materials test manual. (author)

  2. Glass-Metal Joining in Nuclear Environment: the State of the Art

    International Nuclear Information System (INIS)

    Jacobs, M.

    2007-01-01

    Full text of publication follows: In the ITER fusion machine and in material testing fission reactors, it is not possible to avoid the use of non-metallic materials like glass for example. There is therefore a need to apply metal to glass joints. This problem arose already at the beginning of the 19. century when the electric light bulb was invented. Nowadays this type of glass-metal joint is very successful and widely used in the electronic industry. In the case of ITER and material testing reactors, glass-metal joints are necessary for the fixation of the optical windows and optical fibres to a metal structure to perform diagnostics. These types of joints are still difficult to make and their behaviour is not fully understood. A joint between glass and metal for a nuclear or fusion application has indeed to resist high temperatures and high neutron fluences, while keeping a good mechanical strength and remaining leak tight. These characteristics are difficult to obtain under these severe conditions. This paper presents an overview of the different joining technologies that can be used to join glass to metal in a severe nuclear environment. The working mechanism of the technologies are explained, together with their respective advantages and drawbacks. Three different types of joining are discussed: fastening, liquid phase joining and solid phase joining. Fastening is a mechanical attachment technique, not achieving easily hermetic seals. Liquid and solid phase joining on the other hand form a real bond, what makes the joint much stronger. The most important technologies using liquid phase joining are adhesive bonding, fusion welding and brazing. In the case of the solid phase joining the choices are ultrasonic torsion welding, diffusion bonding and electrostatic bonding. If it is usually not possible to join the glass directly to the metal, an interlayer must be used. One speaks then of indirect joining. The paper will conclude with a discussion on the best

  3. Recovery of metal values from copper slag and reuse of residual secondary slag.

    Science.gov (United States)

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An overview on the Bauschinger effect in metallic materials

    International Nuclear Information System (INIS)

    Wang Yanfeng; Li Cong; Ling Xuyu; Shen Baoluo; Gao Shengji

    2002-01-01

    The Bauschinger effect in metallic materials including f.c.c. (face-centered cubic) and b.c.c. (body-centered cubic) materials such as pure alloys, casting alloys, copper alloys, aluminium alloys and metal matrix composite materials, and h.c.p. (hexagonal close packed) materials such as zirconium alloys and titanium alloys have been summarized comprehensively. The mechanism of Bauschinger effect is reviewed from the point of dislocation theory and internal stress (or back stress) that is responsible for the effect. Based upon these theories, the methods for calculating internal stress and models for simulating the effect are described briefly, which could explain the effect quantitatively. Finally, the measures to reduce or eliminate the effect have been pointed out, along with the issues to be researched in the future

  5. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  6. ART OF METALLOGRAPHY: POSSIBILITIES OF DARK-FIELD MICROSCOPY APPLICATION FOR COLORED OBJECTS STRUCTURE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. G. Anisovich

    2015-01-01

    Full Text Available The application of the method of dark field microscopy for the study of colored objects of material technology was researched. The capability of corrosive damage analysis and determination of the thickness of the metal coating were demonstrated. The performance capability of analysis of «reflection» in the dark field during the study of non-metallic materials – orthopedic implants and fireclay refractory were tested. An example of defect detection of carbon coating was displayed.

  7. Service life evaluation of non-metallic containment seals

    International Nuclear Information System (INIS)

    Pringle, T.G.

    1994-01-01

    A Service Life Evaluation Program (SLEP) was successfully completed for expansion joint seals used in the pressure relief duct of Pickering NGS, an eight unit CANDU station. These seals are part of the containment boundary, are difficult to replace and then only during station outages which are scheduled at ten year intervals. The SLEP, consisting of an accelerated aging program and a qualification test, was undertaken to determine the service life of the seals such that they would be capable of remaining functional following a combination of service life, a design basis accident and a subsequent seismic event. The Arrhenius model of aging was used for the accelerated aging program. Samples of seal material were subjected to oven aging at five temperatures, 150, 160, 170, 180 and 190 deg C. Tensile properties and hardness were measured at various aging times and Arrhenius plots constructed. Based on changes in elongation, activation energies of 1.2 eV and 1.1 eV were calculated for the reinforcing fabric and the silicone cover rubber, respectively. Hardness measurements were also taken but as expected, no precise quantitative aging relationship could be determined from material hardness. For the qualification test a representative length of seal was installed and field-spliced in a test frame built to simulate the installed configuration of the seal. It then underwent accelerated aging equivalent to the service life, followed by LOCA irradiation exposure to LOCA conditions of humidity, temperature and pressure and a design-basis seismic event. Finally, a pressure test to approximately five times design pressure was successfully performed to demonstrate the remaining margin of safety. Periodic air leakage tests indicated no deterioration in sealing performance and no physical deterioration was apparent. (author). 11 refs., 2 tabs., 8 figs

  8. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  9. Biodegradable Materials and Metallic Implants-A Review.

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2017-09-26

    Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome.

  10. Thermophysical Properties of Matter - the TPRC Data Series. Volume 13. Thermal Expansion - Nonmetallic Solids

    Science.gov (United States)

    1977-01-01

    topography of the state of knowledge on the thermal expansion of nonmetallic solids. We believe there is also much food for reflec- West Lafayette...34 Lithium Silicates ......... 713 209 Magnesium Metasilicate MgSiO. .. ......... 715 210 Magnesium Orthosilicate Mg2 SiO . . . . . . . . . . . . 718 211...Antiferromagnetism of Praseodymium," Phys. Rev. Letters, 12(20), 553-5, 1964. 66. Goode, J.M., "Phase Transition Temperature of Polonium ,"J. Chem. Phys., 26(5), 1269

  11. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  12. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  13. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  14. 41 CFR 109-45.1003 - Recovery of silver from precious metals bearing materials.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Recovery of silver from precious metals bearing materials. 109-45.1003 Section 109-45.1003 Public Contracts and Property Management... of Precious Metals § 109-45.1003 Recovery of silver from precious metals bearing materials. The...

  15. Significance of bioleaching method in dissolution of iron and in the quality improvement of non-metallics

    Directory of Open Access Journals (Sweden)

    Iveta Štyriaková

    2006-12-01

    Full Text Available Simple laboratory bioleaching experiments for the iron removal with heterotrophic bacteria on natural raw materials were conducted to explore a simple cyclic operation for a potential use at the industrial scale. Heterotrophic bacteria of Bacillus spp. growing in the presence of feldspar raw materials are able to dissolve iron. Anaerobic conditions Quickly formed by bacteria enable a simple manipulation with the sample solution. Insoluble Fe(III in the feldspars sample could be enzymatically dissolved as Fe3+ and also reduced to soluble Fe2+ by silicate bacteria of Bacillus spp. This metal was efficiently removed from the feldspars sample as documented by a Fe2O3 decrease (from 0.29 % to 0.12 % after bioleaching in the conical flask and by a Fe2O3 decrease (from 0.29 % to 0.19 % after bioleaching in the percolate column. Bioleaching of Fe was more effective in the conical flask. Iron-bearing minerals can be easily removed by magnetic separation, but ultra fine iron particles are difficult to treat by conventional mineral processing methods. Thus bioleaching is an attractive alternative for effective removal of iron minerals. The removal of iron with the whiteness increase should give a product, which is fit for industrial ceramic applications.

  16. [Acrylic resin reinforcement with metallic and nonmetallic inserts].

    Science.gov (United States)

    Preoteasa, Elena; Murariu, Cătălina Măgureanu; Ionescu, Ecaterina; Preoteasa, Cristina Teodora

    2007-01-01

    In the current use of acrylic resin for removable dentures and orthodontic treatments we are frequently facing the fact of base fracture. The repairing of this, determine most of the time, discomfort of the patient, by excluding the prosthetic device, affecting the treatment, loosing patient's time, doctor's time, implying the dental laboratory and extra expenses. The causes of fractures are many, from clinical cases with some specific anatomic and functional particularities, or parafunctional, to the incorrect designing, manufacturing or wearing of the prosthetic part, being connected with the materials characteristics. The consequences and costs of these fractures are leading to unsatisfying results in some of the clinical cases, in presence of parafunctions like bruxism or clenching and specifically for the new types of prosthetic rehabilitation, on natural teeth or implants.

  17. Corrosion of metallic materials. Dry corrosion, aqueous corrosion and corrosion by liquid metal, methods of protection

    International Nuclear Information System (INIS)

    Helie, Max

    2015-01-01

    This book is based on a course on materials given in an engineering school. The author first gives an overview of metallurgy issues: metallic materials (pure metals, metallic alloys), defects of crystal lattices (point defects, linear defects or dislocations), equilibrium diagrams, steels and cast, thermal processing of steels, stainless steels, aluminium and its alloys, copper and its alloys. The second part addresses the properties and characterization of surfaces and interfaces: singularity of a metal surface, surface energy of a metal, energy of grain boundaries, adsorption at a material surface, metal-electrolyte interface, surface oxide-electrolyte interface, techniques of surface analysis. The third chapter addresses the electrochemical aspects of corrosion: description of the corrosion phenomenon, free enthalpy of a compound and free enthalpy of a reaction, case of dry corrosion (thermodynamic aspect, Ellingham diagram, oxidation mechanisms, experimental study, macroscopic modelling), case of aqueous corrosion (electrochemical thermodynamics and kinetics, experimental determination of corrosion rate). The fourth part addresses the different forms of aqueous corrosion: generalized corrosion (atmospheric corrosion, mechanisms and tests), localized corrosion (galvanic, pitting, cracking, intergranular, erosion and cavitation), particular cases of stress cracking (stress corrosion, fatigue-corrosion, embrittlement by hydrogen), and bi-corrosion (of non alloyed steels, of stainless steels, and of aluminium and copper alloys). The sixth chapter addresses the struggle and the protection against aqueous corrosion: methods of prevention, scope of use of main alloys, geometry-based protection of pieces, use of corrosion inhibitors, use of organic or metallic coatings, electrochemical protection. The last chapter proposes an overview of corrosion types in industrial practices: in the automotive industry, in the oil industry, in the aircraft industry, and in the

  18. High-frequency electro-thermal processing of secondary nonmetallic raw materials

    Directory of Open Access Journals (Sweden)

    A. V. Livshits

    2014-01-01

    Full Text Available Despite a large number of studies in industrial waste processing, this field is still a challenge. In this regard, new processing capabilities emerging from the use of high frequency (RF and microwave (MW heat equipment are a positive factor to be researched.In HF and MW processing the heating process is determined by absorption of electromagnetic wave power through the processed material. This electromagnetic wave power is transmitted by the substance atoms and spent for heating a sample, polarization, and initiation of chemical reactions. The non-conductor (dielectric and semiconductor material heat is explained by the existing effect of dielectric losses due to losses caused by the through electrical conductivity and slow processes of polarization. The dielectric losses due to electrical conductivity result from the Joule heat released when through-current flows through the dielectric.The differences in frequency radiation of HF and microwave equipment define their different technological capabilities. HF-radiation represents almost homogeneous field between the plates of a running capacitor. With multiple reflection from the chamber walls MW-radiation is randomly distributed within the chamber. Thus, radiation partly returns to the generator, thereby affecting the equipment performance capability and life time. Microwave heating is uneven. The depth of penetration into the material is much less to HF-processing. HF heating features are high penetration of radiation and uniform heating of the material. Together with pre-pressing it can afford an opportunity to join the non-standard pieces of plastic to have the larger insulating items.The fact of the selective effect on the material is positive when processing the waste. Since the tangent of angle of dielectric losses of materials such as wood is directly proportional to humidity, the heating automatically stops as wood dries. This fact was used to produce for the fuel briquettes, which were

  19. Biodegradable Materials and Metallic Implants—A Review

    Science.gov (United States)

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2017-01-01

    Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome. PMID:28954399

  20. Exploring the mechanical strength of additively manufactured metal structures with embedded electrical materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., E-mail: J.Li5@lboro.ac.uk; Monaghan, T.; Masurtschak, S.; Bournias-Varotsis, A.; Friel, R.J.; Harris, R.A.

    2015-07-15

    Ultrasonic Additive Manufacturing (UAM) enables the integration of a wide variety of components into solid metal matrices due to the process induced high degree of metal matrix plastic flow at low bulk temperatures. Exploitation of this phenomenon allows the fabrication of previously unobtainable novel engineered metal matrix components. The feasibility of directly embedding electrical materials within UAM metal matrices was investigated in this work. Three different dielectric materials were embedded into UAM fabricated aluminium metal-matrices with, research derived, optimal processing parameters. The effect of the dielectric material hardness on the final metal matrix mechanical strength after UAM processing was investigated systematically via mechanical peel testing and microscopy. It was found that when the Knoop hardness of the dielectric film was increased from 12.1 HK/0.01 kg to 27.3 HK/0.01 kg, the mechanical peel testing and linear weld density of the bond interface were enhanced by 15% and 16%, respectively, at UAM parameters of 1600 N weld force, 25 µm sonotrode amplitude, and 20 mm/s welding speed. This work uniquely identified that the mechanical strength of dielectric containing UAM metal matrices improved with increasing dielectric material hardness. It was therefore concluded that any UAM metal matrix mechanical strength degradation due to dielectric embedding could be restricted by employing a dielectric material with a suitable hardness (larger than 20 HK/0.01 kg). This result is of great interest and a vital step for realising electronic containing multifunctional smart metal composites for future industrial applications.

  1. Radiation damage in nonmetallic solids under dense electronic excitation

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo

    1992-01-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.)

  2. Characterization of nano structured metallic materials

    International Nuclear Information System (INIS)

    Marin A, M.; Gutierrez W, C.; Cruz C, R.; Angeles C, C.

    1997-01-01

    Nowadays the search of new materials with specific optical properties has carried out to realize a series of experiments through the polymer synthesis [(C 3 N 3 ) 2 (NH) 3 ] n doped with gold metallic nanoparticles. The thermal stability of a polymer is due to the presence of tyazine rings contained in the structure. The samples were characterized by High Resolution Transmission Electron Microscopy, X-ray diffraction by the Powder method, Ft-infrared and its thermal properties by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TGA). One of the purposes of this work is to obtain nano structured materials over a polymeric matrix. (Author)

  3. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    Science.gov (United States)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  4. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-01-01

    are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due

  5. System for Prevention, Detection and Response to Radioactive Materials in Scrap Metal in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Makarovska, O., E-mail: makarovska@hq.snrc.gov.ua [State Nuclear Regulatory Committee of Ukraine, Kiev (Ukraine)

    2011-07-15

    The State control system to prevent, detect and respond to cases of radioactive material in scrap metal is functioning in Ukraine. The system includes regulations for the safe and secure management of metal scrap and administrative and technical measures to prevent, detect and respond to cases of radioactive material in scrap metal. The key elements of prevention are the system of licensing and supervision in the sphere of radioactive material use and the State system for inventory, registration and control of radiation sources. Metal scrap management is licensed by the Ministry of Industrial Policy and one of the licence conditions is radiation control of the scrap metal. State supervision of the operations with metal scrap is provided by Ministry of Health and Ministry of Environmental Protection according to the regulation 'State sanitary-ecological standard for metal scrap management'. Specific standards exist for the export of metal scrap. Export consignments are followed by a certificate that proves the radiological safety of the metal. Ukrainian metallurgical plants provide an input radiation control of metal scrap and an output control of the produced metal. Thus, there exists a five barrier system of metal scrap control: border control; exclusion zone perimeter control; metal scrap dealers control; metallurgical plants (input control and output control of produced metal); and export consignments radiological certification. To regain control over orphan sources (including occasional radioactive material in the scrap metal) the 'procedure for interaction of executive authorities and involved legal entities in case of revealing of radiation sources in no legal use' was approved by a Resolution of the Cabinet of Ministers of Ukraine. The investigation of each case with feedback, information of involved bodies, safe and secure storage of restored radioactive material are provided according to this procedure. (author)

  6. Compatibility tests between molten salts and metal materials (2)

    International Nuclear Information System (INIS)

    Shiina, Yasuaki

    2003-08-01

    Latent heat storage technology using molten salts can reduce temperature fluctuations of heat transfer fluid by latent heat for middle and high temperature regions. This enables us to operate several heat utilization systems in cascade connected to High Temperature Gas Cooled Reactors (HTGRs) from high to low temperature range by setting the latent heat storage system after a heat utilization system to reduce thermal load after the heat utilization systems. This latent heat technology is expected to be used for effective use of heat such as equalization of electric load between night and daytime. In the application of the latent heat technology, compatibility between molten salts and metal materials is very important because molten salts are corrosive, and heat transfer pipes and vessels will contact with the molten salts. It will be necessary to prevail the latent heat storage technique that normal metal materials can be used for the pipes and vessels. However, a few studies have been reported of compatibility between molten salts and metals in middle and high temperature ranges. In this study, four molten salts, range of the melting temperature from 490degC to 800degC, are selected and five metals, high temperature and corrosion resistance steels of Alloy600, HastelloyB2, HastelloyC276, SUS310S and pure Nickel are selected for the test with the consideration of metal composition. Test was performed in an electric furnace by setting the molten salts and the metals in melting pots in an atmosphere of nitrogen. Results revealed excellent corrosion resistance of pure Nickel and comparatively low corrosion resistance of nickel base alloys such as Alloy600 and Hastelloys against Li 2 CO 3 . Corrosion resistance of SUS310S was about same as nickel based alloys. Therefore, if some amount of corrosion is permitted, SUS310S would be one of the candidate alloys for structure materials. These results will be used as reference data to select metals in latent heat technology

  7. Liquid metal current collector applications and material compatibility

    International Nuclear Information System (INIS)

    Carr, S.L.; Stevens, H.O.

    1978-01-01

    The objective of this paper has been to summarize briefly the material considerations involved in the development of liquid metal current collectors for homopolar machinery applications. A significant amount of data in this regard has been obtained over the last several years by individual researchers for NaK exposure conditions. However, NaK material compatibility data over the entire time and temperature range of interest is highly desirable. At DTNSRDC, a 300 kW superconducting homopolar motor and generator are under test, both utilizing free surface tongue-and-groove current collectors with NaK as the working fluid. In addition to demonstrating the feasibility of other aspects of machine design, the intention is to use these machines as vehicles for testing of the several liquid metal current collector concepts which are considered worthwhile candidates for incorporation in future full-scale machines. It is likely that the optimal collector approach for a large low speed motor may be quite different from that for a smaller high speed generator, possibly involving the use of different liquid metals

  8. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  9. Investigation of Liquid Metal Embrittlement of Materials for use in Fusion Reactors

    Science.gov (United States)

    Kennedy, Daniel; Jaworski, Michael

    2014-10-01

    Liquid metals can provide a continually replenished material for the first wall and extraction blankets of fusion reactors. However, research has shown that solid metal surfaces will experience embrittlement when exposed to liquid metals under stress. Therefore, it is important to understand the changes in structural strength of the solid metal materials and test different surface treatments that can limit embrittlement. Research was conducted to design and build an apparatus for exposing solid metal samples to liquid metal under high stress and temperature. The apparatus design, results of tensile testing, and surface imaging of fractured samples will be presented. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  10. Transition-metal chlorides as conversion cathode materials for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Ting; Chen, Zhong X.; Cao, Yu L.; Ai, Xin P.; Yang, Han X.

    2012-01-01

    Insoluble AgCl and soluble CuCl 2 were selected and investigated as model compounds of transition-metal chlorides for electrochemical conversion cathode materials. The experimental results demonstrated that the AgCl nanocrystals can convert reversibly to metallic Ag with nearly full utilization of its one-electron redox capacity (187 mAh g −1 ). Similarly, the CuCl 2 -filled mesoporous carbon can realize a reversible two-electron transfer reaction, giving a very high reversible capacity of 466 mAh g −1 after 20 cycles. These data imply that the metal chlorides can undergo complete electrochemical conversion utilizing their full oxidation states for electrical energy storage as previously reported metal fluorides, possibly being used as high capacity cathode materials for Li-ion batteries.

  11. Metals and Alloys Material Stabilization Process Plan

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.; BURK, R.A.

    2000-05-18

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.

  12. Metals and Alloys Material Stabilization Process Plan

    International Nuclear Information System (INIS)

    RISENMAY, H.R.; BURK, R.A.

    2000-01-01

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration

  13. Numerical study of melted particles crush metallic substrates and the interaction between particles and a plasma beam in the thermal projection process

    International Nuclear Information System (INIS)

    Kriba, Ilhem; Djebaili, A.

    2009-01-01

    Plasma spray processes have been widely used to produce high performance coatings of a wide range of materials (metallic, non-metallic, and ceramics), offering protection from, e.g. wear, extreme temperature, chemical attack and environmental corrosion. To obtain good quality coatings, spray parameters must be carefully selected. Due to the large variety in process parameters, it is difficult to optimize the process for each specific coating and substrate combinations. Furthermore modelling the spray process allows a better understanding of the process sequences during thermal spraying. The simulation of coating formation to estimate the process parameters is an important tool to develop new coating structures with defined properties. In this work, the process of plasma sprayed coating has been analyzed by numerical simulation. Commercial code is used to predict the plasma jet characteristics, plasma-particle interaction, and coating formation. Using this model we can obtain coating microstructure and characteristics which form a foundation for further improvement of an advanced ceramic coating build up model

  14. World resources: engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    The proceedings include 10 papers that contribute to population environment; fossil fuel resources and energy conservation; nuclear and solar power; production of ores and manufacture and use of metallic resources; resources of manufactured and natural nonmetallic materials; water as a reusable resource; and timber as a replaceable resource.

  15. Study of non-metallic inclusion sources in steel

    International Nuclear Information System (INIS)

    Khons, Ya.; Mrazek, L.

    1976-01-01

    A study of potential inclusion sources was carried out at the Tvinec steel plant using an unified labelling procedure for different sources. A lanthanum oxide labelling method has been used for refractories with the subsequent La determination in steel by the neutron activation analysis. Samarium and cerium oxides and the 141 Ce radionuclide have been used in conjunction with the testing. The following sources of exogenous inclusions have been studied: 1)Refractory material comprising fireclay and corundum for steel-teeming trough in open-heart furnaces; 2) Fireclay bottom-pouring refractories; 3) Steel-teeming laddle lining; 4) Heat-insulating and exothermic compounds for steel ingots; 5) Vacuum treatment plant lining; 6) Open-hearth and electric arc furnace slag. The major oxide inclusion source in steel was found to be represented by the furnace slag, since it forms about 40 p.c. of all oxide inclusions. The contributions of the remaining sources did not exceede 5 p.c. each

  16. Machinability studies of infrared window materials and metals

    International Nuclear Information System (INIS)

    Arnold, J.B.; Morris, T.O.; Sladky, R.E.; Steger, P.J.

    1976-01-01

    Diamond machining of materials for optical applications is becoming an important fabrication process. Development work in material-removal technology to better understand the mechanics of the diamond-turning process, its limitations, and applications is described. The technique is presently limited to a select group of metals, most of which are of a face-center-cubic crystal structure. Machinability studies were done which were designed to better understand diamond compatibility and thus expand the range of applicable materials. Nonconventional methods such as ultrasonic tool stimulation were investigated. Work done to determine the machinability of infrared window materials indicates that this is a viable fabrication technique for many materials, although additional effort is needed to optimize the process for particular materials

  17. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  19. Metal-decored graphites as anode materials for use in lithium-ion accumulators

    International Nuclear Information System (INIS)

    Licht, Bjoern Karl

    2015-01-01

    Graphitic materials are currently the most frequently used anode materials for lithium ion batteries (LIB). This type of battery is considered to be the ideal application for energy storage in electromobility or in mobile devices that require a high power density. Although intercalated graphite has only about 8 % of the gravimetric energy density of lithium metal, these materials are preferred due to safety reasons. However, by chemical modification of the surface, the electrochemical performance of graphite can be enhanced. In the thesis presented at hand, a novel synthesis route for the preparation of homogenous metal depositions on graphite is shown. The reaction proceeds via a gas phase reaction by the thermal decomposition of metal carboxylates. The decomposition process was analyzed by thermogravimetry and gas phase analysis. In comparison to the unmodified graphite, copper-coated graphite shows in increased capacity and cycle stability when used as anode materials in LIBs. Special emphasis should be placed on an improved adhesion of the active material on the copper current collector. The proven catalytic activity of the metal depositions not only enables a use in battery devices but could also be innovating for catalytic processes such as chlorine-alkali electrolysis.

  20. Metallization for Yb14MnSb11-Based Thermoelectric Materials

    Science.gov (United States)

    Firdosy, Samad; Li, Billy Chun-Yip; Ravi, Vilupanur; Sakamoto, Jeffrey; Caillat, Thierry; Ewell, Richard C.; Brandon, Erik J.

    2011-01-01

    Thermoelectric materials provide a means for converting heat into electrical power using a fully solid-state device. Power-generating devices (which include individual couples as well as multicouple modules) require the use of ntype and p-type thermoelectric materials, typically comprising highly doped narrow band-gap semiconductors which are connected to a heat collector and electrodes. To achieve greater device efficiency and greater specific power will require using new thermoelectric materials, in more complex combinations. One such material is the p-type compound semiconductor Yb14MnSb11 (YMS), which has been demonstrated to have one of the highest ZT values at 1,000 C, the desired operational temperature of many space-based radioisotope thermoelectric generators (RTGs). Despite the favorable attributes of the bulk YMS material, it must ultimately be incorporated into a power-generating device using a suitable joining technology. Typically, processes such as diffusion bonding and/or brazing are used to join thermoelectric materials to the heat collector and electrodes, with the goal of providing a stable, ohmic contact with high thermal conductivity at the required operating temperature. Since YMS is an inorganic compound featuring chemical bonds with a mixture of covalent and ionic character, simple metallurgical diffusion bonding is difficult to implement. Furthermore, the Sb within YMS readily reacts with most metals to form antimonide compounds with a wide range of stoichiometries. Although choosing metals that react to form high-melting-point antimonides could be employed to form a stable reaction bond, it is difficult to limit the reactivity of Sb in YMS such that the electrode is not completely consumed at an operating temperature of 1,000 C. Previous attempts to form suitable metallization layers resulted in poor bonding, complete consumption of the metallization layer or fracture within the YMS thermoelement (or leg).

  1. Charge transfer and redistribution at interfaces between metals and 2D materials

    NARCIS (Netherlands)

    Bokdam, Menno

    2013-01-01

    Large potential steps are observed at the interfaces between metals and novel 2D materials. They can lower the work function by more than 1 eV, even when the two parts are only weakly interacting. In this thesis the transfer and redistribution of electrons in metal|2D material heterostructures are

  2. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  3. Advanced containment research for the Canadian Nuclear Fuel Waste Management Program

    International Nuclear Information System (INIS)

    Onofrei, M.; Mathew, P.M.; McKay, P.; Hosaluk, L.J.; Oscarson, D.W.

    1986-09-01

    This document outlines the program on the development of advanced containment systems for the disposal of used fuel in a vault deep in plutonic rock. Possible advanced containment concepts, the strategy adopted in selecting potential container materials, and experimental programs currently underway or planned are presented. Most effort is currently directed toward developing long-term containment systems based on non-metallic materials and massive metal containers. The use of additional independent barriers to extend the lifetime of simple containment systems is also being evaluated. 58 refs

  4. Seminar of the expert committee ultrasonic testing. Abstracts; Seminar des Fachausschusses Ultraschallpruefung. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-01

    This seminar volume contains 13 papers focusing on the following topics: 1. Test methods in the automotive sector, 2. Characterization of metallic and non-metallic materials, 3. Industrial test approaches, 4. Fiber composite materials and structures, and 5. Defect characterization using imaging techniques. One paper was separately analyzed for this database. [German] Dieser Seminarband enthaelt 13 Beitraege mit folgenden Themenschwerpunkten: 1. Pruefansaetze im Automobilbereich, 2. Charakterisierung metallischer und nicht-metallischer Materialien, 3. Pruefansaetze im industriellen Umfeld, 4. Faserverbundwerkstoffe und -strukturen, und 5. Fehlercharakterisierung mittels bildgebender Verfahren.

  5. Doped Graphene as Non-Metallic Catalyst for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Adriana MARINOIU

    2017-08-01

    Full Text Available Aiming a commercial development of proton exchange membrane fuel cells (PEMFC, a low cost, sustainable and high performance electrocatalyst for oxygen reduction reaction (ORR with capability to replace/reduce rare metals, are high desirable. In this paper, we present a class of doped graphene, namely iodinated graphene with highly ORR electrochemical performances, synthesized by using the electrophilic substitution method. The prepared samples were characterized by different techniques, including Scanning Electron Microscopy SEM, X-ray photoelectron spectroscopy XPS, Raman spectroscopy, surface area measurement by BET method, that revealed the structure and morphology. The most highly iodinated graphene was tested in a single cell by measuring the cyclic voltammetry. The electrochemical performances were evaluated and compared with a typical PEMFC configuration, when a single cathodic peak at 0.2 V with a current density of – 3.67 mA cm-2 for the Pt/C electrode was obtained. The best electrochemical performances in terms of electrochemical active area, was obtained for a new concept of cathode composed from Pt/C – iodine doped graphene, when a well-defined peak centred at 0.23 V with a current density of approx. – 9.1 mA cm-2 was obtained, indicating a high catalytic activity for ORR.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.16216

  6. Statistical treatment of hazards result from radioactive material in metal scrap

    International Nuclear Information System (INIS)

    Salem, E.F.; Rashad, S.M.

    2013-01-01

    Radioactive sources have a wide range of uses in medicine and industry. Radioactive materials entering the public domain in an uncontrolled manner may creating a serious risk of radiation exposure for workers and the public as well as excessive costs for plant decontamination and waste of product to be borne by the metal industry. This paper describes the major accidents that had happened in the last decades due to radioactive material in metal scrap, provides assessment of associated hazards and lessons learned. This will help Regulatory Authority to introduce measures capable to avoid the recurrence of similar events. The study highlights the situation for metal scrap incidents in Egypt.

  7. Experimental investigation of solidification in metal foam enhanced phase change material

    Science.gov (United States)

    Beyne, W.; Bağci, O.; Huisseune, H.; Canière, H.; Danneels, J.; Daenens, D.; De Paepe, M.

    2017-10-01

    A major challenge for the use of phase change materials (PCMs) in thermal energy storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, however, has been found to enhance the heat transfer. On the other hand, the effect of foam parameters such as porosity, pore size and material type has remained unclear. In this paper, the effect of these foam parameters on the solidification time is investigated. Different samples of PCM-impregnated metal foam were experimentally tested and compared to one without metal foam. The samples varied with respect to choice of material, porosity and pore size. They were placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification times by at least 25 %. However, the difference between the best performing and worst performing metal foam is about 28 %. This shows a large potential for future research.

  8. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  9. Contribution of 3-D electrical resistivity tomography for landmines detection

    Directory of Open Access Journals (Sweden)

    M. Metwaly

    2008-12-01

    Full Text Available Landmines are a type of inexpensive weapons widely used in the pre-conflicted areas in many countries worldwide. The two main types are the metallic and non-metallic (mostly plastic landmines. They are most commonly investigated by magnetic, ground penetrating radar (GPR, and metal detector (MD techniques. These geophysical techniques however have significant limitations in resolving the non-metallic landmines and wherever the host materials are conductive. In this work, the 3-D electric resistivity tomography (ERT technique is evaluated as an alternative and/or confirmation detection system for both landmine types, which are buried in different soil conditions and at different depths. This can be achieved using the capacitive resistivity imaging system, which does not need direct contact with the ground surface. Synthetic models for each case have been introduced using metallic and non-metallic bodies buried in wet and dry environments. The inversion results using the L1 norm least-squares optimization method tend to produce robust blocky models of the landmine body. The dipole axial and the dipole equatorial arrays tend to have the most favorable geometry by applying dynamic capacitive electrode and they show significant signal strength for data sets with up to 5% noise. Increasing the burial depth relative to the electrode spacing as well as the noise percentage in the resistivity data is crucial in resolving the landmines at different environments. The landmine with dimension and burial depth of one electrode separation unit is over estimated while the spatial resolutions decrease as the burial depth and noise percentage increase.

  10. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    OpenAIRE

    Moore, Michael Christopher

    2013-01-01

    With a rapidly growing population, dwindling resources, and increasing environmental pressures, the need for sustainable technological solutions becomes more urgent. Metal oxides make up much of the earth's crust and are typically inexpensive materials, but poor electrical and optical properties prevent them from being useful for most semiconductor applications. Recent breakthroughs in chemistry and materials science allow for the growth of high-quality materials with nanometer-scale features...

  11. Energy, metals and ores in France in 1983

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Every year the Annales des Mines devote one issue to the activities of the power producing and mineral industries. This issue refers to the year 1983, with a recapitulation of previous years. A first part describes the activity of the following principal sectors. Energy: solid mineral fuel, hydrocarbons, gas, electricity, uranium, geothermal power. Ores and metals: aluminium, antimony, silver, chromium, copper, tin, iron, manganese, nickel, gold, lead, tungsten, zinc. Nonmetallic substances: barite, phosphate, potash, salt, sulphur, fluorspar. The elements concern mainly France but they are presented in a world-wide context. A second part gives statistical items, completed and illustrated by diagrams [fr

  12. Energy, metals and ores in France in 1982

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Every year the Annales des Mines devote one issue to the activities of the power producing and mineral industries. This issue refers to the year 1982, with a recapitulation of previous years. A first part describes the activity of the following principal sectors. Energy: solid mineral fuel, hydrocarbons, gas, electricity, uranium, geothermal power. Ores and metals: aluminium, antimony, silver, chromium, copper, tin, iron, manganese, nickel, gold, lead, tungsten, zinc. Nonmetallic substances: barite, phosphate, potash, salt, sulphur, fluorspar. The elements concern mainly France but they are presented in a world-wide context. A second part gives statistical items, completed and illustrated by diagrams [fr

  13. Processing and properties of silver-metal oxide electrical contact materials

    Directory of Open Access Journals (Sweden)

    Nadežda M. Talijan

    2012-12-01

    Full Text Available The presented study gives a brief overview of the experimental results of investigations of different production technologies of silver-metal oxide electrical contact materials in relation: processing method - properties. The two most common routes of production, i.e. internal oxidation/ingot metallurgy and powder metallurgy are demonstrated on the example of Ag-CdO and Ag-ZnO materials. For illustration of alternative processing routes that provide higher dispersion of metal-oxide particles in silver matrix more environmentally friendly Ag-SnO2 contact materials are used. Processing of electrical contact materials by mechanical mixing of starting powders in high energy ball mill is presented. The obtained experimental results of application of different methods of introduction of SnO2 nanoparticles in the silver matrix such as conventional powder metallurgy mixing and template method are given and discussed in terms of their influence on microstructure and physical properties (density, hardness and electrical conductivity of the prepared Ag-SnO2 electrical contact materials.

  14. Enhanced thermoelectric properties of metal film on bismuth telluride-based materials

    International Nuclear Information System (INIS)

    Chao, Wen Hsuan; Chen, Yi Ray; Tseng, Shih Chun; Yang, Ping Hsing; Wu, Ren Jye; Hwang, Jenn Yeu

    2014-01-01

    Diffusion barriers have a significant influence on the reliability and life time of thermoelectric modules. Although nickel is commonly used as a diffusion barrier in commercial thermoelectric modules, several studies have verified that Ni migrates to bismuth telluride-based material during high temperature cycles and causes a loss in efficacy. In this paper, the influence of metal layers coated to p-type and n-type Bi 2 Te 3 on the interface characterization and thermoelectric property is studied using a RF magnetron sputtering. The findings from this study demonstrate the structural and thermoelectric properties of p-type and n-type Bi 2 Te 3 coated with different metal layers. The crystalline phase and compositional change of the interface between the Bi 2 Te 3 materials and the metal layers were determined using an X-ray diffractometer and scanning electron microscopy with energy dispersive spectroscopy. Formation of NiTe was observed in the sample of Ni/p-type Bi 2 Te 3 based films post-annealed in an N 2 atmosphere at 200 °C. In contrast, no Co x Te y was formed in the sample of Co/p-type Bi 2 Te 3 based films post-annealed at 200 °C. For as-deposited Ni/p-type and n-type Bi 2 Te 3 based legs, the Ni slightly diffused into the Bi 2 Te 3 based legs. A similar phenomenon also occurred in the as-deposited Co/p-type and n-type Bi 2 Te 3 based legs. The Seebeck coefficients of the Co contacts on the Bi 2 Te 3 based material displayed better behavior than those of the Ni contacts on the Bi 2 Te 3 based legs. Thus Co could be a suitable diffusion barrier for bulk Bi 2 Te 3 based material. The observed effects on the thermoelectric and structural properties of metal/Bi 2 Te 3 based material are crucial for understanding the interface between the diffusion barrier and thermoelectric materials. - Highlights: • Interface characterization of metal coated to p-type and n-type Bi 2 Te 3 is studied. • We examined the phase transformation of metal/Bi 2 Te 3 based films

  15. Metal nanoparticles in DBS card materials modification

    Science.gov (United States)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  16. Metal nanoparticles in DBS card materials modification

    International Nuclear Information System (INIS)

    Metelkin, A; Frolov, G; Kuznetsov, D; Kolesnikov, E; Chuprunov, K; Kondakov, S; Osipov, A; Samsonova, J

    2015-01-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers. (paper)

  17. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    Science.gov (United States)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  18. Measurement of fracture toughness of metallic materials produced by additive manufacturing

    Science.gov (United States)

    Quénard, O.; Dorival, O.; Guy, Ph.; Votié, A.; Brethome, K.

    2018-04-01

    This study focuses on the microstructure and mechanical properties of metallic materials produced by additive layer manufacturing (ALM), especially the laser beam melting process. The influence of the specimen orientation during the ALM process and that of two post-build thermal treatments were investigated. The identified metal powder is Ti-6Al-4V (titanium base). Metallographic analysis shows their effects on the microstructure of the metals. Mechanical experiments involving tensile tests as well as toughness tests were performed according to ASTM (American Society for Testing and Materials) norms. The results show that the main influence is that of the thermal treatments; however the manufacturing stacking direction may lead to some anisotropy in the mechanical properties.

  19. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips.

    Science.gov (United States)

    Gill, Amreeta; Shellock, Frank G

    2012-01-09

    Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.

  20. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Directory of Open Access Journals (Sweden)

    Gill Amreeta

    2012-01-01

    Full Text Available Abstract Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration. Heating was not substantial (highest temperature change, ≤ 1.6°C. Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants.

  1. Assessment of MRI issues at 3-Tesla for metallic surgical implants: findings applied to 61 additional skin closure staples and vessel ligation clips

    Science.gov (United States)

    2012-01-01

    Purpose Metallic skin closure staples and vessel ligation clips should be tested at 3-Tesla to characterize MRI issues in order to ensure patient safety. Therefore, metallic surgical implants were assessed at 3-Tesla for magnetic field interactions, MRI-related heating, and artifacts. Methods A skin closure staple (Visistat Skin Stapler, staple, Polytetrafluoroethylene, PTFE, coated 316L/316LVM stainless steel; Teleflex Medical, Durham, NC) and a vessel ligation clip (Hemoclip Traditional, stainless steel; Teleflex Medical, Durham, NC) that represented the largest metallic sizes made from materials with the highest magnetic susceptibilities (i.e., based on material information) among 61 other surgical implants (52 metallic implants, 9 nonmetallic implants) underwent evaluation for magnetic field interactions, MRI-related heating, and artifacts using standardized techniques. MRI-related heating was assessed by placing each implant in a gelled-saline-filled phantom with MRI performed using a transmit/receive RF body coil at an MR system reported, whole body averaged SAR of 2.9-W/kg for 15-min. Artifacts were characterized using T1-weighted, SE and GRE pulse sequences. Results Each surgical implant showed minor magnetic field interactions (20- and 27-degrees, which is acceptable from a safety consideration). Heating was not substantial (highest temperature change, ≤ 1.6°C). Artifacts may create issues if the area of interest is in the same area or close to the respective surgical implant. Conclusions The results demonstrated that it would be acceptable for patients with these metallic surgical implants to undergo MRI at 3-Tesla or less. Because of the materials and dimensions of the surgical implants that underwent testing, these findings pertain to 61 additional similar implants. PMID:22230200

  2. A Difference in Using Atomic Layer Deposition or Physical Vapour Deposition TiN as Electrode Material in Metal-Insulator-Metal and Metal-Insulator-Silicon Capacitors

    NARCIS (Netherlands)

    Groenland, A.W.; Wolters, Robertus A.M.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2011-01-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the

  3. Raw material consumption of the European Union--concept, calculation method, and results.

    Science.gov (United States)

    Schoer, Karl; Weinzettel, Jan; Kovanda, Jan; Giegrich, Jürgen; Lauwigi, Christoph

    2012-08-21

    This article presents the concept, calculation method, and first results of the "Raw Material Consumption" (RMC) economy-wide material flow indicator for the European Union (EU). The RMC measures the final domestic consumption of products in terms of raw material equivalents (RME), i.e. raw materials used in the complete production chain of consumed products. We employed the hybrid input-output life cycle assessment method to calculate RMC. We first developed a highly disaggregated environmentally extended mixed unit input output table and then applied life cycle inventory data for imported products without appropriate representation of production within the domestic economy. Lastly, we treated capital formation as intermediate consumption. Our results show that services, often considered as a solution for dematerialization, account for a significant part of EU raw material consumption, which emphasizes the need to focus on the full production chains and dematerialization of services. Comparison of the EU's RMC with its domestic extraction shows that the EU is nearly self-sufficient in biomass and nonmetallic minerals but extremely dependent on direct and indirect imports of fossil energy carriers and metal ores. This implies an export of environmental burden related to extraction and primary processing of these materials to the rest of the world. Our results demonstrate that internalizing capital formation has significant influence on the calculated RMC.

  4. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  5. Holographic interferometry - a nondestructive inspection technique for early detection of construction element damages

    International Nuclear Information System (INIS)

    Wachutka, H.; Fritzsch, W.; Gruenewald, K.

    1977-01-01

    After a short introduction into the fundamentals of holographic interferometry, the application of this process to non-destructive material testing is explained. Practical examples of qualitative and quantitative deformation measurements carried out on building elements of different materials as well as on metallic and nonmetallic combinations show the possibilities of early recognition of manufacturing flaws and weak points due to the construction and also the determination of construction material characteristic coefficients. (orig.) [de

  6. Liquid metal batteries - materials selection and fluid dynamics

    Science.gov (United States)

    Weier, T.; Bund, A.; El-Mofid, W.; Horstmann, G. M.; Lalau, C.-C.; Landgraf, S.; Nimtz, M.; Starace, M.; Stefani, F.; Weber, N.

    2017-07-01

    Liquid metal batteries are possible candidates for massive and economically feasible large-scale stationary storage and as such could be key components of future energy systems based mainly or exclusively on intermittent renewable electricity sources. The completely liquid interior of liquid metal batteries and the high current densities give rise to a multitude of fluid flow phenomena that will primarily influence the operation of future large cells, but might be important for today’s smaller cells as well. The paper at hand starts with a discussion of the relative merits of using molten salts or ionic liquids as electrolytes for liquid metal cells and touches the choice of electrode materials. This excursus into electrochemistry is followed by an overview of investigations on magnetohydrodynamic instabilities in liquid metal batteries, namely the Tayler instability and electromagnetically excited gravity waves. A section on electro-vortex flows complements the discussion of flow phenomena. Focus of the flow related investigations lies on the integrity of the electrolyte layer and related critical parameters.

  7. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    International Nuclear Information System (INIS)

    Chiba, T.

    2001-01-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  8. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, T. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)

    2001-07-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  9. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  10. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  11. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang

    2016-12-30

    Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.

  12. On Subsurface Crack Growth in Fibre Metal Laminate Materials

    National Research Council Canada - National Science Library

    Randall, Christian

    2003-01-01

    Fatigue crack growth in fibre metal laminates (FMLs) is significantly more complex than in monolithic materials due to the interaction of various physical mechanisms that govern the growth of cracks in laminates...

  13. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    Buckthorpe, Derek

    2010-01-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO 2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  14. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  15. Centrifugal vacuum casting for fuel cladding tube blanks

    International Nuclear Information System (INIS)

    Zelenskii, V.F.; Neklyudov, I.M.; Chernyi, B.P.; Zeidlits, M.P.; Vanzha, A.F.; Rubashko, V.G.; Ryabchikov, L.N.; Smirnov, Y.K.; Bespalova, V.R.; Mashkarova, V.T.; Rybal'chenko, N.D.

    1990-01-01

    An advanced technique for making tube blanks with an acceptable level of nonmetallic inclusions is vacuum induction melting combined with centrifugal casting, as the latter gives a cylindrical casting having an axial hole, while the cast metal has elevated density and contains fewer nonmetallic inclusions than does the metal cast in a stationary mold. The reduction in the nonmetallic inclusions occurs because of increased rates of floating up in the rotating mold on account of the centrifugal force and the rejection to the inner surface. One can choose the parameters such as the pouring speed, rotational speed, mold cooling, and liquid-metal temperature and can introduce a deoxidizer to remove the nonmetallic inclusions or reduce the grain size of them and produce an appropriate cast structure and obtain a metal whose quality is the same as that on vacuum induction melting with secondary arc remelting. For these purposes, the authors have developed centrifugal-casting machines for use under vacuum or in inert gases with horizontal and vertical mold rotation axes

  16. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khokhotva, Oleksandr, E-mail: khokhotva@bigmir.net [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden); Waara, Sylvia, E-mail: sylvia.waara@hh.se [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden)

    2011-06-15

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: > Metal-pine bark complex stability under changing environmental conditions is studied. > Metal leaching from non-treated bark is much higher than from urea-treated bark. > No significant influence of changing environmental conditions on the leaching extent. > Metal leaching from wet bark samples exposed to freezing is somewhat higher.> Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  17. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    International Nuclear Information System (INIS)

    Khokhotva, Oleksandr; Waara, Sylvia

    2011-01-01

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: → Metal-pine bark complex stability under changing environmental conditions is studied. → Metal leaching from non-treated bark is much higher than from urea-treated bark. → No significant influence of changing environmental conditions on the leaching extent. → Metal leaching from wet bark samples exposed to freezing is somewhat higher.→ Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  18. Calculation and experimental investigation of multi-component ceramic systems

    International Nuclear Information System (INIS)

    Rother, M.

    1994-12-01

    This work shows a way to combine thermodynamic calculations and experiments in order to get useful information on the constitution of metal/non-metal systems. Many data from literature are critically evaluated and used as a basis for experiments and calculations. The following multi-component systems are treated: 1. Multi-component systems of 'ceramic' materials with partially metallic bonding (carbides, nitrides, oxides, borides, carbonitrides, borocarbides, oxinitrides of the 4-8th transition group metals) 2. multi-component systems of non-metallic materials with dominant covalent bonding (SiC, Si 3 N 4 , SiB 6 , BN, Al 4 C 3 , Be 2 C) 3. multi-component systems of non-metallic materials with dominant heteropolar bonding (Al 2 O 3 , TiO 2 , BeO, SiO 2 , ZrO 2 ). The interactions between 1. and 2., 2. and 3., 1. and 3. are also considered. The latest commercially available programmes for the calculation of thermodynamical equilibria and phase diagrams are evaluated and compared considering their facilities and limits. New phase diagrams are presented for many presently unknown multi-component systems; partly known systems are completed on the basis of selected thermodynamic data. The calculations are verified by experimental investigations (metallurgical and powder technology methods). Altogether 690 systems are evaluated, 126 are calculated for the first time and 52 systems are experimentally verified. New data for 60 ternary phases are elaborated by estimating the data limits for the Gibbs energy values. A synthesis of critical evaluation of literature, calculations and experiments leads to new important information about equilibria and reaction behaviour in multi-component systems. This information is necessary to develop new stable and metastable materials. (orig./MM) [de

  19. Liquid Metals as Plasma-facing Materials for Fusion Energy Systems: From Atoms to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Howard A. [Princeton Univ., NJ (United States); Koel, Bruce E. [Princeton Univ., NJ (United States); Bernasek, Steven L. [Princeton Univ., NJ (United States); Carter, Emily A. [Princeton Univ., NJ (United States); Debenedetti, Pablo G. [Princeton Univ., NJ (United States); Panagiotopoulos, Athanassios Z. [Princeton Univ., NJ (United States)

    2017-06-23

    The objective of our studies was to advance our fundamental understanding of liquid metals as plasma-facing materials for fusion energy systems, with a broad scope: from atoms to tokamaks. The flow of liquid metals offers solutions to significant problems of the plasma-facing materials for fusion energy systems. Candidate metals include lithium, tin, gallium, and their eutectic combinations. However, such liquid metal solutions can only be designed efficiently if a range of scientific and engineering issues are resolved that require advances in fundamental fluid dynamics, materials science and surface science. In our research we investigated a range of significant and timely problems relevant to current and proposed engineering designs for fusion reactors, including high-heat flux configurations that are being considered by leading fusion energy groups world-wide. Using experimental and theoretical tools spanning atomistic to continuum descriptions of liquid metals, and bridging surface chemistry, wetting/dewetting and flow, our research has advanced the science and engineering of fusion energy materials and systems. Specifically, we developed a combined experimental and theoretical program to investigate flows of liquid metals in fusion-relevant geometries, including equilibrium and stability of thin-film flows, e.g. wetting and dewetting, effects of electromagnetic and thermocapillary fields on liquid metal thin-film flows, and how chemical interactions and the properties of the surface are influenced by impurities and in turn affect the surface wetting characteristics, the surface tension, and its gradients. Because high-heat flux configurations produce evaporation and sputtering, which forces rearrangement of the liquid, and any dewetting exposes the substrate to damage from the plasma, our studies addressed such evaporatively driven liquid flows and measured and simulated properties of the different bulk phases and material interfaces. The range of our studies

  20. Fungal nanoscale metal carbonates and production of electrochemical materials.

    Science.gov (United States)

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. New half-metallic materials with an alkaline earth element

    International Nuclear Information System (INIS)

    Kusakabe, Koichi; Geshi, Masaaki; Tsukamoto, Hidekazu; Suzuki, Naoshi

    2004-01-01

    New candidates for half-metallic materials were theoretically designed recently by Geshi et al. The materials are calcium pnictides, i.e. CaP, CaAs and CaSb. When the zinc-blende structure was assumed, these compounds showed half-metallic electronic band-structure, in which a curious flat band was found. To explain this magnetism, we investigated characters of orbitals on this flat band of CaAs. The hybridization of p states of As with d states of Ca is shown to be essential for formation of a flat band made of localized orbitals. The appearance of complete spin polarization in the flat band suggests that the flat-band mechanism is relevant for the ferromagnetism. A connection from the first-principles result to a solvable Hubbard model with a flat band is discussed

  2. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  3. Microstructure and mechanical properties of metallic high-temperature materials. Research report

    International Nuclear Information System (INIS)

    Mughrabi, H.; Gottstein, G.; Mecking, H.; Riedel, H.; Toboloski, J.

    1999-01-01

    This volume contains 38 lectures of research studies performed in the course of the Priority Programme 'Microstructure and Mechanical Properties of Metallic High-Temperature Materials' supported by the Deutsche Forschungsgemeinschaft (DFG) over a period of six years from 1991 to 1997. The four materials selected were: 1. light metal PM-aluminium and titanium base alloys; 2. ferritic chromium and austenitic alloy 800 steels; 3. (monocrystalline) nickel-base superalloys; and 4. nickel- and iron-base oxide-dispersion-strengthened superalloys. All papers have been abstracted separately for the ENERGY database

  4. Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation.

    Science.gov (United States)

    Wang, Jing; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2018-01-01

    Metal-free carbon materials have been presented to be potential alternatives to metal-based catalysts for heterogeneous catalytic ozonation, yet the catalytic performance still needs to be enhanced. Doping carbon with non-metallic heteroatoms (e.g., N, B, and F) could alter the electronic structure and electrochemical properties of original carbon materials, has been considered to be an effective method for improving the catalytic activity of carbon materials. Herein, fluorine-doped carbon nanotubes (F-CNTs) were synthesized via a facile method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The as-synthesized F-CNTs exhibited notably enhanced catalytic activity towards catalytic ozonation for the degradation of organic pollutants. The oxalic acid removal efficiency of optimized F-CNTs was approximately two times as much as that of pristine CNTs, and even exceeded those of four conventional metal-based catalysts (ZnO, Al 2 O 3 , Fe 2 O 3 , and MnO 2 ). The XPS and Raman studies confirmed that the covalent CF bonds were formed at the sp 3 C sites instead of sp 2 C sites on CNTs, not only resulting in high positive charge density of C atoms adjacent to F atoms, but remaining the delocalized π-system with intact carbon structure of F-CNTs, which then favored the conversion of ozone molecules (O 3 ) into reactive oxygen species (ROS) and contributed to the high oxalic acid removal efficiency. Furthermore, electron spin resonance (ESR) studies revealed that superoxide radicals (O 2 - ) and singlet oxygen ( 1 O 2 ) might be the dominant ROS that responsible for the degradation of oxalic acid in these catalytic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Efficient waveguide coupler based on metal materials

    Science.gov (United States)

    Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu

    2015-10-01

    Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.

  6. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    Science.gov (United States)

    Banker, J.G.; Anderson, R.C.

    1975-10-21

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure.

  7. Method and apparatus for fabricating a composite structure consisting of a filamentary material in a metal matrix

    International Nuclear Information System (INIS)

    Banker, J.G.; Anderson, R.C.

    1975-01-01

    A method and apparatus are provided for preparing a composite structure consisting of filamentary material within a metal matrix. The method is practiced by the steps of confining the metal for forming the matrix in a first chamber, heating the confined metal to a temperature adequate to effect melting thereof, introducing a stream of inert gas into the chamber for pressurizing the atmosphere in the chamber to a pressure greater than atmospheric pressure, confining the filamentary material in a second chamber, heating the confined filamentary material to a temperature less than the melting temperature of the metal, evacuating the second chamber to provide an atmosphere therein at a pressure, placing the second chamber in registry with the first chamber to provide for the forced flow of the molten metal into the second chamber to effect infiltration of the filamentary material with the molten metal, and thereafter cooling the metal infiltrated-filamentary material to form said composite structure

  8. Technical Meeting on Liquid Metal Reactor Concepts: Core Design and Structural Materials. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Liquid metal reactor concept: core design and structural materials” was to present and discuss innovative liquid metal fast reactor (LMFR) core designs with special focus on the choice, development, testing and qualification of advanced reactor core structural materials. Main results arising from national and international R&D programmes and projects in the field were reviewed, and new activities to be carried out under the IAEA aegis were identified on the basis of the analysis of current research and technology gaps

  9. Analysis of the fractures of metallic materials using optical coherence tomography

    Science.gov (United States)

    Hutiu, Gh.; Duma, V.-F.; Demian, D.; Bradu, A.; Podoleanu, A. Gh.

    2017-06-01

    Forensic in situ investigations, for example for aviation, maritime, road, or rail accidents would benefit from a method that may allow to distinguish ductile from brittle fractures of metals - as material defects are one of the potential causes of such accidents. Currently, the gold standard in material studies is represented by scanning electron microscopy (SEM). However, SEM are large, lab-based systems, therefore in situ measurements are excluded. In addition, they are expensive and time-consuming. We have approached this problem and propose the use of Optical Coherence Tomography (OCT) in such investigations in order to overcome these disadvantages of SEM. In this respect, we demonstrate the capability to perform such fracture analysis by obtaining the topography of metallic surfaces using OCT. Different materials have been analyzed; in this presentation a sample of low soft carbon steel with the chemical composition of C 0.2%, Mn 1.15%, S 0.04%, P 0.05 % and Fe for the rest has been considered. An in-house developed Swept Source (SS) OCT system has been used, and height profiles have been generated for the sample surface. This profile allowed for concluding that the carbon steel sample was subjected to a ductile fracture. A validation of the OCT images obtained with a 10 microns resolution has been made with SEM images obtained with a 4 nm resolution. Although the OCT resolution is much lower than the one of SEM, we thus demonstrate that it is sufficient in order to obtain clear images of the grains of the metallic materials and thus to distinguish between ductile and brittle fractures. This study analysis opens avenues for a range of applications, including: (i) to determine the causes that have generated pipe ruptures, or structural failures of metallic bridges and buildings, as well as damages of machinery parts; (ii) to optimize the design of various machinery; (iii) to obtain data regarding the structure of metallic alloys); (iv) to improve the

  10. Alkali metal protective garment and composite material

    Science.gov (United States)

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  11. Method of quantitative analysis of superconducting metal-conducting composite materials

    International Nuclear Information System (INIS)

    Bogomolov, V.N.; Zhuravlev, V.V.; Petranovskij, V.P.; Pimenov, V.A.

    1990-01-01

    Technique for quantitative analysis of superconducting metal-containing composite materials, SnO 2 -InSn, WO 3 -InW, Zn)-InZn in particular, has been developed. The method of determining metal content in a composite is based on the dependence of superconducting transition temperature on alloy composition. Sensitivity of temperature determination - 0.02K, error of analysis for InSn system - 0.5%

  12. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  13. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials.

    Science.gov (United States)

    Repo, Eveliina; Warchoł, Jolanta K; Bhatnagar, Amit; Sillanpää, Mika

    2011-06-01

    Novel adsorbents were synthesized by functionalizing chitosan-silica hybrid materials with (ethylenediaminetetraacetic acid) EDTA ligands. The synthesized adsorbents were found to combine the advantages of both silica gel (high surface area, porosity, rigid structure) and chitosan (surface functionality). The Adsorption potential of hybrid materials was investigated using Co(II), Ni(II), Cd(II), and Pb(II) as target metals by varying experimental conditions such as pH, contact time, and initial metal concentration. The kinetic results revealed that the pore diffusion process played a key role in adsorption kinetics, which might be attributed to the porous structure of synthesized adsorbents. The obtained maximum adsorption capacities of the hybrid materials for the metal ions ranged from 0.25 to 0.63 mmol/g under the studied experimental conditions. The adsorbent with the highest chitosan content showed the best adsorption efficiency. Bi-Langmuir and Sips isotherm model fitting to experimental data suggested the surface heterogeneity of the prepared adsorbents. In multimetal solutions, the hybrid adsorbents showed the highest affinity toward Pb(II). Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Material accountancy for metallic fuel pin casting

    International Nuclear Information System (INIS)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-01-01

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases

  15. Analysis of material flow in metal forming processes by using computer simulation and experiment with model material

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dong Won

    1993-01-01

    The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behaviour in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method. (Author)

  16. Strain Rate Dependant Material Model for Orthotropic Metals

    International Nuclear Information System (INIS)

    Vignjevic, Rade

    2016-01-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 10"2 s"-"1 to 10"6 s"-"1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic

  17. Development of techniques for furthering the use of isotope radiography

    International Nuclear Information System (INIS)

    Wamorkar, R.R.; Singh, G.; Kalurkar, A.R.; Jagasia, N.S.; Malhotra, H.K.

    1977-01-01

    Isotope radiography techniques in the non-conventional applications such as : (a) hot radiography - a method for examination of radioactive materials, and (b) thin section radiography for inspection of biological specimen and non-metallic specimen are described. Also, a process used for the reproduction of gamma-graphs of welds and castings has been discussed in detail. (author)

  18. Mathematical modeling of phase interaction taking place in materials processing

    International Nuclear Information System (INIS)

    Zinigrad, M.

    2002-01-01

    The quality of metallic products depends on their composition and structure. The composition and the structure are determined by various physico-chemical and technological factors. One of the most important and complicated problems in the modern industry is to obtain materials with required composition, structure and properties. For example, deep refining is a difficult task by itself, but the problem of obtaining the material with the required specific level of refining is much more complicated. It will take a lot of time and will require a lot of expanses to solve this problem empirically and the result will be far from the optimal solution. The most effective way to solve such problems is to carry out research in two parallel direction. Comprehensive analysis of thermodynamics, kinetics and mechanisms of the processes taking place at solid-liquid-gaseous phase interface and building of the clear well-based physico-chemical model of the above processes taking into account their interaction. Development of mathematical models of the specific technologies which would allow to optimize technological processes and to ensure obtaining of the required properties of the products by choosing the optimal composition of the raw materials. We apply the above unique methods. We developed unique methods of mathematical modeling of phase interaction at high temperatures. These methods allows us to build models taking into account: thermodynamic characteristics of the processes, influence of the initial composition and temperature on the equilibrium state of the reactions, kinetics of homogeneous and heterogeneous processes, influence of the temperature, composition, speed of the gas flows, hydrodynamic and thermal factors on the velocity of the chemical and diffusion processes. The models can be implemented in optimization of various metallurgical processes in manufacturing of steels and non-ferrous alloys as well as in materials refining, alloying with special additives

  19. Modelling of the high temperature behaviour of metallic materials

    International Nuclear Information System (INIS)

    Mohr, R.

    1999-01-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of a chromium steel and an intermetallic titanium aluminide alloy. (orig.)

  20. Fundamentals of radiation materials science metals and alloys

    CERN Document Server

    Was, Gary S

    2017-01-01

    The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of t...

  1. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    International Nuclear Information System (INIS)

    Inchaussandague, Marina E.; Lakhtakia, Akhlesh; Depine, Ricardo A.

    2008-01-01

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction

  2. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  3. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 4: High-Temperature Materials PIRTs

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Ballinger, R. [Massachusetts Institute of Technology (MIT); Majumdar, S. [Argonne National Laboratory (ANL); Weaver, K. D. [Idaho National Laboratory (INL)

    2008-03-01

    The Phenomena Identification and Ranking Table (PIRT) technique was used to identify safety-relevant/safety-significant phenomena and assess the importance and related knowledge base of high-temperature structural materials issues for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled reactor (VHTR). The major aspects of materials degradation phenomena that may give rise to regulatory safety concern for the NGNP were evaluated for major structural components and the materials comprising them, including metallic and nonmetallic materials for control rods, other reactor internals, and primary circuit components; metallic alloys for very high-temperature service for heat exchangers and turbomachinery, metallic alloys for high-temperature service for the reactor pressure vessel (RPV), other pressure vessels and components in the primary and secondary circuits; and metallic alloys for secondary heat transfer circuits and the balance of plant. These materials phenomena were primarily evaluated with regard to their potential for contributing to fission product release at the site boundary under a variety of event scenarios covering normal operation, anticipated transients, and accidents. Of all the high-temperature metallic components, the one most likely to be heavily challenged in the NGNP will be the intermediate heat exchanger (IHX). Its thin, internal sections must be able to withstand the stresses associated with thermal loading and pressure drops between the primary and secondary loops under the environments and temperatures of interest. Several important materials-related phenomena related to the IHX were identified, including crack initiation and propagation; the lack of experience of primary boundary design methodology limitations for new IHX structures; and manufacturing phenomena for new designs. Specific issues were also identified for RPVs that will likely be too large for shop fabrication and transportation. Validated procedures

  4. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Turbine system and adapter

    Science.gov (United States)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  6. Corrosion engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, M.G.

    1986-01-01

    This book emphasizes the engineering approach to handling corrosion. It presents corrosion data by corrosives or environments rather than by materials. It discusses the corrosion engineering of noble metals, ''exotic'' metals, non-metallics, coatings, mechanical properties, and corrosion testing, as well as modern concepts. New sections have been added on fracture mechanics, laser alloying, nuclear waste isolation, solar energy, geothermal energy, and the Statue of Liberty. Special isocorrosion charts, developed by the author, are introduced as a quick way to look at candidates for a particular corrosive.

  7. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  8. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  9. Development of materials resistant to metal dusting degradation.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  10. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    Ghomashchi, Reza; Costin, Walter; Kurji, Rahim

    2015-01-01

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  11. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  12. Contribution of nuclear analysis methods to the certification of BCR reference materials for non-metals in non-ferrous metals

    International Nuclear Information System (INIS)

    Pauwels, J.

    1979-01-01

    A number of reference materials for oxygen in different non-ferrous metals have been certified by BCR in the frame of a multidisciplinary Community project. The contribution of nuclear analysis methods is illustrated by several examples concerning the optimization of sample preparation techniques, the analysis of low and high oxygen non-ferrous metals and the extension of the program to other non-metals, especially nitrogen and carbon. (author)

  13. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  14. The Spanish Protocol for Collaboration on the Radiological Surveillance of Metallic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, J.M., E-mail: jmredondo@mityc.es [Ministry of Industry, Tourism and Trade (Spain)

    2011-07-15

    In recent years the presence of radioactive material in scrap metal has been detected relatively often. This can cause the contamination of people or of the environment, as well as of the industrial facilities and of the product. The Spanish iron and steel industry is one of the most important industrial sectors in the country, and depends to a large extent on the importation of a significant proportion of the scrap used as raw material. Experience has shown that countries that import large quantities of scrap for their industries are more exposed to the existence of orphan radioactive sources and therefore, they have to adopt measures to reduce the risks arising from their presence. In 1999, the Spanish authorities, along with the business associations involved in the metal recovery and smelting industry, and the radioactive waste management agency, established a national system for the radiological surveillance and control of scrap metal and the products resulting from its processing. Since then, the most relevant trade unions and others in the industrial sector have also joined the system. It is based on the existence of a legal framework and on a set of voluntary commitments taken on by the involved parties. It is known as the Protocol for Collaboration for the Radiological Surveillance of Metallic Materials and is implemented by the installation of specific radiological surveillance equipment, the development of radiological training and information plans for the staff involved in the metal recovery and smelting sectors, the definition of a fully operational system to safely manage the materials detected, and a general improvement of the national radiological emergency system. (author)

  15. The Process of Nanostructuring of Metal (Iron Matrix in Composite Materials for Directional Control of the Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Elena Zemtsova

    2014-01-01

    Full Text Available We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1 preparation of porous metal matrix; (2 surface structuring of the porous metal matrix by TiC nanowires; (3 pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based materials with improved mechanical properties for the different areas of technology.

  16. Recycling of Metals and Materials: A Selected Bibliography.

    Science.gov (United States)

    Seidman, Ruth K., Comp.; Castrow, Lee, Comp.

    Recycling of metals and materials has as its purpose the easing of two major environmental crises. First, we re-utilize scarce and non-renewable resources. Second, solid waste disposal problems can be alleviated. Industry has long been concerned with reclaiming its own waste products, and is now beginning to respond to the need for dealing with…

  17. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    product of (26)Al. This correlation is interpreted as reflecting progressive thermal processing of in-falling (26)Al-rich molecular cloud material in the inner Solar System. The thermally unprocessed molecular cloud matter reflecting the nucleosynthetic makeup of the molecular cloud before the last......)Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...

  18. Laser-shocked energetic materials with metal additives: evaluation of detonation performance

    Science.gov (United States)

    Gottfried, Jennifer; Bukowski, Eric

    A focused, nanosecond-pulsed laser with sufficient energy to exceed the breakdown threshold of a material generates a laser-induced plasma with high peak temperatures, pressures, and shock velocities. Depending on the laser parameters and material properties, nanograms to micrograms of material is ablated, atomized, ionized and excited in the laser-induced plasma. The subsequent shock wave expansion into the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The estimated detonation velocities using LASEM agree well with published experimental values. A comparison of the measured shock velocities for various energetic materials including RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time participation of metal additives in detonation events. The LASEM results show that reducing the amount of hydrogen present in B formulations increases the resulting detonation velocities

  19. ANDRA - Referential Materials. Volume 1: Context and scope; Volume 2: Argillaceous materials; Volume 3: Cementitious materials; Volume 4: The corrosion of metallic materials

    International Nuclear Information System (INIS)

    2001-01-01

    This huge document gathers four volumes. The first volume presents some generalities about materials used in the storage of radioactive materials (definition, design principle, current choices and corresponding storage components, general properties of materials and functions of the corresponding storage components, physical and chemical solicitations experienced by materials in a storage), and the structure and content of the other documents. The second volume addresses argillaceous materials. It presents some generalities about these materials in the context of a deep geological storage, and about their design. It presents and comments the crystalline and chemical, and physical and chemical characteristics of swelling argillaceous materials and minerals, describes how these swelling argillaceous materials are shaped and set up, presents and comments physical properties (hydraulic, mechanical and thermal properties) of these materials, comments and discusses the modelling of the geo-chemical behaviour, and their behaviour in terms of containment and transport of radionuclides. The third volume addresses cementitious materials. It presents some generalities about these materials in the context of a deep geological storage, and about their definition and specifications. It presents some more detailed generalities (cement definition and composition, hydration, microstructure of hydrated cements, adjuvants), presents and comments their physical properties (fresh concrete structure and influence of composition, main aimed properties in the hardened status, transfer, mechanical, and thermal properties, shaping and setting up of these materials, technical solutions for hydraulic works). The fourth volume addresses the corrosion of metallic materials. It presents some generalities about these materials in the context of a deep geological storage of radioactive materials. It presents metallic materials and discusses their corrosion behaviour. It describes the peculiarities

  20. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    Science.gov (United States)

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. STATISTICAL DISTRIBUTION PATTERNS IN MECHANICAL AND FATIGUE PROPERTIES OF METALLIC MATERIALS

    OpenAIRE

    Tatsuo, SAKAI; Masaki, NAKAJIMA; Keiro, TOKAJI; Norihiko, HASEGAWA; Department of Mechanical Engineering, Ritsumeikan University; Department of Mechanical Engineering, Toyota College of Technology; Department of Mechanical Engineering, Gifu University; Department of Mechanical Engineering, Gifu University

    1997-01-01

    Many papers on the statistical aspect of materials strength have been collected and reviewed by The Research Group for Statistical Aspects of Materials Strength.A book of "Statistical Aspects of Materials Strength" was written by this group, and published in 1992.Based on the experimental data compiled in this book, distribution patterns of mechanical properties are systematically surveyed paying an attention to metallic materials.Thus one can obtain the fundamental knowledge for a reliabilit...

  2. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  3. Modelo numérico tridimensional para la simulación de procesos de tratamiento superficial de materiales con láser

    Directory of Open Access Journals (Sweden)

    García-Beltrán, A.

    1999-04-01

    Full Text Available A numerical model for the predictive assessment of laser transformation hardening of steels and other surface treatments both in metallic and non-metallic materials has been developed. Starting from material and geometry data, the problem of heat diffusion from the thermal source provided by the laser is solved with complete space and temperature-dependence. The developed 3D simulation model has been successfully checked against theoretical and experimental results both for metallic and non-metallic materials. Typical examples of its application have been the thermal surface hardening of steels and the analysis of thermal fields in low diffusivity materials (as optical glass in laser polishing applications.

    Se desarrolla un modelo numérico para la predicción y análisis del temple superficial de aceros por láser y de otros tratamientos superficiales de materiales metálicos y no metálicos. Partiendo de los datos del material y de su geometría, el modelo tridimensional de simulación desarrollado resuelve el problema de la transferencia de calor de la fuente generada por el haz láser dependiente del tiempo y de la temperatura y ha sido contrastado teórica y experimentalmente tanto para materiales metálicos como no metálicos. Ejemplos típicos de su aplicación son el temple superficial de acero al carbono y el análisis de los campos térmicos en materiales de baja conductividad térmica (como el vidrio óptico en aplicaciones de pulido con láser.

  4. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems.

    Science.gov (United States)

    Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L

    2015-01-01

    The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 μg/L, Zn: 436.4 μg/L, Cd, 1.82 μg/L, Pb: 51.32 μg/L) and high concentrations of heavy metals (Cu: 241 μg/L, Zn: 1127 μg/L, Cd: 4.57 μg/L, Pb: 90.25 μg/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    International Nuclear Information System (INIS)

    2011-01-01

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  6. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  7. Inkjet printing metals on flexible materials for plastic and paper electronics

    DEFF Research Database (Denmark)

    Al-Shamery, K.; Raut, N. C.

    2018-01-01

    Inorganic printed electronics is now recognized as an area of tremendous commercial, potential and technical progress. Many research groups are actively involved worldwide in developing metal nanoparticle inks and precursors for printing inorganic/organic materials using different printing....... Besides some examples demonstrating aspects on ink formulation via patterning solid surfaces such as glass and silicon oxide, special emphasis will be placed on compatibility for usage in plastic and paper electronics. Printing of nanoparticles of copper, silver, gold etc. will be discussed...... and will be compared to printing of a variety of metal-organic precursor inks. Finally, a brief account on exemplary applications using the printed inorganic nanoparticles/materials is provided....

  8. Metallic materials corrosion problems in molten salt reactors

    International Nuclear Information System (INIS)

    Chauvin, G.; Dixmier, J.; Jarny, P.

    1977-01-01

    The USA forecastings concerning the molten salt reactors are reviewed (mixtures of fluorides containing the fuel, operating between 560 and 700 0 C). Corrosion problems are important in these reactors. The effects of certain characteristic factors on corrosion are analyzed: humidity and metallic impurities in the salts, temperature gradients, speed of circulation of salts, tellurium from fission products, coupling. In the molten fluorides and experimental conditions, the materials with high Ni content are particularly corrosion resistant alloys (hastelloy N). The corrosion of this material is about 2.6 mg.cm -2 at 700 0 C [fr

  9. Comprehensive Planning for Classification and Disposal of Solid Waste at the Industrial Parks regarding Health and Environmental Impacts

    OpenAIRE

    Hashemi, Hassan; Pourzamani, Hamidreza; Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without o...

  10. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

    2009-02-06

    The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project

  11. Characterization of liquid metal reactor materials

    International Nuclear Information System (INIS)

    Kuk, I. H.; Ryu, W. S.; Kim, H. H. and others

    1999-03-01

    The objectives of this report were to assess the material requirements for LMR environment, to select the optimum candidates for KALIMER components, to characterize the performance for establishing a database of the structural materials for KALIMER, and to develop the basic material technologies for the localization of the advanced materials. Stainless steel ingots were melted by VIM and hot-rolled to plate with the thickness of 15mm. The plate was solution-treated for 1 hr at 1100 deg C and then water-quenched. Specimens were taken parallel to the rolling direction of the plate. The effects of nitrogen and phosphorus were analyzed on the high temperature mechanical properties of 316MRP (Liquid Metal Reactor, Primary candidate material) stainless steels with the different nitrogen content from 0.04 to 0.15% and with the different phosphorus content from 0.002 to 0.02%. Heat treatment was performed to investigate the changes in microstructure and mechanical properties of Cr-Mo steels for LMR heat transfer tube materials and core materials. The Cr-Mo steels were normalized at the temperatures between 900 deg C and 1200 deg C for 1hrs and tempered at the temperatures between 500 deg C and 800 deg C for 2hrs. Conventional optical and electron micrographic studies were carried out to investigate the martensite lath structure, carbide indentification and carbide shape. Vickers microhardness was measured at room temperature using 10g load. Tensile properties were tested at high temperature. Charpy V-notch impact tests were also carried out at temperature between -120 deg C and +180 deg C. (author). 72 refs., 28 tabs., 244 figs

  12. Plutonium metal exchange program : current status and statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, L. (Lav); Eglin, J. L. (Judith Lynn); Michalak, S. E. (Sarah E.); Picard, R. R.; Temer, D. J. (Donald J.)

    2004-01-01

    The Rocky Flats Plutonium (Pu) Metal Sample Exchange program was conducted to insure the quality and intercomparability of measurements such as Pu assay, Pu isotopics, and impurity analyses. The Rocky Flats program was discontinued in 1989 after more than 30 years. In 2001, Los Alamos National Laboratory (LANL) reestablished the Pu Metal Exchange program. In addition to the Atomic Weapons Establishment (AWE) at Aldermaston, six Department of Energy (DOE) facilities Argonne East, Argonne West, Livermore, Los Alamos, New Brunswick Laboratory, and Savannah River are currently participating in the program. Plutonium metal samples are prepared and distributed to the sites for destructive measurements to determine elemental concentration, isotopic abundance, and both metallic and nonmetallic impurity levels. The program provides independent verification of analytical measurement capabilies for each participating facility and allows problems in analytical methods to be identified. The current status of the program will be discussed with emphasis on the unique statistical analysis and modeling of the data developed for the program. The discussion includes the definition of the consensus values for each analyte (in the presence and absence of anomalous values and/or censored values), and interesting features of the data and the results.

  13. Use of polyethylene glycol for the improvement of the cycling stability of bischofite as thermal energy storage material

    International Nuclear Information System (INIS)

    Gutierrez, Andrea; Ushak, Svetlana; Galleguillos, Hector; Fernandez, Angel; Cabeza, Luisa F.; Grágeda, Mario

    2015-01-01

    Highlights: • Bischofite as phase change material for TES is studied. • Thermophysical properties of bischofite mixtures with PEG were determined. • The aim was to improve the cycling stability of bischofite. • The heating and cooling during 30 cycles were measured. • The most stable sample was bischofite + 5% PEG 2 000. - Abstract: Bischofite is a by-product of the non-metallic mining industry. It has been evaluated as phase change material in thermal energy storage, but it shows little cycling stability, therefore in this paper the mixture of bischofite with an additive was studied. Since polyethylene glycol (PEG) is a PCM itself, in this paper PEG (with different molecular weights) is used as additive in a PCM (bischofite) to improve its thermal behaviour. Results show that adding 5% PEG 2 000 to bischofite gives a more cycling stable PCM without affecting its melting temperature neither decreasing significantly its heat of fusion. This research shows that mixing an inorganic PCM with an organic additive can be a good option to improve the thermal performance of the PCM

  14. Tapping the earth's geothermal resources: Hydrothermal today, magma tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E.

    1986-12-17

    The paper discusses geothermal resources, what it is, where it is, and how to extract energy from it. The materials research activities at Brookhaven National Laboratory related to geothermal energy extraction are discussed. These include high-temperature, light-weight polymer cements, elastomers, biochemical waste processing techniques, and non-metallic heat exchanger tubing. The economics of geothermal energy is also discussed. (ACR)

  15. Characterization of refractory brick based on local raw material from Lampung Province - Indonesia

    Science.gov (United States)

    Amin, Muhammad; Suryana, Yayat I.; Isnugroho, Kusno; Aji, Bramantyo B.; Birawidha, David C.; Hendronursito, Yusup

    2018-04-01

    Refractories are non-metallic inorganic materials that are difficult to melt at high temperatures and used in high-temperature casting industries. Refractories are classified into their constituent mineral feed stocks, refractories having typical plot properties commonly called fire bricks. In the manufacture of refractory bricks that exist in the market during the use of mangrove materials derived from abroad that is from China. In this research the refractory brick materials used are quartz sand, feldspart, kaolin, bentonite, and ball clay. All materials come from local Lampung Province - Indonesia. The experiment, there are 7 kinds of experimental composition, made of plot shape with size 230 mm, 65 mm in thickness, 114 mm height mould using manual press machine with 10 tons power and burning at 1400°C for 5 hours. Refractory brick product is done by physical test in the form of porosity, specific gravity, compressive strength and XRF and SEM characteristics. The result of XRF characteristic of refractory brick composition of 1 to 5 compared to the refractory brick type SK 34 in the market and the result of composition 1 is a composition close to refractory brick composition type SK 34 namely SiO2 is 54.21 %, Al2O3 is 25.38 % and test Physical of Bulk density is 2.25 g/cm3, porosity is 18.98 % and compressive strength is 325 kg/cm2.

  16. Research on metallic material defect detection based on bionic sensing of human visual properties

    Science.gov (United States)

    Zhang, Pei Jiang; Cheng, Tao

    2018-05-01

    Due to the fact that human visual system can quickly lock the areas of interest in complex natural environment and focus on it, this paper proposes an eye-based visual attention mechanism by simulating human visual imaging features based on human visual attention mechanism Bionic Sensing Visual Inspection Model Method to Detect Defects of Metallic Materials in the Mechanical Field. First of all, according to the biologically visually significant low-level features, the mark of defect experience marking is used as the intermediate feature of simulated visual perception. Afterwards, SVM method was used to train the advanced features of visual defects of metal material. According to the weight of each party, the biometrics detection model of metal material defect, which simulates human visual characteristics, is obtained.

  17. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  18. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  19. Metal-nanotube composites as radiation resistant materials

    Energy Technology Data Exchange (ETDEWEB)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel, E-mail: m.kiwi.t@gmail.com [Departamento de Física, Facultad de Ciencias, CEDENNA, Universidad de Chile, Casilla 653, Santiago 7800024 (Chile); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); So, Kang Pyo; Li, Ju [Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bringa, Eduardo M. [CONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza 5500 (Argentina)

    2016-07-18

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  20. Metal-nanotube composites as radiation resistant materials

    International Nuclear Information System (INIS)

    González, Rafael I.; Valencia, Felipe; Mella, José; Kiwi, Miguel; Duin, Adri C. T. van; So, Kang Pyo; Li, Ju; Bringa, Eduardo M.

    2016-01-01

    The improvement of radiation resistance in nanocomposite materials is investigated by means of classical reactive molecular dynamics simulations. In particular, we study the influence of carbon nanotubes (CNTs) in an Ni matrix on the trapping and possible outgassing of He. When CNTs are defect-free, He atoms diffuse alongside CNT walls and, although there is He accumulation at the metal-CNT interface, no He trespassing of the CNT wall is observed, which is consistent with the lack of permeability of a perfect graphene sheet. However, when vacancies are introduced to mimic radiation-induced defects, He atoms penetrate CNTs, which play the role of nano-chimneys, allowing He atoms to escape the damaged zone and reduce bubble formation in the matrix. Consequently, composites made of CNTs inside metals are likely to display improved radiation resistance, particularly when radiation damage is related to swelling and He-induced embrittlement.

  1. Aplicación de un material vitrocerámico a la biorremediación de metales pesados

    Directory of Open Access Journals (Sweden)

    García, A. M.

    2004-02-01

    Full Text Available In this study, a glassceramic material with hydroxyapatite phase was manufactured from industrial and urban wastes. On this material, biofilms from the microorganisms usually appearing in wastewater were developed. Batch assays were made using different heavy metals to analyze glassceramic material capacity to retain these elements from an aqueous medium in biofilm presence and absence. The results suggest that microorganisms are implicated in the removing of heavy metals from the aqueous medium and open the possibility to use the glassceramic material in a bioremediation process.

    En este trabajo se elaboró un material vitrocerámico conteniendo la fase de hidroxiapatita, partiendo de residuos industriales y urbanos. Sobre la superficie del material se desarrollaron biopelículas de los microorganismos que aparecen habitualmente en las aguas residuales. Se hicieron ensayos de retención usando distintos metales pesados para evaluar la capacidad del material de eliminar tales elementos de un medio acuoso en presencia y ausencia de la biopelícula. Los resultados ponen de manifiesto la participación microbiana en los procesos de eliminación de los metales pesados del medio acuoso y ofrecen la posibilidad de utilizar el material vitrocerámico en un proceso de biorremediación de aguas contaminadas por metales pesados.

  2. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  3. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  4. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    Science.gov (United States)

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  5. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set

    International Nuclear Information System (INIS)

    Guan, Dong; Wu, Jiu Hui; Jing, Li

    2015-01-01

    Highlights: • A random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. • Effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. • This method could be utilized to guide the design and fabrication of the sound-absorption porous metal materials. - Abstract: In this paper, a statistical method for predicting sound absorption properties of porous metal materials is presented. To reflect the stochastic distribution characteristics of the porous metal materials, a random internal morphology and structure generation-growth method, termed as the quartet structure generation set (QSGS), has been utilized based on the stochastic cluster growth theory for numerical generating the various microstructures of porous metal materials. Then by using the transfer-function approach along with the QSGS tool, we investigate the sound absorbing performance of porous metal materials with complex stochastic geometries. The statistical method has been validated by the good agreement among the numerical results for metal rubber from this method and a previous empirical model and the corresponding experimental data. Furthermore, the effects of different parameters such as thickness and porosity on sound absorption performance of the generated structures are studied by the present method, and the obtained results are validated by an empirical model as well. Therefore, the present method is a reliable and robust method for predicting the sound absorption performance of porous metal materials, and could be utilized to guide the design and fabrication of the sound-absorption porous metal materials

  6. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.

    Science.gov (United States)

    Kokubo, Tadashi; Yamaguchi, Seiji

    2016-10-15

    Until the discovery of the bone-bonding activity of Bioglass by Hench et al. in the early 1970s, it had not been demonstrated that a synthetic material could bond to living bone without eliciting a foreign body reaction. Since then, various kinds of materials based on calcium phosphate, such as sintered hydroxyapatite and β-tricalcium phosphate have also been shown to bond to living bone. Until the discovery of the bone-bonding activity of Ti metal formed with a sodium titanate surface layer by the present authors in 1996, it had not been shown that a metallic material could bond to living bone. Since then, various kinds of surface-modified Ti metal and its alloys have been found to bond to living bone. Until the discovery of the osteoinduction of porous hydroxyapatite by Yamasaki in 1990, it was unknown whether a synthetic material could induce bone formation even in muscle tissue. Since then, various kinds of porous calcium phosphate ceramics have been shown to induce osteoinduction. Until the discovery of osteoinduction induced by a porous Ti metal formed with a titanium oxide surface layer by Fujibayashi et al. in 2004, it had been unclear whether porous metals would be able to induce osteoinduction. These novel bioactive materials have been developed by systematic research into the apatite formation that occurs on surface-modified Ti metal and its related materials in an acellular simulated body fluid (SBF) having ion concentrations almost equal to those of human blood plasma. Some of the novel bioactive materials based on Ti metal are already in clinical use or clinical trials, such as artificial hip joints and spinal fusion devices. In the present paper, we review how these novel bioactive materials based on Ti metal have been developed based on an evaluation of apatite formation in SBF. Without the SBF evaluation, these novel bioactive materials would most likely never have been developed. On the basis of systematic study of apatite formation on a material

  7. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials.

    Science.gov (United States)

    Schildhauer, T A; Peter, E; Muhr, G; Köller, M

    2009-02-01

    We analyzed leukocyte functions and cytokine response of human leukocytes toward porous tantalum foam biomaterial (Trabecular Metaltrade mark, TM) in comparison to equally sized solid orthopedic metal implant materials (pure titanium, titanium alloy, stainless steel, pure tantalum, and tantalum coated stainless steel). Isolated peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) were cocultured with equally sized metallic test discs for 24 h. Supernatants were analyzed for cytokine content by enzyme-linked immunosorbent assay. Compared to the other used test materials there was a significant increase in the release of IL (interleukin)-1ra and IL-8 from PMN, and of IL-1ra, IL-6, and TNF-alpha from PBMC in response to the TM material. The cytokine release correlated with surface roughness of the materials. In contrast, the release of IL-2 was not induced showing that mainly myeloid leukocytes were activated. In addition, supernatants of these leukocyte/material interaction (conditioned media, CM) were subjected to whole blood cell function assays (phagocytosis, chemotaxis, bacterial killing). There was a significant increase in the phagocytotic capacity of leukocytes in the presence of TM-conditioned media. The chemotactic response of leukocytes toward TM-conditioned media was significantly higher compared to CM obtained from other test materials. Furthermore, the bactericidal capacity of whole blood was enhanced in the presence of TM-conditioned media. These results indicate that leukocyte activation at the surface of TM material induces a microenvironment, which may enhance local host defense mechanisms.

  8. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.

    Science.gov (United States)

    Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea

    2017-10-19

    Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  9. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  11. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  12. Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC

    Science.gov (United States)

    O'Connor, Alexander Pinpin

    Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The

  13. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    Science.gov (United States)

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  14. 3rd Workshop on metal ceramic materials for functional applications

    International Nuclear Information System (INIS)

    Korb, G.

    1997-01-01

    This workshop contains contributions about materials and processing, characterization and modeling of properties and applications of metallic ceramics and composite structures. It was held on behalf of the Taiwan-Austrian scientific collaboration in Vienna, June 4 th - 6 th 1997. (Suda)

  15. Randomly grain growth in metallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)], E-mail: adaramil@yahoo.com.mx; Chavez, F. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Demedices, L. [Instituto Politecnico Nacional, (SEPI-ESIME), Unidad Profesional Ticoman, Av. Ticoman 600, Del. G.A.M., C.P. 07340 Distrito Federal, Mexico (Mexico); Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico); Cruz, A.; Macias, M. [Instituto Politecnico Nacional, (SEPI-ESIQIE), Unidad Profesional Zacatenco, Edif. 6 y Edif. Z planta baja C.P.07300, Distrito Federal, Mexico (Mexico)

    2009-10-30

    Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X{sub sol} and X{sub liq}) of metal solute and the local temperature distribution (SS{sub I,J}). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.

  16. Randomly grain growth in metallic materials

    International Nuclear Information System (INIS)

    Ramirez, A.; Chavez, F.; Demedices, L.; Cruz, A.; Macias, M.

    2009-01-01

    Computational modeling of grain structures is a very important topic in materials science. In this work, the development of the computational algorithms for a mathematical model to predict grain nucleation and grain growth is presented. The model place a number of nucleated points randomly in a liquid pool according with the solid and liquid fractions (X sol and X liq ) of metal solute and the local temperature distribution (SS I,J ). Then these points grows isotropically until obtain a grain structure with straight interfaces. Different grain morphologies such as columnar and equiaxed can be obtained as a function of the temperature distributions and growth directions.

  17. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    Science.gov (United States)

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  18. Neutron irradiation effects of iron alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Takenaka, Minoru; Hasegawa, Masayuki.

    1991-01-01

    Positron annihilation angular correlation measurements have been performed for the neutron irradiated various metals and ceramics in order to obtain the information of the microvoids and positronium formation in them. Positronium (Ps) formation was observed in Nb containing a small amount of oxygen and Fe-15%Cr-16%Ni-0.006%B 10 . In practical steels such as JPCA and JFMS no Ps formation was observed. High temperature deformation might induce microvoids into metals, but the positron annihilation angular correlation measurements could not confirm this. In non-metallic materials neutron irradiated no Ps formation has so far been observed. (author)

  19. Results of the Electron-Beam Button Melting of very clean Ni-base superalloys for the identification of nonmetallic inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Hauner, F.; Stephan, H.; Stumpp, H.

    1986-02-01

    The reliability of components made of high strength materials is substantially influenced by their cleanliness. For example, the ductility, the fatigue-characteristics and the stress resistance of high strength alloys can be improved by increasing the cleanliness along with decreasing the inclusion size to below 25 ..mu..m. For the analysis of such high clean alloys with decreasing size of nonmetallic inclusions, the metallographic texting methods become troublesome and inexact for a dependable quality control. The Electron-Beam Button Melt Test offers a possibility for the examination and qualification of the small amounts of different inclusions in the high clean materials. During a process-controlled melting procedure, inclusions of high density sink to the bottom of a water-cooled copper crucible. Low density inclusions float to the pool surface and are concentrated in the upper center of the button by means of a controlled solidification of the melting pool. For the utilization of the process in the production quality control, development and research, we have developed the Electron-Beam Button Melting Furnace ES 1/07/30 B. In this paper we will present results of the application of the ES1/07/30 B. In this paper we will present results of the application of the ES 1/07/30 B to the EB-Button melting of the Ni-Base Superalloys IN718 and Astroloy. (orig.).

  20. 3rd Workshop on metal ceramic materials for functional applications

    Energy Technology Data Exchange (ETDEWEB)

    Korb, G [Oesterreichisches Forschungszentrum Seibersdorf, 2444 Seibersdorf (Austria)

    1998-12-31

    This workshop contains contributions about materials and processing, characterization and modeling of properties and applications of metallic ceramics and composite structures. It was held on behalf of the Taiwan-Austrian scientific collaboration in Vienna, June 4{sup th} - 6{sup th} 1997. (Suda)

  1. Cyclic catalytic upgrading of chemical species using metal oxide materials

    Science.gov (United States)

    White, James H; Schutte, Erick J; Rolfe, Sara L

    2013-05-07

    Processes are disclosure which comprise alternately contacting an oxygen-carrying catalyst with a reducing substance, or a lower partial pressure of an oxidizing gas, and then with the oxidizing gas or a higher partial pressure of the oxidizing gas, whereby the catalyst is alternately reduced and then regenerated to an oxygenated state. In certain embodiments, the oxygen-carrying catalyst comprises at least one metal oxide-containing material containing a composition having the following formulas: (a) Ce.sub.xB.sub.yB'.sub.zB''O.sub..delta., wherein B=Ba, Sr, Ca, or Zr; B'=Mn, Co, and/or Fe; B''=Cu; 0.01Ba, Ca, La, or K; 0.02material itself or as a support for said unary or binary metal oxides.

  2. Certification of a niobium metal reference material for neutron dosimetry (EC nuclear reference material 526)

    International Nuclear Information System (INIS)

    Ingelbrecht, C.; Pauwels, J.

    1990-01-01

    Niobium metal, of 99.999% nominal purity, in the form of 0.02 and 0.1 mm thick foil and of 0.5 mm diameter wire, has been certified for its tantalum mass fraction. The certified value of the tantalum mass fraction is 0.3 ± 0.09 mg. Kg -1 , and is based on 70 results obtained by six independent laboratories by neutron activation analysis or inductively coupled plasma mass spectrometry. The material is intended to be used as a reference material in neutron metrology

  3. The space shuttle payload planning working groups: Volume 9: Materials processing and space manufacturing

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Materials Processing and Space Manufacturing group of the space shuttle payload planning activity are presented. The effects of weightlessness on the levitation processes, mixture stability, and control over heat and mass transport in fluids are considered for investigation. The research and development projects include: (1) metallurgical processes, (2) electronic materials, (3) biological applications, and (4)nonmetallic materials and processes. Additional recommendations are provided concerning the allocation of payload space, acceptance of experiments for flight, flight qualification, and private use of the space shuttle.

  4. A Linkage Between Parent Materials of Soil and Potential Risk of Heavy Metals in Yunnan province, China

    Science.gov (United States)

    Cheng, X.

    2015-12-01

    A large area exceeding soil quality standards for heavy metals in South western China has been identified previously reported on a nationwide survey of soil pollution, yet the ecological risk of heavy metal in soil is unknown or uncertainty.To assess thoroughly the ecological risk in this region, seven soil profiles with a depth of 2m on the different parent materials of soil were conducted in Yunnan province, China, and the level of total concentrations and the fraction of water soluble, ion exchangeable, carbonates, humic acid, iron and manganese oxides and organic matter of As, Cd, Hg and Pb was investigated in soil profiles. The results indicate that parent materials of soil critically influenced the ecological risk of heavy metal.The fraction of water soluble and ion exchangeable of Cd and Hg in alluvial material and in terrigenous clastic rocks showed 2-6 times higher than those in carbonate rock; As and Pb has almost same fraction of water soluble and ion exchangeable in three parent materials of soil.The findings suggest that parent materials of soil play a critical role in ecological risk of heavy metal.Thus, more studies are needed to better understand a linkage between the parent materials of soil, different soil-forming processes and the potential risk of heavy metals under various geographic conditions, which is the key for the evaluating soil quality and food safety. Those soils with high concentration of Cd and Hg originated alluvial material and terrigenous clastic rocks need to be continuously monitored before determining a cost-effective remediation technology. Keywords: Heavy metals; Ecological risk;Parent materials of soil;China

  5. NanoPCR observation: different levels of DNA replication fidelity in nanoparticle-enhanced polymerase chain reactions

    International Nuclear Information System (INIS)

    Shen Cenchao; Yang Wenjuan; Ji Qiaoli; Zhang Zhizhou; Maki, Hisaji; Dong Anjie

    2009-01-01

    Nanoparticle-assisted PCR (polymerase chain reaction) technology is getting more and more attention recently. It is believed that some of the DNA recombinant technologies will be upgraded by nanotechnology in the near future, among which DNA replication is one of the core manipulation techniques. So whether or not the DNA replication fidelity is compromised in nanoparticle-assisted PCR is a question. In this study, a total of 16 different metallic and non-metallic nanoparticles (NPs) were tested for their effects on DNA replication fidelity in vitro and in vivo. Sixteen types of nanomaterials were distinctly different in enhancing the PCR efficiency, and their relative capacity to retain DNA replication fidelity was largely different from each other based on rpsL gene mutation assay. Generally speaking, metallic nanoparticles induced larger error rates in DNA replication fidelity than non-metallic nanoparticles, and non-metallic nanomaterials such as carbon nanopowder or nanotubes were still safe as PCR enhancers because they did not compromise the DNA replication fidelity in the Taq DNA polymerase-based PCR system.

  6. Analysis of Metallized Teflon(trademark) Film Materials Performance on Satellites

    Science.gov (United States)

    Pippin, H. Gary; Normand, Eugene; Wolf, Suzanne L. B.; Kamenetzky, Rachel; Kauffman, William J., Jr. (Technical Monitor)

    2002-01-01

    Laboratory and on-orbit performance data for two common thermal control materials, silver- and aluminum-backed (metallized) fluorinated ethyl-propylene (TER) was collected from a variety of sources and analyzed. This paper demonstrates that the change in solar absorptance, alpha, is a strong function of particulate radiation for these materials. Examination of additional data shows that the atomic oxygen recession rate is a strong function of solar exposure with an induction period of between 25 to 50 equivalent solar hours. The relationships determined in this analysis were incorporated into an electronic knowledge base, the 'Spacecraft Materials Selector,' under NASA contract NAS8-98213.

  7. Degradation of metallic materials studied by correlative tomography

    Science.gov (United States)

    Burnett, T. L.; Holroyd, N. J. H.; Lewandowski, J. J.; Ogurreck, M.; Rau, C.; Kelley, R.; Pickering, E. J.; Daly, M.; Sherry, A. H.; Pawar, S.; Slater, T. J. A.; Withers, P. J.

    2017-07-01

    There are a huge array of characterization techniques available today and increasingly powerful computing resources allowing for the effective analysis and modelling of large datasets. However, each experimental and modelling tool only spans limited time and length scales. Correlative tomography can be thought of as the extension of correlative microscopy into three dimensions connecting different techniques, each providing different types of information, or covering different time or length scales. Here the focus is on the linking of time lapse X-ray computed tomography (CT) and serial section electron tomography using the focussed ion beam (FIB)-scanning electron microscope to study the degradation of metals. Correlative tomography can provide new levels of detail by delivering a multiscale 3D picture of key regions of interest. Specifically, the Xe+ Plasma FIB is used as an enabling tool for large-volume high-resolution serial sectioning of materials, and also as a tool for preparation of microscale test samples and samples for nanoscale X-ray CT imaging. The exemplars presented illustrate general aspects relating to correlative workflows, as well as to the time-lapse characterisation of metal microstructures during various failure mechanisms, including ductile fracture of steel and the corrosion of aluminium and magnesium alloys. Correlative tomography is already providing significant insights into materials behaviour, linking together information from different instruments across different scales. Multiscale and multifaceted work flows will become increasingly routine, providing a feed into multiscale materials models as well as illuminating other areas, particularly where hierarchical structures are of interest.

  8. Formation mechanisms of metal colloids

    Science.gov (United States)

    Halaciuga, Ionel

    Highly dispersed uniform metallic particles are widely used in various areas of technology and medicine and are likely to be incorporated into many other applications in the future. It is commonly accepted that size, shape and composition of the particles represent critical factors in most applications. Thus, understanding the mechanisms of formation of metal particles and the ways to control the physical (e.g. shape, size) and chemical (e.g. composition) properties is of great importance. In the current research, the formation of uniform silver spheres is investigated experimentally. The parameters that influence the formation of silver particles when concentrated iso-ascorbic acid and silver-polyamine complex solutions are rapidly mixed were studied in the absence of dispersants. We found that by varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, the size of the resulting silver particles can be varied in a wide range (0.08--1.5 microm). The silver particles were formed by aggregation of nanosize subunits as substantiated by both electron microscopy and X-ray diffraction techniques and by the vivid rapid color changes during the chemical precipitation process. From the practical standpoint, the goal of this research was to prepare well dispersed spherical silver particles having a relatively smooth surface and a diameter of about 1 microm to satisfy the demands of the current electronic materials market. A two stage particle growth model previously developed to explain the narrow size distribution occurring in synthesis of gold spheres was applied to the present experimental system, and the parameters that control the size distribution characteristics were identified. The kinetic parameter required to match the final particle size was found to be in agreement with the one used previously in modeling formation of gold spheres, suggesting that similar kinetics governs the

  9. Synthesis of new metal-matrix Al-Al2O3-graphene composite materials

    Science.gov (United States)

    Elshina, L. A.; Muradymov, R. V.; Kvashnichev, A. G.; Vichuzhanin, D. I.; Molchanova, N. G.; Pankratov, A. A.

    2017-08-01

    The mechanism of formation of ceramic microparticles (alumina) and graphene in a molten aluminum matrix is studied as a function of the morphology and type of precursor particles, the temperature, and the gas atmosphere. The influence of the composition of an aluminum composite material (as a function of the concentration and size of reinforcing particles) on its mechanical and corrosion properties, melting temperature, and thermal conductivity is investigated. Hybrid metallic Al-Al2O3-graphene composite materials with up to 10 wt % alumina microparticles and 0.2 wt % graphene films, which are uniformly distributed over the metal volume and are fully wetted with aluminum, are synthesized during the chemical interaction of a salt solution containing yttria and boron carbide with molten aluminum in air. Simultaneous introduction of alumina and graphene into an aluminum matrix makes it possible to produce hybrid metallic composite materials having a unique combination of the following properties: their thermal conductivity is higher than that of aluminum, their hardness and strength are increased by two times, their relative elongation during tension is increased threefold, and their corrosion resistance is higher than that of initial aluminum by a factor of 2.5-4. We are the first to synthesize an in situ hybrid Al-Al2O3-graphene composite material having a unique combination of some characteristics. This material can be recommended as a promising material for a wide circle of electrical applications, including ultrathin wires, and as a structural material for the aerospace industry, the car industry, and the shipbuilding industry.

  10. Spintronic materials and devices based on antiferromagnetic metals

    OpenAIRE

    Wang, Y.Y.; Song, C.; Zhang, J.Y.; Pan, F.

    2017-01-01

    In this paper, we review our recent experimental developments on antiferromagnet (AFM) spintronics mainly comprising Mn-based noncollinear AFM metals. IrMn-based tunnel junctions and Hall devices have been investigated to explore the manipulation of AFM moments by magnetic fields, ferromagnetic materials and electric fields. Room-temperature tunneling anisotropic magnetoresistance based on IrMn as well as FeMn has been successfully achieved, and electrical control of the AFM exchange spring i...

  11. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel

    2016-01-01

    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  12. Three-Dimensional (3D Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Susanna Fafenrot

    2017-10-01

    Full Text Available Fused deposition modeling (FDM is a three-dimensional (3D printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid (PLA printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.

  13. The ion implantation of metals and engineering materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1978-01-01

    An entirely new method of metal finishing, by the process of ion implantation, is described. Introduced at first for semiconductor device applications, this method has now been demonstrated to produce major and long-lasting improvements in the durability of material surfaces, as regards both wear and corrosion. The process is distinct from that of ion plating, and it is not a coating technique. After a general description of ion implantation examples are given of its effects on wear behaviour (mostly in steels and cemented carbides) and on corrosion, in a variety of metals and alloys. Its potential for producing decorative finishes is mentioned briefly. The equipment necessary for carrying out ion implantation for engineering applications has now reached the prototype stage, and manufacture of plant for treating a variety of tools and components is about to commence. These developments are outlined. (author)

  14. Research on utilization of isotopes for metallic materials

    International Nuclear Information System (INIS)

    Maebashi, Yoichi; Kagaya, Yutaka; Kametani, Hiroshi

    1983-01-01

    As the research on the utilization of unsealed radioisotopes for metallic materials, among the refining of nonferrous metals already carried out in the National Research Institute for Metals, the refining reaction of copper sulfide was taken up. In this refining reaction, it is important to know the oxidation behavior of sulfur in copper sulfide for improving the refining method. However in the oxidation of sulfur, the kinds of the oxides formed are many, and when copper and iron ions coexist as in this case, their separation and analysis are very difficult. The utilization of radioisotopes is required for identifying the oxidation products and the oxides in melt, and for identifying various compound ions. The solvent for thin layer chromatography was selected, and the effects exerted by the moving rate, concentration and coexisting elements of various sulfur acid ions on the thin layer of silica gel were clarified. In the suspension reaction of copper sulfide without a power source, it was elucidated that S 2 O 3 2- arose consistently from the initial stage of reaction, and the reaction equation was forecast. The melting state of sulfur in anode oxidation reaction was studied. (Kako, I.)

  15. Certification of a nickel metal reference material for neutron dosimetry (EC Nuclear Reference Material 521)

    International Nuclear Information System (INIS)

    Pauwels, J.

    1988-01-01

    Nickel metal, of 99.99 % nominal purity and natural isotopic composition, in the form of 0.1 mm thick foil and 0.5 mm diameter wire has been certified for its cobalt mass fraction. The certified value of cobalt (<0.1μg.g-1) is based on 38 results obtained by neutron activation analysis, emission spectrometry with inductively coupled plasma excitation and atomic absorption spectrometry, whereas the isotopic composition of the nickel was verified by thermal ionization mass spectrometry. The material is intended to be used as a reference material in neutron metrology

  16. Certification of an aluminium metal reference material for neutron dosimetry (EC nuclear reference material 523)

    International Nuclear Information System (INIS)

    Pauwels, J.; Ingelbrecht, C.

    1990-01-01

    Aluminium metal of > 99.999% nominal purity in the form of 0.1 mm and 1 mm thick foil and of 1 mm diameter wire has been certified for its sodium mass fraction. The certified value of the sodium mass fraction ( -1 ) is based on 21 results from three laboratories using two different methods, which are neutron activation analysis and atomic absorption spectrometry. The overall purity was estimated using spark source mass spectrometry and neutron activation analysis. The material is intended to be used as a reference material in neutron metrology

  17. Application of Iron Oxide Nano materials for the Removal of Heavy Metals

    International Nuclear Information System (INIS)

    Dave, P.N.; Chopda, L.V.

    2014-01-01

    In the 21st century water polluted by heavy metal is one of the environment problems. Various methods for removal of the heavy metal ions from the water have extensively been studied. Application of iron oxide nana particles based nano materials for removal of heavy metals is well-known adsorbents for remediation of water. Due to its important physiochemical property, inexpensive method and easy regeneration in the presence of external magnetic field make them more attractive toward water purification. Surface modification strategy of iron oxide nanoparticles is also used for the remediation of water increases the efficiency of iron oxide for the removal of the heavy metal ions from the aqueous system.

  18. Composite metal-ceramic material for high temperature energy conversion applications

    NARCIS (Netherlands)

    Wolff, L.R.

    1988-01-01

    At Eindhoven Universitu of technology a composite metal-ceramic material is being developed. It will serve as a protective confinement for a combustion heated Thermionic Energy Converter (TEC). This protective confinement of 'hot shell' consists of a composite W-TiN-SiC layer structure. The outer

  19. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties

    Science.gov (United States)

    Sheng, Yinying; Hua, Youlu; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C.; Li, Wei

    2018-01-01

    The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted. PMID:29364844

  20. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties

    Directory of Open Access Journals (Sweden)

    Yinying Sheng

    2018-01-01

    Full Text Available The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others. The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted.

  1. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties.

    Science.gov (United States)

    Sheng, Yinying; Hua, Youlu; Wang, Xiaojian; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C; Li, Wei

    2018-01-24

    The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted.

  2. Slovenian System for Protecting Against Radioactive Material in Scrap Metal Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A.; Cesarek, J.; Vokal Nemec, B., E-mail: andrej.stritar@gov.si [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2011-07-15

    The Slovenian experience shows that the majority of detected orphan sources are associated with imports of scrap metal to Slovenia and transits of that material through Slovenia. Such orphan sources originate from past industrial activities and weak regulatory control in the countries of origin. In order to minimise the number of sources outside regulatory control several regulatory and law enforcement measures have been implemented. To prevent illicit trafficking across the border the 'First line of defence' - customs and police - are equipped with radiation detection devices. Since 2002, the Slovenian Nuclear Safety Administration (SNSA) has provided a 24-hour on-duty officer, who gives advice in case of the discovery of an orphan source. The majority of scrap metal collectors and re-cyclers are equipped with portal monitors and/or hand-held radiation detection equipment. Generally, good cooperation has been established between different organizations within Slovenia, with neighbouring countries and with some international organizations. To regulate the scrap metal activities, a new Decree on checking the radioactivity of shipments of metal scrap has been in force since 1 January 2008. This decree requires that every importer has to present a certificate of radiation measurement before any shipment of scrap metal is brought into Slovenia. Such measurements can be performed only by certified organizations. These organizations can obtain certification from the SNSA providing that they have the prescribed measuring devices, adequate training and procedures, and that their capabilities have been checked by a technical support organization. The experience after one year of application of the decree is positive. Awareness, including the adequacy of response, has increased. The paper discusses the general scheme for protection against illicit radioactive material in scrap metal shipments and the Slovenian experience in the last decade. (author)

  3. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  4. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material

    Directory of Open Access Journals (Sweden)

    Faridullah

    Full Text Available Abstract Contaminants like nitrate (NO3, phosphorus (P and heavy metals in water are often associated with agricultural activities. Various soil and water remediation techniques have been employed to reduce the risk associated with these contaminants. A study was conducted to examine the extent of leaching of heavy metals (Cd, Ni, Pb and Cr, NO3 and P. For this purpose sandy and silt loam soils were amended with different waste materials, namely wood ash, solid waste ash, vegetable waste, charcoal, and sawdust. The soils were saturated with wastewater. Irrespective of the waste applied, the pH and EC of the amended soils were found to be greater than the control. Charcoal, sawdust and wood ash significantly decreased heavy metals, nitrate and phosphorus concentrations in the leachate. Treatments were more efficient for reducing Ni than other heavy metals concentrations. Waste amendments differed for heavy metals during the process of leaching. Heavy metals in the soil were progressively depleted due to the successive leaching stages. This research suggests that waste material may act as an adsorbent for the above contaminants and can reduce their leachability in soils.

  5. Fabrication techniques of metal liner used for pressure vessels made by composite material

    International Nuclear Information System (INIS)

    Takahashi, W.K.; Al-Qureshi, H.A.

    1982-01-01

    Different viable techniques for the manufacturing of metal liner used for pressure vessels are presented. The aim of these metal liner is to avoid the fluid leakage from the pressurized vessel and to serve as a mandreal to be wound by composite material. The studied techniques are described and the practical results are illustrated. Finally a comparative study of the manufacturing techniques is made in order to define the process that furnishes the metal liner with the best characteristics. The advantages offered by these type of pressure vessels when compared with the conventional metallic vessels, are also presented. (Author) [pt

  6. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    International Nuclear Information System (INIS)

    1994-01-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned

  7. Technical committee meeting on material-coolant interactions and material movement and relocation in liquid metal fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    The Technical Committee Meeting on Material-Coolant Interactions and Material Movement and Relocation in Liquid Metal Fast Reactors was sponsored by the International Working Group on Fast Reactors (IWGFR), International Atomic Energy Agency (IAEA) and hosted by PNC, on behalf of the Japanese government. A broad range of technical subjects was discussed in the TCM, covering entire aspects of material motion and interactions relevant to the safety of LMFRs. Recent achievement and current status in research and development in this area were presented including European out-of-pile test of molten material movement and relocation; molten material-sodium interaction; molten fuel-coolant interaction; core disruptive accidents; sodium boiling; post accident material relocation, heat removal and relevant experiments already performed or planned.

  8. Determination of the long-term release of metal(loid)s from construction materials using DGTs.

    Science.gov (United States)

    Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A

    2013-09-15

    Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    Science.gov (United States)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  10. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  11. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  12. Present and future trends of laser materials processing in Japan

    Science.gov (United States)

    Matsunawa, Akira

    1991-10-01

    Lasers quickly penetrated into Japanese industries in the mid-80s. The paper reviews the present situation of industrial lasers and their applications in Japanese industries for materials removal, joining, and some surface modification technologies as well as their economical evaluation compared with competitive technologies. Laser cutting of metallic and nonmetallic thin sheets is widely prevalent even in small scale industries as a flexible manufacturing tool. As for the laser welding is concerned, industrial applications are rather limited in mass production lines. This mainly comes from the fact that the present laser technologies have not employed the adaptive control because of the lack of sensors, monitoring, and control systems which can tolerate the high-precision and high-speed processing. In spite of this situation, laser welding is rapidly increasing in recent years in industries such as automotive, machinery, electric/electronic, steel, heavy industries, etc. Laser surface modification technologies have attracted significant interest from industrial people, but actual application is very limited today. However, the number of R&D papers is increasing year by year. The paper also reviews these new technology trends in Japan.

  13. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    International Nuclear Information System (INIS)

    McHargue, C.J.

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys

  14. Metals and Ceramics Division Materials Science Program. Annual progress report for period ending June 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    McHargue, C.J. (comp.)

    1984-11-01

    This report summarizes the activities of the Materials Sciences Program in the Metals and Ceramics Division for the period January 1, 1983, to June 30, 1984. These activities constitute about one-fourth of the research and development conducted by the division. The emphasis of the program can be described as the scientific design of materials. The efforts are directed toward three classes of materials: high-temperature metallic alloys based on intermetallic compounds, structural ceramics, and radiation-resistant alloys.

  15. Fatigue behaviour of metallic materials; Ermuedungsverhalten metallischer Werkstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.J. [ed.

    1998-12-31

    The 16 contributions selected for this book, each from experts in their fields, are intended to give a broad survey of the phenomenon and mechanisms of fatigue in metallic materials, addressing important aspects and showing the cross-disciplinarity of scientific research required to obtain a complete picture. Emphasis has been placed on the matter being discussed in a way that is easy to digest as well as complete in information, which was possible only by deliberate restriction to the essential knowledge available today, leaving aside what recent scientific research may have revealed, or whatever interesting specific aspects there may be. The known mechanisms of fatigue and their effects in metallic materials as well as the conclusions to be drawn from the engineering angle with regard to the applicability of the materials and systems design are the points of main interest of the book, which offers readers to develop a sound, general understanding of the processes involved and a feeling for the effects induced in the materiuals by cyclic stress. (orig./CB) [Deutsch] In diesem 16 Fachbeitraege enthaltenden Buch wird versucht, einen ueberschau- und erfassbaren Ueberblick ueber die Ermuedung metallischer Werkstoffe unter Beruecksichtigung der wichtigen Teilaspekte und Wissenschaftsgebiete darzustellen. Die Betonung wird bewusst auf Verstaendlichkeit und Uebersichtlichkeit gelegt, was nur durch Einschraenkung der Breite der Behandlung und durch Verzicht auf neueste wissenschaftliche Details moeglich ist. Im Vordergrund stehen die bei der Ermuedung ablaufenden werkstoffkundlichen Vorgaenge und die sich daraus ergebenden Konsequenzen fuer den Werkstoffeinsatz und die -auslegung. Primaer soll ein solides Grundverstaendnis fuer die moeglichen Prozesse vermittelt werden, aus dem sich ein Gefuehl fuer die Vorgaenge im Werkstoff bei zyklischer Beanspruchung entwickeln kann. (orig.)

  16. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael

    2016-01-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer...... as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...... and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an opticallyfabricated and actuated microtool. As proof of concept, we demonstrate loading...

  17. Development of aircraft brake materials. [evaluation of metal and ceramic materials in sliding tests simulation of aircraft braking

    Science.gov (United States)

    Ho, T. L.; Peterson, M. B.

    1974-01-01

    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).

  18. Design optimization of cementless metal-backed cup prostheses using the concept of functionally graded material

    Energy Technology Data Exchange (ETDEWEB)

    Hedia, H S; El-Midany, T T; Shabara, M A N; Fouda, N [Production Engineering and M/C Design Department, Faculty of Engineering, Mansoura University, Mansoura (Egypt)

    2006-09-15

    Metal backing has been widely used in acetabular cup design. A stiff backing for a polyethylene liner was initially believed to be mechanically favourable. Yet, recent studies of the load transfer around acetabular cups have shown that a stiff backing causes two problems. It generates higher stress peaks around the acetabular rim than those caused by full polyethylene cups and reduces the stresses transferred to the dome of the acetabulum causing stress shielding. The aim of this study is to overcome these two problems by improving the design of cementless metal-backed acetabular cups using the two-dimensional functionally graded material (FGM) concept through finite-element analysis and optimization techniques. It is found that the optimal 2D FGM model must have three bioactive materials of hydroxyapatite, Bioglass and collagen. This optimal material reduces the stress shielding at the dome of the acetabulum by 40% and 37% compared with stainless steel and titanium metal backing shells, respectively. In addition, using the 2D FGM model reduces the maximum interface shear stress in the bone by 31% compared to the titanium metal backing shell.

  19. Contribution to the study of nuclear fuel materials with a metallic uranium base

    International Nuclear Information System (INIS)

    Englander, M.

    1957-11-01

    In a power reactor destined to supply industrially recoverable thermal energy, the most economical source of heat still consists of natural metallic uranium. However, the nuclear fuel material, most often employed in the form of rods of 20 to 40 mm diameter, is subjected to a series of stresses which lead to irreversible distortions usually incompatible with the substructure of the reactor. As a result the fuel material must possess at the outset a certain number of qualities which must be determined. Investigations have therefore been carried out, first on the technological characters peculiar to each of the three allotropic phases of pure uranium metal, and on their interactions on the stabilisation of the material which consists of either cast uranium or uranium pile-treated in the γ phase. (author) [fr

  20. Structural conditions of maximal plasticity of two-phase metal materials

    International Nuclear Information System (INIS)

    Movchan, B.A.

    1975-01-01

    Analysis is given of experimental values of the strength and plasticity of iron- and tungsten-based two-phase materials with the regulated amount of the second phase and the grain size. Specimens in the form of a 120 mm x 200 mm sheet with a thickness of 0.8-1.2 mm are prepared by means of the electron beam evaporation technique and subsequent condensation of the materials on a preheated support. The variable content of the second phase along the sheet in the range 0.5 volume per cent and more than a 10-fold change in the grain size of the metallic matrix are attained by a simultaneous evaporation of pure metal (99.98 per cent) and nonlmetallic material-niobium carbide or zirconium dioxide ZrO 2 -from two separate sources. The content of arbitrarily distributed spherical particles of the second phase corresponding to a maximum of the plasticity depends only on the structural parameter - the d/D ratio. The absolute falue of the plasticity and its dependence on the temperature is a complex function of many variables - mechanical properties of particles and the matrix, peculiarities of interphase interaction on the boundary particle - matrix, the size of particles, the rate of plastic deformation and relaxation processes