WorldWideScience

Sample records for nonmaximally entangled state

  1. Faithful remote state preparation using finite classical bits and a nonmaximally entangled state

    International Nuclear Information System (INIS)

    Ye Mingyong; Zhang Yongsheng; Guo Guangcan

    2004-01-01

    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state

  2. Quantum dialogue using non-maximally entangled states based on entanglement swapping

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan

    2007-01-01

    We present a secure quantum dialogue protocol using non-maximally entangled two-particle states via entanglement swapping at first, and then discuss the requirements for a real quantum dialogue. Within the present version two authorized users can exchange their faithful secret messages securely and simultaneously based on the method of entanglement purification

  3. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  4. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  5. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    We present two schemes for transforming bipartite non-maximally entangled states into a W state in cavity QED system, by using highly detuned interactions and the resonant interactions between two-level atoms and a single-mode cavity field. A tri-atom W state can be generated by adjusting the interaction times between ...

  6. Teleportation of an unknown bipartite state via non-maximally entangled two-particle state

    Institute of Scientific and Technical Information of China (English)

    Cao Hai-Jing; Guo Yan-Qing; Song He-Shan

    2006-01-01

    In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates G-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.

  7. Entanglement sharing via qudit channels: Nonmaximally entangled states may be necessary for one-shot optimal singlet fraction and negativity

    Science.gov (United States)

    Pal, Rajarshi; Bandyopadhyay, Somshubhro

    2018-03-01

    We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.

  8. Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair'

    International Nuclear Information System (INIS)

    Qin Sujuan; Gao Fei; Wen Qiaoyan; Guo Fenzhuo

    2010-01-01

    Three protocols of quantum cryptography with a nonmaximally entangled qubit pair [Phys. Rev. A 80, 022323 (2009)] were recently proposed by Shimizu, Tamaki, and Fukasaka. The security of these protocols is based on the quantum-mechanical constraint for a state transformation between nonmaximally entangled states. However, we find that the second protocol is vulnerable under the correlation-elicitation attack. An eavesdropper can obtain the encoded bit M although she has no knowledge about the random bit R.

  9. Probabilistic Controlled Teleportation of a Triplet W State with Combined Channel of Non-Maximally Entangled Einstein–Podolsky–Rosen and Greenberger–Horne–Zeilinger States

    International Nuclear Information System (INIS)

    Jian, Dong; Jian-Fu, Teng

    2009-01-01

    A scheme for probabilistic controlled teleportation of a triplet W state using combined non-maximally entangled channel of two Einstein–Podolsky–Rosen (EPR) states and one Greenberger–Horne–Zeilinger (GHZ) state is proposed. In this scheme, an (m + 2)-qubit GHZ state serves not only as the control parameter but also as the quantum channel. The m control qubits are shared by m supervisors. With the aid of local operations and individual measurements, including Bell-state measurement, Von Neumann measurement, and mutual classical communication etc., Bob can faithfully reconstruct the original state by performing relevant unitary transformations. The total probability of successful teleportation is only dependent on channel coefficients of EPR states and GHZ, independent of the number of supervisor m. This protocol can also be extended to probabilistic controlled teleportation of an arbitrary N-qubit state using combined non-maximally entangled channel of N – 1 EPR states and one (m + 2)-qubit GHZ. (general)

  10. The entanglement purification for entangled multi-particle states

    CERN Document Server

    Ye, Liu; Guo Guang Can

    2002-01-01

    We present two purification schemes for nonmaximally entangled states. We first show that two parties, Alice and Bob, start with shared less-entangled three-particle states to probabilistically produce a three-particle Greenberger-Horne-Zeilinger state by Bell state measurements and positive operator valued measure (POVM) or a unitary transformation. Then, by a straightforward generalization of the schemes, the purification of a multi-particle entangled state can be realized. 25 Refs. --- 35 --- AN

  11. Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair

    Institute of Scientific and Technical Information of China (English)

    戴宏毅; 李承祖; 陈平行

    2003-01-01

    We present a scheme to probabilistically teleport an arbitrary and unknown three-particle state via a two-particle non-maximally entangled state and a four-particle non-maximally entangled state as the quantum channel. With the help of Bell-state measurements, an arbitrary three-particle state can be perfectly teleported if a receiver introduces a collective unitary transformation. All kinds of unitary transformations are given in greater detail. This scheme can be generalized to the teleportation of an arbitrary and unknown multiparticle state.

  12. The fall of the black hole firewall: natural nonmaximal entanglement for the Page curve

    Science.gov (United States)

    Hotta, Masahiro; Sugita, Ayumu

    2015-12-01

    The black hole firewall conjecture is based on the Page curve hypothesis, which claims that entanglement between a black hole and its Hawking radiation is almost maximum. Adopting canonical typicality for nondegenerate systems with nonvanishing Hamiltonians, we show the entanglement becomes nonmaximal, and energetic singularities (firewalls) do not emerge for general systems. An evaporating old black hole must evolve in Gibbs states with exponentially small error probability after the Page time as long as the states are typical. This means that the ordinarily used microcanonical states are far from typical. The heat capacity computed from the Gibbs states should be nonnegative in general. However, the black hole heat capacity is actually negative due to the gravitational instability. Consequently the states are not typical until the last burst. This requires inevitable modification of the Page curve, which is based on the typicality argument. For static thermal pure states of a large AdS black hole and its Hawking radiation, the entanglement entropy equals the thermal entropy of the smaller system.

  13. Probabilistic Teleportation of an Arbitrary n-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    XI Yong-Jun; FANG Jian-Xing; ZHU Shi-Qun; GUO Zhan-Ying

    2005-01-01

    A scheme for teleporting an arbitrary n-particle entangled state via n pairs of non-maximally entangled states is proposed. The probability of successful teleportation is determined only by the smaller coefficients of the partially entangled pairs. The method is very easy to be realized.

  14. Scheme for Entanglement Concentration of Unknown Multiparticle Greenberger-Horne-Zeilinger or W Class States

    International Nuclear Information System (INIS)

    Song Wei

    2007-01-01

    We present two schemes for concentrating unknown nonmaximally entangled Greenberger-Horme-Zeilinger (GHZ) or W class states. The first scheme for concentrating the nonmaximally entangled GHZ state is based on linear optical devices. The second scheme for concentrating the W class states can be applied to a wide variety of atomic state. Both of our schemes are not postselection ones and are within the current technologies.

  15. Teleportation of a three-particle entangled W state

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We have investigated the problem of teleporting a three-particle entangled W state and we propose a scheme based on entanglement swapping to complete the teleportation. We also put forward a scheme for the teleportation of a general W state by using nonmaximally entangled quantum channels. The probability of success of the latter scheme is obtained.

  16. Probabilistic Teleportation of a Four-Particle Entangled State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao; DONG Zheng-Chao

    2005-01-01

    A Scheme for teleporting an unknown four-particle entangled state is proposed via entangled swapping. In this scheme, four pairs of entangled particles are used as quantum channel. It is shown that, if the four pairs of particles are nonmaximally entangled, the teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations.

  17. Non-Maximal Tripartite Entanglement Degradation of Dirac and Scalar Fields in Non-Inertial Frames

    International Nuclear Information System (INIS)

    Khan, Salman; Khan, Niaz Ali; Khan, M.K.

    2014-01-01

    The π-tangle is used to study the behavior of entanglement of a nonmaximal tripartite state of both Dirac and scalar fields in accelerated frame. For Dirac fields, the degree of degradation with acceleration of both one-tangle of accelerated observer and π-tangle, for the same initial entanglement, is different by just interchanging the values of probability amplitudes. A fraction of both one-tangles and the π-tangle always survives for any choice of acceleration and the degree of initial entanglement. For scalar field, the one-tangle of accelerated observer depends on the choice of values of probability amplitudes and it vanishes in the range of infinite acceleration, whereas for π-tangle this is not always true. The dependence of π-tangle on probability amplitudes varies with acceleration. In the lower range of acceleration, its behavior changes by switching between the values of probability amplitudes and for larger values of acceleration this dependence on probability amplitudes vanishes. Interestingly, unlike bipartite entanglement, the degradation of π-tangle against acceleration in the case of scalar fields is slower than for Dirac fields. (general)

  18. Probabilistic Teleportation of a Four-Particle Entangled W State

    Institute of Scientific and Technical Information of China (English)

    ZHAN You-Bang; FU Hao

    2005-01-01

    In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.

  19. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    Science.gov (United States)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  20. Deterministic dense coding with partially entangled states

    Science.gov (United States)

    Mozes, Shay; Oppenheim, Jonathan; Reznik, Benni

    2005-01-01

    The utilization of a d -level partially entangled state, shared by two parties wishing to communicate classical information without errors over a noiseless quantum channel, is discussed. We analytically construct deterministic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the partially entangled state shared by the two parties. Surprisingly, for d>2 it is possible to have deterministic dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by a single particle is between d and 2d . In general, we numerically find that the maximal alphabet size is any integer in the range [d,d2] with the possible exception of d2-1 . We also find that states with less entanglement can have a greater deterministic communication capacity than other more entangled states.

  1. Local copying of orthogonal entangled quantum states

    International Nuclear Information System (INIS)

    Anselmi, Fabio; Chefles, Anthony; Plenio, Martin B

    2004-01-01

    In classical information theory one can, in principle, produce a perfect copy of any input state. In quantum information theory, the no cloning theorem prohibits exact copying of non-orthogonal states. Moreover, if we wish to copy multiparticle entangled states and can perform only local operations and classical communication (LOCC), then further restrictions apply. We investigate the problem of copying orthogonal, entangled quantum states with an entangled blank state under the restriction to LOCC. Throughout, the subsystems have finite dimension D. We show that if all of the states to be copied are non-maximally entangled, then novel LOCC copying procedures based on entanglement catalysis are possible. We then study in detail the LOCC copying problem where both the blank state and at least one of the states to be copied are maximally entangled. For this to be possible, we find that all the states to be copied must be maximally entangled. We obtain a necessary and sufficient condition for LOCC copying under these conditions. For two orthogonal, maximally entangled states, we provide the general solution to this condition. We use it to show that for D = 2, 3, any pair of orthogonal, maximally entangled states can be locally copied using a maximally entangled blank state. However, we also show that for any D which is not prime, one can construct pairs of such states for which this is impossible

  2. Schemes for Probabilistic Teleportation of an Unknown Three-Particle Three-Level Entangled State

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels.It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, if a receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.

  3. Generation, concentration and purification for ionic entangled states

    International Nuclear Information System (INIS)

    Yang Ming; Cao Zhuoliang

    2007-01-01

    In cavity QED, the atoms would be sent through the sequential arrays of cavities for the generation of multi-cavity entanglement, or several atoms would be sent into the same cavity mode one bye one for the generation of multi-atom entanglement. The complexity of these processes will impose limitations on the experimental feasibility of it. So, following our previous publication [International Journal Of Quantum Information 2, 231 (2004)] we will propose an alternative scheme for the preparation of multi-cavity W state via cavity QED, which uses the geometrical method to do what other authors have proposed previously using sequential arrays of cavities. Due to the impossibility that one quantum system can be isolated from the environment absolutely, the entanglement of the entangled objects will decrease exponentially with the propagating distance of the objects, and the practically available quantum entangled states are all non-maximally entangled states or the more general case--mixed states. Following our previous publications [Phys. Rev. A 72, 042307 (2005), ibid. 71, 012308 (2005)], we will propose an entanglement generation, concentration and purification scheme for atomic or ionic system, which is mainly based on Cavity QED and linear optical elements. This purification process avoids the controlled-NOT (C-NOT) operations needed in the original purification protocol, which simplifies the whole purification process

  4. An operator description of entanglement matching in quantum teleportation

    International Nuclear Information System (INIS)

    Kurucz, Z; Koniorczyk, M; Adam, P; Janszky, J

    2003-01-01

    The antilinear operator representation of bipartite pure states of the relative state formulation of quantum mechanics is applied to describe quantum teleportation schemes utilizing an arbitrary pure state as the entangled resource. Bennett type teleportation schemes with nonmaximally entangled pure states are characterized and the notion of 'entanglement matching' is introduced in general. Examples, including a scheme based on coherent-state superposition states of the electromagnetic field, are provided

  5. Probabilistic teleportation via multi-parameter measurements and partially entangled states

    Science.gov (United States)

    Wei, Jiahua; Shi, Lei; Han, Chen; Xu, Zhiyan; Zhu, Yu; Wang, Gang; Wu, Hao

    2018-04-01

    In this paper, a novel scheme for probabilistic teleportation is presented with multi-parameter measurements via a non-maximally entangled state. This is in contrast to the fact that the measurement kinds for quantum teleportation are usually particular in most previous schemes. The detail implementation producers for our proposal are given by using of appropriate local unitary operations. Moreover, the total success probability and classical information of this proposal are calculated. It is demonstrated that the success probability and classical cost would be changed with the multi-measurement parameters and the entanglement factor of quantum channel. Our scheme could enlarge the research range of probabilistic teleportation.

  6. Teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    陈立冰

    2002-01-01

    We propose two schemes for teleporting an arbitrary three-particle state. In the first scheme, a two-particle state and a three-particle entangled state (both non-maximally entangled states) are used as quantum channels, while in the second scheme, three non-maximally entangled particle pairs are employed as quantum channels. We show that teleportation can be successfully realized with certain probability if a receiver adopts some appropriate unitary transformations. Their success probabilities and the classical communication costs are different.

  7. Hard-type nonlocality proof for two maximally entangled particles

    International Nuclear Information System (INIS)

    Kalamidas, D.

    2005-01-01

    Full text: We present, for the first time, a Hardy-type proof of nonlocality for two maximally entangled particles in a four-dimensional total Hilbert space. Furthermore, the violation of local realistic predictions occurs for 25 % of trials, exceeding the 9 % maximum obtained by Hardy for nonmaximally entangled states. (author)

  8. Overcoming a limitation of deterministic dense coding with a nonmaximally entangled initial state

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.

    2010-01-01

    Under two-party deterministic dense coding, Alice communicates (perfectly distinguishable) messages to Bob via a qudit from a pair of entangled qudits in pure state |Ψ>. If |Ψ> represents a maximally entangled state (i.e., each of its Schmidt coefficients is √(1/d)), then Alice can convey to Bob one of d 2 distinct messages. If |Ψ> is not maximally entangled, then Ji et al. [Phys. Rev. A 73, 034307 (2006)] have shown that under the original deterministic dense-coding protocol, in which messages are encoded by unitary operations performed on Alice's qudit, it is impossible to encode d 2 -1 messages. Encoding d 2 -2 messages is possible; see, for example, the numerical studies by Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. Answering a question raised by Wu et al. [Phys. Rev. A 73, 042311 (2006)], we show that when |Ψ> is not maximally entangled, the communications limit of d 2 -2 messages persists even when the requirement that Alice encode by unitary operations on her qudit is weakened to allow encoding by more general quantum operators. We then describe a dense-coding protocol that can overcome this limitation with high probability, assuming the largest Schmidt coefficient of |Ψ> is sufficiently close to √(1/d). In this protocol, d 2 -2 of the messages are encoded via unitary operations on Alice's qudit, and the final (d 2 -1)-th message is encoded via a non-trace-preserving quantum operation.

  9. Transformation of bipartite non-maximally entangled states into a ...

    Indian Academy of Sciences (India)

    Ministry of Education, School of Physics & Material Science, Anhui University, Hefei ... MS received 9 October 2014; revised 10 January 2015; accepted 22 April 2015 ... in some sense, be regarded as an entanglement concentration process.

  10. Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel

    International Nuclear Information System (INIS)

    Zhou, Ping; Li, Xi-Han; Deng, Fu-Guo; Zhou, Hong-Yu

    2007-01-01

    We present a general scheme for multiparty-controlled teleportation of an arbitrary m-qudit (d-dimensional quantum system) state by using non-maximally entangled states as the quantum channel. The sender performs m generalized Bell-state measurements on her 2m particles, the controllers take some single-particle measurements with the measuring basis X d and the receiver only needs to introduce one auxiliary two-level particle to extract quantum information probabilistically with the fidelity unit if he cooperates with all the controllers. All the parties can use some decoy photons to set up their quantum channel securely, which will forbid a dishonest party to eavesdrop freely. This scheme is optimal as the probability that the receiver obtains the originally unknown m-qudit state equals the entanglement of the quantum channel

  11. Multiparty Quantum Secret Sharing via Introducing Auxiliary Particles Using a Pure Entangled State

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan; Huang Xiaoli

    2008-01-01

    We propose a new multiparty quantum secret sharing protocol via introducing auxiliary particles using a non-maximally entangled (pure) two-particle state without a Bell measurement. The communication parties utilize decoy particles to check eavesdropping. After ensuring the security of the quantum channel, the sender encodes the secret message and transmits it to the receiver by using controlled-NOT operation and von Neumann measurement. If and only if all the agents agree to collaborate, they can read out the secret message

  12. Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits

    Institute of Scientific and Technical Information of China (English)

    GUO Zhan-Ying; FANG Jian-Xing; ZHU Shi-Qun; QIAN Xue-Min

    2006-01-01

    Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed.After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile,quantum circuits for realization of successful teleportation are also presented.

  13. Maximal Bell's inequality violation for non-maximal entanglement

    International Nuclear Information System (INIS)

    Kobayashi, M.; Khanna, F.; Mann, A.; Revzen, M.; Santana, A.

    2004-01-01

    Bell's inequality violation (BIQV) for correlations of polarization is studied for a product state of two two-mode squeezed vacuum (TMSV) states. The violation allowed is shown to attain its maximal limit for all values of the squeezing parameter, ζ. We show via an explicit example that a state whose entanglement is not maximal allow maximal BIQV. The Wigner function of the state is non-negative and the average value of either polarization is nil

  14. Entanglement percolation on a quantum internet with scale-free and clustering characters

    Energy Technology Data Exchange (ETDEWEB)

    Wu Liang; Zhu Shiqun [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

    2011-11-15

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  15. Entanglement percolation on a quantum internet with scale-free and clustering characters

    International Nuclear Information System (INIS)

    Wu Liang; Zhu Shiqun

    2011-01-01

    The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.

  16. Probabilistic teleportation of an arbitrary three-particle state

    Institute of Scientific and Technical Information of China (English)

    Lin Xiu; Li Hong-Cai

    2005-01-01

    A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.

  17. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding

    Science.gov (United States)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang

    2016-08-01

    An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

  18. Probabilistic Teleportation of an Arbitrary Two-Atom State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-Ming

    2007-01-01

    We propose a scheme for the teleportation of an arbitrary two-atom state by using two pairs of two-atom nonmaximally entangled states as the quantum channel in cavity QED.It is shown that no matter whether the arbitrary two-atom pure state to be teleported is entangled or not,our teleportation scheme can always be probabilistically realized.The success probability of teleportation is determined by the smaller coefficients of the two initially entangled atom pairs.

  19. Probabilistic Teleportation of an Arbitrary Two-particle State

    Institute of Scientific and Technical Information of China (English)

    顾永建; 郑亦庄; 郭光灿

    2001-01-01

    A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.

  20. Entanglement distribution in quantum networks

    International Nuclear Information System (INIS)

    Perseguers, Sebastien

    2010-01-01

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  1. Entanglement distribution in quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Perseguers, Sebastien

    2010-04-15

    This Thesis contributes to the theory of entanglement distribution in quantum networks, analyzing the generation of long-distance entanglement in particular. We consider that neighboring stations share one partially entangled pair of qubits, which emphasizes the difficulty of creating remote entanglement in realistic settings. The task is then to design local quantum operations at the stations, such that the entanglement present in the links of the whole network gets concentrated between few parties only, regardless of their spatial arrangement. First, we study quantum networks with a two-dimensional lattice structure, where quantum connections between the stations (nodes) are described by non-maximally entangled pure states (links). We show that the generation of a perfectly entangled pair of qubits over an arbitrarily long distance is possible if the initial entanglement of the links is larger than a threshold. This critical value highly depends on the geometry of the lattice, in particular on the connectivity of the nodes, and is related to a classical percolation problem. We then develop a genuine quantum strategy based on multipartite entanglement, improving both the threshold and the success probability of the generation of long-distance entanglement. Second, we consider a mixed-state definition of the connections of the quantum networks. This formalism is well-adapted for a more realistic description of systems in which noise (random errors) inevitably occurs. New techniques are required to create remote entanglement in this setting, and we show how to locally extract and globally process some error syndromes in order to create useful long-distance quantum correlations. Finally, we turn to networks that have a complex topology, which is the case for most real-world communication networks such as the Internet for instance. Besides many other characteristics, these systems have in common the small-world feature, stating that any two nodes are separated by a

  2. Multipartite entangled quantum states: Transformation, Entanglement monotones and Application

    Science.gov (United States)

    Cui, Wei

    Entanglement is one of the fundamental features of quantum information science. Though bipartite entanglement has been analyzed thoroughly in theory and shown to be an important resource in quantum computation and communication protocols, the theory of entanglement shared between more than two parties, which is called multipartite entanglement, is still not complete. Specifically, the classification of multipartite entanglement and the transformation property between different multipartite states by local operators and classical communications (LOCC) are two fundamental questions in the theory of multipartite entanglement. In this thesis, we present results related to the LOCC transformation between multipartite entangled states. Firstly, we investigate the bounds on the LOCC transformation probability between multipartite states, especially the GHZ class states. By analyzing the involvement of 3-tangle and other entanglement measures under weak two-outcome measurement, we derive explicit upper and lower bound on the transformation probability between GHZ class states. After that, we also analyze the transformation between N-party W type states, which is a special class of multipartite entangled states that has an explicit unique expression and a set of analytical entanglement monotones. We present a necessary and sufficient condition for a known upper bound of transformation probability between two N-party W type states to be achieved. We also further investigate a novel entanglement transformation protocol, the random distillation, which transforms multipartite entanglement into bipartite entanglement ii shared by a non-deterministic pair of parties. We find upper bounds for the random distillation protocol for general N-party W type states and find the condition for the upper bounds to be achieved. What is surprising is that the upper bounds correspond to entanglement monotones that can be increased by Separable Operators (SEP), which gives the first set of

  3. Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two different schemes are presented for quantum teleportation of an arbitrary two-qudit state using a non-maximally four-qudit cluster state as the quantum channel. The first scheme is based on the Bell-basis measurements and the re-ceiver may probabilistically reconstruct the original state by performing proper transformation on her particles and an auxiliary two-level particle; the second scheme is based on the generalized Bell-basis measurements and the probability of successfully teleporting the unknown state depends on those measurements which are adjusted by Alice. A comparison of the two schemes shows that the latter has a smaller probability than that of the former and contrary to the former, the channel information and auxiliary qubit are not necessary for the receiver in the latter.

  4. Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems

    International Nuclear Information System (INIS)

    He, Q. Y.; Drummond, P. D.; Reid, M. D.

    2011-01-01

    We develop criteria to detect three classes of nonlocality that have been shown by Wiseman et al. [Phys. Rev. Lett. 98, 140402 (2007)] to be nonequivalent: entanglement, EPR steering, and the failure of local hidden-variable theories. We use the approach of Cavalcanti et al. [Phys. Rev. Lett. 99, 210405 (2007)] for continuous variables to develop the nonlocality criteria for arbitrary spin observables defined on a discrete Hilbert space. The criteria thus apply to multisite qudits, i.e., systems of fixed dimension d, and take the form of inequalities. We find that the spin moment inequalities that test local hidden variables (Bell inequalities) can be violated for arbitrary d by optimized highly correlated nonmaximally entangled states provided the number of sites N is high enough. On the other hand, the spin inequalities for entanglement are violated and thus detect entanglement for such states, for arbitrary d and N, and with a violation that increases with N. We show that one of the moment entanglement inequalities can detect the entanglement of an arbitrary generalized multipartite Greenberger-Horne-Zeilinger state. Because they involve the natural observables for atomic systems, the relevant spin-operator correlations should be readily observable in trapped ultracold atomic gases and ion traps.

  5. Testing Hardy's nonlocality proof with genuine energy-time entanglement

    International Nuclear Information System (INIS)

    Vallone, Giuseppe; Gianani, Ilaria; Inostroza, Enrique B.; Saavedra, Carlos; Lima, Gustavo; Cabello, Adan; Mataloni, Paolo

    2011-01-01

    We show two experimental realizations of Hardy's ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by Cabello et al.[Phys. Rev. Lett. 102, 040401 (2009)]. Unlike previous energy-time Bell experiments, these tests require precisely tailored nonmaximally entangled states. One of them is equivalent to the two-setting and two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.

  6. Deterministic dense coding and entanglement entropy

    International Nuclear Information System (INIS)

    Bourdon, P. S.; Gerjuoy, E.; McDonald, J. P.; Williams, H. T.

    2008-01-01

    We present an analytical study of the standard two-party deterministic dense-coding protocol, under which communication of perfectly distinguishable messages takes place via a qudit from a pair of nonmaximally entangled qudits in a pure state |ψ>. Our results include the following: (i) We prove that it is possible for a state |ψ> with lower entanglement entropy to support the sending of a greater number of perfectly distinguishable messages than one with higher entanglement entropy, confirming a result suggested via numerical analysis in Mozes et al. [Phys. Rev. A 71, 012311 (2005)]. (ii) By explicit construction of families of local unitary operators, we verify, for dimensions d=3 and d=4, a conjecture of Mozes et al. about the minimum entanglement entropy that supports the sending of d+j messages, 2≤j≤d-1; moreover, we show that the j=2 and j=d-1 cases of the conjecture are valid in all dimensions. (iii) Given that |ψ> allows the sending of K messages and has √(λ 0 ) as its largest Schmidt coefficient, we show that the inequality λ 0 ≤d/K, established by Wu et al. [Phys. Rev. A 73, 042311 (2006)], must actually take the form λ 0 < d/K if K=d+1, while our constructions of local unitaries show that equality can be realized if K=d+2 or K=2d-1

  7. Teleportations of Mixed States and Multipartite Quantum States

    Institute of Scientific and Technical Information of China (English)

    YU Chang-Shui; WANG Ya-Hong; SONG He-Shan

    2007-01-01

    In this paper, we propose a protocol to deterministically teleport an unknown mixed state of qubit by utilizing a maximally bipartite entangled state of qubits as quantum channel. Ifa non-maximally entangled bipartite pure state is employed as quantum channel, the unknown mixed quantum state of qubit can be teleported with 1 - √1 - C2 probability, where C is the concurrence of the quantum channel. The protocol can also be generalized to teleport a mixed state of qudit or a multipartite mixed state. More important purpose is that, on the basis of the protocol, the teleportation of an arbitrary multipartite (pure or mixed) quantum state can be decomposed into the teleportation of each subsystem by employing separate entangled states as quantum channels. In the case of deterministic teleportation,Bob only needs to perform unitary transformations on his single particles in order to recover the initial teleported multipartite quantum state.

  8. Probabilistic Teleportation of the Three-Particle Entangled State viaEntanglement Swapping

    Institute of Scientific and Technical Information of China (English)

    路洪

    2001-01-01

    A scheme of teleportation of a three-particle entangled state via entanglement swapping is proposed. It is shown that if a two-particle entangled state and a three-particle entangled state (both are not maximum entangled states) are used as quantum channels, probabilistic teleportation of the three-particle entangled state can be realized.

  9. Device-independent entanglement certification of all entangled states

    OpenAIRE

    Bowles, Joseph; Šupić, Ivan; Cavalcanti, Daniel; Acín, Antonio

    2018-01-01

    We present a method to certify the entanglement of all bipartite entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device-independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of s...

  10. Mixtures of maximally entangled pure states

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    2016-09-15

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order to ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.

  11. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  12. Entanglement and quantum teleportation via decohered tripartite entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.

  13. Teleportation of N-particle entangled W state via entanglement swapping

    Institute of Scientific and Technical Information of China (English)

    Zhan You-Bang

    2004-01-01

    A scheme for teleporting an unknown N-particle entangled W state is proposed via entanglement swapping. In this scheme, N maximally entangled particle pairs are used as quantum channel. As a special case, the teleportation of an unknown four-particle entangled W state is studied.

  14. Entanglement diversion and quantum teleportation of entangled coherent states

    Institute of Scientific and Technical Information of China (English)

    Cai Xin-Hua; Guo Jie-Rong; Nie Jian-Jun; Jia Jin-Ping

    2006-01-01

    The proposals on entanglement diversion and quantum teleportation of entangled coherent states are presented.In these proposals,the entanglement between two coherent states,|α〉and |-α〉,with the same amplitude but a phase difference of π is utilized as a quantum channel.The processes of the entanglement diversion and the teleportation are achieved by using the 5050 symmetric beam splitters,the phase shifters and the photodetectors with the help of classical information.

  15. Entanglement entropy and duality

    Energy Technology Data Exchange (ETDEWEB)

    Radičević, Ðorđe [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States)

    2016-11-22

    Using the algebraic approach to entanglement entropy, we study several dual pairs of lattice theories and show how the entropy is completely preserved across each duality. Our main result is that a maximal algebra of observables in a region typically dualizes to a non-maximal algebra in a dual region. In particular, we show how the usual notion of tracing out external degrees of freedom dualizes to a tracing out coupled to an additional summation over superselection sectors. We briefly comment on possible extensions of our results to more intricate dualities, including holographic ones.

  16. Local cloning of entangled states

    International Nuclear Information System (INIS)

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-01-01

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  17. Entanglement in Gaussian matrix-product states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Ericsson, Marie

    2006-01-01

    Gaussian matrix-product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of a harmonic chain. Replacing the projections by associated Gaussian states, the building blocks, we show that the entanglement range in translationally invariant Gaussian matrix-product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix-product states can possess unlimited, long-range entanglement even with minimum number of ancillary bonds (M=1). Finally we discuss how these states can be experimentally engineered from N copies of a three-mode building block and N two-mode finitely squeezed states

  18. Gaussian maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  19. Gaussian maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Lupo, Cosmo; Mancini, Stefano

    2009-01-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7.

  20. Searching for highly entangled multi-qubit states

    International Nuclear Information System (INIS)

    Brown, Iain D K; Stepney, Susan; Sudbery, Anthony; Braunstein, Samuel L

    2005-01-01

    We present a simple numerical optimization procedure to search for highly entangled states of 2, 3, 4 and 5 qubits. We develop a computationally tractable entanglement measure based on the negative partial transpose criterion, which can be applied to quantum systems of an arbitrary number of qubits. The search algorithm attempts to optimize this entanglement cost function to find the maximal entanglement in a quantum system. We present highly entangled 4-qubit and 5-qubit states discovered by this search. We show that the 4-qubit state is not quite as entangled, according to two separate measures, as the conjectured maximally entangled Higuchi-Sudbery state. Using this measure, these states are more highly entangled than the 4-qubit and 5-qubit GHZ states. We also present a conjecture about the NPT measure, inspired by some of our numerical results, that the single-qubit reduced states of maximally entangled states are all totally mixed

  1. Teleportation of Squeezed Entangled State

    Institute of Scientific and Technical Information of China (English)

    HU Li-Yun; ZHOU Nan-Run

    2007-01-01

    Based on the coherent entangled state |α, x> we introduce the squeezed entangled state (SES). Then we propose a teleportation protocol for the SES by using Einstein-Podolsky-Rosen entangled state |η>as a quantum channel.The calculation is greatly simplified by virtue of the Schmidt decompositions of both |α, x>and |η>. Any bipartite states that can be expanded in terms of |α, x>may be teleported in this way due to the completeness of |α, x>.

  2. Experimental entanglement distillation of mesoscopic quantum states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2008-01-01

    channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less...... entangled states, can be used(4-14). Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses(15-17) are sent through a lossy channel, where the transmission is varying in time similarly...

  3. Quantum Entanglement in Neural Network States

    Directory of Open Access Journals (Sweden)

    Dong-Ling Deng

    2017-05-01

    Full Text Available Machine learning, one of today’s most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our

  4. Entangled states in quantum mechanics

    Science.gov (United States)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  5. Task-oriented maximally entangled states

    International Nuclear Information System (INIS)

    Agrawal, Pankaj; Pradhan, B

    2010-01-01

    We introduce the notion of a task-oriented maximally entangled state (TMES). This notion depends on the task for which a quantum state is used as the resource. TMESs are the states that can be used to carry out the task maximally. This concept may be more useful than that of a general maximally entangled state in the case of a multipartite system. We illustrate this idea by giving an operational definition of maximally entangled states on the basis of communication tasks of teleportation and superdense coding. We also give examples and a procedure to obtain such TMESs for n-qubit systems.

  6. Maximally multipartite entangled states

    Science.gov (United States)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  7. Teleportation of Two-Particle Entangled State via Cluster State

    Institute of Scientific and Technical Information of China (English)

    LI Da-Chuang; CAO Zhuo-Liang

    2007-01-01

    In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.

  8. Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    Institute of Scientific and Technical Information of China (English)

    Huang Li-Yuan; Fang Mao-Fa

    2008-01-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  9. Optimized entanglement witnesses for Dicke states

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Marcel; Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Department Physik, Walter-Flex-Strasse 3, D-57068 Siegen (Germany)

    2013-07-01

    Quantum entanglement is an important resource for applications in quantum information processing like quantum teleportation and cryptography. Moreover, the number of particles that can be entangled experimentally using polarized photons or ion traps has been significantly enlarged. Therefore, criteria to decide the question whether a given multi-particle state is entangled or not have to be improved. Our approach to this problem uses the notion of PPT mixtures which form an approximation to the set of bi-separable states. With this method, entanglement witnesses can be obtained in a natural manner via linear semi-definite programming. In our contribution, we will present analytical results for entanglement witnesses for Dicke states. This allows to overcome the limitations of convex optimization.

  10. Strong monotonicity in mixed-state entanglement manipulation

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2006-01-01

    A strong entanglement monotone, which never increases under local operations and classical communications (LOCC), restricts quantum entanglement manipulation more strongly than the usual monotone since the usual one does not increase on average under LOCC. We propose strong monotones in mixed-state entanglement manipulation under LOCC. These are related to the decomposability and one-positivity of an operator constructed from a quantum state, and reveal geometrical characteristics of entangled states. These are lower bounded by the negativity or generalized robustness of entanglement

  11. Mode entanglement of Gaussian fermionic states

    Science.gov (United States)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  12. Maximally Entangled Multipartite States: A Brief Survey

    International Nuclear Information System (INIS)

    Enríquez, M; Wintrowicz, I; Życzkowski, K

    2016-01-01

    The problem of identifying maximally entangled quantum states of a composite quantum systems is analyzed. We review some states of multipartite systems distinguished with respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit pure states illustrate the fact that the notion of maximally entangled state depends on the measure used. (paper)

  13. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-01-01

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  14. Hybrid entanglement concentration assisted with single coherent state

    International Nuclear Information System (INIS)

    Guo Rui; Zhou Lan; Sheng Yu-Bo; Gu Shi-Pu; Wang Xing-Fu

    2016-01-01

    Hybrid entangled state (HES) is a new type of entanglement, which combines the advantages of an entangled polarization state and an entangled coherent state. HES is widely discussed in the applications of quantum communication and computation. In this paper, we propose three entanglement concentration protocols (ECPs) for Bell-type HES, W-type HES, and cluster-type HES, respectively. After performing these ECPs, we can obtain the maximally entangled HES with some success probability. All the ECPs exploit the single coherent state to complete the concentration. These protocols are based on the linear optics, which are feasible in future experiments. (paper)

  15. Quantifying entanglement in two-mode Gaussian states

    Science.gov (United States)

    Tserkis, Spyros; Ralph, Timothy C.

    2017-12-01

    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.

  16. Generating stationary entangled states in superconducting qubits

    International Nuclear Information System (INIS)

    Zhang Jing; Liu Yuxi; Li Chunwen; Tarn, T.-J.; Nori, Franco

    2009-01-01

    When a two-qubit system is initially maximally entangled, two independent decoherence channels, one per qubit, would greatly reduce the entanglement of the two-qubit system when it reaches its stationary state. We propose a method on how to minimize such a loss of entanglement in open quantum systems. We find that the quantum entanglement of general two-qubit systems with controllable parameters can be controlled by tuning both the single-qubit parameters and the two-qubit coupling strengths. Indeed, the maximum fidelity F max between the stationary entangled state, ρ ∞ , and the maximally entangled state, ρ m , can be about 2/3≅max(tr(ρ ∞ ρ m ))=F max , corresponding to a maximum stationary concurrence, C max , of about 1/3≅C(ρ ∞ )=C max . This is significant because the quantum entanglement of the two-qubit system can be produced and kept, even for a long time. We apply our proposal to several types of two-qubit superconducting circuits and show how the entanglement of these two-qubit circuits can be optimized by varying experimentally controllable parameters.

  17. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  18. Quantum nonlocality in two three-level systems

    International Nuclear Information System (INIS)

    Acin, A.; Durt, T.; Gisin, N.; Latorre, J.I.

    2002-01-01

    Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable

  19. Multipartite entangled states in particle mixing

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.

    2008-01-01

    In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.

  20. Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.

    Science.gov (United States)

    Eltschka, Christopher; Siewert, Jens

    2012-01-13

    The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.

  1. Quantum teleportation of entangled squeezed vacuum states

    Institute of Scientific and Technical Information of China (English)

    蔡新华

    2003-01-01

    An optical scheme for probabilistic teleporting entangled squeezed vacuum states (SVS) is proposed. In this scheme,the teleported state is a bipartite entangled SVS,and the quantum channel is a tripartite entangled SVS.The process of the teleportation is achieved by using a 50/50 symmetric beamsplitter and photon detectors with the help of classical information.

  2. Bipartite entanglement in continuous variable cluster states

    Energy Technology Data Exchange (ETDEWEB)

    Cable, Hugo; Browne, Daniel E, E-mail: cqthvc@nus.edu.s, E-mail: d.browne@ucl.ac.u [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2010-11-15

    A study of the entanglement properties of Gaussian cluster states, proposed as a universal resource for continuous variable (CV) quantum computing is presented in this paper. The central aim is to compare mathematically idealized cluster states defined using quadrature eigenstates, which have infinite squeezing and cannot exist in nature, with Gaussian approximations that are experimentally accessible. Adopting widely used definitions, we first review the key concepts, by analysing a process of teleportation along a CV quantum wire in the language of matrix product states. Next we consider the bipartite entanglement properties of the wire, providing analytic results. We proceed to grid cluster states, which are universal for the qubit case. To extend our analysis of the bipartite entanglement, we adopt the entropic-entanglement width, a specialized entanglement measure introduced recently by Van den Nest et al (2006 Phys. Rev. Lett. 97 150504), adapting their definition to the CV context. Finally, we consider the effects of photonic loss, extending our arguments to mixed states. Cumulatively our results point to key differences in the properties of idealized and Gaussian cluster states. Even modest loss rates are found to strongly limit the amount of entanglement. We discuss the implications for the potential of CV analogues for measurement-based quantum computation.

  3. Tractable Quantification of Entanglement for Multipartite Pure States

    International Nuclear Information System (INIS)

    Nian-Quan, Jiang; Yu-Jian, Wang; Yi-Zhuang, Zheng; Gen-Chang, Cai

    2008-01-01

    We present kth-order entanglement measure and global kth-order entanglement measure for multipartite pure states, and extend Bennett's measure of partial entropy for bipartite pure states to a multipartite case. These measures are computable and can effectively classify and quantify the entanglement of multipartite pure states. (general)

  4. A Criterion to Identify Maximally Entangled Four-Qubit State

    International Nuclear Information System (INIS)

    Zha Xinwei; Song Haiyang; Feng Feng

    2011-01-01

    Paolo Facchi, et al. [Phys. Rev. A 77 (2008) 060304(R)] presented a maximally multipartite entangled state (MMES). Here, we give a criterion for the identification of maximally entangled four-qubit states. Using this criterion, we not only identify some existing maximally entangled four-qubit states in the literature, but also find several new maximally entangled four-qubit states as well. (general)

  5. Bound entangled states violate a nonsymmetric local uncertainty relation

    International Nuclear Information System (INIS)

    Hofmann, Holger F.

    2003-01-01

    As a consequence of having a positive partial transpose, bound entangled states lack many of the properties otherwise associated with entanglement. It is therefore interesting to identify properties that distinguish bound entangled states from separable states. In this paper, it is shown that some bound entangled states violate a nonsymmetric class of local uncertainty relations [H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003)]. This result indicates that the asymmetry of nonclassical correlations may be a characteristic feature of bound entanglement

  6. A heralded two-qutrit entangled state

    International Nuclear Information System (INIS)

    Joo, Jaewoo; Sanders, Barry C; Rudolph, Terry

    2009-01-01

    We propose a scheme for building a heralded two-qutrit entangled state from polarized photons. An optical circuit is presented to build the maximally entangled two-qutrit state from two heralded Bell pairs and ideal threshold detectors. Several schemes are discussed for constructing the two Bell pairs. We also show how one can produce an unbalanced two-qutrit state that could be of general purpose use in some protocols. In terms of the applications of the maximally entangled qutrit state, we mainly focus on how to use the state to demonstrate a violation of the Collins-Gisin-Linden-Massar-Popescu inequality under the restriction of measurements which can be performed using linear optical elements and photon counting. Other possible applications of the state, such as for higher dimensional quantum cryptography, teleportation and generation of heralded two-qudit states, are also briefly discussed.

  7. Entanglement swapping of a GHZ state via a GHZ-like state

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chia-Wei; Hwang, Tzonelih, E-mail: hwangtl@ismail.csie.ncku.edu.t [National Cheng Kung University, Department of Computer Science and Information Engineering, No. 1 Ta-Hsueh Road, Tainan City 701, Taiwan (China)

    2011-10-15

    This study uses the Greenberger-Horne-Zeilinger (GHZ)-like state |G>= 1/2 (|001>+|010>+|100>+|111>) to establish an entanglement swapping protocol on a pure GHZ state. A quantum circuit is proposed to assist in teleporting the entanglement of the pure GHZ state. Furthermore, on the basis of the generation of the GHZ-like state, an improved protocol to reduce the number of transmitted photons required in the process of entanglement swapping is proposed.

  8. Teleportation of Multi-qudit Entangled States

    Institute of Scientific and Technical Information of China (English)

    ZHAN Xiao-Gui; LI Hong-Mei; ZENG Hao-Sheng

    2006-01-01

    @@ We propose a method to realize the teleportation of an unknown entangled state that consists of many qudits through a partially entangled-qudit quantum channel with the help of 2 log2 d-bit classical communication. The operations used in the teleportation process include a generalized Bell-state measurement and a series of singlequdit π-measurements performed by Alice, a series of generalized qudit-Pauli gates and two-level unitary gates,as well as a qubit measurement performed by Bob. For a maximally entangled quantum channel, the successful probability of the teleportation becomes unit.

  9. Geometric entanglement in topologically ordered states

    International Nuclear Information System (INIS)

    Orús, Román; Wei, Tzu-Chieh; Buerschaper, Oliver; Nest, Maarten Van den

    2014-01-01

    Here we investigate the connection between topological order and the geometric entanglement, as measured by the logarithm of the overlap between a given state and its closest product state of blocks. We do this for a variety of topologically ordered systems such as the toric code, double semion, colour code and quantum double models. As happens for the entanglement entropy, we find that for sufficiently large block sizes the geometric entanglement is, up to possible sub-leading corrections, the sum of two contributions: a bulk contribution obeying a boundary law times the number of blocks and a contribution quantifying the underlying pattern of long-range entanglement of the topologically ordered state. This topological contribution is also present in the case of single-spin blocks in most cases, and constitutes an alternative characterization of topological order for these quantum states based on a multipartite entanglement measure. In particular, we see that the topological term for the two-dimensional colour code is twice as much as the one for the toric code, in accordance with recent renormalization group arguments (Bombin et al 2012 New J. Phys. 14 073048). Motivated by these results, we also derive a general formalism to obtain upper- and lower-bounds to the geometric entanglement of states with a non-Abelian group symmetry, and which we explicitly use to analyse quantum double models. Furthermore, we also provide an analysis of the robustness of the topological contribution in terms of renormalization and perturbation theory arguments, as well as a numerical estimation for small systems. Some of the results in this paper rely on the ability to disentangle single sites from the quantum state, which is always possible for the systems that we consider. Additionally we relate our results to the behaviour of the relative entropy of entanglement in topologically ordered systems, and discuss a number of numerical approaches based on tensor networks that could be

  10. Teleportation of continuous variable multimode Greeberger-Horne-Zeilinger entangled states

    International Nuclear Information System (INIS)

    He Guangqiang; Zhang Jingtao; Zeng Guihua

    2008-01-01

    Quantum teleportation protocols of continuous variable (CV) Greeberger-Horne-Zeilinger (GHZ) and Einstein-Podolsky-Rosen (EPR) entangled states are proposed, and are generalized to teleportation of arbitrary multimode GHZ entangled states described by Van Loock and Braunstein (2000 Phys. Rev. Lett. 84 3482). Each mode of a multimode entangled state is teleported using a CV EPR entangled pair and classical communication. The analytical expression of fidelity for the multimode Gaussian states which evaluates the teleportation quality is presented. The analytical results show that the fidelity is a function of both the squeezing parameter r, which characterizes the multimode entangled state to be teleported, and the channel parameter p, which characterizes the EPR pairs shared by Alice and Bob. The fidelity increases with increasing p, but decreases with increasing r, i.e., it is more difficult to teleport the more perfect multimode entangled states. The entanglement degree of the teleported multimode entangled states increases with increasing both r and p. In addition, the fact is proved that our teleportation protocol of EPR entangled states using parallel EPR pairs as quantum channels is the best case of the protocol using four-mode entangled states (Adhikari et al 2008 Phys. Rev. A 77 012337).

  11. Scheme for entanglement concentration of unknown atomic entangled states by interference of polarized photons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou [Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002 (China); Yeon, Kyu-Hwang, E-mail: hfwang@ybu.edu.c, E-mail: szhang@ybu.edu.c [Department of Physics and BK21 Program for Device Physics, College of Natural Science, Chungbuk National University, Cheongju, Chungbuk 361-763 (Korea, Republic of)

    2010-12-14

    Based on the interference effect of polarized photons, we propose a practical scheme for entanglement concentration of unknown atomic entangled states. In the scheme, two {lambda}{lambda}-type atoms belonging to different entangled pairs are individually trapped in two spatially separated cavities. By the subsequent detection of the polarized photons leaking out of the separate optical cavities, Alice and Bob as two distant parties can probabilistically extract one maximally entangled four-atom Greenberger-Horne-Zeilinger (GHZ) state from two identical partially entangled Einstein-Podolsky-Rosen (EPR) pairs. We also discuss the influence of cavity decay on the success probability of the scheme. The scheme is feasible and within the reach of current experimental technology.

  12. Effect of Bound Entanglement on the Convertibility of Pure States

    International Nuclear Information System (INIS)

    Ishizaka, Satoshi

    2004-01-01

    I show that bound entanglement strongly influences the quantum entanglement processing of pure states: If N distant parties share appropriate bound entangled states with positive partial transpose, all N-partite pure entangled states become inter-convertible by stochastic local operations and classical communication (SLOCC) at the single copy level. This implies that the Schmidt rank of a bipartite pure entangled state can be increased, and that two incomparable tripartite entanglement of the GHZ and W type can be inter-converted by the assistance of bound entanglement. Further, I propose the simplest experimental scheme for the demonstration of the corresponding bound-entanglement-assisted SLOCC. This scheme does not need quantum gates and is feasible for the current experimental technology of linear optics

  13. Impossibility criterion for obtaining pure entangled states from mixed states by purifying protocols

    International Nuclear Information System (INIS)

    Chen Pingxing; Liang Linmei; Li Chengzu; Huang Mingqiu

    2002-01-01

    Purifying noisy entanglement is a protocol that can increase the entanglement of a mixed state (as a source) at the expense of the entanglement of others (such as an ancilla) by collective measurement. A protocol with which one can get a pure entangled state from a mixed state is defined as purifying mixed states. We address a basic question: can one get a pure entangled state from a mixed state? We give a necessary and sufficient condition of purifying a mixed state by fit local operations and classical communication and show that for a class of source states and ancilla states in arbitrary bipartite systems purifying mixed states is impossible by finite rounds of purifying protocols. For 2x2 systems, it is proved that arbitrary states cannot be purified by individual measurement. The possible application and meaning of the conclusion are discussed

  14. Entanglement dynamics of three-qubit states in noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Siomau, Michael [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Fritzsche, Stephan [Department of Physical Sciences, University of Oulu (Finland); Institute for Advanced Studies, Frankfurt am Main (Germany)

    2010-07-01

    The implementation of schemes for quantum teleportation requires the quantification of entanglement for states that, in general, are mixed due to the interaction with the environment. We study the entanglement dynamics of three-qubit GHZ and W states under the influence of the environment. As noise models for the influence of the environment we use {sigma}{sub z}, {sigma}{sub x} and {sigma}{sub y} Pauli as well as the depolarizing channel. The entanglement of the states is quantified with the lower bound to the three-qubit concurrence. We show that the GHZ state preserves more entanglement than the W state in transmission through {sigma}{sub x} and {sigma}{sub y} Pauli and the depolarizing channels. For {sigma}{sub z} Pauli channel, in contrast, the W state preserves more entanglement than the GHZ state.

  15. Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal; Brukner, Caslav; Buzek, Vladimir; Zukowski, Marek

    2005-01-01

    We address the question as to whether an entangled state that satisfies local realism will give a violation of the same after entanglement swapping in a suitable scenario. We consider such a possibility as a kind of superadditivity in nonclassicality. Importantly, it will indicate that checking for violation of local realism, in the state obtained after entanglement swapping, can be a method for detecting entanglement in the input state of the swapping procedure. We investigate various entanglement swapping schemes, which involve mixed initial states. The strength of violation of local realism by the state obtained after entanglement swapping is compared with the one for the input states. We obtain a kind of superadditivity of violation of local realism for Werner states, consequent upon entanglement swapping involving Greenberger-Horne-Zeilinger-state measurements. We also discuss whether entanglement swapping of specific states may be used in quantum repeaters with a substantially reduced need to perform the entanglement distillation step

  16. Increasing Entanglement between Gaussian States by Coherent Photon Subtraction

    DEFF Research Database (Denmark)

    Ourjoumtsev, Alexei; Dantan, Aurelien Romain; Tualle Brouri, Rosa

    2007-01-01

    We experimentally demonstrate that the entanglement between Gaussian entangled states can be increased by non-Gaussian operations. Coherent subtraction of single photons from Gaussian quadrature-entangled light pulses, created by a nondegenerate parametric amplifier, produces delocalized states...

  17. Feasible Teleportation Schemes with Five-Atom Entangled State

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.

  18. Quantifying tripartite entanglement for three-qubit generalized Werner states

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, Jens [Departamento de Quimica Fisica, Universidad del Pais Vasco, 48080 Bilbao (Spain); Ikerbasque, Basque Foundation for Science, 48011 Bilbao (Spain); Eltschka, Christopher [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2012-07-01

    The adequate quantification of entanglement in multipartite mixed states is still a theoretically unsolved problem, even in the case of three qubits. In order to investigate the robustness of entanglement against noise one often employs the so-called generalized Werner states, i.e., pure maximally entangled states mixed with the completely unpolarized state. Even for those states there are no quantitative results available. In this contribution, we present the solution of the problem for three-qubit generalized Werner states (as well as for the whole family of full-rank mixed states which obey the Greenberger-Horne-Zeilinger symmetry) by providing an exact quantitative account of the tripartite entanglement contained in those states.

  19. Unitarily localizable entanglement of Gaussian states

    International Nuclear Information System (INIS)

    Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes

  20. Gaussian-state entanglement in a quantum beat laser

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Nha, Hyunchul; Zubairy, M. Suhail

    2011-01-01

    Recently quantum beat lasers have been considered as a source of entangled radiation [S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, Phys. Rev. A 77, 062308 (2008)]. We investigate and quantify the entanglement of this system when the initial cavity modes are prepared in a Gaussian two-mode state, one being a nonclassical state and the other a thermal state. It is investigated how the output entanglement varies with the nonclassicality of the input Gaussian state, thermal noise, and the strength of the driving field.

  1. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Institute of Scientific and Technical Information of China (English)

    W. B. Cardosol; N. G. de Almeida

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  2. Generalized Remote Preparation of Arbitrary m-qubit Entangled States via Genuine Entanglements

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-03-01

    Full Text Available Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary m-qubit entangled state designed with genuine tripartite Greenberger–Horne–Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.

  3. Propagation of Statistical Noise Through a Two-Qubit Maximum Likelihood Tomography

    Science.gov (United States)

    2018-04-01

    entangled mixed states: creation and concentration. Physical Review Letters. 2004;92(13):133601. 4. White AG et al. Nonmaximally entangled states...production, characterization, and utilization. Physical Review Letters. 1999;83(16):3103. 5. Wang SX, Moraw P, Reilly DR, Altepeter JB, Kanter GS...photon Greenberger-Horne-Zeilinger state using quantum state tomography. Physical Review Letters. 2005;94(7):070402. 7. Mikami H et al. New high

  4. Time evolution of the Wigner function in the entangled-state representation

    International Nuclear Information System (INIS)

    Fan Hongyi

    2002-01-01

    For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained

  5. Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state

    Science.gov (United States)

    Zhou, Lan; Sheng, Yu-Bo

    2017-10-01

    Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.

  6. Entanglement purification of multi-mode quantum states

    International Nuclear Information System (INIS)

    Clausen, J; Knoell, L; Welsch, D-G

    2003-01-01

    An iterative random procedure is considered allowing entanglement purification of a class of multi-mode quantum states. In certain cases, complete purification may be achieved using only a single signal state preparation. A physical implementation based on beam splitter arrays and non-linear elements is suggested. The influence of loss is analysed in the example of purification of entangled N-mode coherent states

  7. Parametric source of two-photon states with a tunable degree of entanglement and mixing: Experimental preparation of Werner states and maximally entangled mixed states

    International Nuclear Information System (INIS)

    Cinelli, C.; Di Nepi, G.; De Martini, F.; Barbieri, M.; Mataloni, P.

    2004-01-01

    A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunable Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach

  8. Probabilistic Chain Teleportation of a Qutrit-State

    International Nuclear Information System (INIS)

    Wang Meiyu; Yan Fengli

    2010-01-01

    We investigate chain teleportation of a qutrit-state via the non-maximally two-qutrit entangled channels. For the case of four parties, the efficiencies of two chain teleportation protocols, the separate chain teleportation protocol (SCTP), and the global chain teleportation protocol (GCTP), are calculated. In SCTP the errors are corrected between every step while in GCTP the errors are corrected only at the end. Furthermore, we present a piecewise global chain teleportation protocol (PGCTP) for keeping away from the inconvenience of error-correction of GCTP. We show that PGCTP is more efficient than SCTP. (general)

  9. Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    International Nuclear Information System (INIS)

    Cardoso, W. B.; Almeida, N. G. de

    2008-01-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states. (fundamental areas of phenomenology (including applications))

  10. Entanglement between electronic states in silicene and photons

    Energy Technology Data Exchange (ETDEWEB)

    Rastgoo, S. [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Shirkani, H. [Physics Department, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Golshan, M.M., E-mail: golshan@susc.ac.ir [Physics Department, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-12

    Temporal behavior of entanglement between electrons in silicene and single mode radiations is reported. We show that the corresponding total Hamiltonian and time evolution operators are block diagonal. Initial states are divided into two categories for which buckling and the intrinsic spin–orbit effects are either of opposite or the same signs. Negativity shows that π-electrons and photons periodically become entangled for both categories. The entanglement spontaneously shows abrupt variations when buckling and the spin–orbit effects are equal but opposite in sign, leading to quantum phase transitions. As photonic excitations increase, the entanglement exhibits plateaus of constant durations for such initial states. - Highlights: • Time evolution of entanglement between π-electrons and photons in silicene is reported. • Intrinsic spin–orbit coupling (ISOC) and buckling effect (BE) are taken into account. • Initial states with ISOC and BE of opposite signs show quantum phase transitions. • Quantum phase transitions spontaneously occur when ISOC is equal to BE. • Periodic plateaus of maximal entanglement are observed for high photonic excitations.

  11. Steady-state entanglement activation in optomechanical cavities

    Science.gov (United States)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  12. Accessibility of physical states and non-uniqueness of entanglement measure

    International Nuclear Information System (INIS)

    Morikoshi, Fumiaki; Santos, Marcelo Franca; Vedral, Vlatko

    2004-01-01

    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility

  13. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states.

  14. Entanglement measure for general pure multipartite quantum states

    International Nuclear Information System (INIS)

    Heydari, Hoshang; Bjoerk, Gunnar

    2004-01-01

    We propose an explicit formula for a measure of entanglement of pure multipartite quantum states. We discuss the mathematical structure of the measure and give a brief explanation of its physical motivation. We apply the measure on some pure, tripartite, qubit states and demonstrate that, in general, the entanglement can depend on what actions are performed on the various subsystems, and specifically if the parties in possession of the subsystems cooperate or not. We also give some simple but illustrative examples of the entanglement of four-qubit and m-qubit states

  15. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  16. Studying entanglement-assisted entanglement transformation

    International Nuclear Information System (INIS)

    Hsu Liyi

    2004-01-01

    In this paper, we study catalysis of entanglement transformations for n-level pure entangled states. We propose an algorithm of finding the required catalystic entanglement. We introduce several examples by way of demonstration. We evaluate the lower and upper bound of the required inequalities for deciding whether there are m-level appropriate catalyst states for entanglement transformations for two n-level pure entangled states

  17. Hybrid entanglement swapping of photons: Creating the orbital angular momentum Bell states and Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Chen Lixiang; She Weilong

    2011-01-01

    Twisted photons offer a high-dimensional Hilbert space with the degree of freedom of orbital angular momentum (OAM). Entanglement swapping allows entangling photons that never interact. We report in this paper the hybrid entanglement swapping from multiphoton spin-entangled states to multiphoton OAM entangled states with the aid of N-pair hybrid spin-OAM entangled photons. Our scheme provides a feasible method for creating the two-photon OAM Bell states (N=2) or multiphoton multidimensional OAM Greenberger-Horne-Zeilinger states (N≥3). We highlight the advantage of multiparticle, multidimensional entangled states in some applications of quantum information protocols.

  18. Entanglement of Generalized Two-Mode Binomial States and Teleportation

    International Nuclear Information System (INIS)

    Wang Dongmei; Yu Youhong

    2009-01-01

    The entanglement of the generalized two-mode binomial states in the phase damping channel is studied by making use of the relative entropy of the entanglement. It is shown that the factors of q and p play the crucial roles in control the relative entropy of the entanglement. Furthermore, we propose a scheme of teleporting an unknown state via the generalized two-mode binomial states, and calculate the mean fidelity of the scheme. (general)

  19. Optimal detection of entanglement in Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Kay, Alastair

    2011-01-01

    We present a broad class of N-qubit Greenberger-Horne-Zeilinger (GHZ)-diagonal states such that nonpositivity under the partial transpose operation is necessary and sufficient for the presence of entanglement, including many naturally arising instances such as dephased GHZ states. Furthermore, our proof directly leads to an entanglement witness which saturates this bound. The witness is applied to thermal GHZ states to prove that the entanglement can be extremely robust to system imperfections.

  20. Channel capacities versus entanglement measures in multiparty quantum states

    International Nuclear Information System (INIS)

    Sen, Aditi; Sen, Ujjwal

    2010-01-01

    For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.

  1. Induced bipartite entanglement from three qubit states and quantum teleportation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck [Kyungnam University, Masan (Korea, Republic of)

    2010-06-15

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  2. Induced bipartite entanglement from three qubit states and quantum teleportation

    International Nuclear Information System (INIS)

    Park, Dae-Kil; Son, Jin-Woo; Cha, Seong-Keuck

    2010-01-01

    Only Greenberger-Horne-Zeilinger and W states are well known to have genuine tripartite entanglement in all three qubit states. The entanglement of quantum state is also well known to play an important role in various quantum information processes. Then, the following question naturally arises: which one is better between the Greenberger-Horne-Zeilinger and the W states in real quantum information processing? We try to give an answer to this question from two aspects. First, we compute the induced bipartite entanglement for a mixture consisting of Greenberger-Horne-Zeilinger and W states. If the entanglement is the only physical resource for information processing, the induced bipartite entanglement suggests that Greenberger-Horne-Zeilinger and W states are equally good. Second, we choose the bipartite teleportation scheme as an example of quantum information processing using the mixture as a quantum channel and compute the average fidelities. Our calculation shows that the W state is slightly more robust than the Greenberger-Horne-Zeilinger state when a small perturbation disturbs the teleportation process. This slight discrepancy seems to imply that entanglement is not the only resource for quantum information processing.

  3. Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they

  4. Dynamical generation of maximally entangled states in two identical cavities

    International Nuclear Information System (INIS)

    Alexanian, Moorad

    2011-01-01

    The generation of entanglement between two identical coupled cavities, each containing a single three-level atom, is studied when the cavities exchange two coherent photons and are in the N=2,4 manifolds, where N represents the maximum number of photons possible in either cavity. The atom-photon state of each cavity is described by a qutrit for N=2 and a five-dimensional qudit for N=4. However, the conservation of the total value of N for the interacting two-cavity system limits the total number of states to only 4 states for N=2 and 8 states for N=4, rather than the usual 9 for two qutrits and 25 for two five-dimensional qudits. In the N=2 manifold, two-qutrit states dynamically generate four maximally entangled Bell states from initially unentangled states. In the N=4 manifold, two-qudit states dynamically generate maximally entangled states involving three or four states. The generation of these maximally entangled states occurs rather rapidly for large hopping strengths. The cavities function as a storage of periodically generated maximally entangled states.

  5. Stability of global entanglement in thermal states of spin chains

    International Nuclear Information System (INIS)

    Brennen, Gavin K.; Bullock, Stephen S.

    2004-01-01

    We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement

  6. Bounds on the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.

    2005-01-01

    The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states

  7. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  8. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    Science.gov (United States)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  9. Generating entangled state of Bose-Einstein condensate using electromagnetically induced transparency

    Science.gov (United States)

    Li, Song-Song

    2018-01-01

    We put forward a scheme on how to generate entangled state of Bose-Einstein condensate (BEC) using electromagnetically induced transparency (EIT). It is shown that we can rapidly generate the entangled state in the dynamical process and the entangled state maintained a long time interval. It is also shown that the better entangled state can be generated by decreasing coupling strengths of two classical laser fields, increasing two-photon detuning and total number of atoms.

  10. Approximate and Conditional Teleportation of an Unknown Atomic-Entangled State Without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; LI Shao-Hua

    2007-01-01

    A scheme for approximately and conditionally teleporting an unknown atomic-entangled state in cavity QED is proposed.It is the novel extension of the scheme of [Phys.Rev.A 69 (2004) 064302],where the state to be teleported is an unknown atomic state and where only a time point of system evolution and the corresponding fidelity implementing the teleportation are given.In fact,there exists multi-time points and the corresponding fidclities,which are shown in this paper and then are used to realize the approximate and conditional teleportation of the unknown atomic-entangled state.Naturally,our scheme does not involve the Bell-state measurement or an additional atom,which is required in the Bell-state measurement,only requiring one single-mode cavity.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap and the teleportation of the multi-atomic entangled states included in generalized GHZ states.

  11. Enhancing the entanglement of a teleported state by local collective noises

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xueyuan; Gu Ying; Gong Qihuang; Guo Guangcan, E-mail: ygu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2011-04-14

    We show that the entanglement of the two-qubit teleported state via a class of four-qubit entangled channel states can be increased by collective amplitude damping locally acting on one part of the channel state. Specifically, we compare the entanglement contained in the output state of teleportation before and after the action of the collective amplitude damping on the channel state, and show that for a wide range of input entangled two-qubit states, the local decoherence can result in an increase in the output entanglement. In this process, the average fidelity of the teleportation is also increased. Our result reveals that some quantum properties of the four-qubit channel state are definitely improved in the process of enhancing the fidelity by local noise.

  12. Entangled entanglement: A construction procedure

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Gabriele, E-mail: Gabriele.Uchida@univie.ac.at [University of Vienna, Faculty of Computer Science, Währinger Strasse 29, 1090 Vienna (Austria); Bertlmann, Reinhold A., E-mail: Reinhold.Bertlmann@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria); Hiesmayr, Beatrix C., E-mail: Beatrix.Hiesmayr@univie.ac.at [University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna (Austria)

    2015-10-30

    The familiar Greenberger–Horne–Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a third qubit state, which is dubbed entangled entanglement. We show that in a constructive way we obtain all eight independent GHZ states that form the simplex of entangled entanglement, the magic simplex. The construction procedure allows a generalization to higher dimensions both, in the degrees of freedom (considering qudits) as well as in the number of particles (considering n-partite states). Such bases of GHZ-type states exhibit a cyclic geometry, a Merry Go Round, that is relevant for experimental and quantum information theoretic applications.

  13. Entanglement entropy from tensor network states for stabilizer codes

    Science.gov (United States)

    He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas

    2018-03-01

    In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.

  14. Continuous-variable entanglement distillation of non-Gaussian mixed states

    International Nuclear Information System (INIS)

    Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Filip, Radim; Andersen, Ulrik L.

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.

  15. Heralded generation of a micro-macro entangled state

    DEFF Research Database (Denmark)

    Andersen, Ulrik Lund; Neergaard-Nielsen, Jonas Schou

    2013-01-01

    Using different optical setups based on squeezed state and photon subtraction we show how optical entanglement between a macroscopic and a microscopic state-the so-called Schro¨dinger cat state or micro-macro state-can be generated. The entangled state is heralded and is thus produced a priori....... Furthermore, we show that the state can be used to map a microscopic qubit onto a macroscopic one thereby linking a qubit processor with a qumode processor....

  16. An entanglement concentration protocol for cluster states using ...

    Indian Academy of Sciences (India)

    It may be noted that these protocols are not the only approaches of gener- ating maximally entangled states. There are several other protocols such as entanglement purification [8–12], quantum entanglement distillation [13,14], etc., to this effect. The history of ECP starts in the work of Bennett et al [8] in 1996 in which he ...

  17. Effects of black hole evaporation on the quantum entangled state

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Doyeol [University of Seoul, Seoul (Korea, Republic of)

    2010-10-15

    We investigate the effect of black hole evaporation on the entangled state in which one party of a pair, Alice, falls into the black hole at formation while the other party, Bob, remains outside the black hole. The final state of a black hole is studied by taking into account a general unitary evolution of a black-hole matter state. The mixedness is found to decrease under a general unitary transformation when the initial matter state is in a mixed state and the mean fidelity at the evaporation is smaller than the fidelity of the quantum teleportation by a factor of the inverse square of the number of states of a black hole. The change in the entanglement of the Alice-Bob pair at evaporation is studied by calculating the entanglement fidelity and eigenvalues of the partial transposed block density matrix. The entanglement fidelity is found to be inversely proportional to the square of the Hilbert space dimension N, and the entanglement could survive the evaporation process.

  18. Multiparty Quantum Secret Sharing of Quantum States Using Entanglement States

    International Nuclear Information System (INIS)

    Ying, Guo; Da-Zu, Huang; Gui-Hua, Zeng; Ho, Lee Moon

    2008-01-01

    A multi-partite-controlled quantum secret sharing scheme using several non-orthogonal entanglement states is presented with unconditional security. In this scheme, the participants share the secret quantum state by exchanging the secret polarization angles of the disordered travel particles. The security of the secret quantum state is also guaranteed by the non-orthogonal multi-partite-controlled entanglement states, the participants' secret polarizations, and the disorder of the travelling particles. Moreover, the present scheme is secure against the particle-number splitting attack and the intercept-and-resend attack. It may be still secure even if the distributed quantum state is embedded in a not-so-weak coherent-state pulse

  19. Generation of entangled coherent states for distant Bose-Einstein condensates via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang, L.-M.; Chen Zengbing; Pan Jianwei

    2007-01-01

    We propose a method to generate entangled coherent states between two spatially separated atomic Bose-Einstein condensates (BECs) via the technique of electromagnetically induced transparency (EIT). Two strong coupling laser beams and two entangled probe laser beams are used to cause two distant BECs to be in EIT states and to generate an atom-photon entangled state between probe lasers and distant BECs. The two BECs are initially in unentangled product coherent states while the probe lasers are initially in an entangled state. Entangled states of two distant BECs can be created through the performance of projective measurements upon the two outgoing probe lasers under certain conditions. Concretely, we propose two protocols to show how to generate entangled coherent states of the two distant BECs. One is a single-photon scheme in which an entangled single-photon state is used as the quantum channel to generate entangled distant BECs. The other is a multiphoton scheme where an entangled coherent state of the probe lasers is used as the quantum channel. Additionally, we also obtain some atom-photon entangled states of particular interest such as entangled states between a pair of optical Bell states (or quasi-Bell-states) and a pair of atomic entangled coherent states (or quasi-Bell-states)

  20. Entangled exciton states in quantum dot molecules

    Science.gov (United States)

    Bayer, Manfred

    2002-03-01

    Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For

  1. Approximating local observables on projected entangled pair states

    Science.gov (United States)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  2. Strong Einstein-Podolsky-Rosen steering with unconditional entangled states

    Science.gov (United States)

    Steinlechner, Sebastian; Bauchrowitz, Jöran; Eberle, Tobias; Schnabel, Roman

    2013-02-01

    In 1935 Schrödinger introduced the terms entanglement and steering in the context of the famous gedanken experiment discussed by Einstein, Podolsky, and Rosen (EPR). Here, we report on a sixfold increase of the observed EPR-steering effect with regard to previous experiments, as quantified by the Reid criterion. We achieved an unprecedented low conditional variance product of about 0.04<1, where 1 is the upper bound below which steering is demonstrated. The steering effect was observed on an unconditional two-mode-squeezed entangled state that contained a total vacuum state contribution of less than 8%, including detection imperfections. Together with the achieved high interference contrast between the entangled state and a bright coherent laser field, our state is compatible with efficient applications in high-power laser interferometers and fiber-based networks for entanglement distribution.

  3. Teleportation of Quantum States through Mixed Entangled Pairs

    Institute of Scientific and Technical Information of China (English)

    ZHENG Shi-Biao

    2006-01-01

    @@ We describe a protocol for quantum state teleportation via mixed entangled pairs. With the help of an ancilla,near-perfect teleportation might be achieved. For pure entangled pairs, perfect teleportation might be achieved with a certain probability without using an ancilla. The protocol is generalized to teleportation of multiparticle states and quantum secret sharing.

  4. Teleportation with Tripartite Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    XUE Zheng-Yuan; YI You-Min; CAO Zhuo-Liang

    2006-01-01

    Teleportation schemes with a tripartite entangled state in cavity QED are investigated. The schemes do not need Bell state measurements and the successful probabilities reach optimality. In addition, the schemes are insensitive to both the cavity decay and the thermal field. We first consider two teleportation schemes via a tripartite GHZ state.The first one is a controlled one for an unknown single-qubit state. The second scheme is teleportation of unknown two-atom entangled state. Then we consider teleporting of single-qubit arbitrary state via a tripartite W state.

  5. Minimum-error discrimination of entangled quantum states

    International Nuclear Information System (INIS)

    Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.

    2010-01-01

    Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.

  6. Multiparticle quantum superposition and stimulated entanglement by parity selective amplification of entangled states

    International Nuclear Information System (INIS)

    Martini, F. de; Giuseppe, G. di

    2001-01-01

    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement. (orig.)

  7. Maximal overlap with a fully separable state and translational invariance for multipartite entangled states

    International Nuclear Information System (INIS)

    Cui, H. T.; Yuan Di; Tian, J. L.

    2010-01-01

    The maximal overlap with the fully separable state for the multipartite entangled pure state with translational invariance is studied explicitly by some exact and numerical evaluations, focusing on the one-dimensional qubit system and some representative types of translational invariance. The results show that the translational invariance of the multipartite state could have an intrinsic effect on the determination of the maximal overlap and the nearest fully separable state for multipartite entangled states. Furthermore, a hierarchy of the basic entangled states with translational invariance is found, from which one could readily find the maximal overlap and a related fully separable state for the multipartite state composed of different translational invariance structures.

  8. Irreversibility of entanglement distillation for a class of symmetric states

    International Nuclear Information System (INIS)

    Vollbrecht, Karl Gerd H.; Wolf, Michael M.; Werner, Reinhard F.

    2004-01-01

    We investigate the irreversibility of entanglement distillation for a symmetric (d+1)-parameter family of mixed bipartite quantum states acting on Hilbert spaces of arbitrary dimension dxd. We prove that in this family the entanglement cost is generically strictly larger than the distillable entanglement, so that the set of states for which the distillation process is asymptotically reversible is of measure zero. This remains true even if the distillation process is catalytically assisted by pure-state entanglement and every operation is allowed, which preserves the positivity of the partial transpose. It is shown that reversibility occurs only in cases where the state is a tagged mixture. The reversible cases are shown to be completely characterized by minimal uncertainty vectors for entropic uncertainty relations

  9. Average subentropy, coherence and entanglement of random mixed quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: godyalin@163.com [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Singh, Uttam, E-mail: uttamsingh@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India); Pati, Arun K., E-mail: akpati@hri.res.in [Harish-Chandra Research Institute, Allahabad, 211019 (India)

    2017-02-15

    Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.

  10. The revised geometric measure of entanglement for isotropic state

    International Nuclear Information System (INIS)

    Cao Ya

    2011-01-01

    Based on the revised geometric measure of entanglement (RGME), we obtain the analytical expression of isotropic state and generalize to n-particle and d-dimension mixed state case. Meantime, we obtain the relation about isotropic state E-tilde sin 2 (ρ) ≤ E re (ρ). The results indicate RGME is an appropriate measure of entanglement. (authors)

  11. Multi-particle entanglement via two-party entanglement

    Science.gov (United States)

    Brassard, Gilles; Mor, Tal

    2001-09-01

    Entanglement between n particles is a generalization of the entanglement between two particles, and a state is considered entangled if it cannot be written as a mixture of tensor products of the n particles' states. We present the key notion of semi-separability, used to investigate n-particle entanglement by looking at two-party entanglement between its various subsystems. We provide necessary conditions for n-particle separability (that is, sufficient conditions for n-particle entanglement). We also provide necessary and sufficient conditions in the case of pure states. By surprising examples, we show that such conditions are not sufficient for separability in the case of mixed states, suggesting entanglement of a strange type.

  12. Quantum communication for satellite-to-ground networks with partially entangled states

    International Nuclear Information System (INIS)

    Chen Na; Quan Dong-Xiao; Pei Chang-Xing; Yang-Hong

    2015-01-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. (paper)

  13. Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state

    International Nuclear Information System (INIS)

    Yu, Yafei; Zhan, Mingsheng; Feng, Jian

    2003-01-01

    We compare remote quantum information concentration by a Greenberger-Horne-Zeilinger (GHZ) state with an unlockable bound entangled state. We find that in view of communication security the bound entangled state works better than the GHZ state

  14. Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement

    International Nuclear Information System (INIS)

    Sheng Yubo; Deng Fuguo

    2010-01-01

    Entanglement purification is a very important element for long-distance quantum communication. Different from all the existing entanglement purification protocols (EPPs) in which two parties can only obtain some quantum systems in a mixed entangled state with a higher fidelity probabilistically by consuming quantum resources exponentially, here we present a deterministic EPP with hyperentanglement. Using this protocol, the two parties can, in principle, obtain deterministically maximally entangled pure states in polarization without destroying any less-entangled photon pair, which will improve the efficiency of long-distance quantum communication exponentially. Meanwhile, it will be shown that this EPP can be used to complete nonlocal Bell-state analysis perfectly. We also discuss this EPP in a practical transmission.

  15. Revivals and entanglement from initially entangled mixed states of a damped Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Rendell, R.W.; Rajagopal, A.K.

    2003-01-01

    An exact density matrix of a phase-damped Jaynes-Cummings model (JCM) with entangled Bell-like initial states formed from a model two-state atom and sets of adjacent photon number states of a single-mode radiation field is presented. The entanglement of the initial states and the subsequent time evolution is assured by finding a positive lower bound on the concurrence of local 2x2 projections of the full 2x∞ JCM density matrix. It is found that the time evolution of the lower bound of the concurrence systematically captures the corresponding collapse and revival features in atomic inversion, relative entropies of atomic and radiation, mutual entropy, and quantum deficit. The atom and radiation subsystems exhibit alternating sets of collapses and revivals in a complementary fashion due to the initially mixed states of the atom and radiation employed here. This is in contrast with the result obtained when the initial state of the dissipationless system is a factored pure state of the atom and radiation, where the atomic and radiation entropies are necessarily the same. The magnitudes of the entanglement lower bound and the atomic and radiation revivals become larger as both the magnitude and phase of the Bell-like initial state contribution increase. The time evolution of the entropy difference of the total system and that of the radiation subsystem exhibit negative regions called 'supercorrelated' states which do not appear in the atomic subsystem. Entangled initial states are found to enhance this supercorrelated feature. Finally, the effect of phase damping is to randomize both the subsystems for asymptotically long times. It may be feasible to experimentally investigate the results presented here using the Rabi oscillation methods of microwave and optical cavity quantum electrodynamics since pure photon number states have recently been produced and observed

  16. Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states

    Science.gov (United States)

    Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong

    2017-08-01

    Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.

  17. Duality and the geometric measure of entanglement of general multiqubit W states

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova; Sudbery, Anthony; Tamaryan, Levon

    2010-01-01

    We find the nearest product states for arbitrary generalized W states of n qubits, and show that the nearest product state is essentially unique if the W state is highly entangled. It is specified by a unit vector in Euclidean n-dimensional space. We use this duality between unit vectors and highly entangled W states to find the geometric measure of entanglement of such states.

  18. Minimum detection efficiencies for a loophole-free observable-asymmetric Bell-type test

    International Nuclear Information System (INIS)

    Garbarino, G.

    2010-01-01

    We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic nonmaximally entangled two-qubit state and two incompatible bases to be adopted for alternative measurements of two observables a and b on each party, we apply Hardy's proof of nonlocality without inequality and derive an Eberhard-like inequality. For an infinity of nonmaximally entangled states we find that it is possible to refute local realism by requiring perfect detection efficiency for only one of the two observables, say b, to be measured on each party: The test is free from the detection loophole for any value of the detection efficiency corresponding to the other observable a. The maximum tolerable noise in such a loophole-free observable-asymmetric test is also evaluated.

  19. Two-way and three-way negativities of three-qubit entangled states

    International Nuclear Information System (INIS)

    Sharma, S. Shelly; Sharma, N. K.

    2007-01-01

    We propose to quantify three-qubit entanglement using global negativity along with K-way negativities, where K=2 and 3. The principle underlying the definition of K-way negativity for pure and mixed states of N subsystems is a positive partial transpose sufficient condition. However, K-way partial transpose with respect to a subsystem is defined so as to shift the focus to K-way coherences instead of K subsystems of the composite system. A quantum state of a three-qubit system is characterized by the coherences measured by global, two-way, and three-way negativities. For a canonical state of three-qubit system, entanglement measures for genuine tripartite entanglement, W-like entanglement, and bipartite entanglement can be related to two-way and three-way negativities

  20. Role of initial coherence on entanglement dynamics of two qubit X states

    Science.gov (United States)

    V, Namitha C.; Satyanarayana, S. V. M.

    2018-02-01

    Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.

  1. Scalability of GHZ and random-state entanglement in the presence of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernando de; Tiersch, Markus; Buchleitner, Andreas [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany); Aolita, Leandro; Cavalcanti, Daniel [ICFO - Institut de Ciencies Fotoniques (Spain); Acin, Antonio [ICFO - Institut de Ciencies Fotoniques (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats (Spain); Salles, Alejo [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg (Germany)

    2009-07-01

    We derive analytical upper bounds for the entanglement of generalized Greenberger-Horne-Zeilinger (GHZ) states locally coupled to dephasing, depolarizing, and thermal reservoirs. The derivation is carried out under very weak constraints, and holds for any convex quantifier of entanglement. The obtained bounds reveal an exponential entanglement decay with the number of qubits - the robustness of the generalized GHZ states decreases exponentially with the system size. This poses a severe limitation to many quantum communication protocols. A comparison between the entanglement decay of randomly generated states with the GHZ family shows that the former decays slower, thus violating the previously obtained bounds. Furthermore, the random state's entanglement is more robust against noise for larger system size.

  2. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Bougouffa, Smail [Department of Physics, Faculty of Science, Taibah University, PO Box 30002, Madinah (Saudi Arabia)

    2010-02-14

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  3. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Zubairy, M Suhail; Bougouffa, Smail

    2010-01-01

    We investigate the phenomenon of sudden death of entanglement in a high-dimensional bipartite system subjected to dissipative environments with an arbitrary initial pure entangled state between two fields in the cavities. We find that in a vacuum reservoir, the presence of the state where one or more than one (two) photons in each cavity are present is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for infinite time and decays asymptotically with the decay of individual qubits. For pure two-qubit entangled states in a thermal environment, we observe that sudden death of entanglement always occurs. The sudden death time of the entangled states is related to the number of photons in the cavities, the temperature of the reservoir and the initial preparation of the entangled states.

  4. Pedagogical introduction to the entropy of entanglement for Gaussian states

    Science.gov (United States)

    Demarie, Tommaso F.

    2018-05-01

    In quantum information theory, the entropy of entanglement is a standard measure of bipartite entanglement between two partitions of a composite system. For a particular class of continuous variable quantum states, the Gaussian states, the entropy of entanglement can be expressed elegantly in terms of symplectic eigenvalues, elements that characterise a Gaussian state and depend on the correlations of the canonical variables. We give a rigorous step-by-step derivation of this result and provide physical insights, together with an example that can be useful in practice for calculations.

  5. Generating continuous variable optical quantum states and entanglement

    International Nuclear Information System (INIS)

    Lam, P.K.; Bowen, W.P.; Schnabel, R.; Treps, N.; Buchler, B.C.; Bachor, H.-A.; Ralph, T.C.

    2002-01-01

    Full text: Quantum information research has recently been shown to have many applications in the field of communication and information processing. Quantum states and entanglement play a central role to almost all quantum information protocols, and form the basic building blocks for larger quantum information networks. We present an overview of the research activities at the quantum optics group at the ANU relating to this area. In particular, we demonstrate technology to suppress the noise on a coherent laser beam to below that of even vacuum. This quantum state of light is called 'squeezed light'. We show experimentally that by mixing two squeezed beams on a beam splitter, a pair of Einstein-Podolsky-Rosen (EPR) entangled beams can be created. This kind of entanglement exhibits below shot noise correlations between both the phase and amplitude quandratures of two beams. Our experimental results show conclusively that our entangled beams demonstrate the famous EPR paradox

  6. Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

    Directory of Open Access Journals (Sweden)

    Ghader Najarbashi

    2011-01-01

    Full Text Available In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b^† together with bz form a closed deformed algebra, i.e., SU_q(2 with q=e^{2πi/3}, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.

  7. Teleportation of a multiqubit state by an entangled qudit channel

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 吴桂初; 郭光灿

    2003-01-01

    We investigate the problem of teleportation of an M-qubit state by using an entangled qudit pair as a quantum channe; and show that the teleportation of a multiparticle state can correspond to the teleportation of a multidimensional state.We also introduce a quantum-state converter composed of beamspliter arrays,on /off -detectors and coross-Kerr couplers and demonstrate that the stte concersion from an M-qubit to an N-dimensional qudit and vice versa can be implemented with this converter,where N=2M,Based on this ,an experimentallu feasible for the teleportation of an M-qubit via an entangl;ed N-level qudit pair channel is proposed.

  8. Remote entanglement distribution

    International Nuclear Information System (INIS)

    Sanders, B.C.; Gour, G.; Meyer, D.A.

    2005-01-01

    Full text: Shared bipartite entanglement is a crucial shared resource for many quantum information tasks such as teleportation, entanglement swapping, and remote state preparation. In general different nodes of a quantum network share an entanglement resource, such as ebits, that are consumed during the task. In practice, generating entangled states is expensive, but here we establish a protocol by which a quantum network requires only a single supplier of entanglement to all nodes who, by judicious measurements and classical communication, provides the nodes with a unique pair wise entangled state independent of the measurement outcome. Furthermore, we extend this result to a chain of suppliers and nodes, which enables an operational interpretation of concurrence. In the special case that the supplier shares bipartite states with two nodes, and such states are pure and maximally entangled, our protocol corresponds to entanglement swapping. However, in the practical case that initial shared entanglement between suppliers and nodes involves partially entangled or mixed states, we show that general local operations and classical communication by all parties (suppliers and nodes) yields distributions of entangled states between nodes. In general a distribution of bipartite entangled states between any two nodes will include states that do not have the same entanglement; thus we name this general process remote entanglement distribution. In our terminology entanglement swapping with partially entangled states is a particular class of remote entanglement distribution protocols. Here we identify which distributions of states that can or cannot be created by remote entanglement distribution. In particular we prove a powerful theorem that establishes an upper bound on the entanglement of formation that can be produced between two qubit nodes. We extend this result to the case of a linear chain of parties that play the roles of suppliers and nodes; this extension provides

  9. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  10. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity

    Science.gov (United States)

    Cardoso B., W.; Almeida G. de, N.

    2008-07-01

    We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.

  11. Faithful teleportation with partially entangled states

    International Nuclear Information System (INIS)

    Gour, Gilad

    2004-01-01

    We write explicitly a general protocol for faithful teleportation of a d-state particle (qudit) via a partially entangled pair of (pure) n-state particles. The classical communication cost (CCC) of the protocol is log 2 (nd) bits, and it is implemented by a projective measurement performed by Alice, and a unitary operator performed by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a comparison with the concentrate and teleport strategy. We also show that if d>n/2, or if there is no residual entanglement left after the faithful teleportation, the CCC of any protocol is at least log 2 (nd) bits. Furthermore, we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local operation and classical communication

  12. Entanglement spectrum and boundary theories with projected entangled-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Cirac, Ignacio [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Poilblanc, Didier [Laboratoire de Physique Theorique, C.N.R.S. and Universite de Toulouse, Toulouse (France); Schuch, Norbert [California Institute of Technology, Pasadena, CA (United States); Verstraete, Frank [Vienna Univ. (Austria)

    2012-07-01

    In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various models and find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary.

  13. An entanglement concentration protocol for cluster states using ...

    Indian Academy of Sciences (India)

    Permanent link: http://www.ias.ac.in/article/fulltext/pram/086/05/0973-0983 ... The purpose of this paper is a proposal on entanglement concentration protocol forcluster states. The protocol ... We also make a comparative numerical study of the residual entanglement left out after the execution of each step of the protocol.

  14. Relative entropy as a measure of entanglement for Gaussian states

    Institute of Scientific and Technical Information of China (English)

    Lu Huai-Xin; Zhao Bo

    2006-01-01

    In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example,the relative entanglement for a two-mode squeezed thermal state has been obtained.

  15. Entanglement concentration for two-mode Gaussian states in non-inertial frames

    International Nuclear Information System (INIS)

    Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco

    2017-01-01

    Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case. (paper)

  16. Entanglement in Solid-State Nanostructures

    NARCIS (Netherlands)

    Bodoky, F.

    2009-01-01

    The goal of this thesis is to investigate theoretically the generation and behaviour of multipartite entanglement for solid-state nanosystems, in particular electron spin quantum bits (so-called 'qubits') in quantum dots. A quantum dot is a tiny potential well where a single electron can be trapped.

  17. Entanglement Generation with Deformed Barut-Girardello Coherent States as Input States in a Unitary Beam Splitter

    International Nuclear Information System (INIS)

    Berrada, K.; Benmoussa, A.; Hassouni, Y.

    2010-07-01

    Using linear entropy as a measure of entanglement, we investigate the entanglement generated via a beam splitter using deformed Barut-Girardello coherent states. We show that the degree of entanglement depends strongly on the q-deformation parameter and amplitude Z of the states. We compute the Mandel Q parameter to examine the quantum statistical properties of these coherent states and make a comparison with the Glauber coherent states. It is shown that these states are useful to describe the states of real and ideal lasers by a proper choice of their characterizing parameters, using an alteration of the Holstein-Primakoff realization. (author)

  18. Quantum entanglement and nonlocality properties of two-mode Gaussian squeezed states

    International Nuclear Information System (INIS)

    Shao-Hua, Xiang; Bin, Shao; Ke-Hui, Song

    2009-01-01

    Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values. (general)

  19. Entanglement and Teleportation of Pair Cat States in Amplitude Decoherence Channel

    International Nuclear Information System (INIS)

    Xu Hangshi; Xu Jingbo

    2009-01-01

    The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.

  20. Bell's inequalities for three-qubit entangled states with white noise

    International Nuclear Information System (INIS)

    Chang, Jinho; Kwon, Younghun

    2009-01-01

    We consider three-qubit entangled states classified by Acin et al. and evaluate Bell's inequalities for them when the white noise exists, which may be a real situation for the experiment of the Bells inequality to three-qubit entangled states. We obtain the maximum violation for the Bell inequality in each case and find the condition for exceeding the classical limit. And we observe that even when there would exist quite amount of white noise, some of three-qubit entangled states(for example 2b, 3a, 3b-I, 3b-II and 3b-III types) might show the violation of the Bell inequality.

  1. Fast entanglement detection for unknown states of two spatial qutrits

    International Nuclear Information System (INIS)

    Lima, G.; Gomez, E. S.; Saavedra, C.; Vargas, A.; Vianna, R. O.

    2010-01-01

    We investigate the practicality of the method proposed by Maciel et al. [Phys. Rev. A. 80, 032325 (2009).] for detecting the entanglement of two spatial qutrits (three-dimensional quantum systems), which are encoded in the discrete transverse momentum of single photons transmitted through a multislit aperture. The method is based on the acquisition of partial information of the quantum state through projective measurements, and a data processing analysis done with semidefinite programs. This analysis relies on generating gradually an optimal entanglement witness operator, and numerical investigations have shown that it allows for the entanglement detection of unknown states with a cost much lower than full state tomography.

  2. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2006-01-01

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed

  3. Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo; Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita degli Studi di Salerno (Italy); CNISM and CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno (Italy); Via S Allende, 84081 Baronissi, SA (Italy)

    2006-01-15

    For continuous-variable (CV) systems, we introduce a measure of entanglement, the CV tangle (contangle), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex-roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three-mode Gaussian states, and in all fully symmetric N-mode Gaussian states, for arbitrary N. For three-mode pure states, we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We show that pure, symmetric three-mode Gaussian states allow a promiscuous entanglement sharing, having both maximum tripartite residual entanglement and maximum couplewise entanglement between any pair of modes. These states are thus simultaneous CV analogues of both the GHZ and the W states of three qubits: in CV systems monogamy does not prevent promiscuity, and the inequivalence between different classes of maximally entangled states, holding for systems of three or more qubits, is removed.

  4. Operational classification and quantification of multipartite entangled states

    International Nuclear Information System (INIS)

    Rigolin, Gustavo; Oliveira, Thiago R. de; Oliveira, Marcos C. de

    2006-01-01

    We formalize and extend an operational multipartite entanglement measure introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A 73, 010305(R) (2006), through the generalization of global entanglement (GE) [D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to GE the main feature of this measure lies in the fact that we study the mean linear entropy of all possible partitions of a multipartite system. This allows the construction of an operational multipartite entanglement measure which is able to distinguish among different multipartite entangled states that GE failed to discriminate. Furthermore, it is also maximum at the critical point of the Ising chain in a transverse magnetic field, being thus able to detect a quantum phase transition

  5. Partial recovery of entanglement in bipartite-entanglement transformations

    International Nuclear Information System (INIS)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani; Vatan, Farrokh

    2002-01-01

    Any deterministic bipartite-entanglement transformation involving finite copies of pure states and carried out using local operations and classical communication (LOCC) results in a net loss of entanglement. We show that for almost all such transformations, partial recovery of lost entanglement is achievable by using 2x2 auxiliary entangled states, no matter how large the dimensions of the parent states are. For the rest of the special cases of deterministic LOCC transformations, we show that the dimension of the auxiliary entangled state depends on the presence of equalities in the majorization relations of the parent states. We show that genuine recovery is still possible using auxiliary states in dimensions less than that of the parent states for all patterns of majorization relations except only one special case

  6. Completely mixed state is a critical point for three-qubit entanglement

    International Nuclear Information System (INIS)

    Tamaryan, Sayatnova

    2011-01-01

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  7. Completely mixed state is a critical point for three-qubit entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaryan, Sayatnova, E-mail: sayat@mail.yerphi.am [Department of Theoretical Physics, A. Alikhanyan National Laboratory, Yerevan (Armenia)

    2011-06-06

    Pure three-qubit states have five algebraically independent and one algebraically dependent polynomial invariants under local unitary transformations and an arbitrary entanglement measure is a function of these six invariants. It is shown that if the reduced density operator of a some qubit is a multiple of the unit operator, than the geometric entanglement measure of the pure three-qubit state is absolutely independent of the polynomial invariants and is a constant for such tripartite states. Hence a one-particle completely mixed state is a critical point for the geometric measure of entanglement. -- Highlights: → Geometric measure of pure three-qubits is expressed in terms of polynomial invariants. → When one Bloch vector is zero the measure is independent of the remaining invariants. → Hence a one-particle completely mixed state is a critical point for the geometric measure. → The existence of the critical points is an inherent feature of the entanglement.

  8. Novel Schemes for Measurement-Based Quantum Computation

    International Nuclear Information System (INIS)

    Gross, D.; Eisert, J.

    2007-01-01

    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics--based on finitely correlated or projected entangled pair states--to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems

  9. Novel schemes for measurement-based quantum computation.

    Science.gov (United States)

    Gross, D; Eisert, J

    2007-06-01

    We establish a framework which allows one to construct novel schemes for measurement-based quantum computation. The technique develops tools from many-body physics-based on finitely correlated or projected entangled pair states-to go beyond the cluster-state based one-way computer. We identify resource states radically different from the cluster state, in that they exhibit nonvanishing correlations, can be prepared using nonmaximally entangling gates, or have very different local entanglement properties. In the computational models, randomness is compensated in a different manner. It is shown that there exist resource states which are locally arbitrarily close to a pure state. We comment on the possibility of tailoring computational models to specific physical systems.

  10. Maximal violation of Clauser-Horne-Shimony-Holt inequality for four-level systems

    International Nuclear Information System (INIS)

    Fu Libin; Chen Jingling; Chen Shigang

    2004-01-01

    Clauser-Horne-Shimony-Holt inequality for bipartite systems of four dimensions is studied in detail by employing the unbiased eight-port beam splitters measurements. The uniform formulas for the maximum and minimum values of this inequality for such measurements are obtained. Based on these formulas, we show that an optimal nonmaximally entangled state is about 6% more resistant to noise than the maximally entangled one. We also give the optimal state and the optimal angles which are important for experimental realization

  11. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  12. Entanglement entropy of excited states

    International Nuclear Information System (INIS)

    Alba, Vincenzo; Fagotti, Maurizio; Calabrese, Pasquale

    2009-01-01

    We study the entanglement entropy of a block of contiguous spins in excited states of spin chains. We consider the XY model in a transverse field and the XXZ Heisenberg spin chain. For the latter, we developed a numerical application of the algebraic Bethe ansatz. We find two main classes of states with logarithmic and extensive behavior in the dimension of the block, characterized by the properties of excitations of the state. This behavior can be related to the locality properties of the Hamiltonian having a given state as the ground state. We also provide several details of the finite size scaling

  13. Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State

    Science.gov (United States)

    Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-06-01

    Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.

  14. Entangled Coherent States Generation in two Superconducting LC Circuits

    International Nuclear Information System (INIS)

    Chen Meiyu; Zhang Weimin

    2008-01-01

    We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.

  15. Sudden birth versus sudden death of entanglement for the extended Werner-like state in a dissipative environment

    International Nuclear Information System (INIS)

    Chuan-Jia, Shan; Tao, Chen; Ji-Bing, Liu; Wei-Wen, Cheng; Tang-Kun, Liu; Yan-Xia, Huang; Hong, Li

    2010-01-01

    In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival. (general)

  16. Quantum states and their marginals. From multipartite entanglement to quantum error-correcting codes

    International Nuclear Information System (INIS)

    Huber, Felix Michael

    2017-01-01

    At the heart of the curious phenomenon of quantum entanglement lies the relation between the whole and its parts. In my thesis, I explore different aspects of this theme in the multipartite setting by drawing connections to concepts from statistics, graph theory, and quantum error-correcting codes: first, I address the case when joint quantum states are determined by their few-body parts and by Jaynes' maximum entropy principle. This can be seen as an extension of the notion of entanglement, with less complex states already being determined by their few-body marginals. Second, I address the conditions for certain highly entangled multipartite states to exist. In particular, I present the solution of a long-standing open problem concerning the existence of an absolutely maximally entangled state on seven qubits. This sheds light on the algebraic properties of pure quantum states, and on the conditions that constrain the sharing of entanglement amongst multiple particles. Third, I investigate Ulam's graph reconstruction problems in the quantum setting, and obtain legitimacy conditions of a set of states to be the reductions of a joint graph state. Lastly, I apply and extend the weight enumerator machinery from quantum error correction to investigate the existence of codes and highly entangled states in higher dimensions. This clarifies the physical interpretation of the weight enumerators and of the quantum MacWilliams identity, leading to novel applications in multipartite entanglement.

  17. Generalizing entanglement

    Science.gov (United States)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  18. Generating entangled states of continuous variables via cross-Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2007-05-28

    We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.

  19. Entanglement between total intensity and polarization for pairs of coherent states

    Science.gov (United States)

    Sanchidrián-Vaca, Carlos; Luis, Alfredo

    2018-04-01

    We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.

  20. Entanglement detection

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Institut fuer theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)], E-mail: otfried.guehne@uibk.ac.at; Toth, Geza [Department of Theoretical Physics, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Ikerbasque-Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao (Spain); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2009-04-15

    How can one prove that a given quantum state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given to the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

  1. Arbitrated quantum signature scheme based on χ-type entangled states

    International Nuclear Information System (INIS)

    Zuo, Huijuan; Huang, Wei; Qin, Sujuan

    2013-01-01

    An arbitrated quantum signature scheme, which is mainly applied in electronic-payment systems, is proposed and investigated. The χ-type entangled states are used for quantum key distribution and quantum signature in this protocol. Compared with previous quantum signature schemes which also utilize χ-type entangled states, the proposed scheme provides higher efficiency. Finally, we also analyze its security under various kinds of attacks. (paper)

  2. Experimental Entanglement Distribution by Separable States

    Science.gov (United States)

    Vollmer, Christina E.; Schulze, Daniela; Eberle, Tobias; Händchen, Vitus; Fiurášek, Jaromír; Schnabel, Roman

    2013-12-01

    Distribution of entanglement between macroscopically separated parties is crucial for future quantum information networks. Surprisingly, it has been theoretically shown that two distant systems can be entangled by sending a third system that is not entangled with either of them. Here, we experimentally distribute entanglement and successfully prove that our transmitted light beam is indeed not entangled with the parties’ local systems. Our work demonstrates an unexpected variant of entanglement distribution and improves the understanding necessary to engineer multipartite quantum networks.

  3. Emergence of entanglement with temperature and time in factorization-surface states

    Science.gov (United States)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2018-01-01

    There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.

  4. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    Czech Academy of Sciences Publication Activity Database

    Bartkiewicz, K.; Lemr, K.; Černoch, Antonín; Miranowicz, A.

    2017-01-01

    Roč. 95, č. 3 (2017), s. 1-7, č. článku 030102. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : Bell nonlocality * fully entangled fraction * entanglement-swapping device * quantum state tomography Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016

  5. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation of Continuous Variables

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong-Chun; QI Kai-Guo

    2005-01-01

    We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.

  6. Optimal quantum error correcting codes from absolutely maximally entangled states

    Science.gov (United States)

    Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio

    2018-02-01

    Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \

  7. Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states

    Energy Technology Data Exchange (ETDEWEB)

    Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, A-6020 Innsbruck (Austria); Luetkenhaus, Norbert [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada)

    2007-05-15

    Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.

  8. Relationship between squeezing and entangled state transformations

    CERN Document Server

    Fan Hong Yi

    2003-01-01

    We show that c-number dilation transform in the Einstein-Podolsky-Rosen (EPR) entangled state, i.e. vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 , eta sub 2 /mu) (or vertical bar eta sub 1 , eta sub 2) -> vertical bar eta sub 1 /mu, eta sub 2)), maps onto a kind of one-sided two-mode squeezing operator exp left brace i lambda/2(P sub 1 + P sub 2)(Q sub 1 + Q sub 2) - lambda/2 right brace, (or exp left brace i lambda/2(P sub 1 - P sub 2)(Q sub 1 - Q sub 2) - lambda/2 right brace). Using the IWOP technique, we derive their normally ordered form and construct the corresponding squeezed states. In doing so, some new relationship between squeezing and entangled state transformation is revealed. The dynamic Hamiltonian for such a kind of squeezing evolution is derived. The properties and application of the one-sided squeezed state are briefly discussed. These states can also be obtained with the use of a beam splitter.

  9. Maximally entangled mixed states of two atoms trapped inside an optical cavity

    International Nuclear Information System (INIS)

    Li Shangbin; Xu Jingbo

    2009-01-01

    In some off-resonant cases, the reduced density matrix of two atoms symmetrically coupled with an optical cavity can very approximately approach maximally entangled mixed states or maximal Bell violation mixed states in their evolution. The influence of a phase decoherence on the generation of a maximally entangled mixed state is also discussed

  10. Nonlinear Entanglement and its Application to Generating Cat States

    Science.gov (United States)

    Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.

    2015-03-01

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  11. Efficient entanglement purification for polarization logic Bell state with the photonic Faraday rotation

    OpenAIRE

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Logic-qubit entanglement is a promising resource in quantum information processing, especially in future large-scale quantum networks. In the paper, we put forward an efficient entanglement purification protocol (EPP) for nonlocal mixed logic entangled states with the bit-flip error in the logic qubits of the logic Bell state, resorting to the photon-atom interaction in low-quality (Q) cavity and atomic state measurement. Different from existing EPPs, this protocol can also purify the logic p...

  12. Charcterization of multipartite entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Bo

    2006-06-23

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle {tau}{sup (T)} to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle {tau}{sup (T)} from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  13. Charcterization of multipartite entanglement

    International Nuclear Information System (INIS)

    Chong, Bo

    2006-01-01

    In this thesis, we discuss several aspects of the characterization of entanglement in multipartite quantum systems, including detection, classification and quantification of entanglement. First, we discuss triqubit pure entanglement and propose a special true tripartite entanglement, the mixed entanglement, besides the Greenberger-Horne-Zeilinger (GHZ) entanglement and the W entanglement. Then, based on quantitative complementarity relations, we draw entanglement Venn diagrams for triqubit pure states with different entanglements and introduce the total tangle τ (T) to quantify total entanglement of triqubit pure states by defining the union I that is equivalent to the total tangle τ (T) from the mathematical point of view. The generalizations of entanglement Venn diagrams and the union I to N-qubit pure states are also discussed. Finally, based on the ranks of reduced density matrices, we discuss the separability of multiparticle arbitrary-dimensional pure and mixed states, respectively. (orig.)

  14. Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers

    International Nuclear Information System (INIS)

    Fei, Wang; Xiang-Ming, Hu; Wen-Xing, Shi

    2009-01-01

    It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime. (general)

  15. Tensor Renormalization of Quantum Many-Body Systems Using Projected Entangled Simplex States

    Directory of Open Access Journals (Sweden)

    Z. Y. Xie

    2014-02-01

    Full Text Available We propose a new class of tensor-network states, which we name projected entangled simplex states (PESS, for studying the ground-state properties of quantum lattice models. These states extend the pair-correlation basis of projected entangled pair states to a simplex. PESS are exact representations of the simplex solid states, and they provide an efficient trial wave function that satisfies the area law of entanglement entropy. We introduce a simple update method for evaluating the PESS wave function based on imaginary-time evolution and the higher-order singular-value decomposition of tensors. By applying this method to the spin-1/2 antiferromagnetic Heisenberg model on the kagome lattice, we obtain accurate and systematic results for the ground-state energy, which approach the lowest upper bounds yet estimated for this quantity.

  16. Entanglement branching operator

    Science.gov (United States)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  17. Multiple-copy entanglement transformation and entanglement catalysis

    International Nuclear Information System (INIS)

    Duan Runyao; Feng Yuan; Li Xin; Ying Mingsheng

    2005-01-01

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarily large number of copies of state should be considered in multiple-copy entanglement transformations

  18. Entropy of entangled states and SU(1,1) and SU(2) symmetries

    International Nuclear Information System (INIS)

    Santana, A.E.; Khanna, F.C.; Revzen, M.

    2002-01-01

    Based on a recent definition of a measure for entanglement [Plenio and Vedral, Contemp. Phys. 39, 431 (1998)], examples of maximum entangled states are presented. The construction of such states, which have symmetry SU(1,1) and SU(2), follows the guidance of thermofield dynamics formalism

  19. Projected entangled pair states: status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, Frank [Universitaet Wien (Austria)

    2008-07-01

    We report on the progress made to extend the density matrix renormalization group to higher dimensions, discuss the underlying theory of projected entangled pair states (PEPS) and illustrate its potential on the hand of a few examples.

  20. Teleportation via thermally entangled states of a two-qubit Heisenberg XXZ chain

    Institute of Scientific and Technical Information of China (English)

    QIN Meng; TAO Ying-Juan; TIAN Dong-Ping

    2008-01-01

    We investigate quantum teleportation as a tool to study the thermally entangled state of a twoqubit Heisenberg XXZ chain.Our work is mainly to investigate the characteristics of a Heisenberg XXZ chain and get some analytical results of the fully entangled fraction.We also consider the entanglement teleportation via a two-qubit Heisenberg XXZ chain.

  1. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling

    Science.gov (United States)

    Singh, Harpreet; Arvind, Dorai, Kavita

    2018-02-01

    We embarked upon the task of experimental protection of different classes of tripartite entangled states, namely, the maximally entangled Greenberger-Horne-Zeilinger (GHZ) and W states and the tripartite entangled state called the W W ¯ state, using dynamical decoupling. The states were created on a three-qubit NMR quantum information processor and allowed to evolve in the naturally noisy NMR environment. Tripartite entanglement was monitored at each time instant during state evolution, using negativity as an entanglement measure. It was found that the W state is most robust while the GHZ-type states are most fragile against the natural decoherence present in the NMR system. The W W ¯ state, which is in the GHZ class yet stores entanglement in a manner akin to the W state, surprisingly turned out to be more robust than the GHZ state. The experimental data were best modeled by considering the main noise channel to be an uncorrelated phase damping channel acting independently on each qubit, along with a generalized amplitude damping channel. Using dynamical decoupling, we were able to achieve a significant protection of entanglement for GHZ states. There was a marginal improvement in the state fidelity for the W state (which is already robust against natural system decoherence), while the W W ¯ state showed a significant improvement in fidelity and protection against decoherence.

  2. Quantitative measures of entanglement in pair-coherent states

    International Nuclear Information System (INIS)

    Agarwal, G S; Biswas, Asoka

    2005-01-01

    The pair-coherent states for a two-mode radiation field are known to belong to a family of states with non-Gaussian wavefunction. The nature of quantum entanglement between the two modes and some features of non-classicality are studied for such states. The existing criterion for inseparability are examined in the context of pair-coherent states

  3. Multi-state Quantum Teleportation via One Entanglement State

    International Nuclear Information System (INIS)

    Guo Ying; Zeng Guihua; Lee, Moon Ho

    2008-01-01

    A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein-Podolsky-Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes

  4. Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems

    Science.gov (United States)

    Abdul-Rahman, Houssam

    2018-03-01

    For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.

  5. Genus one super-Green function revisited and superstring amplitudes with non-maximal supersymmetry

    International Nuclear Information System (INIS)

    Itoyama, H.; Yano, Kohei

    2016-01-01

    We reexamine genus one super-Green functions with general boundary conditions twisted by (α,β) for (σ,τ) directions in the eigenmode expansion and derive expressions as infinite series of hypergeometric functions. Using these, we compute one-loop superstring amplitudes with non-maximal supersymmetry, taking the example of massless vector emissions of open string type I Z 2 orbifold

  6. The study of entanglement and teleportation of the harmonic oscillator bipartite coherent states

    Directory of Open Access Journals (Sweden)

    A Rabeie and

    2015-01-01

    Full Text Available In this paper, we reproduce the harmonic oscillator bipartite coherent states with imperfect cloning of coherent states. We show that if these entangled coherent states are embedded in a vacuum environment, their entanglement is degraded but not totally lost . Also, the optimal fidelity of these states is worked out for investigating their teleportation

  7. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  8. Bell-inequality tests with macroscopic entangled states of light

    Energy Technology Data Exchange (ETDEWEB)

    Stobinska, M. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Theoretical Physics II, Erlangen-Nuernberg University, Erlangen (Germany); Sekatski, P.; Gisin, N. [Group of Applied Physics, University of Geneva, Geneva (Switzerland); Buraczewski, A. [Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw (Poland); Leuchs, G. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Optics, Information and Photonics, Erlangen-Nuernberg University, Erlangen (Germany)

    2011-09-15

    Quantum correlations may violate the Bell inequalities. Most experimental schemes confirming this prediction have been realized in all-optical Bell tests suffering from the detection loophole. Experiments which simultaneously close this loophole and the locality loophole are highly desirable and remain challenging. An approach to loophole-free Bell tests is based on amplification of the entangled photons (i.e., on macroscopic entanglement), for which an optical signal should be easy to detect. However, the macroscopic states are partially indistinguishable by classical detectors. An interesting idea to overcome these limitations is to replace the postselection by an appropriate preselection immediately after the amplification. This is in the spirit of state preprocessing revealing hidden nonlocality. Here, we examine one of the possible preselections, but the presented tools can be used for analysis of other schemes. Filtering methods making the macroscopic entanglement useful for Bell tests and quantum protocols are the subject of an intensive study in the field nowadays.

  9. Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Parashar, Preeti; Rana, Swapan

    2011-01-01

    We calculate the analytic expression for geometric measure of entanglement for arbitrary superposition of two N-qubit canonical orthonormal Greenberger-Horne-Zeilinger (GHZ) states and the same for two W states. In the course of characterizing all kinds of nonclassical correlations, an explicit formula for quantum discord (via relative entropy) for the former class of states has been presented. Contrary to the GHZ state, the closest separable state to the W state is not classical. Therefore, in this case, the discord is different from the relative entropy of entanglement. We conjecture that the discord for the N-qubit W state is log 2 N.

  10. Do all pure entangled states violate Bell's inequalities for correlation functions?

    Science.gov (United States)

    Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin

    2002-05-27

    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.

  11. Entanglement negativity bounds for fermionic Gaussian states

    Science.gov (United States)

    Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán

    2018-04-01

    The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.

  12. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  13. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  14. Entanglement revival can occur only when the system-environment state is not a Markov state

    Science.gov (United States)

    Sargolzahi, Iman

    2018-06-01

    Markov states have been defined for tripartite quantum systems. In this paper, we generalize the definition of the Markov states to arbitrary multipartite case and find the general structure of an important subset of them, which we will call strong Markov states. In addition, we focus on an important property of the Markov states: If the initial state of the whole system-environment is a Markov state, then each localized dynamics of the whole system-environment reduces to a localized subdynamics of the system. This provides us a necessary condition for entanglement revival in an open quantum system: Entanglement revival can occur only when the system-environment state is not a Markov state. To illustrate (a part of) our results, we consider the case that the environment is modeled as classical. In this case, though the correlation between the system and the environment remains classical during the evolution, the change of the state of the system-environment, from its initial Markov state to a state which is not a Markov one, leads to the entanglement revival in the system. This shows that the non-Markovianity of a state is not equivalent to the existence of non-classical correlation in it, in general.

  15. Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.

    Science.gov (United States)

    Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán

    2009-10-16

    We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.

  16. Inefficiency and classical communication bounds for conversion between partially entangled pure bipartite states

    International Nuclear Information System (INIS)

    Fortescue, Ben; Lo, H.-K.

    2005-01-01

    We derive lower limits on the inefficiency and classical communication costs of dilution between two-term bipartite pure states that are partially entangled. We first calculate explicit relations between the allowable error and classical communication costs of entanglement dilution using a previously described protocol, then consider a two-stage dilution from singlets with this protocol followed by some unknown protocol for conversion between partially entangled states. Applying overall lower bounds on classical communication and inefficiency to this two-stage protocol, we derive bounds for the unknown protocol. In addition we derive analogous (but looser) bounds for general pure states

  17. Strong violations of Bell-type inequalities for path-entangled number states

    International Nuclear Information System (INIS)

    Wildfeuer, Christoph F.; Dowling, Jonathan P.; Lund, Austin P.

    2007-01-01

    We show that nonlocal correlation experiments on the two spatially separated modes of a maximally path-entangled number state may be performed. They lead to a violation of a Clauser-Horne Bell inequality for any finite photon number N. We also present an analytical expression for the two-mode Wigner function of a maximally path-entangled number state and investigate a Clauser-Horne-Shimony-Holt Bell inequality for such a state. We test other Bell-type inequalities. Some are violated by a constant amount for any N

  18. Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jia-Qiang; Cao, Lian-Zhen; Wang, Xiao-Qin [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China); Lu, Huai-Xin, E-mail: huaixinlu@yahoo.cn [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China)

    2012-07-16

    We investigate theoretically and experimentally the tripartite entanglement defined by V. Coffman [Phys. Rev. A 61 (2000) 052306] and nonlocality expressed by the Mermin inequality [Phys. Rev. Lett. 65 (1990) 1838] in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. Using our GGHZ states with fidelity ∼0.84, we demonstrate experimentally the theoretical results of tripartite entanglement and the Mermin theorem successfully. It is shown that the experimental results are in good agreement with the theoretical predictions. -- Highlights: ► We theoretically calculated the tripartite entanglement and expressed the expectation value of Mermin operator in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. ► We demonstrate experimentally the theoretical results of tripartite entanglement and Mermin theorem successfully. ► The unique relationship between tripartite entanglement and tripartite nonlocality in GGHZ states have been shown.

  19. Experimental investigation of tripartite entanglement and nonlocality in three-qubit generalized Greenberger–Horne–Zeilinger states

    International Nuclear Information System (INIS)

    Zhao, Jia-Qiang; Cao, Lian-Zhen; Wang, Xiao-Qin; Lu, Huai-Xin

    2012-01-01

    We investigate theoretically and experimentally the tripartite entanglement defined by V. Coffman [Phys. Rev. A 61 (2000) 052306] and nonlocality expressed by the Mermin inequality [Phys. Rev. Lett. 65 (1990) 1838] in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. Using our GGHZ states with fidelity ∼0.84, we demonstrate experimentally the theoretical results of tripartite entanglement and the Mermin theorem successfully. It is shown that the experimental results are in good agreement with the theoretical predictions. -- Highlights: ► We theoretically calculated the tripartite entanglement and expressed the expectation value of Mermin operator in three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states. ► We demonstrate experimentally the theoretical results of tripartite entanglement and Mermin theorem successfully. ► The unique relationship between tripartite entanglement and tripartite nonlocality in GGHZ states have been shown.

  20. On-chip generation of high-dimensional entangled quantum states and their coherent control.

    Science.gov (United States)

    Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto

    2017-06-28

    Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.

  1. Analysis of elliptically polarized maximally entangled states for bell inequality tests

    Science.gov (United States)

    Martin, A.; Smirr, J.-L.; Kaiser, F.; Diamanti, E.; Issautier, A.; Alibart, O.; Frey, R.; Zaquine, I.; Tanzilli, S.

    2012-06-01

    When elliptically polarized maximally entangled states are considered, i.e., states having a non random phase factor between the two bipartite polarization components, the standard settings used for optimal violation of Bell inequalities are no longer adapted. One way to retrieve the maximal amount of violation is to compensate for this phase while keeping the standard Bell inequality analysis settings. We propose in this paper a general theoretical approach that allows determining and adjusting the phase of elliptically polarized maximally entangled states in order to optimize the violation of Bell inequalities. The formalism is also applied to several suggested experimental phase compensation schemes. In order to emphasize the simplicity and relevance of our approach, we also describe an experimental implementation using a standard Soleil-Babinet phase compensator. This device is employed to correct the phase that appears in the maximally entangled state generated from a type-II nonlinear photon-pair source after the photons are created and distributed over fiber channels.

  2. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  3. Multipartite entanglement gambling: The power of asymptotic state transformations assisted by a sublinear amount of quantum communication

    International Nuclear Information System (INIS)

    Thapliyal, Ashish V.; Smolin, John A.

    2003-01-01

    Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m≥2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (vertical bar 0 xm >+vertical bar 1 xm >) may be distilled

  4. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  5. Local Hamiltonians for maximally multipartite-entangled states

    Science.gov (United States)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-10-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  6. Local Hamiltonians for maximally multipartite-entangled states

    International Nuclear Information System (INIS)

    Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.

    2010-01-01

    We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.

  7. Mutual preservation of entanglement

    International Nuclear Information System (INIS)

    Veitia, Andrzej; Jing, Jun; Yu, Ting; Wong, Chee Wei

    2012-01-01

    We study a generalized double Jaynes–Cummings (JC) model where two entangled pairs of two-level atoms interact indirectly. We show that there exist initial states of the qubit system so that two entangled pairs are available at all times. In particular, the minimum entanglement in the pairs as a function of the initial state is studied. Finally, we extend our findings to a model consisting of multi-mode atom–cavity interactions. We use a non-Markovian quantum state diffusion (QSD) equation to obtain the steady-state density matrix for the qubits. We show that the multi-mode model also displays dynamical preservation of entanglement. -- Highlights: ► Entanglement dynamics is studied in a generalized double Jaynes–Cummings model. ► We show that for certain initial states, the atoms remain entangled at all times. ► We extend the results to the case of multi-mode atom–cavity interactions. ► The model suggest that indirect interaction may help to preserve entanglement.

  8. Proposal for demonstration of long-range cluster state entanglement in the presence of photon loss

    Directory of Open Access Journals (Sweden)

    Thomas Nutz

    2017-06-01

    Full Text Available Photonic cluster states are a crucial resource for optical quantum computing. Recently a quantum dot single photon source has been demonstrated to produce strings of single photons in a small linear cluster state. Sources of this kind could produce much larger cluster states, but high photon loss rates make it impossible to characterize the entanglement generated by quantum state tomography. We present a benchmarking method for such sources that can be used to demonstrate useful long-range entanglement with currently available collection/detection efficiencies below 1%. The measurement of the polarization state of single photons in different bases can provide an estimate for the three-qubit correlation function ⟨ZXZ⟩. This value constrains correlations spanning more than three qubits, which in turn provide a lower bound for the localizable entanglement between any two qubits in the large state produced by the source. Finite localizable entanglement can be established by demonstrating ⟨ZXZ⟩>23. This result enables photonic experiments demonstrating computationally useful entanglement with currently available technology.

  9. Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states.

    Science.gov (United States)

    Ghose, S; Sinclair, N; Debnath, S; Rungta, P; Stock, R

    2009-06-26

    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.

  10. Experimental test of entangled histories

    Science.gov (United States)

    Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong

    2017-12-01

    Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.

  11. Quantum Enhanced Imaging by Entangled States

    Science.gov (United States)

    2009-07-01

    Zeilinger (GHZ) class and the W class. The GHZ-like entangled state 1,1,1 and the W-like state 2,1 were studied during the course of the QSP Program...D. M. Greenberger, M. Horne and A. Zeilinger , in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Daniell, H. Weinfurter, and A. Zeilinger , Phys. Rev. Lett. 82,1345 (1999); Z. Zhao, T. Yang, Y.-A. Chen, A.-N. Zhang, M. Zukowski, and J.-W. Pan, Phys

  12. Renormalizing Entanglement Distillation

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  13. Reply to the comment on "Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate |eta) 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.)"

    CERN Document Server

    Fan, H

    2003-01-01

    We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)

  14. On bipartite pure-state entanglement structure in terms of disentanglement

    Science.gov (United States)

    Herbut, Fedor

    2006-12-01

    Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.

  15. Loss-induced limits to phase measurement precision with maximally entangled states

    International Nuclear Information System (INIS)

    Rubin, Mark A.; Kaushik, Sumanth

    2007-01-01

    The presence of loss limits the precision of an approach to phase measurement using maximally entangled states, also referred to as NOON states. A calculation using a simple beam-splitter model of loss shows that, for all nonzero values L of the loss, phase measurement precision degrades with increasing number N of entangled photons for N sufficiently large. For L above a critical value of approximately 0.785, phase measurement precision degrades with increasing N for all values of N. For L near zero, phase measurement precision improves with increasing N down to a limiting precision of approximately 1.018L radians, attained at N approximately equal to 2.218/L, and degrades as N increases beyond this value. Phase measurement precision with multiple measurements and a fixed total number of photons N T is also examined. For L above a critical value of approximately 0.586, the ratio of phase measurement precision attainable with NOON states to that attainable by conventional methods using unentangled coherent states degrades with increasing N, the number of entangled photons employed in a single measurement, for all values of N. For L near zero this ratio is optimized by using approximately N=1.279/L entangled photons in each measurement, yielding a precision of approximately 1.340√(L/N T ) radians

  16. All pure bipartite entangled states can be self-tested

    Science.gov (United States)

    Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio

    2017-05-01

    Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.

  17. Success rate and entanglement measure in Grover's search algorithm for certain kinds of four qubit states

    International Nuclear Information System (INIS)

    Chamoli, Arti; Bhandari, C.M.

    2005-01-01

    Entanglement plays a crucial role in the efficacy of quantum algorithms. Whereas the role of entanglement is quite obvious and conspicuous in teleportation and superdense coding, it is not so distinct in other situations such as in search algorithm. The starting state in Grover's search algorithm is supposedly a uniform superposition state (not entangled) with a success probability around unity. An operational entanglement measure has been defined and investigated analytically for two qubit states [O. Biham, M.A. Neilsen, T. Osborne, Phys. Rev. A 65 (2002) 062312, Y. Shimoni, D. Shapira, O. Biham, Phys. Rev. A 69 (2004) 062303] seeking a relationship with the success rate of search algorithm. This Letter examines the success rate of search algorithm for various four-qubit states. Analytic expressions for the same have been worked out which can provide the success rate and entanglement measure for certain kinds of four qubit input states

  18. Quantum communication network utilizing quadripartite entangled states of optical field

    International Nuclear Information System (INIS)

    Shen Heng; Su Xiaolong; Jia Xiaojun; Xie Changde

    2009-01-01

    We propose two types of quantum dense coding communication networks with optical continuous variables, in which a quadripartite entangled state of the optical field with totally three-party correlations of quadrature amplitudes is utilized. In the networks, the exchange of information between any two participants can be manipulated by one or two of the remaining participants. The channel capacities for a variety of communication protocols are numerically calculated. Due to the fact that the quadripartite entangled states applied in the communication systems have been successfully prepared already in the laboratory, the proposed schemes are experimentally accessible at present.

  19. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  20. Dissipative entanglement swapping in the presence of detuning and Kerr medium: Bell state measurement method

    Science.gov (United States)

    Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.

    2017-12-01

    In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.

  1. Simplified Scheme for Teleportation of a Multipartite Quantum State Using a Single Entangled Pair

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Hua; GAO Yun-Feng

    2009-01-01

    A simple scheme for teleporting an unknown M-qubit cat-like state is proposed.The steps of this scheme can be summarized simpIy: disentangle-teleport-reconstruct entanglement.If proper unitary operations and measurements from senders are given, the teleportation of an unknown M-qubit cat-like state can be converted into single qubit teleportation.In the meantime, the receiver should also carry out right unitary operations with the introduction of appropriate ancillary qubits to confirm the successful teleportation of the demanded entangled state.The present scheme can be generalized to teleport an unknown M-quNit state, i.e., an M-quNit state can be teleported by a single quNit entangled pair.

  2. Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2008-10-01

    We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong

  3. Three-party quantum secret sharing of secure direct communication based on χ-type entangled states

    International Nuclear Information System (INIS)

    Yu-Guang, Yang; Wei-Feng, Cao; Qiao-Yan, Wen

    2010-01-01

    Based on χ-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on χ-type entangled states |χ 00 ) 3214 is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed. (general)

  4. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  5. Generation of multiparticle three-dimensional entanglement state via adiabatic passage

    International Nuclear Information System (INIS)

    Wu Xi; Chen Zhi-Hua; Ye Ming-Yong; Chen Yue-Hua; Lin Xiu-Min

    2013-01-01

    A scheme is proposed for generating a multiparticle three-dimensional entangled state by appropriately adiabatic evolutions, where atoms are respectively trapped in separated cavities so that individual addressing is needless. In the ideal case, losses due to the spontaneous transition of an atom and the excitation of photons are efficiently suppressed since atoms are all in ground states and the fields remain in a vacuum state. Compared with the previous proposals, the present scheme reduces its required operation time via simultaneously controlling four classical fields. This advantage would become even more obvious as the number of atoms increases. The experimental feasibility is also discussed. The successful preparation of a high-dimensional multiparticle entangled state among distant atoms provides better prospects for quantum communication and distributed quantum computation. (general)

  6. Correlation properties of entangled multiphoton states and Bernstein’s paradox

    International Nuclear Information System (INIS)

    Chirkin, A. S.; Belyaeva, O. V.; Belinsky, A. V.

    2013-01-01

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  7. Threshold quantum state sharing based on entanglement swapping

    Science.gov (United States)

    Qin, Huawang; Tso, Raylin

    2018-06-01

    A threshold quantum state sharing scheme is proposed. The dealer uses the quantum-controlled-not operations to expand the d-dimensional quantum state and then uses the entanglement swapping to distribute the state to a random subset of participants. The participants use the single-particle measurements and unitary operations to recover the initial quantum state. In our scheme, the dealer can share different quantum states among different subsets of participants simultaneously. So the scheme will be very flexible in practice.

  8. Entangled spins and ghost-spins

    Directory of Open Access Journals (Sweden)

    Dileep P. Jatkar

    2017-09-01

    Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  9. Local commutativity versus Bell inequality violation for entangled states and versus non-violation for separable states

    International Nuclear Information System (INIS)

    Seevinck, Michael; Uffink, Jos

    2007-01-01

    By introducing a quantitative 'degree of commutativity' in terms of the angle between spin observables we present two tight quantitative trade-off relations in the case of two qubits. First, for entangled states, between the degree of commutativity of local observables and the maximal amount of violation of the Bell inequality: if both local angles increase from zero to π/2 (i.e., the degree of local commutativity decreases), the maximum violation of the Bell inequality increases. Secondly, a converse trade-off relation holds for separable states: if both local angles approach π/2 the maximal value obtainable for the correlations in the Bell inequality decreases and thus the non-violation increases. As expected, the extremes of these relations are found in the case of anticommuting local observables where, respectively, the bounds of 2√(2) and √(2) hold for the expectation value of the Bell operator. The trade-off relations show that noncommmutativity gives ''a more than classical result'' for entangled states, whereas ''a less than classical result'' is obtained for separable states. The experimental relevance of the trade-off relation for separable states is that it provides an experimental test for two qubit entanglement. Its advantages are twofold: in comparison to violations of Bell inequalities it is a stronger criterion and in comparison to entanglement witnesses it needs to make less strong assumptions about the observables implemented in the experiment

  10. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    Science.gov (United States)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  11. Two-party quantum key agreement with five-particle entangled states

    Science.gov (United States)

    He, Ye-Feng; Ma, Wen-Ping

    A two-party quantum key agreement protocol is proposed with five-particle entangled states and the delayed measurement technique. According to the measurement correlation property of five-particle entangled states, two participants can deduce the measurement results of each other’s initial quantum states. As a result, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. Thus, a shared key is fairly established. Since each particle is transmitted only once in quantum channel, the protocol is congenitally free from the Trojan horse attacks. It is shown that the protocol not only is secure against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  12. Coherent control of long-distance steady-state entanglement in lossy resonator arrays

    Science.gov (United States)

    Angelakis, D. G.; Dai, L.; Kwek, L. C.

    2010-07-01

    We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.

  13. Efficient quantum secret sharing scheme with two-particle entangled states

    International Nuclear Information System (INIS)

    Zhu Zhen-Chao; Fu An-Min; Zhang Yu-Qing

    2011-01-01

    This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time. (general)

  14. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  15. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  16. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-01-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise

  17. Quantum-enhanced spectroscopy with entangled multiphoton states

    Science.gov (United States)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  18. Gradient optimization of finite projected entangled pair states

    Science.gov (United States)

    Liu, Wen-Yuan; Dong, Shao-Jun; Han, Yong-Jian; Guo, Guang-Can; He, Lixin

    2017-05-01

    Projected entangled pair states (PEPS) methods have been proven to be powerful tools to solve strongly correlated quantum many-body problems in two dimensions. However, due to the high computational scaling with the virtual bond dimension D , in a practical application, PEPS are often limited to rather small bond dimensions, which may not be large enough for some highly entangled systems, for instance, frustrated systems. Optimization of the ground state using the imaginary time evolution method with a simple update scheme may go to a larger bond dimension. However, the accuracy of the rough approximation to the environment of the local tensors is questionable. Here, we demonstrate that by combining the imaginary time evolution method with a simple update, Monte Carlo sampling techniques and gradient optimization will offer an efficient method to calculate the PEPS ground state. By taking advantage of massive parallel computing, we can study quantum systems with larger bond dimensions up to D =10 without resorting to any symmetry. Benchmark tests of the method on the J1-J2 model give impressive accuracy compared with exact results.

  19. Quantum-Secret-Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States

    Science.gov (United States)

    Liu, Cheng-Ji; Li, Zhi-Hui; Bai, Chen-Ming; Si, Meng-Meng

    2018-02-01

    The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a ( k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.

  20. Approximate Teleportation of an Unknown Atomic-Entangled State with Dissipative Atom-Cavity Resonant Jaynes-Cummings Model

    Institute of Scientific and Technical Information of China (English)

    LIU Zong-Liang; LI Shao-Hua; CHEN Chang-Yong

    2008-01-01

    We propose a scheme for approximately and conditionally teleporting an unknown atomic-entangled state in dissipative cavity QED.It is the further development of the scheme of [Phys.Rev.A 69 (2004) 064302],where the cavity mode decay has not been considered and the state teleportated is an unknown atomic state.In this paper,we investigate the influence of the decay on the approximate and conditional teleportation of the unknown atomic-entangled state,which is different from that teleportated in [Phys.Rev.A 69 (2004) 064302] and then give the fidelity of the teleportation,which depends on the cavity mode decay.The scheme may be generalized to not only the teleportation of the cavity-mode-entangled-state by means of a single atom but also the teleportation of the unknown trapped-ion-entangled-state in a linear ion trap.

  1. Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states

    Science.gov (United States)

    He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.

    2012-08-01

    We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.

  2. Deterministic quantum state transfer and remote entanglement using microwave photons.

    Science.gov (United States)

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  3. Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems

    International Nuclear Information System (INIS)

    Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.

    2010-01-01

    The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.

  4. Multipartite entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2009-01-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  5. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  6. Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots

    Science.gov (United States)

    Istomin, Andrei Y.

    2005-05-01

    Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

  7. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

    Science.gov (United States)

    Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco

    2018-03-01

    We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

  8. Accurate calculation of the geometric measure of entanglement for multipartite quantum states

    Science.gov (United States)

    Teng, Peiyuan

    2017-07-01

    This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

  9. Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato

    2011-01-01

    We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.

  10. Greenberger-Horne-Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting

    International Nuclear Information System (INIS)

    Jeong, Hyunseok; Nguyen Ba An

    2006-01-01

    We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors

  11. Optimal entanglement witnesses for qubits and qutrits

    International Nuclear Information System (INIS)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-01-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states--and their generalizations to arbitrary dimensions--where we calculate the optimal entanglement witnesses explicitly

  12. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  13. Entanglement in neutrino oscillations

    International Nuclear Information System (INIS)

    Blasone, M.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Dell'Anno, F.; De Siena, S.; Illuminati, F.; Blasone, M.

    2009-01-01

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  14. Generation of concatenated Greenberger-Horne-Zeilinger-type entangled coherent state based on linear optics

    Science.gov (United States)

    Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo

    2017-03-01

    The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.

  15. Entanglement of Gaussian states and the applicability to quantum key distribution over fading channels

    International Nuclear Information System (INIS)

    Usenko, Vladyslav C; Filip, Radim; Heim, Bettina; Peuntinger, Christian; Wittmann, Christoffer; Marquardt, Christoph; Leuchs, Gerd

    2012-01-01

    Entanglement properties of Gaussian states of light as well as the security of continuous variable quantum key distribution with Gaussian states in free-space fading channels are studied. These qualities are shown to be sensitive to the statistical properties of the transmittance distribution in the cases when entanglement is strong or when channel excess noise is present. Fading, i.e. transmission fluctuations, caused by beam wandering due to atmospheric turbulence, is a frequent challenge in free-space communication. We introduce a method of fading discrimination and subsequent post-selection of the corresponding sub-states and show that it can improve the entanglement resource and restore the security of the key distribution over a realistic fading link. Furthermore, the optimal post-selection strategy in combination with an optimized entangled resource is shown to drastically increase the protocol's robustness to excess noise, which is confirmed for experimentally measured fading channel characteristics. The stability of the result against finite data ensemble size and imperfect channel estimation is also addressed. (paper)

  16. Braiding transformation, entanglement swapping, and Berry phase in entanglement space

    International Nuclear Information System (INIS)

    Chen Jingling; Ge Molin; Xue Kang

    2007-01-01

    We show that braiding transformation is a natural approach to describe quantum entanglement by using the unitary braiding operators to realize entanglement swapping and generate the Greenberger-Horne-Zeilinger states as well as the linear cluster states. A Hamiltonian is constructed from the unitary R i,i+1 (θ,φ) matrix, where φ=ωt is time-dependent while θ is time-independent. This in turn allows us to investigate the Berry phase in the entanglement space

  17. Quantification of entanglement entropies for doubly excited resonance states in two-electron atomic systems

    International Nuclear Information System (INIS)

    Ho, Yew Kam; Lin, Chien-Hao

    2015-01-01

    In this work, we study the quantum entanglement for doubly excited resonance states in two-electron atomic systems such as the H - and Ps - ions and the He atom by using highly correlated Hylleraas type functions The resonance states are determined by calculation of density of resonance states with the stabilization method. The spatial (electron-electron orbital) entanglement entropies (linear and von Neumann) for the low-lying doubly excited states are quantified using the Schmidt-Slater decomposition method. (paper)

  18. Majorana entanglement bridge

    Science.gov (United States)

    Plugge, Stephan; Zazunov, Alex; Sodano, Pasquale; Egger, Reinhold

    2015-06-01

    We study the concurrence of entanglement between two quantum dots in contact to Majorana bound states on a floating superconducting island. The distance between the Majorana states, the charging energy of the island, and the average island charge are shown to be decisive parameters for the efficiency of entanglement generation. We find that long-range entanglement with basically distance-independent concurrence is possible over wide parameter regions, where the proposed setup realizes a "Majorana entanglement bridge." We also study the time-dependent concurrence obtained after one of the tunnel couplings is suddenly switched on, which reveals the time scales for generating entanglement. Accurate analytical expressions for the concurrence are derived both for the static and the time-dependent cases. Our results indicate that entanglement formation in interacting Majorana devices can be fully understood in terms of an interplay of elastic cotunneling (also referred to as "teleportation") and crossed Andreev reflection processes.

  19. Multiqubit nonlocality in families of 3- and 4-qubit entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S; Debnath, S; Sinclair, N; Kabra, A [Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5 (Canada); Stock, R, E-mail: sghose@wlu.c [Department of Physics, University of Toronto, Ontario M5S 1A7 (Canada)

    2010-11-07

    We investigate genuine multiqubit nonlocality in families of entangled 3- and 4-qubit pure states by analyzing a Bell-type inequality that is violated only if all qubits are nonlocally correlated. We present detailed numerical studies of the relationship between entanglement and violation of the Svetlichny Bell-type inequality in an experimentally accessible set of 3-qubit pure states, and identify the special nonlocality property of the maximal slice states in the space of all 3-qubit pure states. We also analyze nonlocal correlations in 3-qubit generalized Greenberger-Horne-Zeilinger (GHZ) states and extend our analysis to the case of 4-qubit generalized GHZ states. We show that like the 3-qubit case, some 4-qubit generalized GHZ states do not violate a Bell inequality that tests for genuine 4-qubit nonlocality. Furthermore, the location of the boundary between the states that do violate the inequality and those that do not is the same for the 3- and 4-qubit generalized GHZ states.

  20. Reply to the comment on 'Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate ({eta})'[42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.);

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyi [CCAST (World Laboratory), PO Box 8730, Beijing 100080, People' s Republic of (China); Hu, Haipeng [Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People' s Republic of China (China)

    2003-01-10

    We compare and contrast our amplitude-phase entanglement with that of Luis in his comment. Luis's entangled state is defined in a finite Fock space. His comment on the operational phase operator seems to be contradicting the original meaning of Mandel et al. (reply)

  1. Optimal entanglement witnesses for qubits and qutrits

    Science.gov (United States)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-11-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.

  2. Standard forms and entanglement engineering of multimode Gaussian states under local operations

    International Nuclear Information System (INIS)

    Serafini, Alessio; Adesso, Gerardo

    2007-01-01

    We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parameters which completely characterize the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parameter reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particular, we clarify why only in pure states with n ≤ 3 modes all the direct correlations between position and momentum operators can be set to zero by local unitary operations. For any n, the emerging minimal set of parameters contains complete information about all forms of entanglement in the corresponding states. An efficient state engineering scheme (able to encode direct correlations between position and momentum operators as well) is proposed to produce entangled multimode Gaussian resources, its number of optical elements matching the minimal number of locally invariant degrees of freedom of general pure n-mode Gaussian states. Finally, we demonstrate that so-called 'block-diagonal' Gaussian states, without direct correlations between position and momentum, are systematically less entangled, on average, than arbitrary pure Gaussian states

  3. Continuous Variable Entanglement of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, G.; Andersen, Ulrik Lund

    2009-01-01

    We have generated a new quantum state of light composed of quadrature entangled Laguerre-Gaussian (LG) modes. For the generation we used an OPO operating in a new regime where all field parameters are degenerate except for its spatial degree of freedom for which it is two-fold degenerate. The ent...

  4. Error exponents for entanglement concentration

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Koashi, Masato; Matsumoto, Keiji; Morikoshi, Fumiaki; Winter, Andreas

    2003-01-01

    Consider entanglement concentration schemes that convert n identical copies of a pure state into a maximally entangled state of a desired size with success probability being close to one in the asymptotic limit. We give the distillable entanglement, the number of Bell pairs distilled per copy, as a function of an error exponent, which represents the rate of decrease in failure probability as n tends to infinity. The formula fills the gap between the least upper bound of distillable entanglement in probabilistic concentration, which is the well-known entropy of entanglement, and the maximum attained in deterministic concentration. The method of types in information theory enables the detailed analysis of the distillable entanglement in terms of the error rate. In addition to the probabilistic argument, we consider another type of entanglement concentration scheme, where the initial state is deterministically transformed into a (possibly mixed) final state whose fidelity to a maximally entangled state of a desired size converges to one in the asymptotic limit. We show that the same formula as in the probabilistic argument is valid for the argument on fidelity by replacing the success probability with the fidelity. Furthermore, we also discuss entanglement yield when optimal success probability or optimal fidelity converges to zero in the asymptotic limit (strong converse), and give the explicit formulae for those cases

  5. Partial separability and entanglement criteria for multiqubit quantum states

    NARCIS (Netherlands)

    Seevinck, M.P.; Uffink, J.B.M.

    2008-01-01

    We explore the subtle relationships between partial separability and entanglement of subsystems in multiqubit quantum states and give experimentally accessible conditions that distinguish between various classes and levels of partial separability in a hierarchical order. These conditions take the

  6. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    International Nuclear Information System (INIS)

    Jiang Nianquan; Fan Hongyi

    2008-01-01

    We show that the Agarwal-Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  7. Quench dynamics of topological maximally entangled states.

    Science.gov (United States)

    Chung, Ming-Chiang; Jhu, Yi-Hao; Chen, Pochung; Mou, Chung-Yu

    2013-07-17

    We investigate the quench dynamics of the one-particle entanglement spectra (OPES) for systems with topologically nontrivial phases. By using dimerized chains as an example, it is demonstrated that the evolution of OPES for the quenched bipartite systems is governed by an effective Hamiltonian which is characterized by a pseudospin in a time-dependent pseudomagnetic field S(k,t). The existence and evolution of the topological maximally entangled states (tMESs) are determined by the winding number of S(k,t) in the k-space. In particular, the tMESs survive only if nontrivial Berry phases are induced by the winding of S(k,t). In the infinite-time limit the equilibrium OPES can be determined by an effective time-independent pseudomagnetic field Seff(k). Furthermore, when tMESs are unstable, they are destroyed by quasiparticles within a characteristic timescale in proportion to the system size.

  8. Benchmarks and statistics of entanglement dynamics

    International Nuclear Information System (INIS)

    Tiersch, Markus

    2009-01-01

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  9. Benchmarks and statistics of entanglement dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tiersch, Markus

    2009-09-04

    In the present thesis we investigate how the quantum entanglement of multicomponent systems evolves under realistic conditions. More specifically, we focus on open quantum systems coupled to the (uncontrolled) degrees of freedom of an environment. We identify key quantities that describe the entanglement dynamics, and provide efficient tools for its calculation. For quantum systems of high dimension, entanglement dynamics can be characterized with high precision. In the first part of this work, we derive evolution equations for entanglement. These formulas determine the entanglement after a given time in terms of a product of two distinct quantities: the initial amount of entanglement and a factor that merely contains the parameters that characterize the dynamics. The latter is given by the entanglement evolution of an initially maximally entangled state. A maximally entangled state thus benchmarks the dynamics, and hence allows for the immediate calculation or - under more general conditions - estimation of the change in entanglement. Thereafter, a statistical analysis supports that the derived (in-)equalities describe the entanglement dynamics of the majority of weakly mixed and thus experimentally highly relevant states with high precision. The second part of this work approaches entanglement dynamics from a topological perspective. This allows for a quantitative description with a minimum amount of assumptions about Hilbert space (sub-)structure and environment coupling. In particular, we investigate the limit of increasing system size and density of states, i.e. the macroscopic limit. In this limit, a universal behaviour of entanglement emerges following a ''reference trajectory'', similar to the central role of the entanglement dynamics of a maximally entangled state found in the first part of the present work. (orig.)

  10. Correlation properties of entangled multiphoton states and Bernstein's paradox

    Energy Technology Data Exchange (ETDEWEB)

    Chirkin, A. S., E-mail: aschirkin@rambler.ru; Belyaeva, O. V., E-mail: lisenok.msu@gmail.com; Belinsky, A. V., E-mail: belinsky@inbox.ru [Moscow State University (Russian Federation)

    2013-01-15

    A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein's paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.

  11. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  12. Improving the efficiency of single and multiple teleportation protocols based on the direct use of partially entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, Raphael; Rigolin, Gustavo, E-mail: rigolin@ifi.unicamp.br

    2013-09-15

    We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The three techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: •Optimal direct teleportation protocols using directly partially entangled states. •We put in a single formalism all strategies of direct teleportation. •We extend these techniques for multipartite partially entangle states. •We give upper bounds for the optimal efficiency of these protocols.

  13. Entangled states that cannot reproduce original classical games in their quantum version

    International Nuclear Information System (INIS)

    Shimamura, Junichi; Oezdemir, S.K.; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    A model of a quantum version of classical games should reproduce the original classical games in order to be able to make a comparative analysis of quantum and classical effects. We analyze a class of symmetric multipartite entangled states and their effect on the reproducibility of the classical games. We present the necessary and sufficient condition for the reproducibility of the original classical games. Satisfying this condition means that complete orthogonal bases can be constructed from a given multipartite entangled state provided that each party is restricted to two local unitary operators. We prove that most of the states belonging to the class of symmetric states with respect to permutations, including the N-qubit W state, do not satisfy this condition

  14. Teleportation of two-atom entangled state in resonant cavity quantum electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Yang Zhen-Biao

    2007-01-01

    An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.

  15. Pseudo-entanglement evaluated in noninertial frames

    International Nuclear Information System (INIS)

    Mehri-Dehnavi, Hossein; Mirza, Behrouz; Mohammadzadeh, Hosein; Rahimi, Robabeh

    2011-01-01

    Research highlights: → We study pseudo-entanglement in noninertial frames. → We examine different measures of entanglement and nonclassical correlation for the state. → We find the threshold for entanglement is changed in noninertial frames. → We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases, entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.

  16. Resource cost results for one-way entanglement distillation and state merging of compound and arbitrarily varying quantum sources

    International Nuclear Information System (INIS)

    Boche, H.; Janßen, G.

    2014-01-01

    We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates

  17. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    International Nuclear Information System (INIS)

    Dalton, B J; Goold, J; Garraway, B M; Reid, M D

    2017-01-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  18. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    Science.gov (United States)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  19. A Protocol for Bidirectional Quantum Secure Communication Based on Genuine Four-Particle Entangled States

    International Nuclear Information System (INIS)

    Gao Gan; Wang Liping

    2010-01-01

    By swapping the entanglement of genuine four-particle entangled states, we propose a bidirectional quantum secure communication protocol. The biggest merit of this protocol is that the information leakage does not exist. In addition, the ideas of the 'two-step' transmission and the block transmission are employed in this protocol. In order to analyze the security of the second sequence transmission, decoy states are used. (general)

  20. Entanglement and purity of two-mode Gaussian states in noisy channels

    International Nuclear Information System (INIS)

    Serafini, Alessio; Illuminati, Fabrizio; De Siena, Silvio; Paris, Matteo G.A.

    2004-01-01

    We study the evolution of purity, entanglement, and total correlations of general two-mode continuous variable Gaussian states in arbitrary uncorrelated Gaussian environments. The time evolution of purity, von Neumann entropy, logarithmic negativity, and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes

  1. Remarks on entanglement swapping

    International Nuclear Information System (INIS)

    Song, Daegene

    2004-01-01

    In two partially entangled states, entanglement swapping by Bell measurement will yield the weaker entanglement of the two. This scheme is optimal because the average entanglement cannot increase under local operation and classical communication. However, for more than two states, this scheme does not always yield the weakest link. We consider projective measurements other than Bell-type measurement and show, numerically, that while Bell measurement may not be unique, it is indeed optimal among these projective measurements. We also discuss the non-uniqueness of Bell measurements. (letter to the editor)

  2. Two Schemes for Generation of Entanglement for Vibronic Collective States of Multiple Trapped Ions

    International Nuclear Information System (INIS)

    Yang Wenxing; Li Jiahua; Zheng Anshou

    2007-01-01

    We propose two schemes to prepare entanglement for the vibronic collective states of multiple trapped ions. The first scheme aims to generating multipartite entanglement for vibrational modes of trapped ions, which only requires a single laser beam tuned to the ionic carrier frequency. Our scheme works in the mediated excitation regime, in which the corresponding Rabi frequency is equal to the trap frequency. Beyond their fundamental importance, these states may be of interest for experimental studies on decoherence since the present scheme operates in a fast way. The second scheme aims to preparing the continuous variable multimode maximally Greenberger-Horne-Zeilinger state. The distinct advantage is that the operation time is only limited by the available laser intensity, not by the inherent mechanisms such as off-resonant excitations. This makes it promising to obtain entanglement of multiple coherent and squeezing states with desired amplitudes in a reasonable time.

  3. Generalized Weyl–Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States

    Directory of Open Access Journals (Sweden)

    Mohammed Daoud

    2018-04-01

    Full Text Available A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl–Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d − 1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl–Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space is describable by a N-qubit vector (in a N-dimensional space. In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini–Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d = 3 ( ⇔ N = 2 , this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d = 4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.

  4. Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-hua

    2003-01-01

    A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.

  5. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity

    Science.gov (United States)

    Huber, Felix; Eltschka, Christopher; Siewert, Jens; Gühne, Otfried

    2018-04-01

    A pure multipartite quantum state is called absolutely maximally entangled (AME), if all reductions obtained by tracing out at least half of its parties are maximally mixed. Maximal entanglement is then present across every bipartition. The existence of such states is in many cases unclear. With the help of the weight enumerator machinery known from quantum error correction and the shadow inequalities, we obtain new bounds on the existence of AME states in dimensions larger than two. To complete the treatment on the weight enumerator machinery, the quantum MacWilliams identity is derived in the Bloch representation. Finally, we consider AME states whose subsystems have different local dimensions, and present an example for a 2×3×3×3 system that shows maximal entanglement across every bipartition.

  6. Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit

    Science.gov (United States)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-01-01

    An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.

  7. Complete Bell-state analysis for a single-photon hybrid entangled state

    International Nuclear Information System (INIS)

    Sheng Yu-Bo; Zhou Lan; Cheng Wei-Wen; Gong Long-Yan; Wang Lei; Zhao Sheng-Mei

    2013-01-01

    We propose a scheme capable of performing complete Bell-state analysis for a single-photon hybrid entangled state. Our single-photon state is encoded in both polarization and frequency degrees of freedom. The setup of the scheme is composed of polarizing beam splitters, half wave plates, frequency shifters, and independent wavelength division multiplexers, which are feasible using current technology. We also show that with this setup we can perform complete two-photon Bell-state analysis schemes for polarization degrees of freedom. Moreover, it can also be used to perform the teleportation scheme between different degrees of freedom. This setup may allow extensive applications in current quantum communications

  8. Rank-dependant factorization of entanglement evolution

    International Nuclear Information System (INIS)

    Siomau, Michael

    2016-01-01

    Highlights: • In some cases the complex entanglement evolution can be factorized on simple terms. • We suggest factorization equations for multiqubit entanglement evolution. • The factorization is solely defined by the rank of the final state density matrices. • The factorization is independent on the local noisy channels and initial pure states. - Abstract: The description of the entanglement evolution of a complex quantum system can be significantly simplified due to the symmetries of the initial state and the quantum channels, which simultaneously affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement evolution of few qubit systems, when each of the qubits is affected by a local unital channel independently on the others. We found that for low-rank density matrices of the final quantum state, such complex entanglement dynamics can be completely described by a combination of independent factors representing the evolution of entanglement of the initial state, when just one of the qubits is affected by a local channel. We suggest necessary conditions for the rank of the density matrices to represent the entanglement evolution through the factors. Our finding is supported with analytical examples and numerical simulations.

  9. Alternative Scheme for Teleportation of Two-Atom Entangled State in Cavity QED

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Biao

    2006-01-01

    We have proposed an alternative scheme for teleportation of two-atom entangled state in cavity QED. It is based on the degenerate Raman interaction of a single-mode cavity field with a ∧-type three-level atom. The prominent feature of the scheme is that only one cavity is required, which is prior to the previous one. Moreover, the atoms need to be detected are reduced compared with the previous scheme. The experimental feasibility of the scheme is discussed.The scheme can easily be generalized for teleportation of N-atom GHZ entangled states. The number of the atoms needed to be detected does not increase as the number of the atoms in GHZ state increases.

  10. Optimal Entanglement Witnesses for Qubits and Qutrits

    International Nuclear Information System (INIS)

    Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.

    2005-01-01

    Full text: We give a review of the connection between an optimal entanglement witness and the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states): a generalized Bell inequality is derived within the concept of entanglement witnesses, in the sense that a violation of the inequality detects entanglement and not non-locality liKEX usual Bell inequalities do. It can be seen that the maximal violation equals the Hilbert-Schmidt measure. Furthermore, since finding the nearest separable state to a given entangled state is rather difficult, a method for checking an estimated nearest separable state is presented. This is illustrated with isotropic qubit and qutrit states; the Hilbert-Schmidt measure, the optimal entanglement witness and the maximal violation of the GBI are calculated for those cases. Possible generalizations for arbitrary dimensions are discussed. (author)

  11. Graphical Classification of Entangled Qutrits

    Directory of Open Access Journals (Sweden)

    Kentaro Honda

    2012-10-01

    Full Text Available A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a fundamental role in many applications of quantum information theory, such as quantum teleportation. Stochastic local quantum operations and classical communication (SLOCC cannot essentially change quantum entanglement without destroying it. Therefore, entanglement can be classified by dividing quantum states into equivalence classes, where two states are equivalent if each can be converted into the other by SLOCC. Properties of this classification, especially in the case of non two-dimensional quantum systems, have not been well studied. Graphical representation is sometimes used to clarify the nature and structural features of entangled states. SLOCC equivalence of quantum bits (qubits has been described graphically via a connection between tripartite entangled qubit states and commutative Frobenius algebras (CFAs in monoidal categories. In this paper, we extend this method to qutrits, i.e., systems that have three basis states. We examine the correspondence between CFAs and tripartite entangled qutrits. Using the symmetry property, which is required by the definition of a CFA, we find that there are only three equivalence classes that correspond to CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as a composite of three graphs that correspond to the three classes.

  12. Minimal Entanglement Witness from Electrical Current Correlations.

    Science.gov (United States)

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  13. Minimal Entanglement Witness from Electrical Current Correlations

    Science.gov (United States)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  14. Genuine tripartite entangled states with a local hidden-variable model

    International Nuclear Information System (INIS)

    Toth, Geza; Acin, Antonio

    2006-01-01

    We present a family of three-qubit quantum states with a basic local hidden-variable model. Any von Neumann measurement can be described by a local model for these states. We show that some of these states are genuine three-partite entangled and also distillable. The generalization for larger dimensions or higher number of parties is also discussed. As a by-product, we present symmetric extensions of two-qubit Werner states

  15. Single-photon two-qubit entangled states: Preparation and measurement

    International Nuclear Information System (INIS)

    Kim, Yoon-Ho

    2003-01-01

    We implement experimentally a deterministic method to prepare and measure the so-called single-photon two-qubit entangled states or single-photon Bell states, in which the polarization and the spatial modes of a single photon each represent a quantum bit. All four single-photon Bell states can be easily prepared and measured deterministically using linear optical elements alone. We also discuss how this method can be used for the recently proposed single-photon two-qubit quantum cryptography scheme

  16. Two-party quantum key agreement protocol with four-particle entangled states

    Science.gov (United States)

    He, Yefeng; Ma, Wenping

    2016-09-01

    Based on four-particle entangled states and the delayed measurement technique, a two-party quantum key agreement protocol is proposed in this paper. In the protocol, two participants can deduce the measurement results of each other’s initial quantum states in terms of the measurement correlation property of four-particle entangled states. According to the corresponding initial quantum states deduced by themselves, two parties can extract the secret keys of each other by using the publicly announced value or by performing the delayed measurement, respectively. This guarantees the fair establishment of a shared key. Since each particle in quantum channel is transmitted only once, the protocol is congenitally free from the Trojan horse attacks. The security analysis shows that the protocol not only can resist against both participant and outsider attacks but also has no information leakage problem. Moreover, it has high qubit efficiency.

  17. More on the rainbow chain: entanglement, space-time geometry and thermal states

    International Nuclear Information System (INIS)

    Rodríguez-Laguna, Javier; Dubail, Jérôme; Ramírez, Giovanni; Calabrese, Pasquale; Sierra, Germán

    2017-01-01

    The rainbow chain is an inhomogenous exactly solvable local spin model that, in its ground state, displays a half-chain entanglement entropy growing linearly with the system size. Although many exact results about the rainbow chain are known, the structure of the underlying quantum field theory has not yet been unraveled. Here we show that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R   =  − h "2 ( h is the amplitude of the inhomogeneity). This identification allows us to use recently developed techniques to study inhomogeneous conformal systems and to analytically characterise the entanglement entropies of more general bipartitions. These results are carefully tested against exact numerical calculations. Finally, we study the entanglement entropies of the rainbow chain in thermal states, and find that there is a non-trivial interplay between the rainbow effective temperature T_R and the physical temperature T . (paper)

  18. Universal distortion-free entanglement concentration

    International Nuclear Information System (INIS)

    Matsumoto, Keiji; Hayashi, Masahito

    2007-01-01

    We propose a new protocol of universal entanglement concentration, which converts many copies of an unknown pure state to an exact maximally entangled state. The yield of the protocol, which is outputted as a classical information, is probabilistic, and achieves the entropy rate with high probability, just as nonuniversal entanglement concentration protocols do

  19. Optimization of entanglement witnesses

    Science.gov (United States)

    Lewenstein, M.; Kraus, B.; Cirac, J. I.; Horodecki, P.

    2000-11-01

    An entanglement witness (EW) is an operator that allows the detection of entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES's). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES's, i.e., states that violate the range separability criterion [Phys. Lett. A 232, 333 (1997)] in an extreme manner. This method also permits a systematic construction of nondecomposable positive maps (PM's). Our results lead to a sufficient condition for entanglement in terms of nondecomposable EW's and PM's. Finally, we illustrate our results by constructing optimal EW acting on H=C2⊗C4. The corresponding PM's constitute examples of PM's with minimal ``qubit'' domains, or-equivalently-minimal Hermitian conjugate codomains.

  20. Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel

    International Nuclear Information System (INIS)

    An, Nguyen Ba; Bich, Cao Thi

    2014-01-01

    We construct a quantum circuit to produce a task-oriented partially entangled state and use it as the quantum channel for controlled joint remote state preparation. Unlike most previous works, where the parameters of the quantum channel are given to the receiver who can accomplish the task only probabilistically by consuming auxiliary resource, operation and measurement, here we give them to the supervisor. Thanks to the knowledge of the task-oriented quantum channel parameters, the supervisor can carry out proper complete projective measurement, which, combined with the feed-forward technique adapted by the preparers, not only much economizes (simplifies) the receiver's resource (operation) but also yields unit total success probability. Notably, such apparent perfection does not depend on the entanglement degree of the shared quantum channel. Our protocol is within the reach of current quantum technologies. - Highlights: • Controlled joint remote state preparation is considered. • Quantum circuit is proposed to produce task-oriented partially entangled channel. • The quantum channel parameter is given to the supervisor (not to the receiver). • Unit success probability without additional resource/operations/measurement. • Perfection is achieved regardless of the shared entanglement degree

  1. Error Free Quantum Reading by Quasi Bell State of Entangled Coherent States

    Science.gov (United States)

    Hirota, Osamu

    2017-12-01

    Nonclassical states of light field have been exploited to provide marvellous results in quantum information science. Usefulness of nonclassical states in quantum information science depends on whether a physical parameter as a signal is continuous or discrete. Here we present an investigation of the potential of quasi Bell states of entangled coherent states in quantum reading of the classical digital memory which was pioneered by Pirandola (Phys.Rev.Lett.,106,090504,2011). This is a typical example of discrimination for discrete quantum parameters. We show that the quasi Bell state gives the error free performance in the quantum reading that cannot be obtained by any classical state.

  2. Entanglement capacity of nonlocal Hamiltonians: A geometric approach

    International Nuclear Information System (INIS)

    Lari, Behzad; Hassan, Ali Saif M.; Joag, Pramod S.

    2009-01-01

    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for N-qubit pure states [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 77, 062334 (2008)]. This geometric method has the distinct advantage that it gives the experimentally implementable criteria to ensure the optimal entanglement production rate without requiring a detailed knowledge of the state of the two qubit system. For the production of entanglement in practice, we need criteria for optimal entanglement production, which can be checked in situ without any need to know the state, as experimentally finding out the state of a quantum system is generally a formidable task. Further, we use our method to quantify the entanglement capacity in higher level and multipartite systems. We quantify the entanglement capacity for two qutrits and find the maximal entanglement generation rate and the corresponding state for the general isotropic interaction between qutrits, using the entanglement measure of N-qudit pure states proposed by us [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 80, 042302 (2009)]. Next we quantify the genuine three qubit entanglement capacity for a general interaction between qubits. We obtain the maximum entanglement generation rate and the corresponding three qubit state for a general isotropic interaction between qubits. The state maximizing the entanglement generation rate is of the Greenberger-Horne-Zeilinger class. To the best of our knowledge, the entanglement capacities for two qutrit and three qubit systems have not been reported earlier.

  3. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Laurat, Julien [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Keller, Gaelle [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Oliveira-Huguenin, Jose Augusto [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Fabre, Claude [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Coudreau, Thomas [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Laboratoire Materiaux et Phenomenes Quantiques, Case 7021, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05 (France); Serafini, Alessio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Adesso, Gerardo [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy) and CNR-Coherentia, Gruppo di Salerno (Italy) and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (SA) (Italy)

    2005-12-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.

  4. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation

    International Nuclear Information System (INIS)

    Laurat, Julien; Keller, Gaelle; Oliveira-Huguenin, Jose Augusto; Fabre, Claude; Coudreau, Thomas; Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio

    2005-01-01

    A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation

  5. Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences

    International Nuclear Information System (INIS)

    Mukhtar, Musawwadah; Soh, Wee Tee; Saw, Thuan Beng; Gong, Jiangbin

    2010-01-01

    Future quantum technologies rely heavily on good protection of quantum entanglement against environment-induced decoherence. A recent study showed that an extension of Uhrig's dynamical decoupling (UDD) sequence can (in theory) lock an arbitrary but known two-qubit entangled state to the Nth order using a sequence of N control pulses [Mukhtar et al., Phys. Rev. A 81, 012331 (2010)]. By nesting three layers of explicitly constructed UDD sequences, here we first consider the protection of unknown two-qubit states as superposition of two known basis states, without making assumptions of the system-environment coupling. It is found that the obtained decoherence suppression can be highly sensitive to the ordering of the three UDD layers and can be remarkably effective with the correct ordering. The detailed theoretical results are useful for general understanding of the nature of controlled quantum dynamics under nested UDD. As an extension of our three-layer UDD, it is finally pointed out that a completely unknown two-qubit state can be protected by nesting four layers of UDD sequences. This work indicates that when UDD is applicable (e.g., when the environment has a sharp frequency cutoff and when control pulses can be taken as instantaneous pulses), dynamical decoupling using nested UDD sequences is a powerful approach for entanglement protection.

  6. Comment on "Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate |eta) 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.)"

    CERN Document Server

    Luis, A

    2003-01-01

    In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen.35 1007) discards the possibility of using a genuine phase-difference operator to investigate number-phase entanglement because of the lack of unitarity of the Susskind-Glogower phase operators. However, Fan overlooked the existence of a bona fide unitary operator exponential of the phase difference. Here we find the amplitude-phase maximally entangled states as the simultaneous eigenstates of the total number and the phase-difference operators. (comment)

  7. A quick and easy test for deciding entanglement status of an N-qubit pure quantum state

    International Nuclear Information System (INIS)

    Mehendale, D.P.; Joag, P.S.

    2018-01-01

    We develop a simple criterion in terms of a necessary-sufficient condition (NS condition) for deciding separability of an arbitrary n-qubit pure quantum state. This NS condition provides a quick and easy test procedure to determine the entanglement status of a pure quantum state. We normalize the given quantum state and using this normalized state we can easily build a simplest system of equations containing trigonometric functions by making use of the well known Bloch Sphere representation for single qubit states and check whether or not this system of equations is consistent. According to proposed NS condition the given pure quantum state is separable (entangled) if and only if the above mentioned system of equations is consistent (inconsistent). We build this system of equations by equating the coefficients of computational basis states in the superposition representing the given pure quantum state with certain products of trigonometric functions obtained using standard Bloch Sphere representation for single qubit states. To establish separability of given state one requires to find a valid solution of the above mentioned system of equations but entanglement on the other hand follows when any two equations in this system of equations are mutually inconsistent. Thus, entanglement of the state can follow easily if one succeeds in finding any two mutually inconsistent equations in the above mentioned system of equations.

  8. Direct measurement of the Concurrence of spin-entangled states in a cavity–quantum dot system

    International Nuclear Information System (INIS)

    Dong, Ping; Liu, Jun; Zhang, Li-Hua; Cao, Zhuo-Liang

    2016-01-01

    A scheme for implementing the direct measurement of Concurrence is given in a cavity–quantum dot system. The scenario not only can directly measure the Concurrence of two-spin pure entangled state, but also suitable for the case of mixed state. More importantly, all of the operations are of geometric nature, which depend on the cavity-state-free evolution and can be robust against random operation errors. Our scheme provided an alternative method for directly measuring the degree of entanglement in solid-state system.

  9. State preparation and detector effects in quantum measurements of rotation with circular polarization-entangled photons and photon counting

    Science.gov (United States)

    Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng

    2017-11-01

    Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.

  10. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  11. From entanglement witness to generalized Catalan numbers

    Science.gov (United States)

    Cohen, E.; Hansen, T.; Itzhaki, N.

    2016-07-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  12. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    International Nuclear Information System (INIS)

    Barthel, Thomas

    2009-01-01

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  13. Entanglement entropy in quantum many-particle systems and their simulation via ansatz states

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Thomas

    2009-12-10

    A main topic of this thesis is the development of efficient numerical methods for the simulation of strongly correlated quantum lattice models. For one-dimensional systems, the density-matrix renormalization-group (DMRG) is such a very successful method. The physical states of interest are approximated within a certain class of ansatz states. These ansatz states are designed in a way that the number of degrees of freedom are prevented from growing exponentially. They are the so-called matrix product states. The first part of the thesis, therefore, provides analytical and numerical analysis of the scaling of quantum nonlocality with the system size or time in different, physically relevant scenarios. For example, the scaling of Renyi entropies and their dependence on boundary conditions is derived within the 1+1-dimensional conformal field theory. Conjectures and analytical indications concerning the properties of entanglement entropy in critical fermionic and bosonic systems are confirmed numerically with high precision. For integrable models in the thermodynamic limit, general preconditions are derived under which subsystems converge to steady states. These steady states are non-thermal and retain information about the initial state. It is shown that the entanglement entropy in such steady states is extensive. For short times, the entanglement entropy grows typically linearly with time, causing an exponential increase in computation costs for the DMRG method. The second part of the thesis focuses on the development and improvement of the abovementioned numerical techniques. The time-dependent DMRG is complemented with an extrapolation technique for the evaluated observables. In this way, the problem of the entropy increase can be circumvented, allowing for a precise determination of spectral functions. The method is demonstrated using the example of the Heisenberg antiferromagnet and results are compared to Bethe-Ansatz data for T=0 and quantum Monte Carlo data

  14. Quantum entanglement via nilpotent polynomials

    International Nuclear Information System (INIS)

    Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza

    2006-01-01

    We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed

  15. Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state

    International Nuclear Information System (INIS)

    Ye, Tian-Yu; Jiang, Li-Zhen

    2014-01-01

    In order to avoid the risk of information leakage during the information mutual transmission between two authorized participants, i.e. Alice and Bob, a quantum dialogue protocol based on the entanglement swapping between any two Bell states and the shared secret Bell state is proposed. The proposed protocol integrates the ideas of block transmission, two-step transmission and unitary operation encoding together using the Bell states as the information carriers. Besides the entanglement swapping between any two Bell states, a shared secret Bell state is also used to overcome the information leakage problem, which not only makes Bob aware of the prepared initial state but also is used for Bob's encoding and entanglement swapping. Security analysis shows that the proposed protocol can resist the general active attacks from an outside eavesdropper Eve. Moreover, the relation between the maximal amount of information Eve can gain and the detection probability is derived. (paper)

  16. Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund

    2009-01-01

    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...

  17. Entanglement, Bell inequality and all that

    International Nuclear Information System (INIS)

    Narnhofer, Heide; Thirring, Walter

    2012-01-01

    We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.

  18. Entanglement, Bell inequality and all that

    Energy Technology Data Exchange (ETDEWEB)

    Narnhofer, Heide; Thirring, Walter [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, A-1090 Wien (Austria)

    2012-09-15

    We start from the geometrical observation that a finite set of pure states correspond to some points on a sphere and their convex span cannot be the whole set of states. If we call the left over entangled we can pursue this picture from the simplest case of a two dimensional Hilbert space to the usual Alice-and-Bob game of entangled states and then move to bigger systems and finely to quantum field theory where almost everything is entangled. On the way we encounter more or less known old friends up from the shell structure of states to the monogamy of squashed entanglement. We study how entanglement can be concentrated on a small slice and how it depends on the particular factorization of the Hilbert space.

  19. Violations of Bell inequalities as lower bounds on the communication cost of nonlocal correlations

    International Nuclear Information System (INIS)

    Pironio, Stefano

    2003-01-01

    To reproduce in a local hidden variables theory correlations that violate Bell inequalities, communication must occur between the parties. We show that the amount of violation of a Bell inequality imposes a lower bound on the average communication needed to produce these correlations. Moreover, for every probability distribution there exists an optimal inequality for which the degree of violation gives the minimal average communication. As an example, to produce using classical resources the correlations that maximally violate the Clauser-Horne-Shimony-Holt inequality, (√2)-1≅0.4142 bits of communication are necessary and sufficient. For Bell tests performed on two entangled states of dimension d≥3 where each party has the choice between two measurements, our results suggest that more communication is needed to simulate outcomes obtained from certain nonmaximally entangled states than maximally entangled ones

  20. Entanglement in a parametric converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu

    2008-07-28

    In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.

  1. The geometry of entanglement and Grover's algorithm

    International Nuclear Information System (INIS)

    Iwai, Toshihiro; Hayashi, Naoki; Mizobe, Kimitake

    2008-01-01

    A measure of entanglement with respect to a bipartite partition of n-qubit has been defined and studied from the viewpoint of Riemannian geometry (Iwai 2007 J. Phys. A: Math. Theor. 40 12161). This paper has two aims. One is to study further the geometry of entanglement, and the other is to investigate Grover's search algorithms, both the original and the fixed-point ones, in reference with entanglement. As the distance between the maximally entangled states and the separable states is known already in the previous paper, this paper determines the set of maximally entangled states nearest to a typical separable state which is used as an initial state in Grover's search algorithms, and to find geodesic segments which realize the above-mentioned distance. As for Grover's algorithms, it is already known that while the initial and the target states are separable, the algorithms generate sequences of entangled states. This fact is confirmed also in the entanglement measure proposed in the previous paper, and then a split Grover algorithm is proposed which generates sequences of separable states only with respect to the bipartite partition

  2. An Improved Quantum Information Hiding Protocol Based on Entanglement Swapping of χ-type Quantum States

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Wang Lian-Hai; Ding Qing-Yan; Zhang Shu-Hui; Chen Xiu-Bo

    2016-01-01

    In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states. (paper)

  3. Entanglement transfer between bipartite systems

    International Nuclear Information System (INIS)

    Bougouffa, Smail; Ficek, Zbigniew

    2012-01-01

    The problem of a controlled transfer of an entanglement initially encoded into two two-level atoms that are successively sent through two single-mode cavities is investigated. The atoms and the cavity modes form a four-qubit system and we demonstrate the conditions under which the initial entanglement encoded into the atoms can be completely transferred to other pairs of qubits. We find that in the case of non-zero detuning between the atomic transition frequencies and the cavity mode frequencies, no complete transfer of the initial entanglement is possible to any of the other pairs of qubits. In the case of exact resonance and equal coupling strengths of the atoms to the cavity modes, an initial maximally entangled state of the atoms can be completely transferred to the cavity modes. Complete transfer of the entanglement is restricted to the cavity modes, with transfer to the other pairs being limited to 50%. We find that complete transfer of an initial entanglement to other pairs of qubits may take place if the initial state is not the maximally entangled state and the atoms couple to the cavity modes with unequal strengths. Depending on the ratio between the coupling strengths, optimal entanglement can be created between the atoms and one of the cavity modes.

  4. Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states

    Energy Technology Data Exchange (ETDEWEB)

    Lu Huaixin; Zhao Jiaqiang; Wang Xiaoqin; Cao Lianzhen [Department of Physics and Electronic Science, , Weifang, Shandong 261061 (China)

    2011-07-15

    As stated by S. Ghose et al. [Phys. Rev. Lett. 102, 250404 (2009)], there are certain relationships between tripartite entanglement and tripartite nonlocality for three-qubit Greenberger-Horne-Zeilinger (GHZ) class states. In the present work, we have experimentally demonstrated the theoretical results of Ghose et al. by using both three-photon generalized GHZ (GGHZ) states and maximal slice (MS) states with a count of {approx}10/s. From the data, we have verified the agreement of the experimental violation of the Svetlichny inequality with the one predicted by quantum mechanics given the reconstructed density matrix. For the MS states, it is demonstrated that the amount of violation increases linearly following the increase of the degree of tripartite entanglement. In contrast, for GGHZ states, there is a minimal value of the violation when the degree of tripartite entanglement is 1/3. Both of the results are consist with the theoretical prediction.

  5. Experimental demonstration of tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states

    International Nuclear Information System (INIS)

    Lu Huaixin; Zhao Jiaqiang; Wang Xiaoqin; Cao Lianzhen

    2011-01-01

    As stated by S. Ghose et al. [Phys. Rev. Lett. 102, 250404 (2009)], there are certain relationships between tripartite entanglement and tripartite nonlocality for three-qubit Greenberger-Horne-Zeilinger (GHZ) class states. In the present work, we have experimentally demonstrated the theoretical results of Ghose et al. by using both three-photon generalized GHZ (GGHZ) states and maximal slice (MS) states with a count of ∼10/s. From the data, we have verified the agreement of the experimental violation of the Svetlichny inequality with the one predicted by quantum mechanics given the reconstructed density matrix. For the MS states, it is demonstrated that the amount of violation increases linearly following the increase of the degree of tripartite entanglement. In contrast, for GGHZ states, there is a minimal value of the violation when the degree of tripartite entanglement is 1/3. Both of the results are consist with the theoretical prediction.

  6. Characterizing entanglement with global and marginal entropic measures

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio

    2003-01-01

    We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such states cannot be discriminated by the majorization criterion

  7. Energy-Tunable Sources of Entangled Photons: A Viable Concept for Solid-State-Based Quantum Relays

    Science.gov (United States)

    Trotta, Rinaldo; Martín-Sánchez, Javier; Daruka, Istvan; Ortix, Carmine; Rastelli, Armando

    2015-04-01

    We propose a new method of generating triggered entangled photon pairs with wavelength on demand. The method uses a microstructured semiconductor-piezoelectric device capable of dynamically reshaping the electronic properties of self-assembled quantum dots (QDs) via anisotropic strain engineering. Theoretical models based on k .p theory in combination with finite-element calculations show that the energy of the polarization-entangled photons emitted by QDs can be tuned in a range larger than 100 meV without affecting the degree of entanglement of the quantum source. These results pave the way towards the deterministic implementation of QD entanglement resources in all-electrically-controlled solid-state-based quantum relays.

  8. Teleportation of an Arbitrary Two-Atom Entangled State via Thermal Cavity

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LIU Yi-Min; GAO Gan; SHI Shou-Hua; ZHANG Zhan-Jun

    2007-01-01

    We present an experimentally feasible scheme for teleportation of an arbitrary unknown two-atom entangled state by using two-atom Bell states in driven thermal cavities.In this scheme,the effects of thermal field and cavity decay can be all eliminated.Moreover,the present scheme is feasible according to current technologies.

  9. Generation of Werner states and preservation of entanglement in a noisy environment

    Energy Technology Data Exchange (ETDEWEB)

    Jakobczyk, Lech [Institute of Theoretical Physics, University of Wroclaw, Pl. M. Borna 9, 50-204 Wroclaw (Poland)]. E-mail: ljak@ift.uni.wroc.pl; Jamroz, Anna [Institute of Theoretical Physics, University of Wroclaw, Pl. M. Borna 9, 50-204 Wroclaw (Poland)

    2005-12-05

    We study the influence of noisy environment on the evolution of two-atomic system in the presence of collective damping. Generation of Werner states as asymptotic stationary states of evolution is described. We also show that for some initial states the amount of entanglement is preserved during the evolution.

  10. Entanglement properties of the two-dimensional SU(3) Affleck-Kennedy-Lieb-Tasaki state

    Science.gov (United States)

    Gauthé, Olivier; Poilblanc, Didier

    2017-09-01

    Two-dimensional (spin-2) Affleck-Kennedy-Lieb-Tasaki (AKLT) type valence bond solids on a square lattice are known to be symmetry-protected topological (SPT) gapped spin liquids [S. Takayoshi, P. Pujol, and A. Tanaka Phys. Rev. B 94, 235159 (2016), 10.1103/PhysRevB.94.235159]. Using the projected entangled pair state framework, we extend the construction of the AKLT state to the case of SU(3 ) , relevant for cold atom systems. The entanglement spectrum is shown to be described by an alternating SU(3 ) chain of "quarks" and "antiquarks", subject to exponentially decaying (with distance) Heisenberg interactions, in close similarity with its SU(2 ) analog. We discuss the SPT feature of the state.

  11. Dynamics of pairwise entanglement between two Tavis-Cummings atoms

    International Nuclear Information System (INIS)

    Guo Jinliang; Song Heshan

    2008-01-01

    We investigate the time evolution of pairwise entanglement between two Tavis-Cummings atoms for various entangled initial states, including pure and mixed states. We find that the phenomenon of entanglement sudden death behaviors is distinct in the evolution of entanglement for different initial states. What deserves mentioning here is that the initial portion of the excited state in the initial state is responsible for the sudden death of entanglement, and the degree of this effect also depends on the initial states

  12. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Hu, B.L.

    2015-01-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T_1>T_2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T_c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T_1, T_2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T_c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  13. Entanglement in a Dimerized Antiferromagnetic Heisenberg Chain

    OpenAIRE

    Hao, Xiang; Zhu, Shiqun

    2008-01-01

    The entanglement properties in an antiferromagnetic dimerized Heisenberg spin-1/2 chain are investigated. The entanglement gap, which is the difference between the ground-state energy and the minimal energy that any separable state can attain, is calculated to detect the entanglement. It is found that the entanglement gap can be increased by varying the alternation parameter. Through thermal energy, the witness of the entanglement can determine a characteristic temperature below that an entan...

  14. Quantum entanglement and special relativity

    International Nuclear Information System (INIS)

    Nishikawa, Yoshihisa

    2008-01-01

    Quantum entanglement was suggested by Einstein to indicate that quantum mechanics was incomplete. However, against Einstein's expectation, the phenomenon due to quantum entanglement has been verified by experiments. Recently, in quantum information theory, it has been also treated as a resource for quantum teleportation and so on. In around 2000, it is recognized that quantum correlations between two particles of one pair state in an entangled spin-state are affected by the non-trivial effect due to the successive Lorentz transformation. This relativistic effect is called the Wigner rotation. The Wigner rotation has to been taken into account when we observe spin-correlation of moving particles in a different coordinate frame. In this paper, first, we explain quantum entanglement and its modification due to the Wigner rotation. After that, we introduce an extended model instead of one pair state model. In the extended model, quantum entanglement state is prepared as a superposition state of various pair states. We have computed the von Neumann entropy and the Shannon entropy to see the global behavior of variation for the spin correlation due to the relativistic effect. We also discuss distinguishability between the two particles of the pair. (author)

  15. Entanglement Classification of extended Greenberger-Horne-Zeilinger-Symmetric States

    OpenAIRE

    Jung, Eylee; Park, DaeKil

    2013-01-01

    In this paper we analyze entanglement classification of extended Greenberger-Horne-Zeilinger-symmetric states $\\rho^{ES}$, which is parametrized by four real parameters $x$, $y_1$, $y_2$ and $y_3$. The condition for separable states of $\\rho^{ES}$ is analytically derived. The higher classes such as bi-separable, W, and Greenberger-Horne-Zeilinger classes are roughly classified by making use of the class-specific optimal witnesses or map from the extended Greenberger-Horne-Zeilinger symmetry t...

  16. Entanglement dynamics of a pure bipartite system in dissipative environments

    Energy Technology Data Exchange (ETDEWEB)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2008-10-28

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  17. Entanglement dynamics of a pure bipartite system in dissipative environments

    International Nuclear Information System (INIS)

    Tahira, Rabia; Ikram, Manzoor; Azim, Tasnim; Suhail Zubairy, M

    2008-01-01

    We investigate the phenomenon of sudden death of entanglement in a bipartite system subjected to dissipative environments with arbitrary initial pure entangled state between two atoms. We find that in a vacuum reservoir the presence of the state where both atoms are in excited states is a necessary condition for the sudden death of entanglement. Otherwise entanglement remains for an infinite time and decays asymptotically with the decay of individual qubits. For pure 2-qubit entangled states in a thermal environment, we observe that the sudden death of entanglement always happens. The sudden death time of the entangled states is related to the temperature of the reservoir and the initial preparation of the entangled states.

  18. Time-evolution of entanglement and Greenberger-Horne-Zeilinger states in two-mode Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yin Wen; Zhang, G.-F.; Liang, J.-Q.; Yan, Q.-W.

    2004-01-01

    In this Brief Report we investigate the time evolution of entanglement in two-mode Bose-Einstein condensates (BEC's) with various parameters of the scattering lengths of interatoms collisions, Josephson coupling strength, and initial states. The degree of entanglement increases by strengthening the tunnel coupling and keeping the balance of the collision interaction. In the latter stage we show that the two-mode BEC's can be used for preparing the Greenberger-Home-Zeilinger state

  19. Generation of the quadripartite Greenberger–Horne–Zeilinger entangled state in quantum beat lasers

    International Nuclear Information System (INIS)

    Wang, Fei

    2013-01-01

    In this letter, a scheme is presented to obtain quadripartite Greenberger–Horne–Zeilinger (GHZ) entanglement via quantum beats in a four-level diamond configuration atomic system. When the top and the ground states are initially prepared in a coherent superposition, the four quantized fields coupling with four dipole-allowed transitions can be correlated with each other by using a strong microwave field to drive the dipole-forbidden transition. It is the combined effect of atomic coherence-controlled correlated-spontaneous emission and double quantum beats that results in the quadripartite GHZ-type entanglement. Our numerical results show that the quadripartite entanglement, which can be controlled effectively by varying the amplitude and phase of the microwave field, occurs in a very wide parameter range. In addition, using input–output theory, we find that the output quadripartite entanglement is robust against thermal fluctuations, which may be useful for long-distance quantum communications. (letter)

  20. Scheme for teleportation of entangled states without Bell-state measurement by using one atom

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Wenchao; Zhang Lei; Zhang Aiping [Faculty of Science, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Dong Shihai, E-mail: qwcqj@163.com [Departamento de Fisica, Esc. Sup de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, Unidad Profesional Adolfo Lopez Mateos, Mexico, DF 07738 (Mexico)

    2011-07-01

    We propose a scheme for approximately and conditionally teleporting an entanglement of zero- and one-photon states from a cavity with left- and right-polarized modes to another similar one, with a fidelity exceeding 99%. Instead of using the Bell-state measurement, only one atom is used in our scheme. The time spent, the success probability and the feasibility of the proposed scheme are also discussed.

  1. Experimental determination of entanglement with a single measurement.

    Science.gov (United States)

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  2. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DEFF Research Database (Denmark)

    Dong, Ruifang; Lassen, Mikael Østergaard; Heersink, Joel

    2010-01-01

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network...

  3. Entanglement Swapping in the Presence of White and Color Noise

    Science.gov (United States)

    Dotsenko, Ivan S.; Korobka, R.

    2018-02-01

    The influence of white and color noise on the outcome of the entanglement swapping process is investigated in a four-qubit system. Critical degree of noise in initial state, that could destroy entanglement in a result state is presented. The entanglement characteristics, such as concurrence, tangle, etc. are compared. Results could be helpful for experiments regarding entanglement swapping as conditions for initial quantum entangled states, to obtain entangled result state.

  4. Entropy correlation and entanglement for mixed states in an algebraic model

    International Nuclear Information System (INIS)

    Hou Xiwen; Chen Jinghua; Wan Mingfang; Ma Zhongqi

    2009-01-01

    As an alternative with potential connections to actual experiments, other than the systems more usually used in the field of entanglement, the dynamics of entropy correlation and entanglement between two anharmonic vibrations in a well-established algebraic model, with parameters extracted from fitting to highly excited spectral experimental results for molecules H 2 O and SO 2 , is studied in terms of the linear entropy and two negativities for various initial states that are respectively taken to be the mixed density matrices of thermal states and squeezed states on each mode. For a suitable parameter in initial states the entropies in two stretches can show positive correlation or anti-correlation. And the linear entropy of each mode is positively correlated with the negativities just for the mixed-squeezed states with small parameters in H 2 O while they do not display any correlation in other cases. For the mixed-squeezed states the negativities exhibit dominantly positive correlations with an effective mutual entropy. The differences in the linear entropy and the negativities between H 2 O and SO 2 are discussed as well. Those are useful for molecular quantum computing and quantum information processing

  5. Deterministic secure direct communication using GHZ states and swapping quantum entanglement

    International Nuclear Information System (INIS)

    Gao, T; Yan, F L; Wang, Z X

    2005-01-01

    We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series of local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three of Alice, Bob and Charlie's Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is no transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if a perfect quantum channel is used

  6. Bound entanglement and local realism

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Zukowski, Marek; Gnacinski, Piotr

    2002-01-01

    We show using a numerical approach, which gives necessary and sufficient conditions for the existence of local realism, that the bound entangled state presented in Bennett et al. [Phys. Rev. Lett. 82, 5385 (1999)] admits a local and realistic description. We also find the lowest possible amount of some appropriate entangled state that must be ad-mixed to the bound entangled state so that the resulting density operator has no local and realistic description and as such can be useful in quantum communication and quantum computation

  7. Resonating-valence-bond superconductors with fermionic projected entangled pair states

    NARCIS (Netherlands)

    Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.

    2014-01-01

    We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately

  8. State-independent uncertainty relations and entanglement detection

    Science.gov (United States)

    Qian, Chen; Li, Jun-Li; Qiao, Cong-Feng

    2018-04-01

    The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of N-dimensional observables. The uncertainty relation for the incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.

  9. Entanglement between particle partitions in itinerant many-particle states

    NARCIS (Netherlands)

    Haque, M.; Zozulya, O.S.; Schoutens, K.

    2009-01-01

    We review 'particle-partitioning entanglement' for itinerant many-particle systems. This is defined as the entanglement between two subsets of particles making up the system. We identify generic features and mechanisms of particle entanglement that are valid over whole classes of itinerant quantum

  10. Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: Detection of non-Gaussian entangled states

    International Nuclear Information System (INIS)

    Nha, Hyunchul; Kim, Jaewan

    2006-01-01

    We derive a class of inequalities, from the uncertainty relations of the su(1,1) and the su(2) algebra in conjunction with partial transposition, that must be satisfied by any separable two-mode states. These inequalities are presented in terms of the su(2) operators J x =(a † b+ab † )/2, J y =(a † b-ab † )/2i, and the total photon number a +N b >. They include as special cases the inequality derived by Hillery and Zubairy [Phys. Rev. Lett. 96, 050503 (2006)], and the one by Agarwal and Biswas [New J. Phys. 7, 211 (2005)]. In particular, optimization over the whole inequalities leads to the criterion obtained by Agarwal and Biswas. We show that this optimal criterion can detect entanglement for a broad class of non-Gaussian entangled states, i.e., the su(2) minimum-uncertainty states. Experimental schemes to test the optimal criterion are also discussed, especially the one using linear optical devices and photodetectors

  11. General entanglement-assisted transformation for bipartite pure quantum states

    Science.gov (United States)

    Song, Wei; Huang, Yan; Nai-LeLiu; Chen, Zeng-Bing

    2007-01-01

    We introduce the general catalysts for pure entanglement transformations under local operations and classical communications in such a way that we disregard the profit and loss of entanglement of the catalysts per se. As such, the possibilities of pure entanglement transformations are greatly expanded. We also design an efficient algorithm to detect whether a k × k general catalyst exists for a given entanglement transformation. This algorithm can also be exploited to witness the existence of standard catalysts.

  12. Entanglement between two spatially separated atomic modes

    Science.gov (United States)

    Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten

    2018-04-01

    Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

  13. Hybrid Long-Distance Entanglement Distribution Protocol

    DEFF Research Database (Denmark)

    Brask, J.B.; Rigas, I.; Polzik, E.S.

    2010-01-01

    We propose a hybrid (continuous-discrete variable) quantum repeater protocol for long-distance entanglement distribution. Starting from states created by single-photon detection, we show how entangled coherent state superpositions can be generated by means of homodyne detection. We show that near......-deterministic entanglement swapping with such states is possible using only linear optics and homodyne detectors, and we evaluate the performance of our protocol combining these elements....

  14. Multiple quantum spin dynamics of entanglement

    International Nuclear Information System (INIS)

    Doronin, Serge I.

    2003-01-01

    The dynamics of entanglement is investigated on the basis of exactly solvable models of multiple quantum (MQ) NMR spin dynamics. It is shown that the time evolution of MQ coherences of systems of coupled nuclear spins in solids is directly connected with dynamics of the quantum entanglement. We studied analytically the dynamics of entangled states for two- and three-spin systems coupled by the dipole-dipole interaction. In this case the dynamics of the quantum entanglement is uniquely determined by the time evolution of MQ coherences of the second order. The real part of the density matrix describing MQ dynamics in solids is responsible for MQ coherences of the zeroth order while its imaginary part is responsible for the second order. Thus, one can conclude that the dynamics of the entanglement is connected with transitions from the real part of the density matrix to the imaginary one, and vice versa. A pure state which generalizes the Greenberger-Horne-Zeilinger (GHZ) and W states is found. Different measures of the entanglement of this state are analyzed for tripartite systems

  15. Entanglement in continuous-variable systems: recent advances and current perspectives

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Illuminati, Fabrizio

    2007-01-01

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored

  16. Entanglement in continuous-variable systems: recent advances and current perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Adesso, Gerardo [Dipartimento di Fisica, Universita degli Studi di Roma ' La Sapienza' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Illuminati, Fabrizio [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2007-07-13

    We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillability of Gaussian states and discuss the main properties of bipartite entanglement. These include the extremal entanglement, minimal and maximal, of two-mode mixed Gaussian states, the ordering of two-mode Gaussian states according to different measures of entanglement, the unitary (reversible) localization and the scaling of bipartite entanglement in multimode Gaussian states. We then discuss recent advances in the understanding of entanglement sharing in multimode Gaussian states, including the proof of the monogamy inequality of distributed entanglement for all Gaussian states. Multipartite entanglement of Gaussian states is reviewed by discussing its qualification by different classes of separability, and the main consequences of the monogamy inequality, such as the quantification of genuine tripartite entanglement in three-mode Gaussian states, the promiscuous nature of entanglement sharing in symmetric Gaussian states and the possible coexistence of unlimited bipartite and multipartite entanglement. We finally review recent advances and discuss possible perspectives on the qualification and quantification of entanglement in non-Gaussian states, a field of research that is to a large extent yet to be explored.

  17. Squashed entanglement in infinite dimensions

    International Nuclear Information System (INIS)

    Shirokov, M. E.

    2016-01-01

    We analyse two possible definitions of the squashed entanglement in an infinite-dimensional bipartite system: direct translation of the finite-dimensional definition and its universal extension. It is shown that the both definitions produce the same lower semicontinuous entanglement measure possessing all basis properties of the squashed entanglement on the set of states having at least one finite marginal entropy. It is also shown that the second definition gives an adequate lower semicontinuous extension of this measure to all states of the infinite-dimensional bipartite system. A general condition relating continuity of the squashed entanglement to continuity of the quantum mutual information is proved and its corollaries are considered. Continuity bound for the squashed entanglement under the energy constraint on one subsystem is obtained by using the tight continuity bound for quantum conditional mutual information (proved in the Appendix by using Winter’s technique). It is shown that the same continuity bound is valid for the entanglement of formation. As a result the asymptotic continuity of the both entanglement measures under the energy constraint on one subsystem is proved.

  18. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  19. Images in quantum entanglement

    International Nuclear Information System (INIS)

    Bowden, G J

    2009-01-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction Ψ O plus a portion of its own inverse image. Bell states can be defined in this way: Ψ= 1/√2 (Ψ O ±Ψ I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν 123 entanglement, two-particle entanglements ν 12 , ν 13 , ν 23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν 12 , ν 13 , ν 23 , ν 123 and φ 123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α 1 , β 1 ), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  20. Images in quantum entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, G J [School of Physics and Astronomy, University of Southampton, SO17 1BJ (United Kingdom)

    2009-08-28

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction {psi}{sub O} plus a portion of its own inverse image. Bell states can be defined in this way: {psi}= 1/{radical}2 ({psi}{sub O}{+-}{psi}{sub I} ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle {nu}{sub 123} entanglement, two-particle entanglements {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23} and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters {nu}{sub 12}, {nu}{sub 13}, {nu}{sub 23}, {nu}{sub 123} and {phi}{sub 123} are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function ({alpha}{sub 1}, {beta}{sub 1}), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  1. Entanglement fidelity of the standard quantum teleportation channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Ye, Ming-Yong, E-mail: myye@fjnu.edu.cn; Lin, Xiu-Min

    2013-09-16

    We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.

  2. Quantum separability and entanglement detection via entanglement-witness search and global optimization

    International Nuclear Information System (INIS)

    Ioannou, Lawrence M.; Travaglione, Benjamin C.

    2006-01-01

    We focus on determining the separability of an unknown bipartite quantum state ρ by invoking a sufficiently large subset of all possible entanglement witnesses given the expected value of each element of a set of mutually orthogonal observables. We review the concept of an entanglement witness from the geometrical point of view and use this geometry to show that the set of separable states is not a polytope and to characterize the class of entanglement witnesses (observables) that detect entangled states on opposite sides of the set of separable states. All this serves to motivate a classical algorithm which, given the expected values of a subset of an orthogonal basis of observables of an otherwise unknown quantum state, searches for an entanglement witness in the span of the subset of observables. The idea of such an algorithm, which is an efficient reduction of the quantum separability problem to a global optimization problem, was introduced by [Ioannou et al., Phys. Rev. A 70, 060303(R)], where it was shown to be an improvement on the naive approach for the quantum separability problem (exhaustive search for a decomposition of the given state into a convex combination of separable states). The last section of the paper discusses in more generality such algorithms, which, in our case, assume a subroutine that computes the global maximum of a real function of several variables. Despite this, we anticipate that such algorithms will perform sufficiently well on small instances that they will render a feasible test for separability in some cases of interest (e.g., in 3x3 dimensional systems)

  3. Comment on 'Correlative amplitude-operational phase entanglement embodied by the EPR-pair eigenstate ({eta})'[42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements; 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.);

    Energy Technology Data Exchange (ETDEWEB)

    Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)

    2003-01-10

    In a recent paper in this journal Fan (Fan H 2002 J. Phys. A: Math. Gen.35 1007) discards the possibility of using a genuine phase-difference operator to investigate number-phase entanglement because of the lack of unitarity of the Susskind-Glogower phase operators. However, Fan overlooked the existence of a bona fide unitary operator exponential of the phase difference. Here we find the amplitude-phase maximally entangled states as the simultaneous eigenstates of the total number and the phase-difference operators. (comment)

  4. Entanglement negativity in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); Shock, Jonathan P. [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Soda, Jiro, E-mail: sugumi.kanno@ehu.es, E-mail: jonathan.shock@uct.ac.za, E-mail: jiro@phys.sci.kobe-u.ac.jp [Department of Physics, Kobe University, Kobe 657-8501 (Japan)

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  5. Entanglement negativity in the multiverse

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-01-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse

  6. Entanglement negativity in the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao (Spain); Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Shock, Jonathan P. [Laboratory for Quantum Gravity & Strings and Astrophysics, Cosmology & Gravity Center, Department of Mathematics & Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); National Institute for Theoretical Physics, Private Bag X1, Matieland, 7602 (South Africa); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan)

    2015-03-10

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  7. Quantum Secure Direct Communication with Five-Qubit Entangled State

    International Nuclear Information System (INIS)

    Lin Song; Liu Xiao-Fen; Gao Fei

    2011-01-01

    Recently, a genuine five-qubit entangled state has been achieved by Brown et al.[J. Phys. A 38 (2005) 1119]. Later it was indicated that this state can be used for quantum teleportation and quantum state sharing. Here we build a quantum secure direct communication protocol with this state, and prove that it is secure in ideal conditions. In the protocol, the sender performs unitary transformations to encode a secret message on his/her particles and sends them to the receiver. The receiver then performs projective determinate measurement to decode the secret message directly. Furthermore, this protocol utilizes superdense coding to achieve a high intrinsic efficiency and source capacity. (general)

  8. Variation of entanglement entropy in scattering process

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shigenori, E-mail: sigenori@hanyang.ac.kr [Research Institute for Natural Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, I.Y., E-mail: inyongpark05@gmail.com [Department of Applied Mathematics, Philander Smith College, Little Rock, AR 72223 (United States); Sin, Sang-Jin, E-mail: sjsin@hanyang.ac.kr [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-09

    In a scattering process, the final state is determined by an initial state and an S-matrix. We focus on two-particle scattering processes and consider the entanglement between these particles. For two types initial states, i.e., an unentangled state and an entangled one, we calculate perturbatively the change of entanglement entropy from the initial state to the final one. Then we show a few examples in a field theory and in quantum mechanics.

  9. Entanglement polygon inequality in qubit systems

    Science.gov (United States)

    Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.

    2018-06-01

    We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.

  10. Teleportation of a two-atom entangled state using a single EPR pair in cavity QED

    Institute of Scientific and Technical Information of China (English)

    Ji Xin; Li Ke; Zhang Shou

    2006-01-01

    We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics(QED).In the scheme,we choose a single Einstein-Podolsky-Rosen (EPR) pair as the quantum channel which is shared by the sender and the receiver.By using the atom-cavity-field interaction and introducing an additional atom,we can teleport the two-atom entangled state successfully with a probability of 1.0.Moreover,we show that the scheme is insensitive to cavity decay and thermal field.

  11. Theoretical consideration of the use of mode entangled states to beat the minimal period of an interference pattern

    International Nuclear Information System (INIS)

    Podoshvedov, Sergey A

    2005-01-01

    We propose to use multi-photon mode entangled states to beat the minimal period of an interference pattern. Using the multi-photon mode entangled states, we show that it is possible to observe an interference effect with a period of minimum size λ/2N in an N-photon absorbing substrate. In the framework of the method developed, we propose a simple scheme for a quantum encoder with a two-photon quantum channel for producing a desired N-photon mode entangled state on which to write an interference pattern with a smaller period, as compared with the one in the case of the use of classical light

  12. Efficient multipartite entanglement purification with the entanglement link from a subspace

    Energy Technology Data Exchange (ETDEWEB)

    Deng Fuguo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Conventional University, Beijing 100875 (China)

    2011-11-15

    We present an efficient multipartite entanglement purification protocol (MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with parity-check detectors. It contains two parts. One is the conventional MEPP with which the parties can obtain a high-fidelity N-photon ensemble directly, similar to the MEPP with controlled-not gates. The other is our recycling MEPP in which the entanglement link is used to produce some N-photon entangled systems from entangled N{sup '}-photon subsystems (2{<=}N{sup '}entangled N{sup '}-photon subsystems are obtained efficiently by measuring the photons with potential bit-flip errors. With these two parts, the present MEPP has a higher efficiency than all other conventional MEPPs.

  13. Entangled biphoton source - property and preparation

    International Nuclear Information System (INIS)

    Shih, Yanhua

    2003-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. Even though there are still questions regarding the fundamental issues of quantum theory, quantum entanglement has started to play important roles in practical engineering applications such as quantum information processing, quantum metrology, quantum imaging and quantum lithography. Two-photon states have been the most popular entangled states in fundamental and applied research. Using spontaneous parametric down conversion as an example, this review introduces the concept of biphoton wavepacket and emphasizes the very different physics associated with the entangled two-photon system (pure state) and with the 'individual' subsystems (statistical mixture). Experimental approaches for Bell state preparation, pumped by continuous wave and ultrashort pulse are discussed

  14. Entangled biphoton source - property and preparation

    CERN Document Server

    Shih, Y

    2003-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. Even though there are still questions regarding the fundamental issues of quantum theory, quantum entanglement has started to play important roles in practical engineering applications such as quantum information processing, quantum metrology, quantum imaging and quantum lithography. Two-photon states have been the most popular entangled states in fundamental and applied research. Using spontaneous parametric down conversion as an example, this review introduces the concept of biphoton wavepacket and emphasizes the very different physics associated with the entangled two-photon system (pure state) and with the 'individual' subsystems (statistical mixture). Experimental approaches for Bell state preparation, pumped by continuous wave and ultrashort pulse are discussed.

  15. Scheme for Teleportation of a Multipartite Quantum State by Using a Single Entangled Pair as Quantum Channel

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Wen; WANG Zhi-Yong; XIA Li-Xin

    2007-01-01

    We present a theoretical scheme for perfect teleportation of an unknown multipartite two-level state by a single EPR (Einstein-Podolsky-Rosen) pair,and then generalize it to multilevel,i.e.,an N-quNit state can be teleported by a single quNit entangled pair,with additional local unitary operations.The feature of the scheme is that teleporting a multipartite state with a reduced amount of entanglement costs less classical bits.

  16. Effect of weak measurement on entanglement distribution over noisy channels.

    Science.gov (United States)

    Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H

    2016-03-03

    Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.

  17. Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Li; Xiu, Xiao-Ming, E-mail: xiuxiaomingdl@126.com [Dalian University of Technology, School of Physics and Optoelectronic Technology (China); Ren, Yuan-Peng [Bohai University, Higher Professional Technical Institute (China); Gao, Ya-Jun [Bohai University, College of Mathematics and Physics (China); Yi, X. X. [Dalian University of Technology, School of Physics and Optoelectronic Technology (China)

    2013-01-15

    We propose a protocol transferring an arbitrary unknown two-qubit state using the quantum channel of a four-qubit genuine entangled state. Simplifying the four-qubit joint measurement to the combination of Bell-state measurements, it can be realized more easily with currently available technologies.

  18. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  19. Multipartite Entanglement Detection with Minimal Effort

    Science.gov (United States)

    Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald

    2016-11-01

    Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.

  20. Joint quantum state tomography of an entangled qubit–resonator hybrid

    International Nuclear Information System (INIS)

    LinPeng, X Y; Zhang, H Z; Xu, K; Li, C Y; Zhong, Y P; Wang, Z L; Wang, H; Xie, Q W

    2013-01-01

    The integration of superconducting qubits and resonators in one circuit offers a promising solution for quantum information processing (QIP), which also realizes the on-chip analogue of cavity quantum electrodynamics (QED), known as circuit QED. In most prototype circuit designs, qubits are active processing elements and resonators are peripherals. As resonators typically have better coherence performance and more accessible energy levels, it is proposed that the entangled qubit–resonator hybrid can be used as a processing element. To achieve such a goal, an accurate measurement of the hybrid is first necessary. Here we demonstrate a joint quantum state tomography (QST) technique to fully characterize an entangled qubit–resonator hybrid. We benchmarked our QST technique by generating and accurately characterizing multiple states, e.g. |gN〉 + |e(N − 1)〉 where (|g〉 and |e〉) are the ground and excited states of the qubit and (|0〉,…,|N〉) are Fock states of the resonator. We further provided a numerical method to improve the QST efficiency and measured the decoherence dynamics of the bipartite hybrid, witnessing dissipation coming from both the qubit and the N-photon Fock state. As such, the joint QST presents an important step toward actively using the qubit–resonator element for QIP in hybrid quantum devices and for studying circuit QED. (paper)

  1. Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices

    Science.gov (United States)

    Jahromi, Saeed S.; Orús, Román; Kargarian, Mehdi; Langari, Abdollah

    2018-03-01

    The infinite projected entangled-pair state (iPEPS) algorithm is one of the most efficient techniques for studying the ground-state properties of two-dimensional quantum lattice Hamiltonians in the thermodynamic limit. Here, we show how the algorithm can be adapted to explore nearest-neighbor local Hamiltonians on the ruby and triangle-honeycomb lattices, using the corner transfer matrix (CTM) renormalization group for 2D tensor network contraction. Additionally, we show how the CTM method can be used to calculate the ground-state fidelity per lattice site and the boundary density operator and entanglement entropy (EE) on an infinite cylinder. As a benchmark, we apply the iPEPS method to the ruby model with anisotropic interactions and explore the ground-state properties of the system. We further extract the phase diagram of the model in different regimes of the couplings by measuring two-point correlators, ground-state fidelity, and EE on an infinite cylinder. Our phase diagram is in agreement with previous studies of the model by exact diagonalization.

  2. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  3. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...

  4. Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State

    Science.gov (United States)

    Siyouri, Fatima-Zahra

    2017-12-01

    In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.

  5. Minimal Entanglement Witness From Electrical Current Correlations

    OpenAIRE

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2016-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and non-collinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be ...

  6. Superadditivity of distillable entanglement from quantum teleportation

    Science.gov (United States)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-12-01

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes.

  7. Superadditivity of distillable entanglement from quantum teleportation

    International Nuclear Information System (INIS)

    Bandyopadhyay, Somshubhro; Roychowdhury, Vwani

    2005-01-01

    We show that the phenomenon of superadditivity of distillable entanglement observed in multipartite quantum systems results from the consideration of states created during the execution of the standard end-to-end quantum teleportation protocol [and a few additional local operations and classical communication (LOCC) steps] on a linear chain of singlets. Some of these intermediate states are tensor products of bound entangled (BE) states, and hence, by construction possess distillable entanglement, which can be unlocked by simply completing the rest of the LOCC operations required by the underlying teleportation protocol. We use this systematic approach to construct both new and known examples of superactivation of bound entanglement, and examples of activation of BE states using other BE states. A surprising outcome is the construction of noiseless quantum relay channels with no distillable entanglement between any two parties, except for that between the two end nodes

  8. Measurement-Based Entanglement of Noninteracting Bosonic Atoms.

    Science.gov (United States)

    Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A

    2018-05-11

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  9. Semiquantum secret sharing using entangled states

    International Nuclear Information System (INIS)

    Li Qin; Chan, W. H.; Long Dongyang

    2010-01-01

    Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.

  10. Characterizing symmetries in a projected entangled pair state

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, D; Gonzalez-Guillen, C E [Departamento Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Sanz, M; Cirac, J I [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Wolf, M M [Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen (Denmark)], E-mail: dperez@mat.ucm.es

    2010-02-15

    We show that two different tensors defining the same translational invariant injective projected entangled pair state (PEPS) in a square lattice must be the same up to a trivial gauge freedom. This allows us to characterize the existence of any local or spatial symmetry in the state. As an application of these results we prove that a SU(2) invariant PEPS with half-integer spin cannot be injective, which can be seen as a Lieb-Shultz-Mattis theorem in this context. We also give the natural generalization for U(1) symmetry in the spirit of Oshikawa-Yamanaka-Affleck, and show that a PEPS with Wilson loops cannot be injective.

  11. Optimal simulation of a perfect entangler

    International Nuclear Information System (INIS)

    Yu Nengkun; Duan Runyao; Ying Mingsheng

    2010-01-01

    A 2 x 2 unitary operation is called a perfect entangler if it can generate a maximally entangled state from some unentangled input. We study the following question: How many runs of a given two-qubit entangling unitary operation are required to simulate some perfect entangler with one-qubit unitary operations as free resources? We completely solve this problem by presenting an analytical formula for the optimal number of runs of the entangling operation. Our result reveals an entanglement strength of two-qubit unitary operations.

  12. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  13. Continuous variable entanglement distillation of non-Gaussian states

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Dong, Ruifang; Heersink, Joel

    2009-01-01

    We experimentally demonstrate distillation of continuous variable entangled light that has undergone non-Gaussian attenuation loss. The continuous variable entanglement is generated with optical fibers and sent through a lossy channel, where the transmission is varying in time. By employing simple...

  14. Quantum entanglement and quantum teleportation

    International Nuclear Information System (INIS)

    Shih, Y.H.

    2001-01-01

    One of the most surprising consequences of quantum mechanics is the entanglement of two or more distance particles. The ''ghost'' interference and the ''ghost'' image experiments demonstrated the astonishing nonlocal behavior of an entangled photon pair. Even though we still have questions in regard to fundamental issues of the entangled quantum systems, quantum entanglement has started to play important roles in quantum information and quantum computation. Quantum teleportation is one of the hot topics. We have demonstrated a quantum teleportation experiment recently. The experimental results proved the working principle of irreversibly teleporting an unknown arbitrary quantum state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that the complete set of Bell states can be distinguished in the Bell state measurement. Teleportation of a quantum state can thus occur with certainty in principle. (orig.)

  15. Generalized Entanglement Entropies of Quantum Designs

    Science.gov (United States)

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-01

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  16. Optimal use of multipartite entanglement for continuous variable teleportation

    International Nuclear Information System (INIS)

    Adesso, G.; Illuminati, F.

    2005-01-01

    Full text: In this work we discuss how continuous variable teleportation takes advantage of the quadrature entanglement in different ways, depending on the preparation of the entangled state. For a given amount of the entanglement resource, we describe the best production scheme for a two-mode Gaussian state, which enables quantum teleportation with optimal fidelity. We extend this study to multiparty entangled Gaussian states and define an operative measure of multipartite entanglement related to the optimal fidelity in a quantum teleportation network experiment. This optimal fidelity is shown to be equivalent to the entanglement of formation for the standard two-user protocol, and to the multipartite localizable entanglement for the multiuser protocol. (author)

  17. Distillable entanglement in d circle times d dimensions

    NARCIS (Netherlands)

    Hamieh, S; Zaraket, H

    2003-01-01

    Distillable entanglement (E-d) is one of the acceptable measures of entanglement of mixed states. On the basis of discrimination through local operation and classical communication, this letter gives E-d for two classes of orthogonal multipartite maximally entangled states.

  18. Universal entanglement transformations without communication

    International Nuclear Information System (INIS)

    Dam, Wim van; Hayden, Patrick

    2003-01-01

    We show that in the presence of finite catalysts, any pure bipartite entangled state can be converted into any other, to unlimited accuracy, without the use of any communication, quantum or classical. We call this process embezzling entanglement because it involves removing a small amount of entanglement from the catalyst in a physically unnoticeable way

  19. Discrimination strategies for inequivalent classes of multipartite entangled states

    International Nuclear Information System (INIS)

    Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried

    2010-01-01

    How can one discriminate different inequivalent classes of multiparticle entanglement experimentally? We present an approach for the discrimination of an experimentally prepared state from the equivalence class of another state. We consider two possible measures for the discrimination strength of an observable. The first measure is based on the difference of expectation values, the second on the relative entropy of the probability distributions of the measurement outcomes. The interpretation of these measures and their usefulness for experiments with limited resources are discussed. In the case of graph states, the stabilizer formalism is employed to compute these quantities and to find sets of observables that result in the most decisive discrimination.

  20. Multi-photon entanglements

    International Nuclear Information System (INIS)

    Daniell, M.L.

    2000-09-01

    The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)

  1. Entanglement dynamics in quantum information theory

    International Nuclear Information System (INIS)

    Cubitt, T.S.

    2007-01-01

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more abstract results, the entanglement and

  2. Protecting single-photon entanglement with practical entanglement source

    Science.gov (United States)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  3. Entanglement of purification: from spin chains to holography

    Science.gov (United States)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  4. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  5. Gain maximization in a probabilistic entanglement protocol

    Science.gov (United States)

    di Lorenzo, Antonio; Esteves de Queiroz, Johnny Hebert

    Entanglement is a resource. We can therefore define gain as a monotonic function of entanglement G (E) . If a pair with entanglement E is produced with probability P, the net gain is N = PG (E) - (1 - P) C , where C is the cost of a failed attempt. We study a protocol where a pair of quantum systems is produced in a maximally entangled state ρm with probability Pm, while it is produced in a partially entangled state ρp with the complementary probability 1 -Pm . We mix a fraction w of the partially entangled pairs with the maximally entangled ones, i.e. we take the state to be ρ = (ρm + wUlocρpUloc+) / (1 + w) , where Uloc is an appropriate unitary local operation designed to maximize the entanglement of ρ. This procedure on one hand reduces the entanglement E, and hence the gain, but on the other hand it increases the probability of success to P =Pm + w (1 -Pm) , therefore the net gain N may increase. There may be hence, a priori, an optimal value for w, the fraction of failed attempts that we mix in. We show that, in the hypothesis of a linear gain G (E) = E , even assuming a vanishing cost C -> 0 , the net gain N is increasing with w, therefore the best strategy is to always mix the partially entangled states. Work supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, proc. 311288/2014-6, and by FAPEMIG, Fundação de Amparo à Pesquisa de Minas Gerais, proc. IC-FAPEMIG2016-0269 and PPM-00607-16.

  6. Quantum circuit implementation of the optimal information-disturbance tradeoff of maximally entangled states

    International Nuclear Information System (INIS)

    Zhang ShengLi; Zou Xubo; Li Ke; Jin Chenhui; Guo Guangcan

    2008-01-01

    We give a direct derivation for the information-disturbance tradeoff in estimating a maximally entangled state, which was first obtained by Sacchi (2006 Phys. Rev. Lett. 96 220502) in terms of the covariant positive operator valued measurement (POVM) and Jamiolkowski's isomorphism. We find that, the Cauchy-Schwarz inequality, which is one of the most powerful tools in deriving the tradeoff for a single-particle pure state still plays a key role in the case of the maximal entanglement estimation. Our result shows that the inequality becomes equality when the optimal tradeoff is achieved. Moreover, we demonstrate that such a tradeoff is physically achievable with a quantum circuit that only involves single- and two-particle logic gates and single-particle measurements

  7. Fault-Tolerant Quantum Dialogue Without Information Leakage Based on Entanglement Swapping between Two Logical Bell States

    International Nuclear Information System (INIS)

    Ye Tian-Yu

    2015-01-01

    At present, the anti-noise property and the information leakage resistant property are two great concerns for quantum dialogue (QD). In this paper, two anti-noise QD protocols without information leakage are presented by using the entanglement swapping technology for two logical Bell states. One works well over a collective-dephasing noise channel, while the other takes effect over a collective-rotation noise channel. The negative influence of noise is erased by using logical Bell states as the traveling quantum states. The problem of information leakage is avoided by swapping entanglement between two logical Bell states. In addition, only Bell state measurements are used for decoding, rather than four-qubit joint measurements. (paper)

  8. New features of entanglement dynamics with initial system–bath correlations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zou, Jian, E-mail: zoujian@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); He, Zhi; Li, Jun-Gang; Shao, Bin [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Wu, Lian-Ao [Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080 Bilbao (Spain)

    2012-02-06

    We investigate the influence of initial correlations between two qubits and a family of baths on the entanglement dynamics of these two qubits. We show that initial system–bath correlations can effectively avoid the occurrence of entanglement sudden death, and for the initial states with quantum correlations the entanglement between two qubits can be larger than its initial value. Significantly, we find that there exist initial states which we called entanglement preserving states, such that, although the state of the qubit subsystem evolves the entanglement of two qubits does not evolves at all. -- Highlights: ► We obtain analytically solutions of two qubits interacting with a family of baths. ► Having initial quantum correlation with the bath, the system can gain entanglement. ► For some initial states though the system evolves, the entanglement remain the same.

  9. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  10. Quantum entanglement: theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, N.

    2007-10-10

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  11. Quantum entanglement: theory and applications

    International Nuclear Information System (INIS)

    Schuch, N.

    2007-01-01

    This thesis deals with various questions concerning the quantification, the creation, and the application of quantum entanglement. Entanglement arises due to the restriction to local operations and classical communication. We investigate how the notion of entanglement changes if additional restrictions in form of a superselection rule are imposed and show that they give rise to a new resource. We characterize this resource and demonstrate that it can be used to overcome the restrictions, very much as entanglement can overcome the restriction to local operations by teleportation. We next turn towards the optimal generation of resources. We show how squeezing can be generated as efficiently as possible from noisy squeezing operations supplemented by noiseless passive operations, and discuss the implications of this result to the optimal generation of entanglement. The difficulty in describing the behaviour of correlated quantum many-body systems is ultimately due to the complicated entanglement structure of multipartite states. Using quantum information techniques, we investigate the ground state properties of lattices of harmonic oscillators. We derive an exponential decay of correlations for gapped systems, compute the dependence of correlation length and gap, and investigate the notion of criticality by relating a vanishing energy gap to an algebraic decay of correlations. Recently, ideas from entanglement theory have been applied to the description of many-body systems. Matrix Product States (MPS), which have a particularly simple interpretation from the point of quantum information, perform extremely well in approximating the ground states of local Hamiltonians. It is generally believed that this is due to the fact that both ground states and MPS obey an entropic area law. We clarify the relation between entropy scaling laws and approximability by MPS, and in particular find that an area law does not necessarily imply approximability. Using the quantum

  12. Inter-Universal Quantum Entanglement

    Science.gov (United States)

    Robles-Pérez, S. J.; González-Díaz, P. F.

    2015-01-01

    The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.

  13. Entanglement Equilibrium and the Einstein Equation.

    Science.gov (United States)

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  14. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  15. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  16. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  17. A novel quantum information hiding protocol based on entanglement swapping of high-level Bell states

    International Nuclear Information System (INIS)

    Xu Shu-Jiang; Wang Lian-Hai; Chen Xiu-Bo; Niu Xin-Xin; Yang Yi-Xian

    2015-01-01

    Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security. (paper)

  18. Reconstruction of high-dimensional states entangled in orbital angular momentum using mutually unbiased measurements

    CSIR Research Space (South Africa)

    Giovannini, D

    2013-06-01

    Full Text Available : QELS_Fundamental Science, San Jose, California United States, 9-14 June 2013 Reconstruction of High-Dimensional States Entangled in Orbital Angular Momentum Using Mutually Unbiased Measurements D. Giovannini1, ⇤, J. Romero1, 2, J. Leach3, A...

  19. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control of t...

  20. Manipulating continuous variable photonic entanglement

    International Nuclear Information System (INIS)

    Plenio, M.B.

    2005-01-01

    I will review our work on photonic entanglement in the continuous variable regime including both Gaussian and non-Gaussian states. The feasibility and efficiency of various entanglement purification protocols are discussed this context. (author)

  1. Quantum key distribution with entangled photon sources

    International Nuclear Information System (INIS)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-01-01

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDC source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses

  2. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  3. Extremal entanglement and mixedness in continuous variable systems

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-01-01

    We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr ρ 2 for the state ρ) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity. Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies

  4. Entanglement dynamics in quantum information theory

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, T.S.

    2007-03-29

    This thesis contributes to the theory of entanglement dynamics, that is, the behaviour of entanglement in systems that are evolving with time. Progressively more complex multipartite systems are considered, starting with low-dimensional tripartite systems, whose entanglement dynamics can nonetheless display surprising properties, progressing through larger networks of interacting particles, and finishing with infinitely large lattice models. Firstly, what is perhaps the most basic question in entanglement dynamics is considered: what resources are necessary in order to create entanglement between distant particles? The answer is surprising: sending separable states between the parties is sufficient; entanglement can be created without it being carried by a ''messenger'' particle. The analogous result also holds in the continuous-time case: two particles interacting indirectly via a common ancilla particle can be entangled without the ancilla ever itself becoming entangled. The latter result appears to discount any notion of entanglement flow. However, for pure states, this intuitive idea can be recovered, and even made quantitative. A ''bottleneck'' inequality is derived that relates the entanglement rate of the end particles in a tripartite chain to the entanglement of the middle one. In particular, no entanglement can be created if the middle particle is not entangled. However, although this result can be applied to general interaction networks, it does not capture the full entanglement dynamics of these more complex systems. This is remedied by the derivation of entanglement rate equations, loosely analogous to the rate equations describing a chemical reaction. A complete set of rate equations for a system reflects the full structure of its interaction network, and can be used to prove a lower bound on the scaling with chain length of the time required to entangle the ends of a chain. Finally, in contrast with these more

  5. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  6. Criterion for testing multiparticle negative-partial-transpose entanglement

    International Nuclear Information System (INIS)

    Zeng, B.; Zhou, D.L.; Zhang, P.; Xu, Z.; You, L.

    2003-01-01

    We revisit the criterion of multiparticle entanglement based on the overlaps of a given quantum state ρ with maximally entangled states. For a system of m particles, each with N distinct states, we prove that ρ is m-particle negative partial transpose entangled, if there exists a maximally entangled state vertical bar MES>, such that >1/N. While this sufficiency condition is weaker than the Peres-Horodecki criterion in all cases, it applies to multi-particle systems, and becomes especially useful when the number of particles (m) is large. We also consider the converse of this criterion and illustrate its invalidity with counter examples

  7. Quantum effects in non-maximally symmetric spaces

    International Nuclear Information System (INIS)

    Shen, T.C.

    1985-01-01

    Non-Maximally symmetric spaces provide a more general background to explore the relation between the geometry of the manifold and the quantum fields defined in the manifold than those with maximally symmetric spaces. A static Taub universe is used to study the effect of curvature anisotropy on the spontaneous symmetry breaking of a self-interacting scalar field. The one-loop effective potential on a λphi 4 field with arbitrary coupling xi is computed by zeta function regularization. For massless minimal coupled scalar fields, first order phase transitions can occur. Keeping the shape invariant but decreasing the curvature radius of the universe induces symmetry breaking. If the curvature radius is held constant, increasing deformation can restore the symmetry. Studies on the higher-dimensional Kaluza-Klein theories are also focused on the deformation effect. Using the dimensional regularization, the effective potential of the free scalar fields in M 4 x T/sup N/ and M 4 x (Taub) 3 spaces are obtained. The stability criterions for the static solutions of the self-consistent Einstein equations are derived. Stable solutions of the M 4 x S/sup N/ topology do not exist. With the Taub space as the internal space, the gauge coupling constants of SU(2), and U(1) can be determined geometrically. The weak angle is therefore predicted by geometry in this model

  8. Coherence and entanglement measures based on Rényi relative entropies

    International Nuclear Information System (INIS)

    Zhu, Huangjun; Hayashi, Masahito; Chen, Lin

    2017-01-01

    We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states. (paper)

  9. Entanglement in open quantum systems

    International Nuclear Information System (INIS)

    Isar, A.

    2007-01-01

    In the framework of the theory of open systems based on quantum dynamical semigroups, we solve the master equation for two independent bosonic oscillators interacting with an environment in the asymptotic long-time regime. We give a description of the continuous-variable entanglement in terms of the covariance matrix of the quantum states of the considered system for an arbitrary Gaussian input state. Using the Peres-Simon necessary and sufficient condition for separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in a common environment and evolving under a Markovian, completely positive dynamics become asymptotically entangled for certain environments, so that their non-local quantum correlations exist in the long-time regime. (author) Key words: quantum information theory, open systems, quantum entanglement, inseparable states

  10. Experimental generation of complex noisy photonic entanglement

    International Nuclear Information System (INIS)

    Dobek, K; Banaszek, K; Karpiński, M; Demkowicz-Dobrzański, R; Horodecki, P

    2013-01-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy. (paper)

  11. Sustainable Entangled State of Two Qutrits Under Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Biryukov A.А.

    2015-01-01

    Full Text Available We study the evolution of quantum entanglement in the model of two identical qubits interacting with a single-mode laser field. The density matrix and Peres-Horodecki parameter are calculated within the frameworks of path-integral formalism. The quantum entanglement measure is shown to be strongly dependent upon the phase difference between the laser radiation acting on each cubit. This observation may offer the possibility of quantum entanglement stationary control by varying the distance between the qubits.

  12. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  13. Transverse entanglement migration in Hilbert space

    International Nuclear Information System (INIS)

    Chan, K. W.; Torres, J. P.; Eberly, J. H.

    2007-01-01

    We show that, although the amount of mutual entanglement of photons propagating in free space is fixed, the type of correlations between the photons that determine the entanglement can dramatically change during propagation. We show that this amounts to a migration of entanglement in Hilbert space, rather than real space. For the case of spontaneous parametric down-conversion, the migration of entanglement in transverse coordinates takes place from modulus to phase of the biphoton state and back again. We propose an experiment to observe this migration in Hilbert space and to determine the full entanglement

  14. Quantum Statistics and Entanglement Problems

    OpenAIRE

    Trainor, L. E. H.; Lumsden, Charles J.

    2002-01-01

    Interpretations of quantum measurement theory have been plagued by two questions, one concerning the role of observer consciousness and the other the entanglement phenomenon arising from the superposition of quantum states. We emphasize here the remarkable role of quantum statistics in describing the entanglement problem correctly and discuss the relationship to issues arising from current discussions of intelligent observers in entangled, decohering quantum worlds.

  15. Quantum entanglement and geometry of determinantal varieties

    International Nuclear Information System (INIS)

    Chen Hao

    2006-01-01

    Quantum entanglement was first recognized as a feature of quantum mechanics in the famous paper of Einstein, Podolsky, and Rosen. Recently it has been realized that quantum entanglement is a key ingredient in quantum computation, quantum communication, and quantum cryptography. In this paper, we introduce algebraic sets, which are determinantal varieties in the complex projective spaces or the products of complex projective spaces, for the mixed states on bipartite or multipartite quantum systems as their invariants under local unitary transformations. These invariants are naturally arised from the physical consideration of measuring mixed states by separable pure states. Our construction has applications in the following important topics in quantum information theory: (1) separability criterion, it is proved that the algebraic sets must be a union of the linear subspaces if the mixed states are separable; (2) simulation of Hamiltonians, it is proved that the simulation of semipositive Hamiltonians of the same rank implies the projective isomorphisms of the corresponding algebraic sets; (3) construction of bound entangled mixed states, examples of the entangled mixed states which are invariant under partial transpositions (thus PPT bound entanglement) are constructed systematically from our new separability criterion

  16. Communication cost of entanglement transformations

    International Nuclear Information System (INIS)

    Hayden, Patrick; Winter, Andreas

    2003-01-01

    We study the amount of communication needed for two parties to transform some given joint pure state into another one, either exactly or with some fidelity. Specifically, we present a method to lower bound this communication cost even when the amount of entanglement does not increase. Moreover, the bound applies even if the initial state is supplemented with unlimited entanglement in the form of EPR (Einstein-Podolsky-Rosen) pairs and the communication is allowed to be quantum mechanical. We then apply the method to the determination of the communication cost of asymptotic entanglement concentration and dilution. While concentration is known to require no communication whatsoever, the best known protocol for dilution, discovered by H.-K. Lo and S. Popescu [Phys. Rev. Lett. 83, 1459 (1999)], requires exchange of a number of bits that is of the order of the square root of the number of EPR pairs. Here we prove a matching lower bound of the same asymptotic order, demonstrating the optimality of the Lo-Popescu protocol up to a constant factor and establishing the existence of a fundamental asymmetry between the concentration and dilution tasks. We also discuss states for which the minimal communication cost is proportional to their entanglement, such as the states recently introduced in the context of 'embezzling entanglement' (W. van Dam and P. Hayden, e-print quant-ph/0201041)

  17. Entanglement in Quantum Field Theory: particle mixing and oscillations

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Illuminati, F

    2013-01-01

    The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.

  18. Entanglement, purity, and energy: Two qubits versus two modes

    International Nuclear Information System (INIS)

    McHugh, Derek; Ziman, Mario; Buzek, Vladimir

    2006-01-01

    We study the relationship between the entanglement, mixedness, and energy of two-qubit and two-mode Gaussian quantum states. We parametrize the set of allowed states of these two fundamentally different physical systems using measures of entanglement, mixedness, and energy that allow us to compare and contrast the two systems using a phase diagram. This phase diagram enables one to clearly identify not only the physically allowed states, but the set of states connected under an arbitrary quantum operation. We pay particular attention to the maximally entangled mixed states of each system. Following this we investigate how efficiently one may transfer entanglement from two-mode to two-qubit states

  19. Inequalities detecting quantum entanglement for 2 x d systems

    International Nuclear Information System (INIS)

    Zhao Mingjing; Wang Zhixi; Ma Teng; Fei Shaoming

    2011-01-01

    We present a set of inequalities for detecting quantum entanglement of 2 x d quantum states. For 2 x 2 and 2 x 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d>3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposition and even some entangled states with positive partial transposition. These inequalities are given by mean values of local observables and present an experimental way of detecting the quantum entanglement of 2 x d quantum states and even multiqubit pure states.

  20. Determination of continuous variable entanglement by purity measurements.

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  1. Sudden entanglement death, and ways to avoid it

    International Nuclear Information System (INIS)

    Eberly, J.H.; Ting Yu

    2005-01-01

    We report that non-communicating but entangled qubit pairs are almost universally liable to sudden entanglement death. In the presence of minor and purely local environmental noises their mixed-state entanglement may abruptly become zero long before the noises are able to destroy the local qubit coherence. Despite the inability of unitary transformations to alter entanglement, for example of Werner states, unitary transformations have been found to delay or defeat the sudden death event. These results upset the conventional understanding that entanglement lifetime can be estimated from qubit lifetime. This is not even approximately or qualitatively true. (author)

  2. Collapse–revival of quantum discord and entanglement

    International Nuclear Information System (INIS)

    Yan, Xue-Qun; Zhang, Bo-Ying

    2014-01-01

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamical aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range

  3. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  4. Multi-Photon Entanglement and Quantum Teleportation

    National Research Council Canada - National Science Library

    Shih, Yanhua

    1999-01-01

    The project 'Multi-Photon Entanglement and Quantum Teleportation' concerns a series of experimental and theoretical investigations on multi-photon entangled states and the applications, for example...

  5. Breakdown of entanglement during the teleportation

    International Nuclear Information System (INIS)

    Wang Jinfeng; Wang Yuming; Li Xueqian

    2005-01-01

    The teleportation may become an important means for remote distance communications in the future, and the mechanism is based on entanglement of quantum states. But the entanglement is fragile. As the state is disturbed by the environment the entanglement may be broken down. In this work, authors choose the electron-positron pair in an entangled state of spin 0 as an example to investigate the rate of breaking down of the entanglement by the Compton scattering with the background radiation photons or Bremsstrahlung with strong magnetic fields of some astronomical objects which the electron or positron passes by. Since the spin projection of single electron (positron) is not physically measurable and the electron beams cannot keep its shape for long because of the Coulomb repulsion among the charged particles in the beam, the only way is to shoot one electron-positron pair each time and continuously repeat the processes. With all the restraints this study has only pedagogic meaning, but may shed light on further studies where other information messages are chosen. (authors)

  6. Estimating localizable entanglement from witnesses

    OpenAIRE

    Amaro, David; Müller, Markus; Pal, Amit Kumar

    2018-01-01

    Computing localizable entanglement for noisy many-particle quantum states is difficult due to the optimization over all possible sets of local projection measurements. Therefore, it is crucial to develop lower bounds, which can provide useful information about the behaviour of localizable entanglement, and which can be determined by measuring a limited number of operators, or by performing least number of measurements on the state, preferably without performing a full state tomography. In thi...

  7. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    Energy Technology Data Exchange (ETDEWEB)

    Gonta, Denis

    2010-07-07

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  8. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    International Nuclear Information System (INIS)

    Gonta, Denis

    2010-01-01

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  9. Entanglement properties of boundary state and thermalization

    Science.gov (United States)

    Guo, Wu-zhong

    2018-06-01

    We discuss the regularized boundary state {e}^{-{τ}_0H}\\Big|{.B>}_a on two aspects in both 2D CFT and higher dimensional free field theory. One is its entanglement and correlation properties, which exhibit exponential decay in 2D CFT, the parameter 1 /τ 0 works as a mass scale. The other concerns with its time evolution, i.e., {e}^{-itH}{e}^{-{τ}_0H}\\Big|{.B>}_a . We investigate the Kubo-Martin-Schwinger (KMS) condition on correlation function of local operators to detect the thermal properties. Interestingly we find the correlation functions in the initial state {e}^{-{τ}_0H}\\Big|{.B>}_a also partially satisfy the KMS condition. In the limit t → ∞, the correlators will exactly satisfy the KMS condition. We generally analyse quantum quench by a pure state and obtain some constraints on the possible form of 2-point correlation function in the initial state if assuming they satisfies KMS condition in the final state. As a byproduct we find in an large τ 0 limit the thermal property of 2-point function in {e}^{-{τ}_0H}\\Big|{.B>}_a also appears.

  10. Recovery of maximally entangled quantum states by weak-measurement reversal

    Science.gov (United States)

    Maleki, Yusef; Zheltikov, Aleksei M.

    2018-05-01

    Maximal quantum entanglement provided by N00N states is a unique resource in the quest for the ultimate precision in physical measurements. Such states, however, are fragile and prone to decoherence. Even in weak-measurement schemes, as we demonstrate in this work, the phase super-resolution provided by N00N states is achieved at a cost of an N-fold enhancement of amplitude damping. Still, as the analysis presented here shows, a partial collapse of N00N states induced by weak measurements can be reversed, despite the dramatic, N-fold enhancement of amplitude damping, through appropriate reversal operations on the post-measurement state, enabling a full restoration of the Heisenberg-limit phase super-resolution of N00N states.

  11. Quantum secret sharing using orthogonal multiqudit entangled states

    Science.gov (United States)

    Bai, Chen-Ming; Li, Zhi-Hui; Liu, Cheng-Ji; Li, Yong-Ming

    2017-12-01

    In this work, we investigate the distinguishability of orthogonal multiqudit entangled states under restricted local operations and classical communication. According to these properties, we propose a quantum secret sharing scheme to realize three types of access structures, i.e., the ( n, n)-threshold, the restricted (3, n)-threshold and restricted (4, n)-threshold schemes (called LOCC-QSS scheme). All cooperating players in the restricted threshold schemes are from two disjoint groups. In the proposed protocol, the participants use the computational basis measurement and classical communication to distinguish between those orthogonal states and reconstruct the original secret. Furthermore, we also analyze the security of our scheme in four primary quantum attacks and give a simple encoding method in order to better prevent the participant conspiracy attack.

  12. Scheme for the generation of three-atom Greenberger-Horne-Zeilinger states and teleportation of entangled atomic states

    International Nuclear Information System (INIS)

    Ye Liu; Guo Guangcan

    2003-01-01

    A scheme is proposed for the preparation of Greenberger-Horne-Zeilinger states for three atoms and for teleportation of an entangled atom pair by use of the triplet in cavity QED. The cavity is only virtually excited, and thus the scheme is insensitive to the cavity field states and the cavity decay. The preparation and teleportation can be achieved in a simple way

  13. One-step deterministic multipartite entanglement purification with linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Yu-Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Long, Gui Lu, E-mail: gllong@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Key Laboratory for Quantum Information and Measurements, Beijing 100084 (China); Deng, Fu-Guo [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)

    2012-01-09

    We present a one-step deterministic multipartite entanglement purification scheme for an N-photon system in a Greenberger–Horne–Zeilinger state with linear optical elements. The parties in quantum communication can in principle obtain a maximally entangled state from each N-photon system with a success probability of 100%. That is, it does not consume the less-entangled photon systems largely, which is far different from other multipartite entanglement purification schemes. This feature maybe make this scheme more feasible in practical applications. -- Highlights: ► We proposed a deterministic entanglement purification scheme for GHZ states. ► The scheme uses only linear optical elements and has a success probability of 100%. ► The scheme gives a purified GHZ state in just one-step.

  14. Global entanglement in multiparticle systems

    International Nuclear Information System (INIS)

    Meyer, David A.; Wallach, Nolan R.

    2002-01-01

    We define a polynomial measure of multiparticle entanglement which is scalable, i.e., which applies to any number of spin-(1/2) particles. By evaluating it for three particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet and on quantum error correcting code subspaces, we illustrate the extent to which it quantifies global entanglement. We also apply it to track the evolution of entanglement during a quantum computation

  15. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  16. Reduction of entanglement degradation in Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Nasr Esfahani, B.; Shamirzaie, M.; Soltani, M.

    2011-01-01

    Bipartite entanglement for states of a noninteracting bosonic or fermionic field in the spacetime of a spherically symmetric black hole of Einstein-Gauss-Bonnet gravity is investigated. Although the initial state is chosen to be maximally entangled as the Bell states, the Hawking-Unruh effect causes the state to be mixed and the entanglement degrades, but with different asymptotic behaviors for the fermionic and bosonic fields. The Gauss-Bonnet term with positive α can play an antigravitation role and so this causes a decrease in the Hawking-Unruh effect and consequently reduces the entanglement degradation. On the other hand, the suggested higher dimensions for the spacetime lead to increased entanglement degradation by increasing the dimension. There is a dramatic difference between the behaviors of the entanglement in terms of the radius of the horizon for a five-dimensional black hole and that for higher dimensional black holes. Both bosonic and fermionic fields entanglements are treated beyond the single-mode approximation. Also, the cases where the accelerating observers located at regions near and far from the event horizon of black hole are studied separately.

  17. Entanglement of flux qubits through a joint detection of photons

    International Nuclear Information System (INIS)

    Kurpas, Marcin; Zipper, Elzbieta

    2009-01-01

    We study the entanglement creation between two flux qubits interacting with electromagnetic field modes. No direct interaction between the qubits exists. Entanglement is reached using the entanglement swapping method by an interference measurement performed on photons. We discuss the influence of off-resonance and multi-photon initial states on the qubit-qubit entanglement. The presented scheme is able to drive an initially separable state of two qubits into an highly entangled state suitable for quantum information processing (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Quantum walks with entangled coins

    International Nuclear Information System (INIS)

    Venegas-Andraca, S E; Ball, J L; Burnett, K; Bose, S

    2005-01-01

    We present a mathematical formalism for the description of un- restricted quantum walks with entangled coins and one walker. The numerical behaviour of such walks is examined when using a Bell state as the initial coin state, with two different coin operators, two different shift operators, and one walker. We compare and contrast the performance of these quantum walks with that of a classical random walk consisting of one walker and two maximally correlated coins as well as quantum walks with coins sharing different degrees of entanglement. We illustrate that the behaviour of our walk with entangled coins can be very different in comparison to the usual quantum walk with a single coin. We also demonstrate that simply by changing the shift operator, we can generate widely different distributions. We also compare the behaviour of quantum walks with maximally entangled coins with that of quantum walks with non-entangled coins. Finally, we show that the use of different shift operators on two and three qubit coins leads to different position probability distributions in one- and two-dimensional graphs

  19. Faithful test of nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-01-01

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  20. Entanglement witness via quantum-memory-assisted entropic uncertainty relation

    Science.gov (United States)

    Shi, Jiadong; Ding, Zhiyong; Wu, Tao; He, Juan; Yu, Lizhi; Sun, Wenyang; Wang, Dong; Ye, Liu

    2017-12-01

    By virtue of the quantum-memory-assisted entropic uncertainty relation (EUR), we analyze entanglement witness via the efficiencies of the estimates proposed by Berta (2010 Nat. Phys. 6 659) and Pati (2012 Phys. Rev. A 86 042105). The results show that, without a structured reservoir, the entanglement regions witnessed by these EUR estimates are only determined by the chosen estimated setup, and have no correlation with the explicit form of the initial state. On the other hand, with the structured reservoirs, the time regions during which the entanglement can be witnessed, and the corresponding entanglement regions closely depend on the choice of the estimated setup, the initial state and the state purity p . Concretely, for a pure state with p=1 , the entanglement can be witnessed by both estimates, while for mixed states with p=0.78 , it can only be witnessed using the Pati estimate. What is more, we find that the time regions incorporating the Pati estimate become discontinuous for the initial state with ≤ft| {{φ }\\prime } \\right> ={≤ft(≤ft| 01 \\right> +≤ft| 10 \\right> \\right)}/{\\sqrt{2}} , and the corresponding entanglement regions remain the same; however the entanglement can only be witnessed once by utilizing the Berta estimate.