WorldWideScience

Sample records for nonmagnetite observe crystal

  1. Gypsum crystals observed in experimental and natural sea ice

    Science.gov (United States)

    Geilfus, N.-X.; Galley, R. J.; Cooper, M.; Halden, N.; Hare, A.; Wang, F.; Søgaard, D. H.; Rysgaard, S.

    2013-12-01

    gypsum has been predicted to precipitate in sea ice, it has never been observed. Here we provide the first report on gypsum precipitation in both experimental and natural sea ice. Crystals were identified by X-ray diffraction analysis. Based on their apparent distinguishing characteristics, the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the "Gitterman pathway" where gypsum is predicted to precipitate. The occurrence of authigenic gypsum in sea ice during its formation represents a new observation of precipitate formation and potential marine deposition in polar seas.

  2. Direct observation of crystal texture by neutron diffraction topography

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1982-02-01

    This document reports the development and the applications of the neutron diffraction topography (NDT), which have been carried out at JAERI in these 10 years. This describes how the substructure of Cu-5%Ge single crystal of large-scale (3 cm in diameter and 10 cm in length) was revealed by the NDT-observation. It was discovered that the specimen crystal was made up from the layer-substructures parallel to (001) and to the [110] growth direction, and that each (001) layer-substructure mentioned above was further subdivided into the central thin sublayer parallel to (001) and thick plates of [100] and [010] directions, attached symmetrically to both sides of the central (001) sublayer with regular intervals. The model of the substructure described above was supported by the calculation of the diffraction intensities. The model of the layer-substructure described above, on the other hand, suggested a simple mechanism of crystal growth of the specimen. This document also reports the NDT-observation of the three-dimensional distribution of the lattice strains within a hot-pressed Ge single crystal, and the equal thickness fringes and the coherent boundaries of a twinned Si crystal. The powerfulness and the reliability of the NDT-technique were thus demonstrated. (author)

  3. Systematic observability and detectablity analysis of industrial batch crystallizers

    NARCIS (Netherlands)

    Porru, M.; Ozkan, L.

    Motivated by the lack of hardware analysers for particle size distribution (PSD) and solute concentration measurements in industrial crystallizers, this work investigates the feasibility of designing alternative monitoring tools based on state observers. The observability and detectability

  4. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  5. Gypsum crystals observed in experimental and natural sea ice

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, Ryan; Cooper, Marc

    2013-01-01

    , the gypsum crystals were identified as being authigenic. The FREeZing CHEMistry (FREZCHEM) model results support our observations of both gypsum and ikaite precipitation at typical in situ sea ice temperatures and confirms the “Gitterman pathway” where gypsum is predicted to precipitate. The occurrence...

  6. The Morse code effect: A crystal-crystal transformation observed in gel-grown lead (II) oxalate crystals

    Science.gov (United States)

    Lisgarten, J. N.; Marks, J. A.

    2018-05-01

    This paper reports on an unusual crystal-crystal transformation phenomenon, which we have called the Morse Code Effect, based on the change in appearance of lead(II) oxalate crystals grown in agarose gels.

  7. Observation of plastic deformation in freestanding single crystal Au nanowires

    International Nuclear Information System (INIS)

    Lee, Dongyun; Zhao Manhong; Wei Xiaoding; Chen Xi; Jun, Seong C.; Hone, James; Herbert, Erik G.; Oliver, Warren C.; Kysar, Jeffrey W.

    2006-01-01

    Freestanding single crystal nanowires of gold were fabricated from a single grain of pure gold leaf by standard lithographic techniques, with center section of 7 μm in length, 250 nm in width, and 100 nm in thickness. The ends remained anchored to a silicon substrate. The specimens were deflected via nanoindenter until plastic deformation was achieved. Nonlocalized and localized plastic deformations were observed. The resulting force-displacement curves were simulated using continuum single crystal plasticity. A set of material parameters which closely reproduce the experimental results suggests that the initial critical resolved shear stress was as high as 135 MPa

  8. First observation of magnetic moment precession of channeled particles in bent crystals

    International Nuclear Information System (INIS)

    Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan

    1992-01-01

    Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized Σ + were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60±17 degree. This agrees with the prediction of 62±2 degree using the world average of Σ + magnetic moment measurements. This new technique gives a Σ + magnetic moment of (2.40±0.46±0.40)μ N , where the quoted uncertainties are statistical and systematic, respectively. We see no evidence of depolarization in the channeling process

  9. High-voltage electron-microscopical observation of crack-tip dislocations in silicon crystals

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Higashida, Kenji

    2005-01-01

    Crack-tip dislocations in silicon single crystals were observed by high-voltage electron microscopy. Cracks were introduced into silicon wafers at room temperature by a Vickers indenter. The indented specimens were annealed at 823 K in order to activate dislocation emission from the crack tip under the residual stress due to the indentation. In the specimen without annealing, no dislocations were observed around the crack. On the other hand, in the specimen after the annealing, the aspect of the early stage of dislocation emission was observed, where dislocations were emitted not as a perfect dislocation but as a partial dislocation in the hinge-type plastic zone. Prominent dislocation arrays that were emitted from a crack tip were also observed, and they were found to be of shielding type, which increases the fracture toughness of those crystals

  10. Observation of Discrete-Time-Crystal Signatures in an Ordered Dipolar Many-Body System

    Science.gov (United States)

    Rovny, Jared; Blum, Robert L.; Barrett, Sean E.

    2018-05-01

    A discrete time crystal (DTC) is a robust phase of driven systems that breaks the discrete time translation symmetry of the driving Hamiltonian. Recent experiments have observed DTC signatures in two distinct systems. Here we show nuclear magnetic resonance observations of DTC signatures in a third, strikingly different system: an ordered spatial crystal. We use a novel DTC echo experiment to probe the coherence of the driven system. Finally, we show that interactions during the pulse of the DTC sequence contribute to the decay of the signal, complicating attempts to measure the intrinsic lifetime of the DTC.

  11. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.

    Science.gov (United States)

    Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas

    2017-11-01

    The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  13. Properties of horizontally oriented ice crystals observed by polarization lidar over summit, Greenland

    Directory of Open Access Journals (Sweden)

    Neely Ryan R.

    2018-01-01

    Full Text Available A source of error in microphysical retrievals and model simulations is the assumption that clouds are composed of only randomly oriented ice crystals. This assumption is frequently not true, as evidenced by optical phenomena such as parhelia. Here, observations from the Cloud, Aerosol and Polarization Backscatter Lidar at Summit, Greenland are utilized along with other sensors and beam imaging to examine the properties of horizontally oriented ice crystals and the environment conditions in which they occur.

  14. Observation of a structural transition for coulomb crystals in a linear Paul trap

    DEFF Research Database (Denmark)

    Kjærgaard, N.; Drewsen, M.

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange...... in a "string-of-disks" configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively....

  15. Observation of a structural transition for Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Kjaergaard, Niels; Drewsen, Michael

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange in a 'string-of-disks' configuration. The spheroidal envelopes of the string-of-disks structures are in agreement with results from cold fluid theory usually valid for ion Coulomb crystals if the ion systems are assumed to be rotating collectively

  16. Crystal growth and dislocation etch pits observation of chalcopyrite CdSiP2

    Science.gov (United States)

    He, Zhiyu; Zhao, Beijun; Zhu, Shifu; Chen, Baojun; Huang, Wei; Lin, Li; Feng, Bo

    2018-01-01

    CdSiP2 is the only crystal that can offer Non-critical Phase Matching (NCPM) for a 1064 nm pumped optical parametric oscillation (OPO) with idler output in the 6 μm range. In this paper, a large, crack-free CdSiP2 single crystal measuring 18 mm in diameter and 65 mm in length was successfully grown by the Vertical Bridgman method (MVB) with an explosion-proof quartz ampoule. The results of lattice parameters, element composition and IR transmittance of the as-grown crystal characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS) and Fourier transformation infrared spectrometer (FTIR) showed the as grown crystal crystallized well and the absorption coefficients at 4878 cm-1 and 2500 cm-1 were 0.14 cm-1 and 0.06 cm-1. Moreover, a new etchant composed of Br2, HCl, HNO3, CH3OH and H2O (1:800:800:400:400 in volume ratio) was prepared and the dislocation etch pits on oriented faces of as-grown CdSiP2 crystal were observed for the first time. It is found the etch pits are in rectangular structure on the (1 0 1) face, but in trigonal pyramid structure on (3 1 2) face. According to the quantities of the etch pits, the average densities of dislocation were evaluated to be 2.28 × 105/cm2 and 1.4 × 105/cm2, respectively.

  17. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  18. Instrumentations in x-ray plasma polarization spectroscopy. Crystal spectrometer, polarimeter and detectors for astronomical observations

    Energy Technology Data Exchange (ETDEWEB)

    Baronova, Elena O.; Stepanenko, Mikhail M. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland); Tsunemi, Hiroshi [Osaka Univ., Graduate School of Science, Osaka (Japan)

    2002-08-01

    This report discusses the various problems which are encountered when a crystal spectrometer is used for the purpose of observing polarized x-ray lines. A polarimeter is proposed based on the novel idea of using two series of equivalent atomic planes in a single crystal. The present status of the astronomical x-ray detection techniques are described with emphasis on two dimensional detectors which are polarization sensitive. (author)

  19. Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form

    Directory of Open Access Journals (Sweden)

    Boguslaw Stec

    2007-10-01

    Full Text Available We have isolated ribulose-1,5-bisphosphate-carboxylase/oxygenase (RUBISCOfrom the red algae Galdieria Sulphuraria. The protein crystallized in two different crystalforms, the I422 crystal form being obtained from high salt and the P21 crystal form beingobtained from lower concentration of salt and PEG. We report here the crystallization,preliminary stages of structure determination and the detection of the structural phasetransition in the P21 crystal form of G. sulphuraria RUBISCO. This red algae enzymebelongs to the hexadecameric class (L8S8 with an approximate molecular weight 0.6MDa.The phase transition in G. sulphuraria RUBISCO leads from two hexadecamers to a singlehexadecamer per asymmetric unit. The preservation of diffraction power in a phasetransition for such a large macromolecule is rare.

  20. X-ray diffraction topography observations of the core in Bi12SiO20 crystals doped with Mn

    International Nuclear Information System (INIS)

    Milenov, T.I.; Botev, P.A.; Rafailov, P.M.; Gospodinov, M.M.

    2004-01-01

    The core region in a bismuth silicate--Bi 12 SiO 20 (BSO) crystal doped with Mn was examined by X-ray double-crystal diffraction topography. Specific features were observed in the topographies as lines and contrast differences that point to defects occupying the central part of the crystal. We discuss the nature of these defects and propose an explanation in terms of stacking faults arranged in different structures

  1. In Situ Observation of Antisite Defect Formation during Crystal Growth

    International Nuclear Information System (INIS)

    Kramer, M. J.; Napolitano, R. E.; Mendelev, M. I.

    2010-01-01

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  2. Direct observation of a non-isothermal crystallization process in precursor Li10GeP2S12 glass electrolyte

    Science.gov (United States)

    Tsukasaki, Hirofumi; Mori, Shigeo; Shiotani, Shinya; Yamamura, Hideyuki; Iba, Hideki

    2017-11-01

    Crystallization of a precursor Li10GeP2S12 (LGPS) glass electrolyte by heat treatment significantly improves its ionic conductivity. The LGPS crystalline phase obtained by heat treatment above 450 °C shows an ionic conductivity on the order of 10-2 S/cm. To clarify the correlation between the crystallization behavior of precursor LGPS glasses and ionic conductivity, we developed an observation technique to visualize precipitated nanocrystallites and a new method to evaluate the crystallization degree via transmission electron microscopy (TEM). In-situ TEM observation revealed that LGPS nanocrystallites precipitated above 450 °C and their size remained fundamentally intact during heating. That is, the crystallization behavior could be characterized by only the formation of LGPS nanocrystallites in an amorphous matrix. In addition, the crystallization degree was quantitatively evaluated from electron diffraction patterns. The crystallization degree remarkably increased at around 450 °C and reached more than 60% above 450 °C. Based on these results, a high ionic conductivity of approximately 1.0 × 10-2 S/cm was confirmed to be directly associated with the appearance of the LGPS crystalline phase.

  3. Preliminary observations of the effect of solutal convection on crystal morphology

    Science.gov (United States)

    Broom, M. Beth H.; Witherow, William K.; Snyder, Robert S.; Carter, Daniel C.

    1988-01-01

    Studies to examine the effect of solutal convection on crystal morphology using sucrose as a model system were initiated. Aspect ratios, defined as the width of the 100-plane-oriented face over the width of the 001-plane-oriented face, were determined for oriented crystals which were grown with either the 001-oriented or the 100-oriented face perpendicular to the convective flow. The dependence of the crystal morphology on orientation is much greater for crystals grown with one face occluded than for crystals grown suspended in solution. Many factors appear to interact in a complex fashion to influence crystal morphology.

  4. Transient from crystallization to fractal growth observed in both boar bile and SnI sub 2 vapour

    CERN Document Server

    Zhang Ji Zhong; Xie An Jian

    2003-01-01

    A visual transient of the growth mechanism from crystallization to fractal growth was observed clearly in a drop of boar bile. The growing crystals were replaced by treelike fractal structures during solidification of the sample. It is fascinating to compare the transient with the result observed in SnI sub 2 vapour. They were completely identical, and revealed that under certain conditions a linear growth could be transferred spontaneously into nonlinear growth. It may be possible to consider the transient as a 'bridge' between linear and nonlinear growth, and to develop a quantitative expression of transient dynamics.

  5. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    International Nuclear Information System (INIS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Schoofs, P.; Smirnov, G.; Valentino, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.

    2016-01-01

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  6. Observation of channeling for 6500 GeV/c protons in the crystal assisted collimation setup for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Valentino, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S. [Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); and others

    2016-07-10

    Two high-accuracy goniometers equipped with two bent silicon crystals were installed in the betatron cleaning insertion of the CERN Large Hadron Collider (LHC) during its long shutdown. First beam tests were recently performed at the LHC with 450 GeV/c and 6500 GeV/c stored proton beams to investigate the feasibility of beam halo collimation assisted by bent crystals. For the first time channeling of 6500 GeV/c protons was observed in a particle accelerator. A strong reduction of beam losses due to nuclear inelastic interactions in the aligned crystal in comparison with its amorphous orientation was detected. The loss reduction value was about 24. Thus, the results show that deflection of particles by a bent crystal due to channeling is effective for this record particle energy.

  7. Observation of strong leakage reduction in crystal assisted collimation of the SPS beam

    Energy Technology Data Exchange (ETDEWEB)

    Scandale, W. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Laboratoire de l' Accelerateur Lineaire (LAL), Universite Paris Sud Orsay, Orsay (France); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Mereghetti, A.; Metral, E. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Mirarchi, D. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Imperial College, London (United Kingdom); Montesano, S.; Redaelli, S. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Rossi, R. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Schoofs, P.; Smirnov, G. [CERN, European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Bagli, E.; Bandiera, L.; Baricordi, S. [INFN Sezione di Ferrara, Dipartimento di Fisica, Università di Ferrara, Ferrara (Italy); and others

    2015-09-02

    In ideal two-stage collimation systems, the secondary collimator–absorber should have its length sufficient to exclude practically the exit of halo particles with large impact parameters. In the UA9 experiments on the crystal assisted collimation of the SPS beam a 60 cm long tungsten bar is used as a secondary collimator–absorber which is insufficient for the full absorption of the halo protons. Multi-turn simulation studies of the collimation allowed to select the position for the beam loss monitor downstream the collimation area where the contribution of particles deflected by the crystal in channeling regime but emerging from the secondary collimator–absorber is considerably reduced. This allowed observation of a strong leakage reduction of halo protons from the SPS beam collimation area, thereby approaching the case with an ideal absorber.

  8. Observation of multiphase magnetic state of hematite crystal during Morin transition by the method of section topography of synchrotron radiation

    International Nuclear Information System (INIS)

    Shchetinkin, S.A.; Kvardakov, V.V.; Viler, Eh.; Barushel', Zh.; Shlenker, M.

    2005-01-01

    The boundaries between weak ferromagnetic and antiferromagnetic phases in hematite crystals during Morin transition are detected by the section topography method by synchrotron radiation. It is shown that these boundaries are parallel to (111) surface hence magnetic phases during Morin transition separate the crystal by layers. Change of layer depth in dependence on temperature and magnetic field, and interaction interphase boundaries with crystal defects are observed [ru

  9. First observation of new effects at the set-up for searching for a neutron electric dipole moment by a crystal-diffraction method

    CERN Document Server

    Fedorov, V V; Semenikhin, S Y; Voronin, V V

    2002-01-01

    First observation of new effects was carried out using the set-up created for searching for a neutron electric dipole moment (EDM) by a crystal-diffraction method. For the first time the neutron dynamical Laue diffraction for the Bragg angles close to a right angle (up to 87 ) was studied, using the direct diffraction beam and a thick (propor to 3.5-cm) crystal. The effect of an essential time delay of diffracting neutrons inside the crystal for Bragg angles close to 90 was experimentally observed, using a time-of-flight method. The phenomenon of neutron-beam depolarization was first experimentally observed for the case of Laue diffraction in a noncentrosymmetric alpha-quartz crystal. It is experimentally proved that the interplanar electric field, affecting a neutron in a crystal, maintains its value up to Bragg angles equal to 87 . These results confirm the opportunity to increase by more than an order of magnitude the sensitivity of the method to the neutron EDM, using the diffraction angles close to 90 , ...

  10. Observations related to hydrogen in powder and single crystal samples of YB2Cu3O7-δ

    International Nuclear Information System (INIS)

    Porath, D.; Grayevsky, A.; Kaplan, N.; Shaltiel, D.; Yaron, U.; Walker, E.

    1994-01-01

    New observations related to hydrogenation of YBa 2 Cu 3 O 7-δ (YBCO) are reported: (a) The effects of sample preparation on the H concentration in ''uncharged'' YBCO samples is investigated, and it is shown through nuclear magnetic resonance measurements that samples of YBCO prepared by ''standard'' solid-state reaction procedures may contain ab initio up to 0.2 atoms formula -1 of hydrogen. (b) It is demonstrated that one may introduce up to 0.3 atoms formula -1 into single crystal samples of YBCO without destroying the macroscopic crystal. The significance of the above observations is discussed briefly. (orig.)

  11. In situ observation of shear-driven amorphization in silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang; Zhong, Li; Fan, Feifei; Wang, Chongmin; Zhu, Ting; Mao, Scott X.

    2016-09-19

    Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in the newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.

  12. Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    International Nuclear Information System (INIS)

    Mazzolari, Andrea; Camattari, Riccardo; Bellucci, Valerio; Paternò, Gianfranco; Scian, Carlo; Mattei, Giovanni; Guidi, Vincenzo

    2015-01-01

    X- and γ-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation

  13. Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mazzolari, Andrea, E-mail: mazzolari@fe.infn.it [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Camattari, Riccardo; Bellucci, Valerio; Paternò, Gianfranco [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy); Scian, Carlo; Mattei, Giovanni [University of Padova, Department of Physics and Astronomy Galileo Galilei (Italy); Guidi, Vincenzo [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1/c, 44122 Ferrara (Italy); INFN, Section of Ferrara (Italy)

    2015-07-15

    X- and γ-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation.

  14. Observations on dual-ended readout of 100 mm long LYSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ur-Rehman, Fazal, E-mail: Fazal@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); McIntosh, Bryan [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Goertzen, Andrew L. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2011-10-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm{sup 3} polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm{sup 3} crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm{sup 3} crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4{+-}0.4%, 16.0{+-}1.2% and 28.3{+-}2.1% with mean spatial resolutions of 7.0{+-}1.0, 9.4{+-}3.3 and 26.0{+-}5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  15. Observations on dual-ended readout of 100 mm long LYSO crystals

    International Nuclear Information System (INIS)

    Ur-Rehman, Fazal; McIntosh, Bryan; Goertzen, Andrew L.

    2011-01-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm 3 polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm 3 crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm 3 crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4±0.4%, 16.0±1.2% and 28.3±2.1% with mean spatial resolutions of 7.0±1.0, 9.4±3.3 and 26.0±5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  16. Post-flare coronal arches observed with the SMM/XRP flat crystal spectrometer

    Science.gov (United States)

    Hick, Paul; Svestka, Zdenek; Smith, Kermit L.; Strong, Keith T.

    1987-01-01

    Postflare coronal arch observations made with the SMM Flat Crystal Spectrometer on January 20-23, 1985 are discussed. Results suggest that the arch revival following the dynamic flare of 23:50 UT on January 1 was of the type noted on November 6-8 and June 4, 1980 by the SMM Hard X-ray Imaging Spectrometer (HXIS). Activity different from that of the HXIS observations was found starting at about 23 UT on January 22, with no trigger of the revival being identified, and with the activity being restricted to the coronal regions (without any related disturbance in the chromosphere). The development of the arch enhancement in the corona was shown to be slower than is expected for a flare-associated revival.

  17. Pre- and post-monsoonal changes in grain size and heavy minerals in the sediments from Kalbadevi Bay, Ratnagiri, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Fernandes, D.

    to the monsoonal effects, where higher sand is derived from the shallow depths due to the wave action. It appears that the sand deposited during the monsoon period does not get compacted and therefore removed during transition period, thereby resulting... particles of magnetite are removed from the Bay after the monsoon due to current action and deposited to the deeper part of the shelf. The offshore non-magnetite heavy minerals in Kalbadevi Bay are predominantly ilmenite. The distribution...

  18. Thermal field emission observation of single-crystal LaB6

    International Nuclear Information System (INIS)

    Nagata, H.; Harada, K.; Shimizu, R.

    1990-01-01

    TFE (thermal field emission) properties of LaB 6 left-angle 100 right-angle and left-angle 310 right-angle single crystals were investigated by emission pattern observation. It was found that field evaporation with the tip temperature held at ∼1500 degree C is very useful to get a clean pattern of fourfold symmetry. Each of four bright spots in the clean pattern was presumed to correspond to left-angle 310 right-angle emission. It is proposed, as the most appropriate operating condition, to use the left-angle 310 right-angle LaB 6 tip at a temperature ∼1000 degree C in vacuum of 10 -9 Torr region, promising a new TF emitter of high brightness and stability for practical use

  19. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    Science.gov (United States)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  20. Direct observation of the crystal structure changes in the Mg{sub x}Zn{sub 1−x}O alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Jo; Lee, Ji-Hyun; Kim, Chang-Yeon [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kim, Chang Hoi [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Shin, Jae Won [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701 (Korea, Republic of); Kim, Hong Seung, E-mail: hongseung@hhu.ac.kr [Department of Nano Semiconductor Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-Gu, Busan 606-791 (Korea, Republic of); Kim, Jin-Gyu, E-mail: jjintta@kbsi.re.kr [Nano-Bio Electron Microscopy Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2015-08-03

    We directly observed the crystal structure changes of the Mg{sub x}Zn{sub 1−x}O alloy thin film deposited on Si (111) substrates. Through the in situ heating transmission electron microscopy study, it was determined that the crystal structure changes did not occur up to at 400 °C, whereas the disappearance of the hexagonal structure was observed at 500 °C in the layer of nanosized grains. Additionally, the decreased intensity of the Zn L-edge was analyzed in the comparison of the core loss electron energy loss spectroscopy spectra of the Zn L-edge and the Mg K-edge obtained at room temperature and 500 °C. Based on these experimental results, the process of crystal structure changes could be explained by the evaporation of Zn atoms in the Mg{sub x}Zn{sub 1−x}O alloy system. This phenomenon is prominent in the improvement of the microstructure of the Mg{sub x}Zn{sub 1−x}O alloy thin film by controlling the thermal annealing temperature. - Highlights: • Mg{sub x}Zn{sub 1−x}O thin films coexisting with cubic and hexagonal structures were deposited. • Crystal structure changes of the thin films were directly observed at 500 °C. • The process of microstructure changes could be caused by the evaporation of Zn atoms.

  1. Growth and optical microscopy observation of the lysozyme crystals

    OpenAIRE

    R.Vlokh; L.Marsel; I.Teslyuk; O.G.Vlokh

    2001-01-01

    The little single lysozyme crystals in the capillary after 15 days of growth process with average size 0.1´0.1´0.16mm3 were obtained. It was shown that lysozyme crystals are optically anisotropical and birefringence along a axis is Dn=(2.2±0.5)´10-3 in visible spectrum region. From the measurements of crystallographic angles follows that on the {001} faces angles equal a=81o, b=99o. On the sexangle faces angles equal e=100o, f=140o and g=120o. On the base of obtained results the lysozyme crys...

  2. In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope

    Directory of Open Access Journals (Sweden)

    J. Ishioka

    2017-03-01

    Full Text Available ZnO photocatalysts in water react with environmental water molecules and corrode under illumination. ZnO nanorods in water can also grow because of water splitting induced by UV irradiation. To investigate their morphological behavior caused by crystal growth and corrosion, here we developed a new laser-equipped high-voltage electron microscope and observed crystal ZnO nanorods immersed in ionic liquid. Exposing the specimen holder to a laser with a wavelength of 325 nm, we observed the photocorrosion in situ at the atomic scale for the first time. This experiment revealed that Zn and O atoms near the interface between the ZnO nanorods and the ionic liquid tended to dissolve into the liquid. The polarity and facet of the nanorods were strongly related to photocorrosion and crystal growth.

  3. Nanoparticles in liquid crystals, and liquid crystals in nanoparticles

    Science.gov (United States)

    de Pablo, Juan

    2015-03-01

    Liquid crystals are remarkably sensitive to interfacial interactions. Small perturbations at a liquid crystal interface, for example, can be propagated over relatively long length scales, thereby providing the basis for a wide range of applications that rely on amplification of molecular events into macroscopic observables. Our recent research efforts have focused on the reverse phenomenon; that is, we have sought to manipulate the interfacial assembly of nanoparticles or the organization of surface active molecules by controlling the structure of a liquid crystal. This presentation will consist of a review of the basic principles that are responsible for liquid crystal-mediated interactions, followed by demonstrations of those principles in the context of two types of systems. In the first, a liquid crystal is used to direct the assembly of nanoparticles; through a combination of molecular and continuum models, it is found that minute changes in interfacial energy and particle size lead to liquid-crystal induced attractions that can span multiple orders of magnitude. Theoretical predictions are confirmed by experimental observations, which also suggest that LC-mediated assembly provides an effective means for fabrication of plasmonic devices. In the second type of system, the structure of a liquid crystal is controlled by confinement in submicron droplets. The morphology of the liquid crystal in a drop depends on a delicate balance between bulk and interfacial contributions to the free energy; that balance can be easily perturbed by adsorption of analytes or nanoparticles at the interface, thereby providing the basis for development of hierarchical assembly of responsive, anisotropic materials. Theoretical predictions also indicate that the three-dimensional order of a liquid crystal can be projected onto a two-dimensional interface, and give rise to novel nanostructures that are not found in simple isotropic fluids.

  4. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    Directory of Open Access Journals (Sweden)

    J. Koralewska

    2008-06-01

    Full Text Available Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow of BaSO4 crystal magma in a mixing chamber. For comparison purposes the experimental data corresponding to a continuous DT (Draft Tube crystallizer with propeller agitator are presented and discussed. The various types of laboratory crystallizers used were fed with concentrated water solution of barium chloride (of 10 or 24 mass % and - in a stoichiometric proportion - crystalline ammonium sulphate, assuming isothermal (348 K and hydrodynamic (average residence time of suspension in a crystallizer: 900 s process conditions. The observed nucleation and growth rates of barium sulphate crystals were estimated on the basis of crystal size distributions (CSDs using convenient calculation scheme derived for an MSMPR (Mixed Suspension Mixed Product Removal model approach. Considering the experimental population density distribution courses, a size-dependent growth (SDG phenomenon was taken into account in the kinetic calculations. Five SDG kinetic models recommended in the accessible literature were used for kinetic parameter values estimation. It was proved statistically, that Rojkowski’s two SDG models (hyperbolic and exponential best suit for our own experimental data description. The experimental data presented can be practically applied for improving the constructions of liquid jet-pump DTM crystallizers recommended for reaction crystallization of sparingly soluble inorganic salts (especially for high concentrations of reaction substrates in the modern

  5. In-situ Crystallization of Highly Volatile Commercial Mold Flux Using an Isolated Observation System in the Confocal Laser Scanning Microscope

    Science.gov (United States)

    Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il

    2014-08-01

    The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.

  6. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  7. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, Shobha, E-mail: shobha011986@gmail.com; Shrivastava, A. K., E-mail: ashwaniaks@rediffmail.com [School of Studies in Physics, Jiwaji University Gwalior (M.P.) – 474 011 (India)

    2016-05-06

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40–45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm{sup 3}, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  8. Observation of martensitic structure evolution in Cu-Al-Ni single crystals with shape memory effect under external load using photoacoustic microscopy

    International Nuclear Information System (INIS)

    Muratikov, K.L.; Glazov, A.L.; Nikolaev, V.I.; Pul'nev, S.A.

    2006-01-01

    Photoacoustic microscopy is applied to observe the surface structure of Cu-Al-Ni shape-memory single crystals in both the loaded and unloaded states. Visualizing the early stages of the loading-induced martensitic transformation in Cu-Al-Ni single crystals is demonstrated to be feasible. The photoacoustic images are distinguished to advantage from the corresponding optical images by a higher contrast between different phases of the Cu-Al-Ni shape-memory alloy [ru

  9. The dissolution phenomenon of lysozyme crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin Luther University Halle-Wittenberg, Department of Thermal Separation Processes, Centre of Engineering Science, Halle/Saale (Germany)

    2012-02-15

    Dissolution studies on lysozyme crystals were carried out since the observed dissolution pattern look different from non-protein dissolved crystals. The Tetragonal, High Temperature and Low Temperature Orthorhombic morphologies, crystallized using sodium chloride, were chosen and the influence of different pH, salt and protein concentration on their dissolution was investigated. An increase in pH and/or salt concentration can modify the dissolution behaviour. The pattern of the crystals during the dissolution process will, therefore, develop differently. Frequently a skeleton like crystal pattern followed by a falling apart of the crystals is observed. The multi-component character of the lysozyme crystal (protein, water, buffer, salt) as well as ''solvatomorphism'' gives first insights in the phenomena happening in the dissolution process. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. ANTIMONY INDUCED CRYSTALLIZATION OF AMORPHOUS SILICON

    Institute of Scientific and Technical Information of China (English)

    Y. Wang; H.Z. Li; C.N. Yu; G.M. Wu; I. Gordon; P. Schattschneider; O. Van Der Biest

    2007-01-01

    Antimony induced crystallization of PVD (physics vapor deposition) amorphous silicon can be observed on sapphire substrates. Very large crystalline regions up to several tens of micrometers can be formed. The Si diffraction patterns of the area of crystallization can be observed with TEM (transmission electron microscopy). Only a few and much smaller crystals of the order of 1μm were formed when the antimony layer was deposited by MBE(molecular beam epitaxy) compared with a layer formed by thermal evaporation. The use of high vacuum is essential in order to observe any Sb induced crystallization at all. In addition it is necessary to take measures to limit the evaporation of the antimony.

  11. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  12. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  13. Hypersonic phononic crystals.

    Science.gov (United States)

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  14. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  15. The MORPHEUS II protein crystallization screen

    Energy Technology Data Exchange (ETDEWEB)

    Gorrec, Fabrice, E-mail: fgorrec@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom)

    2015-06-27

    MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.

  16. The MORPHEUS II protein crystallization screen

    International Nuclear Information System (INIS)

    Gorrec, Fabrice

    2015-01-01

    MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions

  17. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

    Science.gov (United States)

    Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan

    2006-02-01

    Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or

  18. A multistep single-crystal-to-single-crystal bromodiacetylene dimerization

    Science.gov (United States)

    Hoheisel, Tobias N.; Schrettl, Stephen; Marty, Roman; Todorova, Tanya K.; Corminboeuf, Clémence; Sienkiewicz, Andrzej; Scopelliti, Rosario; Schweizer, W. Bernd; Frauenrath, Holger

    2013-04-01

    Packing constraints and precise placement of functional groups are the reason that organic molecules in the crystalline state often display unusual physical or chemical properties not observed in solution. Here we report a single-crystal-to-single-crystal dimerization of a bromodiacetylene that involves unusually large atom displacements as well as the cleavage and formation of several bonds. Density functional theory computations support a mechanism in which the dimerization is initiated by a [2 + 1] photocycloaddition favoured by the nature of carbon-carbon short contacts in the crystal structure. The reaction proceeded up to the theoretical degree of conversion without loss of crystallinity, and it was also performed on a preparative scale with good yield. Moreover, it represents the first synthetic pathway to (E)-1,2-dibromo-1,2-diethynylethenes, which could serve as synthetic intermediates for the preparation of molecular carbon scaffolds. Our findings both extend the scope of single-crystal-to-single-crystal reactions and highlight their potential as a synthetic tool for complex transformations.

  19. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Energy Technology Data Exchange (ETDEWEB)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location – either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25–0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  20. Dynamic observations of vesiculation reveal the role of silicate crystals in bubble nucleation and growth in andesitic magmas

    Science.gov (United States)

    Pleše, P.; Higgins, M. D.; Mancini, L.; Lanzafame, G.; Brun, F.; Fife, J. L.; Casselman, J.; Baker, D. R.

    2018-01-01

    Bubble nucleation and growth control the explosivity of volcanic eruptions, and the kinetics of these processes are generally determined from examinations of natural samples and quenched experimental run products. These samples, however, only provide a view of the final state, from which the initial conditions of a time-evolving magmatic system are then inferred. The interpretations that follow are inexact due to the inability of determining the exact conditions of nucleation and the potential detachment of bubbles from their nucleation sites, an uncertainty that can obscure their nucleation location - either homogeneously within the melt or heterogeneously at the interface between crystals and melts. We present results of a series of dynamic, real-time 4D X-ray tomographic microscopy experiments where we observed the development of bubbles in crystal bearing silicate magmas. Experimentally synthesized andesitic glasses with 0.25-0.5 wt% H2O and seed silicate crystals were heated at 1 atm to induce bubble nucleation and track bubble growth and movement. In contrast to previous studies on natural and experimentally produced samples, we found that bubbles readily nucleated on plagioclase and clinopyroxene crystals, that their contact angle changes during growth and that they can grow to sizes many times that of the silicate on whose surface they originated. The rapid heterogeneous nucleation of bubbles at low degrees of supersaturation in the presence of silicate crystals demonstrates that silicates can affect when vesiculation ensues, influencing subsequent permeability development and effusive vs. explosive transition in volcanic eruptions.

  1. Disorder in Protein Crystals.

    Science.gov (United States)

    Clarage, James Braun, II

    1990-01-01

    Methods have been developed for analyzing the diffuse x-ray scattering in the halos about a crystal's Bragg reflections as a means of determining correlations in atomic displacements in protein crystals. The diffuse intensity distribution for rhombohedral insulin, tetragonal lysozyme, and triclinic lysozyme crystals was best simulated in terms of exponential displacement correlation functions. About 90% of the disorder can be accounted for by internal movements correlated with a decay distance of about 6A; the remaining 10% corresponds to intermolecular movements that decay in a distance the order of size of the protein molecule. The results demonstrate that protein crystals fit into neither the Einstein nor the Debye paradigms for thermally fluctuating crystalline solids. Unlike the Einstein model, there are correlations in the atomic displacements, but these correlations decay more steeply with distance than predicted by the Debye-Waller model for an elastic solid. The observed displacement correlations are liquid -like in the sense that they decay exponentially with the distance between atoms, just as positional correlations in a liquid. This liquid-like disorder is similar to the disorder observed in 2-D crystals of polystyrene latex spheres, and similar systems where repulsive interactions dominate; hence, these colloidal crystals appear to provide a better analogy for the dynamics of protein crystals than perfectly elastic lattices.

  2. Optics of globular photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2007-01-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ∼200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  3. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  4. Anisotropic diffusion of point defects in a two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Daisuke; Uchihashi, Takayuki; Kodera, Noriyuki; Ando, Toshio

    2008-01-01

    The diffusion of individual point defects in a two-dimensional streptavidin crystal formed on biotin-containing supported lipid bilayers was observed by high-speed atomic force microscopy. The two-dimensional diffusion of monovacancy defects exhibited anisotropy correlated with the two crystallographic axes in the orthorhombic C 222 crystal; in the 2D plane, one axis (the a-axis) is comprised of contiguous biotin-bound subunit pairs whereas the other axis (the b-axis) is comprised of contiguous biotin-unbound subunit pairs. The diffusivity along the b-axis is approximately 2.4 times larger than that along the a-axis. This anisotropy is ascribed to the difference in the association free energy between the biotin-bound subunit-subunit interaction and the biotin-unbound subunit-subunit interaction. The preferred intermolecular contact occurs between the biotin-unbound subunits. The difference in the intermolecular binding energy between the two types of subunit pair is estimated to be approximately 0.52 kcal mol -1 . Another observed dynamic behavior of point defects was fusion of two point defects into a larger defect, which occurred much more frequently than the fission of a point defect into smaller defects. The diffusivity of point defects increased with increasing defect size. The fusion and the higher diffusivity of larger defects are suggested to be involved in the mechanism for the formation of defect-free crystals

  5. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  6. Collective-pinning theory and the observed vortex dynamics in RBa2Cu3O7-δ crystals

    International Nuclear Information System (INIS)

    Perkins, G.K.; Caplin, A.D.

    1996-01-01

    We establish a framework for the analysis of magnetization data on high-temperature superconductor crystals that allows direct comparison with vortex-pinning theory. When the magnetization loops exhibit scaling behavior, as they do over a large part of the B-T plane for RBa 2 Cu 3 O 7-δ crystals, the effective pinning energy U eff has to contain power-law field dependences for the characteristic energy and current scales U 0 and J 0 ; these power-law exponents can be obtained directly from the data. Many regimes of collective-pinning (CP) theory do predict such power laws, but none yield exponents in agreement with those that are measured. The discrepancy appears to arise because U 0 is observed to decrease with B, in contrast to the CP predictions. copyright 1996 The American Physical Society

  7. Direct observation of two-step crystallization in nanoparticle superlattice formation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  8. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  9. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  10. Crystallization in metglass: growth mechanism of crystals and radiation effects in Fe Ni P B

    International Nuclear Information System (INIS)

    Limoge, Y.; Barbu, A.

    1981-08-01

    Studying crystallization mechanisms and transport properties in amorphous metallic alloys we propose a model for systems wich are displaying eutectoid decomposition. Bringing together self diffusion, electron microscopy and electron irradiation experiments on a Fe Ni P B alloys we have shown that crystallization controlled by interfacial diffusion at the crystal surface can explain all the observed features of the experimental behaviour

  11. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  12. Surface deterioration of ammonium acid phthalate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barrus, D.M.; Blake, R.L.; Burek, A.J.

    1976-01-01

    In working with various acid phthalate crystals for low energy X-ray spectroscopy, we have observed a relatively rapid surface degradation of ammonium acid phthalate in comparison with similar crystals was observed. It was found that two different samples degraded in a few days upon exposure to high vacuum (10/sup -6/ - 10/sup -7/ torr). The same crystals showed similar effects when exposed to room atmosphere for two to three weeks. One of these crystals deteriorated while kept constantly in a desiccator jar for about two years. The desiccator environment seems to be the most favorable. The observed difference in the surface of these crystals might be described as a change from a transparent, glasslike condition to a white, powderlike haze somewhat akin to frosted glass. A two week exposure to vacuum for a freshly cleaved crystal caused the integrated coefficient of reflection at 23.6 A to decrease by a factor of 2.5. The degraded surface areas tend to form definite rhombohedral patterns. Since the external symmetry of ammonium acid phthalate crystals is rhombohedral, this suggests that the degradation we observe takes place in the form of large etched figures. A possible mechanism may be sublimation, which would proceed more rapidly in vacuum than in air. It is concluded that ammonium acid phthalate should be kept in a desiccator environment as much as possible. Exposures to vacuum should be brief and critical diffraction measurements should be done using a freshly cleaved surface.

  13. REVIEW: Optics of globular photonic crystals

    Science.gov (United States)

    Gorelik, V. S.

    2007-05-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ~200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported.

  14. Real-time observation of epitaxial crystal growth in gaseous environment using x-ray diffraction and x-ray reflectometry

    International Nuclear Information System (INIS)

    Kawamura, Tomoaki; Bhunia, Satyaban; Watanabe, Yoshio; Fujikawa, Seiji

    2008-01-01

    We made the x-ray diffractometer combined with the MOCVD growth system for the real-time observation of epitaxial growth in gaseous environment, and investigated the growth mechanism of InP crystals. Changes of the (-5/2 O) Bragg diffraction during the growth revealed that the growth starts immediately after the In source has been supplied and gradually stopped, owing to the migrating In atoms on the surface. Additionally, one can easily determine the growth modes, including 3-dimensional mode, layer-by-layer mode, and step-flow mode, by observing the change of x-ray reflectivity with various growth conditions. (author)

  15. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    International Nuclear Information System (INIS)

    Sangeetha, K.; Babu, R. Ramesh; Bhagavannarayana, G.; Ramamurthi, K.

    2011-01-01

    Highlights: → L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. → High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. → The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. → Optical birefringence measurement on this material. → The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  16. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  17. Vocational Crystallization and Self Esteem in College Students

    Science.gov (United States)

    Resnick, Harvey; And Others

    1970-01-01

    A positive relationship between vocational crystallization and self esteem was assessed by observing differences on two measures of vocational crystallization in students high and low in self esteem scores. No differences according to self esteem were observed. Differences were observed in the certainty of high and low self esteem students. The…

  18. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  19. Experimenting with a Visible Copper-Aluminum Displacement Reaction in Agar Gel and Observing Copper Crystal Growth Patterns to Engage Student Interest and Inquiry

    Science.gov (United States)

    Xu, Xinhua; Wu, Meifen; Wang, Xiaogang; Yang, Yangyiwei; Shi, Xiang; Wang, Guoping

    2016-01-01

    The reaction process of copper-aluminum displacement in agar gel was observed at the microscopic level with a stereomicroscope; pine-like branches of copper crystals growing from aluminum surface into gel at a constant rate were observed. Students were asked to make hypotheses on the pattern formation and design new research approaches to prove…

  20. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  1. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    Science.gov (United States)

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reshock and release response of aluminum single crystal

    International Nuclear Information System (INIS)

    Huang, H.; Asay, J. R.

    2007-01-01

    Reshock and release experiments were performed on single crystal aluminum along three orientations and on polycrystalline 1050 aluminum with 50 μm grain size at shock stresses of 13 and 21 GPa to investigate the mechanisms for previously observed quasielastic recompression behavior. Particle velocity profiles obtained during reshocking both single crystals and polycrystalline aluminum from initial shock stresses of 13-21 GPa show similar quasielastic recompression behavior. Quasielastic release response is also observed in all single crystals, but the magnitude of the effect is crystal orientation dependent, with [111] and [110] exhibiting more ideal elastic-plastic release for unloading from the shocked state than for the [100] orientation and polycrystalline aluminum. The quasielastic response of 1050 aluminum is intermediate to that of the [100] and [111] orientations. Comparison of the wave profiles obtained for both unloading and reloading of single crystals and polycrystalline 1050 aluminum from shocked states suggests that the observed quasielastic response of polycrystalline aluminum results from the averaging response of single crystals for shock propagation along different orientations, and that the response of 1050 aluminum with large grain boundaries is not significantly different from the results obtained on single crystal aluminum. The yield strength of the single crystals and 1050 aluminum is found to increase with shock stress, which is consistent with previous results [H. Huang and I. R. Asay, J. Appl. Phys. 98, 033524 (2005)

  3. Structure of a second crystal form of Bence-Jones protein Loc: Strikingly different domain associations in two crystal forms of a single protein

    International Nuclear Information System (INIS)

    Schiffer, M.; Ainsworth, C.; Xu, Z.B.; Carperos, W.; Olsen, K.; Solomon, A.; Stevens, F.J.; Chang, C.H.

    1989-01-01

    The authors have determined the structure of the immunoglobulin light-chain dimer Loc in a second crystal form that was grown from distilled water. The crystal structure was determined to 2.8-angstrom resolution; the R factor is 0.22. The two variable domains are related by local 2-fold axes and form an antigen binding pocket. The variable domain-variable domain interaction observed in this crystal form differs from the one exhibited by the protein when crystallized from ammonium sulfate in which the two variable domains formed a protrusion. The structure attained in the distilled water crystals is similar to, but not identical with, the one observed for the Mcg light-chain dimer in crystals grown from ammonium sulfate. Thus, two strikingly different structures were attained by this multisubunit protein in crystals grown under two different, commonly used, crystallization techniques. The quaternary interactions exhibited by the protein in the two crystal forms are sufficiently different to suggest fundamentally different interpretations of the structural basis for the function of this protein. This observation may have general implications regarding the use of single crystallographic determinations for detailed identification of structural and functional relationships. On the other hand, proteins whose structures can be altered by manipulation of crystallization conditions may provide useful systems for study of fundamental structural chemistry

  4. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  5. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  6. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  7. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    Science.gov (United States)

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

    Science.gov (United States)

    Minnegaliev, M. M.; Dyakonov, I. V.; Gerasimov, K. I.; Kalinkin, A. A.; Kulik, S. P.; Moiseev, S. A.; Saygin, M. Yu; Urmancheev, R. V.

    2018-04-01

    We produced optical waveguides in the 167Er3+:7 LiYF4 crystal with diameters ranging from 30 to 100 μm by using the depressed-cladding approach with femtosecond laser. Stationary and coherent spectroscopy was performed on the 809 nm optical transitions between the hyperfine sublevels of 4I15/2 and 4I9/2 multiplets of 167Er3+ ions both inside and outside of waveguides. It was found that the spectra of 167Er3+ were slightly broadened and shifted inside the waveguides compared to the bulk crystal spectra. We managed to observe a two-pulse photon echo on this transition and determined phase relaxation times for each waveguide. The experimental results show that the created crystal waveguides doped by rare-earth ions can be used in optical quantum memory and integrated quantum schemes.

  9. Molecular mechanisms of crystal growth

    International Nuclear Information System (INIS)

    Pina, C. M.

    2000-01-01

    In this paper I present an example of the research that the Mineral Surface Group of the Munster University is conducting in the field of Crystal Growth. Atomic Force Microscopy (Am) in situ observations of different barite (BaSO4) faces growing from aqueous solutions, in combination with computer simulations of the surface attachment of growth units allows us to test crystal growth models. Our results demonstrate the strong structural control that a crystal can exert on its own growth, revealing also the limitation of the classical crystal growth theories (two dimensional nucleation and spiral growth models) in providing a complete explanation for the growth behaviour at a molecular scale. (Author) 6 refs

  10. Crystals of Janus colloids at various interaction ranges

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Z. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Vissers, T. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); SUPA and School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); Smallenburg, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Sciortino, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-08-14

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

  11. Crystals of Janus colloids at various interaction ranges

    International Nuclear Information System (INIS)

    Preisler, Z.; Vissers, T.; Smallenburg, F.; Sciortino, F.

    2016-01-01

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

  12. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.; Goetz, Katelyn P.; Fonari, Alexandr; Shu, Ying; Williamson, Rachel M.; Bredas, Jean-Luc; Coropceanu, Veaceslav P.; Jurchescu, Oana D.; Collis, Gavin E.

    2015-01-01

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  13. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.

    2015-01-13

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  14. Modeling liquid crystal polymeric devices

    Science.gov (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  15. Observation of dislocations in crystals using X-ray and electron transmission

    International Nuclear Information System (INIS)

    Morlevat, J.P.

    1965-10-01

    Two approaches of the dynamical theory of diffraction (EWALD's and AUTHIER's) are recalled briefly. In the light of these theories, one then considers what information concerning the dislocations existing in a crystal can be obtained by X-Ray as well as electron diffraction. (author) [fr

  16. Sodium sulfate heptahydrate: direct observation of crystallization in a porous material

    NARCIS (Netherlands)

    Hamilton, A.; Hall, C.; Pel, L.

    2008-01-01

    It is well known that sodium sulfate causes salt crystallization damage in building materials and rocks. However since the early 1900s the existence of the metastable heptahydrate has been largely forgotten and almost entirely overlooked in scientific publications on salt damage mechanics and on

  17. Influence of the cone angle and crystal shape on the formation of twins in InP crystals

    International Nuclear Information System (INIS)

    Li, Xiaolan; Yang, Ruixia; Yang, Fan; Sun, Tongnian; Sun, Niefeng

    2012-01-01

    We present the investigation of twinning phenomena of LEC InP crystal growth which has been carried out in our laboratory in recent years. It is observed that the yield of twin-free single crystal InP can be grown by control the cone angle and crystal shape of a gradually increased diameter. Twin formation has been correlated to many growth factors. The influence of ingot shape on the formation of twins can be looked as the conical angle dependent twin probability of InP crystals. Twin-free InP crystals can be grown by large cone angle over 75 to 90 . (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  19. CRYSTAL simulation code and modeling of coherent effects in a bent crystal at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I., E-mail: alex_sytov@mail.ru [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str., 11, 220030 Minsk (Belarus); INFN Sezione di Ferrara, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100 Ferrara (Italy); Tikhomirov, V.V., E-mail: vvtikh@mail.ru [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str., 11, 220030 Minsk (Belarus)

    2015-07-15

    A CRYSTAL simulation code for particle tracking in crystals is introduced. Its essence consists in both adequate and fast sampling of proton trajectories in crystals which is crucial for both correct description of experiments and quantitative prediction of new effects. The H8 single-pass experiment at the CERN SPS as well as 7 TeV proton deflection by a bent crystal at the LHC are simulated. We predict the existence of dechanneling peaks corresponding to the planar channeling oscillations as well as describe the possibility of their observation at high energies, specifically at the LHC energy. An effect of excess over the amorphous level of ionization losses in the channeling mode was also found at 7 TeV.

  20. Magnetostriction of Tb-Dy-Fe crystals

    International Nuclear Information System (INIS)

    Mei Wu; Okane, T.; Umeda, T.

    1998-01-01

    left angle 111 right angle -oriented twin free Tb-Dy-Fe single crystals, left angle 112 right angle - and left angle 110 right angle -oriented twinned ''single'' Tb-Dy-Fe crystals were prepared using floating zone melting crystal growth methods. Magnetostrictive performances of the crystals were investigated. Better low-field properties were observed in the left angle 110 right angle twinned crystals than in the left angle 112 right angle crystals. The highest properties were achieved in the left angle 111 right angle twin free single crystals. Even though there were still oxidized particles in the present left angle 111 right angle single crystals, a large magnetostrictive jump of 1700 ppm and a very low saturation magnetic field of 500 Oe were obtained. To understand magnetization and magnetostriction of different Tb-Dy-Fe crystals, theoretical modeling was carried out based on a simplified domain rotation model. Magnetization moment rotation paths of different domains were simulated and hence the resultant magnetostriction was obtained, which could adequately account for the experimental results of different crystals. The limitation of the domain rotation model was also discussed. (orig.)

  1. First observations of stimulated emission and of stimulated Raman scattering in acentric cubic Nd3+:Bi12SiO20 crystals

    International Nuclear Information System (INIS)

    Kaminskii, Alexandr A; Bagayev, S N; Garsia, Sole J; Jaque, D; Eichler, H J; Findeisen, J; Fernandez, J; Balda, R; Agullo, Rueda F

    1999-01-01

    Laser action (in the 4 F 3/2 - 4 I 11/2 channel) and stimulated Raman scattering were excited for the first time in an Nd 3+ :Bi 12 SiO 20 single crystal at room temperature. All the observed stimulated emission and multiple Stokes and anti-Stokes lines were identified. (letters to the editor)

  2. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  3. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  4. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  5. A Genetic Analysis of Crystal Growth

    DEFF Research Database (Denmark)

    Brown, Stanley; Sarikaya, Mehmet; Johnson, E.

    2000-01-01

    The regulation of crystal morphology by proteins is often observed in biology. It is a central feature in the formation of hard tissues such as bones, teeth and mollusc shells. We have developed a genetic system in the bacterium Escherichia coli to study the protein-mediated control of crystal...

  6. Elastic wave excitation in centrosymmetric strontium titanate crystals

    International Nuclear Information System (INIS)

    Yushin, N.K.; Sotnikov, A.V.

    1980-01-01

    The main experimental dependencies are measured and the excitation mechanism of elastic waves in centrosymmetric crystals is established. The surface generation of three-dimensional elastic waves of the 30 MHz frequency in strontium titanate crystals is observed and studied. Elastic wave excitation is observed in the 4 350 K temperature range. The efficiency of hysteresis excitation depends on the external electric field. The effect of light irradiation on the amplitude of excited elastic waves is observed. It is shown that escitation is connected with linearization of electrostriction by the constant electric field appearing in a near-surface crystal layer due to phenomena in the Schottky barrier and appearance of electretic near-electrode layers

  7. Fractional decay of quantum dots in photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  8. Crystallization in polydisperse colloidal suspensions

    International Nuclear Information System (INIS)

    Martin, S.; Bryant, G.; Van Megen, W.

    2004-01-01

    Full text: Crystallization and glass formation in colloidal hard spheres has been a very active area of research over the last 15-20 years. For most of this time particle polydispersity has been considered to be a minor concern in these studies. However, over the last few years an increasing number of simulations, theoretical work and experiments have shown that consideration of the polydispersity is critical in understanding these phenomena. In this paper we provide an overview of recent crystallization studies on particles with two very different particle size distributions. These particles exhibit very different equilibrium crystal structures and crystallization kinetics. Based on these measurements and time lapse photographs, we propose a growth mechanism whereby crystallization occurs in conjunction with a local fractionation process near the crystal-fluid interface, which significantly alters the kinetics of crystallite nucleation and growth. This fractionation effect becomes more significant as polydispersity or skewness increases. The unusual crystal structures observed are explained using a schematic model that explains the structure in terms of stacks of planes, which are unregistered due to a high incidence of stacking faults caused by the incorporation of a large number of small particles

  9. Transmission electron microscopy: direct observation of crystal structure in refractory ceramics.

    Science.gov (United States)

    Shaw, T M; Thomas, G

    1978-11-10

    Using high-resolution multibeam interference techniques in the transmission electron microscope, images have been obtained that make possible a real-space structure analysis of a beryllium-silicon-nitrogen compound. The results illustrate the usefulness of lattice imaging in the analysis of local crystal structure in these technologically promising ceramic materials.

  10. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  11. Numerical study of slip system activity and crystal lattice rotation under wedge nanoindents in tungsten single crystals

    Science.gov (United States)

    Volz, T.; Schwaiger, R.; Wang, J.; Weygand, S. M.

    2018-05-01

    Tungsten is a promising material for plasma facing components in future nuclear fusion reactors. In the present work, we numerically investigate the deformation behavior of unirradiated tungsten (a body-centered cubic (bcc) single crystal) underneath nanoindents. A finite element (FE) model is presented to simulate wedge indentation. Crystal plasticity finite element (CPFE) simulations were performed for face-centered and body-centered single crystals accounting for the slip system family {110} in the bcc crystal system and the {111} slip family in the fcc system. The 90° wedge indenter was aligned parallel to the [1 ¯01 ]-direction and indented the crystal in the [0 1 ¯0 ]-direction up to a maximum indentation depth of 2 µm. In both, the fcc and bcc single crystals, the activity of slip systems was investigated and compared. Good agreement with the results from former investigations on fcc single crystals was observed. Furthermore, the in-plane lattice rotation in the material underneath an indent was determined and compared for the fcc and bcc single crystals.

  12. Study of mixed phase clouds over west Africa: Ice-crystal corner reflection effects observed with a two-wavelength polarization lidar

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2018-01-01

    Full Text Available Lidar sounding is used for the analysis of possible contribution of the corner reflection (CR effect to the total backscattering in case of ice crystals. Our study is based on observations of mixed phase clouds performed during the SHADOW campaign in Senegal. Mie-Raman lidar allows measurements at 355 nm and 532 nm at 43 dg. off-zenith angle, so the extinction and backscattering Ångström exponents can be evaluated. In some measurements we observed the positive values of backscattering Ångström exponent, which can be attributed to the corner reflection by horizontally oriented ice plates.

  13. Observation of a commensurate array of flux chains in tilted flux lattices in Bi-Sr-Ca-Cu-O single crystals

    International Nuclear Information System (INIS)

    Bolle, C.A.; Gammel, P.L.; Grier, D.G.; Murray, C.A.; Bishop, D.J.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    We report the observation of a novel flux-lattice structure, a commensurate array of flux-line chains. Our experiments consist of the magnetic decoration of the flux lattices in single crystals of Ba-Sr-Ca-Cu-O where the magnetic field is applied at an angle with respect to the conducting planes. For a narrow range of angles, the equilibrium structure is one with uniformly spaced chains with a higher line density of vortices than the background lattice. Our observations are in qualitative agreement with theories which suggest that, in strongly anisotropic materials the vortices develop an attractive interaction in tilted magnetic fields

  14. Crystal structures of bis(phenoxysilicon phthalocyanines: increasing π–π interactions, solubility and disorder and no halogen bonding observed

    Directory of Open Access Journals (Sweden)

    Benoît H. Lessard

    2016-07-01

    Full Text Available We report the syntheses and characterization of three solution-processable phenoxy silicon phthalocyanines (SiPcs, namely bis(3-methylphenoxy(phthalocyaninesilicon [(3MP2-SiPc], C46H30N8O2Si, bis(2-sec-butylphenoxy(phthalocyaninesilicon [(2secBP2-SiPc], C44H24I2N8O2Si, and bis(3-iodophenoxy(phthalocyaninesilicon [(3IP2-SiPc], C52H42N8O2Si. Crystals grown of these compounds were characterized by single-crystal X-ray diffraction and the π–π interactions between the aromatic SiPc cores were studied. It was determined that (3MP2-SiPc has similar interactions to previously reported bis(3,4,5-trifluorophenoxysilicon phthalocyanines [(345 F2-SiPc] with significant π–π interactions between the SiPc groups. (3IP2-SiPc and (2secBP2-SiPc both experienced a parallel stacking of two of the peripheral aromatic groups. In all three cases, the solubility of these molecules was increased by the addition of phenoxy groups while maintaining π–π interactions between the aromatic SiPc groups. The solubility of (2secBP2-SiPc was significantly higher than other bis-phenoxy-SiPcs and this was exemplified by the higher observed disorder within the crystal structure.

  15. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.

    Science.gov (United States)

    Kayano, Keisuke; Saruwatari, Kazuko; Kogure, Toshihiro; Shiraiwa, Yoshihiro

    2011-02-01

    Marine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain. Although anionic polymers are generally known to play key roles in biomineralization process, there is no experimental data how CP contributes to calcite crystal formation in the coccolithophorids. CP used was isolated from the most abundant coccolithophorid, Emiliania huxleyi. CaCO(3) crystallization experiment was performed on agar template layered onto a plastic plate that was dipped in the CaCO(3) crystallization solution. The typical rhombohedral calcite crystals were formed in the absence of CP. CaCO(3) crystals formed on the naked plastic plate were obviously changed to stick-like shapes when CP was present in the solution. EBSD analysis proved that the crystal is calcite of which c-axis was elongated. CP in the solution stimulated the formation of tabular crystals with flat edge in the agarose gel. SEM and FIB-TEM observations showed that the calcite crystals were formed in the gel. The formation of crystals without flat edge was stimulated when CP was preliminarily added in the gel. These observations suggest that CP has two functions: namely, one is to elongate the calcite crystal along c-axis and another is to induce tabular calcite crystal formation in the agarose gel. Thus, CP may function for the formation of highly elaborate species-specific structures of coccoliths in coccolithophorids.

  16. Remote Sensing of Crystal Shapes in Ice Clouds

    Science.gov (United States)

    van Diedenhoven, Bastiaan

    2017-01-01

    Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally

  17. Mechanism of band-edge luminescence in cuprous iodide single crystals

    International Nuclear Information System (INIS)

    Gao, Pan; Gu, Mu; Liu, Xi; Liu, Bo; Zheng, Yan-Qing; Shi, Er-Wei; Shi, Jun-Yan; Zhang, Guo-bin

    2014-01-01

    Highlights: • The luminescence properties of CuI crystals are influenced by the quality of the as-grown crystals. • The emission peaks of free-exciton and bound-exciton are observed in the CuI single crystals. • The ultrafast component luminescence is warranted to the donor-acceptor pair recombination. • The exciton absorption and electron excitation multiplication processes were observed in CuI. - Abstract: The photoluminescence spectra of CuI crystals using synchrotron radiation as an excitation light source were obtained at 60 K. The emission peaks at 405, 415, 420 and 443 nm were observed. The possible origins of these peaks were discussed by the temperature dependence of luminescence spectra for CuI material. Meanwhile, the photoluminescence spectra of CuI powder with different excitation intensity were measured and the ultrafast luminescence component of CuI crystals was warranted to be attributed to the recombination of donor acceptor pair. Furthermore, the excitation process was studied by measuring the photoluminescence excitation spectra of CuI crystals and powder

  18. Crystal growth and luminescence properties of Pr-doped LuLiF4 single crystal

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Fujimoto, Yutaka; Yoshikawa, Akira

    2013-01-01

    0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF 4 (Pr:LuLiF 4 ) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr 3+ 4f-4f transitions. Intense absorption bands related with the Pr 3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr 3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137 Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137 Cs γ-ray. -- Highlights: ► 0.1, 1, and 3% Pr-doped LuLiF 4 single crystals were grown by the μ-PD method. ► Pr 3+ 5d-4f emission peaks appeared at 220, 240, 340, and 405 nm ► The Pr 3%:LuLiF 4 crystal showed the highest light yield of 2050 photons/MeV

  19. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  20. Optical Investigation of Nanoconfined Crystal Growth

    Science.gov (United States)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G

  1. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Amy C., E-mail: aca@dartmouth.edu [Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755 (United States)

    2005-03-01

    An analysis of the protein–ligand interactions in two crystal structures of DHFR-TS from C. hominis reveals a possible structural basis for observed antifolate resistance in C. hominis DHFR. A comparison with the structure of human DHFR reveals residue substitutions that may be exploited for the design of species-selective inhibitors. Cryptosporidium hominis is a protozoan parasite that causes acute gastrointestinal illness. There are no effective therapies for cryptosporidiosis, highlighting the need for new drug-lead discovery. An analysis of the protein–ligand interactions in two crystal structures of dihydrofolate reductase-thymidylate synthase (DHFR-TS) from C. hominis, determined at 2.8 and 2.87 Å resolution, reveals that the interactions of residues Ile29, Thr58 and Cys113 in the active site of C. hominis DHFR provide a possible structural basis for the observed antifolate resistance. A comparison with the structure of human DHFR reveals active-site differences that may be exploited for the design of species-selective inhibitors.

  2. Crystal Morphology Engineering of Pharmaceutical Solids: Tabletting Performance Enhancement

    OpenAIRE

    Mirza, Sabiruddin; Miroshnyk, Inna; Heinämäki, Jyrki; Antikainen, Osmo; Rantanen, Jukka; Vuorela, Pia; Vuorela, Heikki; Yliruusi, Jouko

    2009-01-01

    Crystal morphology engineering of a macrolide antibiotic, erythromycin A dihydrate, was investigated as a tool for tailoring tabletting performance of pharmaceutical solids. Crystal habit modification was induced by using a common pharmaceutical excipient, hydroxypropyl cellulose, as an additive during crystallization from solution. Observed morphology of the crystals was compared with the predicted Bravais–Friedel–Donnay–Harker morphology. An analysis of the molecular arrangements along the ...

  3. Observations of the X-ray nova A0620-00 with the Ariel V crystal spectrometer/polarimeter

    International Nuclear Information System (INIS)

    Griffiths, R.E.; Rickets, M.J.; Cooke, B.A.

    1976-01-01

    The X-ray nova A0620-00 has been studied with the Ariel V crystal spectrometer/polarimeter for the presence of X-ray lines and polarization. Upper limits are obtained for the Si XIV, S XV and S XVI lines to a level of less than 2 eV at 3 sigma for the sulphur lines and 3.6 eV for Si XIV. No linear polarization is observed to a level of 2 per cent at 2.6 keV. These results are interpreted in terms of an accretion disk model for the source, in which the electron scattering depth tausub(es) approximately 20, and constraints are given on the disk geometry. (author)

  4. Local disorder in mixed crystals as viewed by XRPD

    International Nuclear Information System (INIS)

    Machavariani, V.Sh.; Voronel, A.; Garber, S.; Rubstein, A.; Rosenberg, Yu.; Frenkel, A. I.; Stern, E.A.

    2001-01-01

    A correlation between precise X-ray powder diffraction patterns and atomic size mismatch in disordered mixed crystals (alloys and ionic crystals) is observed. The anisotropy of the elastic moduli has been taken into account for evaluation of the strain energy density of the mixed crystals revealed in XRPD measurements

  5. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng; Grigoropoulos, Costas

    2014-01-01

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  6. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng

    2014-03-14

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  7. Crystallization peculiarities in metallic glasses

    International Nuclear Information System (INIS)

    Serebryakov, A.V.; Abrosimova, G.E.; Aronin, A.S.

    1985-01-01

    Methods of X-ray electron microscopy and X-ray diffraction analysis were used to investigate the peculiarities of crystallization of amorphous metallic Fe-B and Fe-Si-B alloys related to sufficient change of volume when passing from amorphous to crystalline state and the effect of sample prehistory on its thermal stability and crystallization kinetics. The dependence of morphology of crystalline phases formed during crystallization of amorphous Fe-B alloys on sample thickness was revealed and investigated. The model explaining this dependence was suggested. The observed differences are related, according to the model, with different diffusion ways of ''poles'' - elementary carriers of empty volume to their sinks

  8. Hoar crystal development and disappearance at Dome C, Antarctica: observation by near-infrared photography and passive microwave satellite

    Directory of Open Access Journals (Sweden)

    N. Champollion

    2013-08-01

    Full Text Available Hoar crystals episodically cover the snow surface in Antarctica and affect the roughness and reflective properties of the air–snow interface. However, little is known about their evolution and the processes responsible for their development and disappearance despite a probable influence on the surface mass balance and energy budget. To investigate hoar evolution, we use continuous observations of the surface by in situ near-infrared photography and by passive microwave remote sensing at Dome C in Antarctica. From the photography data, we retrieved a daily indicator of the presence/absence of hoar crystals using a texture analysis algorithm. The analysis of this 2 yr long time series shows that Dome C surface is covered almost half of the time by hoar. The development of hoar crystals takes a few days and seems to occur whatever the meteorological conditions. In contrast, the disappearance of hoar is rapid (a few hours and coincident with either strong winds or with moderate winds associated with a change in wind direction from southwest (the prevailing direction to southeast. From the microwave satellite data, we computed the polarisation ratio (i.e. horizontal over vertical polarised brightness temperatures, an indicator known to be sensitive to hoar in Greenland. Photography data and microwave polarisation ratio are correlated, i.e. high values of polarisation ratio which theoretically correspond to low snow density values near the surface are associated with the presence of hoar crystals in the photography data. Satellite data over nearly ten years (2002–2011 confirm that a strong decrease of the polarisation ratio (i.e. signature of hoar disappearance is associated with an increase of wind speed or a change in wind direction from the prevailing direction. The photography data provides, in addition, evidence of interactions between hoar and snowfall. Further adding the combined influence of wind speed and wind direction results in a

  9. Gas-phase Crystallization of Titanium Dioxide Nanoparticles

    International Nuclear Information System (INIS)

    Ahonen, P.P.; Moisala, A.; Tapper, U.; Brown, D.P.; Jokiniemi, J.K.; Kauppinen, E.I.

    2002-01-01

    We have investigated the development of crystal morphology and phase in ultrafine titanium dioxide particles. The particles were produced by a droplet-to-particle method starting from propanolic titanium tetraisopropoxide solution, and calcined in a vertical aerosol reactor in air. Mobility size classified 40-nm diameter particles were conveyed to the aerosol reactor to investigate particle size changes at 20-1200 deg. C with 5-1-s residence time. In addition, polydisperse particles were used to study morphology and phase formation by electron microscopy. According to differential mobility analysis, the particle diameter was reduced to 21-23-nm at 600 deg. C and above. Precursor decomposition occurred between 20 deg. C and 500 deg. C. The increased mobility particle size at 700 deg. C and above was observed to coincide with irregular particles at 700 deg. C and 800 deg. C and faceted particles between 900 deg. C and 1200 deg. C, according to transmission electron microscopy. The faceted anatase particles were observed to approach a minimized surface energy by forming {101} and {001} crystallographic surfaces. Anatase phase was observed at 500-1200 deg. C and above 600 deg. C the particles were single crystals. Indications of minor rutile formation were observed at 1200 deg. C. The relatively stable anatase phase vs. temperature is attributed to the defect free structure of the observed particles and a lack of crystal-crystal attachment points

  10. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  11. Crystal nucleation in simple and complex fluids.

    Science.gov (United States)

    Oxtoby, David W

    2003-03-15

    The application of density-functional methods from statistical mechanics to the nucleation of crystals from the melt is described. Simple fluids such as metals, with sizes comparable with the range of their attractive forces, are compared with complex fluids such as colloidal suspensions and proteins dissolved in solution. A different mechanism for crystal nucleation is proposed in the latter case, in which density (concentration) changes before periodic crystalline order appears. This leads to a theoretical foundation for empirical observations on the 'crystallization window' in protein crystallization. Comparisons are made with the results of computer simulation via molecular dynamics.

  12. Cross-twinning model of fcc crystal growth

    NARCIS (Netherlands)

    van de Waal, B.W.

    1995-01-01

    The theory developed in 1960 by Wagner, Hamilton and Seidensticker (WHS-theory) to explain observed crystal growth phenomena in Ge is critically reviewed and shown to be capable of explaining preservation of ABC stacking order in two dimensions in fcc crystals of effectively spherical closed shell

  13. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  14. Shear induced orientation of edible fat and chocolate crystals

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  15. Application of Hoffman modulation contrast microscopy coupled with three-wavelength two-beam interferometry to the in situ direct observation of the growth process of a crystal in microgravity

    Science.gov (United States)

    Tsukamoto, Katsuo

    1988-01-01

    Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.

  16. Improvement of crystal identification performance for a four-layer DOI detector composed of crystals segmented by laser processing

    Science.gov (United States)

    Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga

    2017-09-01

    We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all

  17. Synthesis of SAPO-56 with controlled crystal size

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui [Colorado School of Mines, Chemical and Biological Engineering Department (United States); Carreon, Maria L. [University of Tulsa, Rusell School of Chemical Engineering (United States); Carreon, Moises A., E-mail: mcarreon@mines.edu [Colorado School of Mines, Chemical and Biological Engineering Department (United States)

    2017-03-15

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m{sup 2} g{sup −1} with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m{sup 2} g{sup −1} range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  18. Synthesis of SAPO-56 with controlled crystal size

    International Nuclear Information System (INIS)

    Wu, Ting; Feng, Xuhui; Carreon, Maria L.; Carreon, Moises A.

    2017-01-01

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ∼630 m"2 g"−"1 with relative narrow size distribution in the ∼5–60 μm range. Nitrogen BET surface areas in the 451 to 631 m"2 g"−"1 range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ∼5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  19. Welcome to Crystals: A New Open-Access, Multidisciplinary Forum for Growth, Structures and Properties of Crystals

    Directory of Open Access Journals (Sweden)

    Gerd Meyer

    2010-12-01

    Full Text Available The majority of the earth’s crust is made up of crystalline material. The research areas of mineralogy, petrology, chimie minerále (inorganic chemistry and, of course, crystallography outgrew from the fascination of mankind with the color and symmetry of crystals. Crystals have translational symmetry in two or three dimensions, quasicrystals have translational symmetry in higher spaces. Further symmetries may be observed by the eye, by microscopic techniques or by the diffraction of X-ray, electron, or neutron beams. Diffraction techniques are also used, due to Max von Laue’s eminent discovery a century ago, to determine crystal structures. [...

  20. Two-phonon bound states in imperfect crystals

    International Nuclear Information System (INIS)

    Behera, S.N.; Samsur, Sk.

    1980-01-01

    The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)

  1. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  2. Observation of Quasichanneling Oscillations

    International Nuclear Information System (INIS)

    Wistisen, T. N.; Mikkelsen, R. E.; Uggerhoj, University I.; Wienands, University; Markiewicz, T. W.

    2017-01-01

    Here, we report on the first experimental observations of quasichanneling oscillations, recently seen in simulations and described theoretically. Although above-barrier particles penetrating a single crystal are generally seen as behaving almost as in an amorphous substance, distinct oscillation peaks nevertheless appear for particles in that category. The quasichanneling oscillations were observed at SLAC National Accelerator Laboratory by aiming 20.35 GeV positrons and electrons at a thin silicon crystal bent to a radius of R = 0.15 m, exploiting the quasimosaic effect. For electrons, two relatively faint quasichanneling peaks were observed, while for positrons, seven quasichanneling peaks were clearly identified.

  3. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  4. Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates

    Directory of Open Access Journals (Sweden)

    Hongxia Li

    2011-12-01

    Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

  5. LIGHT INDUCED TELLURIUM ENRICHMENT ON CDZNTE CRYSTAL SURFACES DETECTED BY RAMAN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Hawkins, S; Eliel Villa-Aleman, E; Martine Duff, M; Douglas Hunter, D

    2007-01-01

    Synthetic CdZnTe or 'CZT' crystals can be grown under controlled conditions to produce high quality crystals to be used as room temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro Raman spectroscopy. The growth of Te rich areas on the surface was induced by low powered lasers. The growth was observed versus time with low power Raman scattering and was observed immediately under higher power conditions. The detector response was also measured after induced Te enrichment

  6. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    Science.gov (United States)

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  7. Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals

    International Nuclear Information System (INIS)

    Pawlak, D.; Frukacz, Z.; Mierczyk, Z.; Suchocki, A.; Zachara, J.

    1998-01-01

    Y 3 Al 5 O 12 single crystals doped with praseodymium and magnesium ions have been prepared. The reversible color change of this crystal is observed when annealing in oxidizing or reducing atmospheres. The change is ascribed to the formation of Pr 4+ in the as-grown crystal, caused by the second dopant, Mg 2+ . The absorption spectra of YAG:Pr,Mg in the range 200-1100 nm, as grown and annealed in air and H 2 /N 2 atmosphere, are presented and discussed. Additional broad absorption bands are observed for the as-grown crystals and those annealed in oxidizing atmosphere. Crystallographic investigations of the original crystal and after annealing in a reducing atmosphere as described above, show no distinct structural differences. A redox mechanism is proposed to explain the color change during annealing. (orig.)

  8. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  9. Planar channeling and quasichanneling oscillations in a bent crystal

    International Nuclear Information System (INIS)

    Sytov, A.I.; Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A.; Tikhomirov, V.V.

    2016-01-01

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  10. Planar channeling and quasichanneling oscillations in a bent crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sytov, A.I. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy); Guidi, V.; Bagli, E.; Bandiera, L.; Germogli, G.; Mazzolari, A. [Universita di Ferrara, Dipartimento di Fisica e Scienze della Terra, Ferrara (Italy); INFN, Ferrara (Italy); Tikhomirov, V.V. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); INFN, Ferrara (Italy)

    2016-02-15

    Particles passing through a crystal under planar channeling are captured by a continuous potential and experience transverse oscillations in their motion. As channeled particles approach the atomic planes, they are likely to be dechanneled. This effect is being used in ion-beam analysis with MeV energy. We study this effect in a bent crystal for positive and negative particles within a wide range of energies in sight of application of such crystals at accelerators. We look for the conditions for the observation or not of channeling oscillations in the deflection angle distribution in experiments where the beam passes through the bent crystal. Indeed a new kind of oscillations in the deflection angle distribution, strictly related to the motion of over-barrier particles, i.e. quasichanneled particles, is predicted. Such oscillations, named planar quasichanneling oscillations, possess a different nature than channeling oscillations. Through computer simulation, we study this effect and provided a theoretical interpretation for them. We show that channeling oscillations can be observed only for positive particles while quasichanneling oscillations can exist for particles with either sign. The conditions for experimental observation of channeling and quasichanneling oscillations at existing accelerators with available crystal are found and optimized. (orig.)

  11. Polarization reversal and ferroelectric domain structure observed in electroded cesium dihydrogen phosphate crystals using an X-ray anomalous dispersion effect

    International Nuclear Information System (INIS)

    Ozaki, Toru; Amau, Toshirou; Kawata, Hiroshi; Mizuno, Kaoru; Mori, Koichi.

    1997-01-01

    We have carried out an X-ray intensity measurement and X-ray topography on electroded b plates of ferroelectric cesium dihydrogen phosphate, CsH 2 PO 4 (CDP), using a synchrotron radiation with a wavelength of 2.482 A above the Cs L 3 -absorption edge. We have found that integrated intensities I(150) and I(1-bar5-bar0) show an anomalously large breakdown of Friedel's law, I(150)/I(1-bar5-bar0)=10.4 at 125 K, and display a ferroelectric hysteresis loop. The hysteresis loop determines that spontaneous polarization is antiparallel to the b axes set in both ferroelectric crystal structures related by inversions. The (150) diffraction topography shows that a single domain turns into a lamellar domain structure without fractal aspects after short-circuiting the b plate. The atomic displacement associated with polarization reversal is shown in a crystal structure model of 180deg domains observed in the X-ray topography. (author)

  12. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  13. Observation of multiple Bragg reflections of neutrons in bent perfect crystals

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Seong, B. S.; Moon, MK.

    2011-01-01

    Roč. 634, č. 1 (2011), S108-S111 ISSN 0168-9002. [International Workshop on Neutron Optics. Grenoble, 17.03.2010-19.03.2010] R&D Projects: GA ČR GAP204/10/0654 Institutional research plan: CEZ:AV0Z10480505 Keywords : Neutron diffraction * Bent perfect crystal * Multiple reflections Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.207, year: 2011

  14. Observation and comparative analysis of proton beam extraction or collimation by different planar channels of a bent crystal

    Directory of Open Access Journals (Sweden)

    A. G. Afonin

    2012-08-01

    Full Text Available In the experiment the efficiency of the 50 GeV proton beam extraction from accelerator by means of a bent crystal as a function of crystal orientation was measured. This allowed one to make a comparative analysis of efficiencies of high-energy protons deflection by different crystal atomic planes with different values of the electrostatic field. The results of simulation of high-energy protons deflection by means of crystal atomic planes and crystal atomic strings are also presented in the article. In the case of planar channeling the simulation shows a good agreement with experimental data. In the case of proton motion in the regime of stochastic scattering by bent atomic strings the simulation shows that angles of particle deflection are much greater than the critical channeling angle.

  15. Internal bias field in glycine phosphite crystal

    International Nuclear Information System (INIS)

    Nayeem, Jannatul; Wakabayashi, Hiroshi; Kikuta, Toshio; Yamazaki, Toshinari; Nakatani, Noriyuki

    2003-01-01

    The distributions of internal bias field E b have been investigated under the carbon-powder pattern and mercury electrode techniques in GPI ferroelectric crystals. Polarity and intensity of E b are distributed depending on crystal growth sectors. Crystal symmetry 2/m is observed obviously in the distribution of E b . The polarities of E b are head-to-head manner in those growth sectors where a surface is growing parallel to the crystallographic a-axis and tail-to-tail manner in the other growth sectors in the crystal. The maximum intensity of E b is found in the sectors (010) where the growing surfaces are perpendicular to the ferroelectric b-axis

  16. Early stage crystallization kinetics in metallic glass-forming alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.

    2014-01-01

    Highlights: • Heterogeneous nucleation may precede the homogeneous one in an alloy. • High kinetic constants and the nucleation rate at the initial stage. • Metallic glasses have heterogeneous nucleation sites which saturate later. -- Abstract: The crystallization kinetics and structural changes of a few metallic glassy alloys were monitored using X-ray diffraction, transmission electron microscopy, differential scanning and isothermal calorimetry methods. Microstructural observations were used to estimate the nucleation and growth rates. A clear comparison of the differences in the crystallization kinetics in the metallic glassy samples is observed at the early and later crystallization stages

  17. Two-stage magnetic orientation of uric acid crystals as gout initiators

    Science.gov (United States)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  18. Photoluminescence properties of boron doped InSe single crystals

    International Nuclear Information System (INIS)

    Ertap, H.; Bacıoğlu, A.; Karabulut, M.

    2015-01-01

    Undoped and boron doped InSe single crystals were grown by Bridgman–Stockbarger technique. The PL properties of undoped, 0.1% and 0.5% boron doped InSe single crystals have been investigated at different temperatures. PL measurements revealed four emission bands labeled as A, B, C and D in all the single crystals studied. These emission bands were associated with the radiative recombination of direct free excitons (n=1), impurity-band transitions, donor–acceptor recombinations and structural defect related band (impurity atoms, defects, defect complexes, impurity-vacancy complex etc.), respectively. The direct free exciton (A) bands of undoped, 0.1% and 0.5% boron doped InSe single crystals were observed at 1.337 eV, 1.335 eV and 1.330 eV in the PL spectra measured at 12 K, respectively. Energy positions and PL intensities of the emission bands varied with boron addition. The FWHM of direct free exciton band increases while the FWHM of the D emission band decreases with boron doping. Band gap energies of undoped and boron doped InSe single crystals were calculated from the PL measurements. It was found that the band gap energies of InSe single crystals decreased with increasing boron content. - Highlights: • PL spectra of InSe crystals have been studied as a function of temperature. • Four emission bands were observed in the PL spectra at low temperatures. • PL intensity and position of free exciton band vary with doping and temperature. • Temperature dependences of the bands observed in the PL spectra were analyzed

  19. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  20. A more clear insight of the lysozyme crystal composition

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurswissenschaften, Verfahrenstechnik/TVT, 06099 Halle Saale (Germany)

    2011-07-15

    Crystallization can be used as a purification method for proteins. Lysozyme was chosen as a model substance. Changing crystallization conditions will lead as shown to different lysozyme crystal morphologies with different properties. Beside others, lysozyme crystals can show a Tetragonal, High Temperature and Low Temperature Orthorhombic crystal morphology. Experiments such as conductivity measurements, pH tests, chloride detection tests, experiments using methylene blue as a dye and dissolution experiments were carried out to investigate the composition of the lysozyme crystals. It is proven that lysozyme crystals are made up of the initial buffer solution components: lysozyme (the protein), water which is part of the crystal lattice, salt ions which are attached to the protein molecule and voids filled with the buffer solution containing the crystallization agent (e.g. salt). Interesting dissolution behaviours of the lysozyme crystals were observed which are not described so far elsewhere (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Growth and characterization of heavily doped silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scala, R.; Porrini, M. [MEMC Electronic Materials SpA, via Nazionale 59, 39012 Merano (Italy); Borionetti, G. [MEMC Electronic Materials SpA, viale Gherzi 31, Novara (Italy)

    2011-08-15

    Silicon crystals grown with the Czochralski method are still the most common material used for the production of electronic devices. In recent years, a growing need of large diameter crystals with increasingly higher doping levels is observed, especially to support the expanding market of discrete devices and its trend towards lower and lower resistivity levels for the silicon substrate. The growth of such heavily doped, large-diameter crystals poses several new challenges to the crystal grower, and the presence of a high dopant concentration in the crystal affects significantly its main properties, requiring also the development of dedicated characterization techniques. This paper illustrates the recent advances in the growth and characterization of silicon crystals heavily doped with antimony, arsenic, phosphorus and boron. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Discovery Mondays: crystals and particles for medicine

    CERN Multimedia

    2003-01-01

    Question: what are as heavy as lead, as clear as glass, and appear as tiny specks in a doctor's scanner but large as life in a physicist's detector? Answer: the crystals you will be able to observe in all their facets on 1 September at the start of a new season of Discovery Mondays at Microcosm. Come along and meet the CERN physicists who use crystals not only in their detectors but also in the latest generation of scanners. Four workshops will be organised, each devoted to a different medical imaging technique. The first workshop will be run by a physicist from the Crystal Clear collaboration, who will present her collaboration's special breed of crystals, which emit light when they are traversed by high-energy particles, and explain to you these crystals' role in Positron Emission Tomographs. The second workshop will focus on an imaging technique known as the Compton Camera, also based on scintillating crystals. Crystals worth looking at and admiring. Come to the next Discovery Monday to find out how they ...

  3. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  4. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  5. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  6. Preventing Crystal Agglomeration of Pharmaceutical Crystals Using Temperature Cycling and a Novel Membrane Crystallization Procedure for Seed Crystal Generation

    Directory of Open Access Journals (Sweden)

    Elena Simone

    2018-01-01

    Full Text Available In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80 w/w acetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM; and particle vision and measurement (PVM were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.

  7. Neutron transmission measurements of zinc and lead single crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.

    1988-01-01

    Neutron transmission measurements of zinc and lead single crystals have been carried out in a neutron wavelength band from 0.03 to 0.55 nm at different orientations of the crystal with regard to the beam direction. The measurements were performed using both time-of-flight and fixed-angle scattering spectrometers installed in front of the ET-RR-1 reactor horizontal channels. It was found that the position of the observed dips in the neutron transmission measurements corresponded to the reflections from the (h k l) planes of the hexagonal zinc single crystal which was cut along the (0 0 2) plane, while in the case of lead, the single crystal was cut perpendicular to the (3 1 1) plane. The reflectivity from the (0 0 2) plane of zinc was determined using both transmission and reflection methods. The maximum reflectivity was found to be 55% when the zinc crystal was orientated at 45 0 to the beam direction. The wavelength spread of the observed reflectivity curve was found to be in agreement with the calculated one, taking into consideration the spectrometer's resolution and the crystal mosaic spread. (author)

  8. Characterization of ion Coulomb crystals in a linear Paul trap

    International Nuclear Information System (INIS)

    Okada, K.; Takayanagi, T.; Wada, M.; Ohtani, S.; Schuessler, H. A.

    2010-01-01

    We describe a simple and fast method for simulating observed images of ion Coulomb crystals. In doing so, cold elastic collisions between Coulomb crystals and virtual very light atoms are implemented in a molecular dynamics (MD) simulation code. Such an approach reproduces the observed images of Coulomb crystals by obtaining density plots of the statistics of existence of each ion. The simple method has the advantage of short computing time in comparison with previous calculation methods. As a demonstration of the simulation, the formation of a planar Coulomb crystal with a small number of ions has been investigated in detail in a linear ion trap both experimentally and by simulation. However, also large Coulomb crystals including up to 1400 ions have been photographed and simulated to extract the secular temperature and the number of ions. For medium-sized crystals, a comparison between experiments and calculations has been performed. Moreover, an MD simulation of the sympathetic cooling of small molecular ions was performed in order to test the possibility of extracting the temperature and the number of refrigerated molecular ions from crystal images of laser-cooled ions. Such information is basic to studying ultracold ion-molecule reactions using ion Coulomb crystals including sympathetically cooled molecular ions.

  9. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A. E-mail: antonio@ubxlab.comtoni@ubxlab.com

    2004-05-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field.

  10. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    International Nuclear Information System (INIS)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A.

    2004-01-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

  11. The role of crystal orientation and surface proximity in the self-similar behavior of deformed Cu single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Judy W.L., E-mail: pangj@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Ice, Gene E. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Behtel Valley Road, Oak Ridge, TN 37831 (United States); Liu Wenjun [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-11-25

    We report on novel 3D spatially resolved X-ray diffraction microscopy studies of self-affine behavior in deformed single crystals. This study extends surface profile measurements of self-affined morphology changes in single crystals during deformation to include local lattice rotations and sub-surface behavior. Investigations were made on the spatial correlation of the local lattice rotations in 8% tensile deformed Cu single crystals oriented with [1 2 3], [1 1 1] and [0 0 1] axes parallel to the tensile axis. The nondestructive depth-resolved measurements were made over a length scale of one to hundreds of micrometers. Self-affined correlation was found both at the surface and below the surface of the samples. A universal exponent for the power-law similar to that observed with surface profile methods is found at the surface of all samples but crystallographically sensitive changes are observed as a function of depth. Correlation lengths of the self-affine behavior vary with the [1 2 3] crystal exhibiting the longest self-affine length scale of 70 {mu}m with only 18 {mu}m for the [1 1 1] and [0 0 1] crystals. These measurements illuminate the transition from surface-like to bulk-like deformation behavior and provide new quantitative information to guide emerging models of self-organized structures in plasticity.

  12. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    Science.gov (United States)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  13. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    International Nuclear Information System (INIS)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    Hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0) and the quality of the crystals was characterized. Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme

  14. Mössbauer and Kerr microscopy investigation of crystallization in FeCoB ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Hussain, Zaineb; Babu, Hari [UGC DAE Consortium for Scientific Research, University Campus, Kandhwa Road, Indore-452001 India (India); Shrivastava, Namrata [School of Physics, DAVV, Khandwa Road, Indore – 452001 India (India); Gupta, Ajay [Amity Centre for Spintronic Materials, Amity University, Noida 201303.India (India)

    2016-05-23

    The present work reports the crystallization study of amorphous FeCoB ribbons using x-ray diffraction, {sup 57}Fe Mössbauer spectroscopy in transmission mode and magneto-optical Kerr (MOKE) microscopy. Annealing at 673 K is found to result in crystallization. From the Mossbauer measurements it is observed that the Fe magnetic moments are in the plane of sample for as-cast ribbon; α-FeCo, (Fe{sub 0.5}Co{sub 0.5}){sub 2}B and Fe{sub 2}B phases are formed after crystallization. MOKE microscopy revealed that wide 180° domain walls & narrow fingerprint domains are observed before crystallization and fine domains are observed after crystallization. The results are explained in terms of the presence of internal stresses and their annealing with thermal heat treatment.

  15. Time-Lapse, in Situ Imaging of Ice Crystal Growth Using Confocal Microscopy.

    Science.gov (United States)

    Marcellini, Moreno; Noirjean, Cecile; Dedovets, Dmytro; Maria, Juliette; Deville, Sylvain

    2016-11-30

    Ice crystals nucleate and grow when a water solution is cooled below its freezing point. The growth velocities and morphologies of the ice crystals depend on many parameters, such as the temperature of ice growth, the melting temperature, and the interactions of solutes with the growing crystals. Three types of morphologies may appear: dendritic, cellular (or fingerlike), or the faceted equilibrium form. Understanding and controlling which type of morphology is formed is essential in several domains, from biology to geophysics and materials science. Obtaining, in situ, three dimensional observations without introducing artifacts due to the experimental technique is nevertheless challenging. Here we show how we can use laser scanning confocal microscopy to follow in real-time the growth of smoothed and faceted ice crystals in zirconium acetate solutions. Both qualitative and quantitative observations can be made. In particular, we can precisely measure the lateral growth velocity of the crystals, a measure otherwise difficult to obtain. Such observations should help us understand the influence of the parameters that control the growth of ice crystals in various systems.

  16. Image Analytical Approach for Needle-Shaped Crystal Counting and Length Estimation

    DEFF Research Database (Denmark)

    Wu, Jian X.; Kucheryavskiy, Sergey V.; Jensen, Linda G.

    2015-01-01

    Estimation of nucleation and crystal growth rates from microscopic information is of critical importance. This can be an especially challenging task if needle growth of crystals is observed. To address this challenge, an image analytical method for counting of needle-shaped crystals and estimating...

  17. Multiple x-ray diffraction applied to the study of crystal impurities

    International Nuclear Information System (INIS)

    Cardoso, L.P.

    1983-06-01

    The x-ray multiple diffraction technique is used in the study of impurities concentration and localization in the crystal lattice, implemented with the fundamental observation that the impurities cannot be distributed with the same spatial group symmetry of the crystal. This fact could introduce scattered intensity in the crystal reciprocal lattice forbidden nodes. This effect was effectively observed in multiple diffraction diagrams, where a reinforcement of the scattered intensity in the pure crystal is produced, when choosing conveniently the involved reflections. The reflectivity theory was developed in the kinematic case, which take into account the scattering by the impurities atoms, and the analysis showed that, in the first approximation, the impurities can influence both in the allowed and forbidden positions for the pure crystal. (L.C.J.A.)

  18. Monomial Crystals and Partition Crystals

    Science.gov (United States)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  19. Observation of a Time Quasicrystal and Its Transition to a Superfluid Time Crystal

    Science.gov (United States)

    Autti, S.; Eltsov, V. B.; Volovik, G. E.

    2018-05-01

    We report experimental realization of a quantum time quasicrystal and its transformation to a quantum time crystal. We study Bose-Einstein condensation of magnons, associated with coherent spin precession, created in a flexible trap in superfluid 3He-B . Under a periodic drive with an oscillating magnetic field, the coherent spin precession is stabilized at a frequency smaller than that of the drive, demonstrating spontaneous breaking of discrete time translation symmetry. The induced precession frequency is incommensurate with the drive, and hence, the obtained state is a time quasicrystal. When the drive is turned off, the self-sustained coherent precession lives a macroscopically long time, now representing a time crystal with broken symmetry with respect to continuous time translations. Additionally, the magnon condensate manifests spin superfluidity, justifying calling the obtained state a time supersolid or a time supercrystal.

  20. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  1. Damping of elastic waves in crystals with impurities

    International Nuclear Information System (INIS)

    Lemanov, V.V.; Petrov, A.V.; Akhmedzhanov, F.R.; Nasyrov, A.N.

    1979-01-01

    Elastic wave damping and thermal conductivity of NaCl-NaBr and Y 3 AL 5 O 12 crystals with Er impurity has been examined. The experimental results on a decrease in elastic wave damping in such crystals are analyzed in the framework of the Ahiezer damping theory. The measurements were made in the frequency range of 300-1500 MHz in propagation of longitudinal and transverse elastic waves along the [100] and [110] directions. At 10 % concentration of erbium impurity the transverse wave damping decreases by a factor of three, and for longitudinal waves by a factor of two in NaBr:Cl crystals, and by approximately 10 and 30 % for NaBr:Cl and Y 3 Al 5 O 12 :Er crystals, respectively. In Y 3 Al 5 O 12 crystals, unlike NaCl-NaBr crystals, no noticeable anisotropy of damping is observed. The transVerse wave damping in impurity crystals has been shown to increase significantly with decreasing temperature and increasing the impurity concentration

  2. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  3. Direct Observation of Halide Migration and its Effect on the Photoluminescence of Methylammonium Lead Bromide Perovskite Single Crystals.

    Science.gov (United States)

    Luo, Yanqi; Khoram, Parisa; Brittman, Sarah; Zhu, Zhuoying; Lai, Barry; Ong, Shyue Ping; Garnett, Erik C; Fenning, David P

    2017-11-01

    Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH 3 NH 3 PbBr 3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    International Nuclear Information System (INIS)

    Yang Tao; Chen Zheng; Zhang Jing; Wang Yongxin; Lu Yanli

    2016-01-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. (paper)

  5. Light scattering in additively colored alkali-halide crystals

    International Nuclear Information System (INIS)

    Trakhbrot, B.M.

    1979-01-01

    Studied is extinction in ultra-violet, visible and infrared spectrum ranges, caused by light scattering in additively colored KCl and KBr crystals. The crystals were prepared of the powder. The specimens were annealed in saturated potassium vapours: KBr - at 600-630 deg C, KCl - at 700 deg C. While investigating the spectra it is observed that the optical density of the specimens processed in such a regime is more than 2 in the ultraviolet and visible spectrum ranges at the 0.1-0.05 cm thickness of the specimens. In the infrared spectra the growth of the extinction coefficient with the wave length decrease is observed. The spectrum character shows IR radiation scattering by the defects in the crystal lattice. The attempt of determination of the scattering centres nature is taken. It is shown that the possible centres causing the light scattering observed can be colloid and quasicolloid centres in the additively colored materials

  6. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  7. Effect of Li and NH4 doping on the crystal perfection, second harmonic generation efficiency and laser damage threshold of potassium pentaborate crystals

    Science.gov (United States)

    Vigneshwaran, A. N.; Kalainathan, S.; Raja, C. Ramachandra

    2018-03-01

    Potassium pentaborate (KB5) is an excellent nonlinear optical material especially in the UV region. In this work, Li and NH4 doped KB5 crystals were grown using slow evaporation solution growth method. The incorporation of dopant has been confirmed and analysed by Energy dispersive X-ray analysis (EDAX), Inductively coupled plasma (ICP) analysis and Raman spectroscopy. The crystalline perfection of pure and doped KB5 crystals was studied by High resolution X-ray diffraction (HRXRD) analysis. Structural grain boundaries were observed in doped crystals. Second harmonic generation was confirmed for pure and doped crystals and output values revealed the enhancement of SHG efficiency in doped crystals. Resistance against laser damage was carried out using 1064 nm Nd-YAG laser of pulse width 10 ns. The laser damage threshold value is increased in Li doped crystal and decreased in NH4 doped crystal when compared to pure KB5 crystal.

  8. Applications of thin-film sandwich crystallization platforms

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny, E-mail: danny.axford@diamond.ac.uk; Aller, Pierre; Sanchez-Weatherby, Juan; Sandy, James [Diamond Light Source, Harwell Oxford, Didcot OX11 0DE (United Kingdom)

    2016-03-24

    Crystallization via sandwiches of thin polymer films is presented and discussed. Examples are shown of protein crystallization in, and data collection from, solutions sandwiched between thin polymer films using vapour-diffusion and batch methods. The crystallization platform is optimal for both visualization and in situ data collection, with the need for traditional harvesting being eliminated. In wells constructed from the thinnest plastic and with a minimum of aqueous liquid, flash-cooling to 100 K is possible without significant ice formation and without any degradation in crystal quality. The approach is simple; it utilizes low-cost consumables but yields high-quality data with minimal sample intervention and, with the very low levels of background X-ray scatter that are observed, is optimal for microcrystals.

  9. Symmetry, stability, and diffraction properties of icosahedral crystals

    International Nuclear Information System (INIS)

    Bak, P.

    1985-01-01

    In a remarkable experiment on an Mn-Al alloy, Shechtman et al. observed a diffraction spectrum with icosahedral symmetry. This is inconsistent with discrete translational invariance since the symmetry includes a five-fold axis. In this paper, it is shown that the crystallography and diffraction pattern can be described by a six-dimensional space group. The crystal structure in 3d is obtained as a cut along a 3d hyperplane in a regular 6d crystal. Displacements of the 6d crystal along 6 orthogonal directions define 6 continuous symmetries for the icosahedral crystal, three of which are phase symmetries describing internal rearrangements of the atoms

  10. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  11. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  12. Czochralski growth of gallium indium antimonide alloy crystals

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform

  13. Discovering H-bonding rules in crystals with inductive logic programming.

    Science.gov (United States)

    Ando, Howard Y; Dehaspe, Luc; Luyten, Walter; Van Craenenbroeck, Elke; Vandecasteele, Henk; Van Meervelt, Luc

    2006-01-01

    In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.

  14. Magneto-optical properties of biogenic photonic crystals in algae

    International Nuclear Information System (INIS)

    Iwasaka, M.; Mizukawa, Y.

    2014-01-01

    In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering from a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror

  15. Molecular complex of lumiflavin and 2-aminobenzoic acid: crystal structure, crystal spectra, and solution properties.

    Science.gov (United States)

    Shieh, H S; Ghisla, S; Hanson, L K; Ludwig, M L; Nordman, C E

    1981-08-04

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N4O2.C7H7NO2.H2O) crystallizes from from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 A, c = 7.045 A, alpha = 95.44 degrees , beta = 95.86 degrees, and gamma = 105.66 degrees . The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating lumiflavin adn un-ionized (neutral) 2-aminobenzoic acid molecules. Two different modes of stacking interaction are observed. In one, 2-aminobenzoic acid overlaps all three of the isoalloxazine rings, at a mean distance of 3.36 A; in the other, 2-aminobenzoic acid interacts distance of 3.36 A; in the other, 2-aminobenzoic acid interacts with the pyrazine and dimethylbenzene moieties, at a distance of 3.42 A. Perpendicular to the stacking direction, the molecules form a continuous sheet. Each flavin is hydrogen bonded via O(2) and NH(3) to two symmetrically related aminobenzoates; the water of crystallization forms three hydrogen bonds, bridging two flavins, via O(4) and N(5), and one aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid. The red color of the crystals results from a charge-transfer transition involving stacked flavin and 2-aminobenzoic acid molecules. Measurements of the polarized optical absorption spectra of crystals show that the transition moment direction for the long wavelength absorbance (beyond 530 nm) contains an out-of-plane component which can only arise from a charge-transfer interaction. Since the amino N does not make exceptionally close interactions with isoalloxazine atoms in either stacking mode (minimum interatomic distance 3.52 A), the charge transfer is presumed to involve pi orbitals of the 2-aminobenzoic acid donor.

  16. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  17. Modified method for registration of particle deflection by bent crystal

    International Nuclear Information System (INIS)

    Afanas'ev, S.V.; Kovalenko, A.D.; Kuznetsov, V.N.; Romanov, S.V.; Sajfulin, Sh.Z.; Taratin, A.M.; Volkov, V.I.; Voevodin, M.A.; Bojko, V.V.

    2003-01-01

    The modified method for registration of particle deflection by a bent crystal was proposed and studied at the external proton beam of the Nuclotron. The telescope of scintillation counters was placed at the angle that was smaller than a crystal bending angle. The count dependence of the telescope on the crystal orientation was formed by the particles, which passed in channeling states only some part of the crystal length. Two maximums were observed in the dependencies due to particles captured into the channeling states on the crystal surface and in the crystal volume. This allows one to obtain, using the telescope and high-intensity beams, useful data about the particle channeling and the crystal, which usually demands more complicated registration by means of the coordinate detectors

  18. Time crystals: a review

    Science.gov (United States)

    Sacha, Krzysztof; Zakrzewski, Jakub

    2018-01-01

    Time crystals are time-periodic self-organized structures postulated by Frank Wilczek in 2012. While the original concept was strongly criticized, it stimulated at the same time an intensive research leading to propositions and experimental verifications of discrete (or Floquet) time crystals—the structures that appear in the time domain due to spontaneous breaking of discrete time translation symmetry. The struggle to observe discrete time crystals is reviewed here together with propositions that generalize this concept introducing condensed matter like physics in the time domain. We shall also revisit the original Wilczek’s idea and review strategies aimed at spontaneous breaking of continuous time translation symmetry.

  19. Causes of fragmented crystals in ignimbrites: a case study of the Cardones ignimbrite, Northern Chile

    Science.gov (United States)

    van Zalinge, M. E.; Cashman, K. V.; Sparks, R. S. J.

    2018-03-01

    Broken crystals have been documented in many large-volume caldera-forming ignimbrites and can help to understand the role of crystal fragmentation in both eruption and compaction processes, the latter generally overlooked in the literature. This study investigates the origin of fragmented crystals in the > 1260 km3, crystal-rich Cardones ignimbrites located in the Central Andes. Observations of fragmented crystals in non-welded pumice clasts indicate that primary fragmentation includes extensive crystal breakage and an associated ca. 5 vol% expansion of individual crystals while preserving their original shapes. These observations are consistent with the hypothesis that crystals fragment in a brittle response to rapid decompression associated with the eruption. Additionally, we observe that the extent of crystal fragmentation increases with increasing stratigraphic depth in the ignimbrite, recording secondary crystal fragmentation during welding and compaction. Secondary crystal fragmentation aids welding and compaction in two ways. First, enhanced crystal fragmentation at crystal-crystal contacts accommodates compaction along the principal axis of stress. Second, rotation and displacement of individual crystal fragments enhances lateral flow in the direction(s) of least principal stress. This process increases crystal aspect ratios and forms textures that resemble mantled porphyroclasts in shear zones, indicating lateral flow adds to processes of compaction and welding alongside bubble collapse. In the Cardones ignimbrite, secondary fragmentation commences at depths of 175-250 m (lithostatic pressures 4-6 MPa), and is modulated by both the overlying crystal load and the time spent above the glass transition temperature. Under these conditions, the existence of force-chains can produce stresses at crystal-crystal contacts of a few times the lithostatic pressure. We suggest that documenting crystal textures, in addition to conventional welding parameters, can

  20. Polymer Stabilization of Liquid-Crystal Blue Phase II toward Photonic Crystals.

    Science.gov (United States)

    Jo, Seong-Yong; Jeon, Sung-Wook; Kim, Byeong-Cheon; Bae, Jae-Hyun; Araoka, Fumito; Choi, Suk-Won

    2017-03-15

    The temperature ranges where a pure simple-cubic blue phase (BPII) emerges are quite narrow compared to the body-centered-cubic BP (BPI) such that the polymer stabilization of BPII is much more difficult. Hence, a polymer-stabilized BPII possessing a wide temperature range has been scarcely reported. Here, we fabricate a polymer-stabilized BPII over a temperature range of 50 °C including room temperature. The fabricated polymer-stabilized BPII is confirmed via polarized optical microscopy, Bragg reflection, and Kossel diagram observations. Furthermore, we demonstrate reflective BP liquid-crystal devices utilizing the reflectance-voltage performance as a potential application of the polymer-stabilized BPII. Our work demonstrates the possibility of practical application of the polymer-stabilized BPII to photonic crystals.

  1. Intergrain Coupling in Dusty-Plasma Coulomb Crystals

    International Nuclear Information System (INIS)

    Mohideen, U.; Smith, M.A.; Rahman, H.U.; Rosenberg, M.; Mendis, D.A.

    1998-01-01

    We have studied the lattice structure of dusty-plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the intergrain spacing results from an attractive electric-field-induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal. copyright 1998 The American Physical Society

  2. A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection.

    Directory of Open Access Journals (Sweden)

    Krystal Cole

    Full Text Available High throughput screening technologies such as acoustic droplet ejection (ADE greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above, the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above, the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.

  3. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation

    International Nuclear Information System (INIS)

    David, G.

    1969-01-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10 -5 torr. (author) [fr

  4. Direct Observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides

    NARCIS (Netherlands)

    Gersen, H.; Karle, T.J.; Engelen, R.J.P.; Engelen, R.J.P.; Bogaerts, W.; Korterik, Jeroen P.; van Hulst, N.F.; Krauss, T.F.; Kuipers, L.

    2005-01-01

    The eigenfield distribution and the band structure of a photonic crystal waveguide have been measured with a phase-sensitive near-field scanning optical microscope. Bloch modes, which consist of more than one spatial frequency, are visualized in the waveguide. In the band structure, multiple

  5. Faraday instability of crystallization waves in 4He

    International Nuclear Information System (INIS)

    Abe, H; Ueda, T; Morikawa, M; Saitoh, Y; Nomura, R; Okuda, Y

    2007-01-01

    Periodic modulation of the gravity acceleration makes a flat surface of a fluid unstable and standing waves are parametrically excited on the surface. This phenomenon is called Faraday instability. Since a crystal-superfluid interface of 4 He at low temperatures is very mobile and behaves like a fluid surface, Saarloos and Weeks predicted that Faraday instability of the crystallization waves exists in 4 He and that the threshold excitation for the instability depends on the crystal growth coefficient. We successfully observed the Faraday instability of the crystal-liquid interface at 160 mK. Faraday waves were parametrically generated at one half of the driving frequency 90 Hz. Amplitude of the Faraday wave becomes smaller at higher temperature due to decrease of the crystal growth coefficient and disappears above 200 mK

  6. Deflection of GeV particle beams by channeling in bent crystal planes of constant curvature

    International Nuclear Information System (INIS)

    Forster, J.S.; Hatton, H.; Toone, R.J.

    1989-01-01

    The deflection of charged particle beams moving within the (110) planes of a 43 mm long silicon crystal has been observed for momenta from 60 to 200 GeV/c. The crystal was bent by a 10.8 μm thick coating of ZnO along the central 26 mm of the crystal. Measurements were made with the crystal at room temperature, where a total deflection of 32.5 mrad was observed, and with the crystal cooled to -145 o C, where a 30.9 mrad deflection was observed. The ratio of the number of particles that dechannel upon entering the bend to the number of initially channeled particles compares well with calculations based on the continuum model. (author)

  7. Light-Induced Tellurium Enrichment on CdZnTe Crystal Surfaces Detected by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hawkins, Samantha A.; Villa-Aleman, Eliel; Duff, Martine C.; Hunter, Doug B.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Black, David R.

    2008-01-01

    CdZnTe (CZT) crystals can be grown under controlled conditions to produce high-quality crystals to be used as room-temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro-Raman spectroscopy. The growth of Te rich areas on the surface was induced by low-power lasers. The growth was observed versus time with low-power Raman scattering and was observed immediately under higher-power conditions. The detector response was also measured after induced Te enrichment.

  8. Cholesteric colloidal liquid crystals from phytosterol rod-like particles

    NARCIS (Netherlands)

    Rossi, L.; Sacanna, S.; Velikov, K.P.

    2011-01-01

    We report the first observation of chiral colloidal liquid crystals of rod-like particles from a low molecular weight organic compound— phytosterols. Based on the particles shape and crystal structure, we attribute this phenomenon to chiral distribution of surface charge on the surface of

  9. Phenylacetic acid co-crystals with acridine, caffeine, isonicotinamide and nicotinamide: Crystal structures, thermal analysis, FTIR spectroscopy and Hirshfeld surface analysis

    Science.gov (United States)

    Amombo Noa, Francoise M.; Jacobs, Ayesha

    2017-07-01

    Co-crystals of phenylacetic acid (PAA) with acridine (ACR), caffeine (CAF), isonicotinamide (INM) and nicotinamide (NAM) have been successfully prepared and characterised by single crystal X-ray diffraction, FTIR spectroscopy, thermal analysis and Hirshfeld surface analysis. The ACR, INM and NAM co-crystals with PAA exhibit the carboxylic acid-pyridine heterosynthon. Furthermore the amide-amide supramolecular homosynthon is observed in the PAA co-crystals with INM and NAM as well as Nsbnd H⋯O interactions between the acid and the respective base. The CAF co-crystal exhibits hydrogen bonding between the imidazole nitrogen and the COOH group of the PAA. The compounds demonstrate different stoichiometries; for PAA·ACR and PAA·INM a 1:1 ratio is displayed, a 2:1 in 2PAA·CAF and a 2:2 in the case of 2PAA·2NAM.

  10. Numerical simulation of terahertz-wave propagation in photonic crystal waveguide based on sapphire shaped crystal

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Katyba, Gleb M; Mukhina, Elena E; Kudrin, Konstantin G; Karasik, Valeriy E; Yurchenko, Stanislav O; Kurlov, Vladimir N; Shikunova, Irina A; Reshetov, Igor V

    2016-01-01

    Terahertz (THz) waveguiding in sapphire shaped single crystal has been studied using the numerical simulations. The numerical finite-difference analysis has been implemented to characterize the dispersion and loss in the photonic crystalline waveguide containing hollow cylindrical channels, which form the hexagonal lattice. Observed results demonstrate the ability to guide the THz-waves in multi-mode regime in wide frequency range with the minimal power extinction coefficient of 0.02 dB/cm at 1.45 THz. This shows the prospectives of the shaped crystals for highly-efficient THz waveguiding. (paper)

  11. Crystallization and demineralization phenomena in washed-rind cheese.

    Science.gov (United States)

    Tansman, Gil F; Kindstedt, Paul S; Hughes, John M

    2017-11-01

    This report documents an observational study of a high-moisture washed-rind cheese. Three batches of cheese were sampled on a weekly basis for 6 wk and again at wk 10. Center, under-rind, rind, and smear samples were tested for pH, moisture, and selected mineral elements. Powder x-ray diffractometry and petrographic microscopy were applied to identify and image the crystal phases. The pH of the rind increased by over 2 pH units by wk 10. The pH of the under-rind increased but remained below the rind pH, whereas the center pH decreased for most of aging and only began to rise after wk 5. Diffractograms of smear material revealed the presence of 4 crystal phases: brushite, calcite, ikaite, and struvite. The phases nucleated in succession over the course of aging, with calcite and ikaite appearing around the same time. A very small amount of brushite appeared sporadically in center and under-rind samples, but otherwise no other crystallization was observed beneath the rind. Micrographs revealed that crystals in the smear grew to over 250 μm in length by wk 10, and at least 2 different crystal phases, probably ikaite and struvite, could be differentiated by their different optical properties. The surface crystallization was accompanied by a mineral diffusion phenomenon that resulted, on average, in a 217, 95.7, and 149% increase in calcium, phosphorus, and magnesium, respectively, in the rind by wk 10. The diffusion phenomenon caused calcium, phosphorus, and magnesium to decrease, on average, by 55.0, 21.5, and 36.3%, respectively, in the center by wk 10. The present study represents the first observation of crystallization and demineralization phenomena in washed-rind cheese. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  12. Molecular morphology and crystallization in the quantum limit

    DEFF Research Database (Denmark)

    Bohr, Jakob

    2002-01-01

    The effects of phonons on crystallization and crystal morphology are investigated. It is shown that the commensuration of the lattice vibrations with the lattice will favor certain crystal morphologies. Vibrational effects can also be important for the molecular structure of chain molecules...... protein are estimated to differ by several electron volts. For a biomolecule, such energy is significant and may contribute to cold denaturing as seen for proteins. This is consistent with the empirical observation that cold denaturation is exothermic and hot denaturation endothermic....

  13. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  14. Electrolytic coloration and spectral properties of hydroxyl-doped potassium chloride single crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Wu Yanru

    2011-01-01

    Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH - spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O - , OH - , U, V 2 , V 3 , O 2- -V a + , F, R 2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained. - Highlights: → Expanded the traditional electrolysis method. → Hydroxyl-doped potassium chloride crystals were colored electrolytically for the first time. → Useful V, F and F-aggregate color centers were produced in colored crystals. → V color centers were produced directly and F and F-aggregate color centers indirectly.

  15. In situ observation on the dynamic process of evaporation and crystallization of sodium nitrate droplets on a ZnSe substrate by FTIR-ATR.

    Science.gov (United States)

    Zhang, Qing-Nuan; Zhang, Yun; Cai, Chen; Guo, Yu-Cong; Reid, Jonathan P; Zhang, Yun-Hong

    2014-04-17

    Sodium nitrate is a main component of aging sea salt aerosol, and its phase behavior has been studied repeatedly with wide ranges observed in the efflorescence relative humidity (RH) in particular. Studies of the efflorescence dynamics of NaNO3 droplets deposited on a ZnSe substrate are reported, using an in situ Fourier transform infrared attenuated total reflection (FTIR-ATR) technique. The time-dependence of the infrared spectra of NaNO3 aerosols accompanying step changes in RH have been measured with high signal-to-noise ratio. From the IR difference spectra recorded, changes of the time-dependent absorption peak area of the O-H stretching band (ν-OH, ∼3400 cm(-1)) and the nitrate out-of-plane bending band (ν2-NO3(-), ∼836 cm(-1)) are obtained. From these measurements, changes in the IR signatures can be attributed to crystalline and solution phase nitrate ions, allowing the volume fraction of the solution droplets that have crystallized to be determined. Then, using these clear signatures of the volume fraction of droplets that have yet to crystallize, the homogeneous and heterogeneous nucleation kinetics can be studied from conventional measurements using a steady decline in RH. The nucleation rate measurements confirm that the rate of crystallization in sodium nitrate droplets is considerably less than in ammonium sulfate droplets at any particular degree of solute supersaturation, explaining the wide range of efflorescence RHs observed for sodium nitrate in previous studies. We demonstrate that studying nucleation kinetics using the FTIR-ATR approach has many advantages over brightfield imaging studies on smaller numbers of larger droplets or measurements made on single levitated particles.

  16. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  17. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  18. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg:LiNbO3 crystal

    Science.gov (United States)

    Zhang, P. X.; Yin, J. G.; Zhang, R.; Li, H. Q.; Xu, J. Q.; Hang, Y.

    2014-03-01

    A Tm, Mg co-doped LiNbO3 crystal was grown by the traditional Czochralski method. The room-temperature absorption, photo-luminescence spectra and fluorescence lifetime of Tm3+ ions in the crystal have been investigated. The experimental results show that the co-doped of MgO can lead to the lengthening of the measured fluorescence lifetime of the upper Tm3+:3F4 level. Based on the Judd-Ofelt approach, the intensity parameters Ω2,4,6 of Tm3+ were calculated to be Ω2 (6.29 × 10-20 cm2), Ω4 (0.54 × 10-20 cm2) and Ω6 (0.79 × 10-20 cm2). Other spectroscopic parameters that relate to laser performance were also obtained. Non-photorefractive continuous wave laser operation with a Tm, Mg:LiNbO3 single crystal is demonstrated at room temperature for the first time. We obtained 1.026 W output power at 1.885 μm with a slope efficiency of near 14%, which, to the best of our knowledge, is the largest output power and the highest slope efficiency obtained for this crystal thus far. The output power was observed to be stable, and the crystal showed no sign of photorefractive damage.

  19. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Calcium oxalate crystals: an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem.

    Directory of Open Access Journals (Sweden)

    Margaret B Uloth

    Full Text Available Oxalic acid is an important virulence factor for disease caused by the fungal necrotrophic pathogen Sclerotinia sclerotiorum, yet calcium oxalate (CaOx crystals have not been widely reported. B. carinata stems were infected with S. sclerotiorum and observed using light microscopy. Six hours post inoculation (hpi, CaOx crystals were evident on 46% of stem sections and by 72 hpi on 100%, demonstrating that the secretion of oxalic acid by S. sclerotiorum commences before hyphal penetration. This is the first time CaOx crystals have been reported on B. carinata infected with S. sclerotiorum. The shape of crystals varied as infection progressed. Long tetragonal rods were dominant 12 hpi (68% of crystal-containing samples, but by 72 hpi, 50% of stems displayed bipyramidal crystals, and only 23% had long rods. Scanning electron microscopy from 24 hpi revealed CaOx crystals in all samples, ranging from tiny irregular crystals (< 0.5 μm to large (up to 40 μm highly organized arrangements. Crystal morphology encompassed various forms, including tetragonal prisms, oval plates, crystal sand, and druses. Large conglomerates of CaOx crystals were observed in the hyphal mass 72 hpi and these are proposed as a strategy of the fungus to hold and detoxify Ca2+ions. The range of crystal morphologies suggests that S. sclerotiorum growth and infection controls the form taken by CaOx crystals.

  1. Radiation damage in BaF2 crystals

    International Nuclear Information System (INIS)

    Woody, C.L.; Kierstead, J.A.; Levy, P.W.; Stoll, S.

    1991-01-01

    The effects of radiation damage and recovery have been studied in BaF 2 crystals exposed to 60 Co radiation. The change in optical transmission and scintillation light output have been measured as a function of dose up to 4.7 x 10 6 rad. Although some crystals exhibit a small change in transmission, a greater change in scintillation light output is observed. Several 25 cm long crystals whichhave been irradiated show large changes in both transmission and light output. Recovery from radiation damage has been studied as a function of time and exposure to UV light. A long lived radiation induced phosphorescence has been observed in all irradiated samples which is distinct from the standard fast and slow scintillation emissions. The emission spectrum of the phosphorescence has been measured and shown a peakat ∼330 nm, near the region of the slow scintillation component. Results are given on the dependence of the decay time of the phosphorescence with dose

  2. LT-STM/STS observation of definite superconducting gap states on the multistage crystal surface of Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Murakami, Hironaru; Aoki, Ryozo

    1996-01-01

    Low temperature STM/STS observations have been carried out on cleaved BSCCO crystal surfaces. The authors have succeeded in detection of a special layer, probably a CuO 2 or Ca layer exposed on the surface. The STS spectrum which was reproducibly observed on this special site shows a considerably anisotropic but distinct superconducting gap structure with a definite and flat gap bottom region. This gap structure shows significantly different characteristic from another gap structure observed on the BiO layer, which shows a rounded shape at the gap bottom region without any indication of a finite gap state

  3. Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide).

    Science.gov (United States)

    Munk, Tommy; Baldursdottir, Stefania; Hietala, Sami; Rades, Thomas; Kapp, Sebastian; Nuopponen, Markus; Kalliomäki, Katriina; Tenhu, Heikki; Rantanen, Jukka

    2012-07-02

    The use of additives in crystallization of pharmaceuticals is known to influence the particulate properties critically affecting downstream processing and the final product performance. Desired functionality can be build into these materials, e.g. via optimized synthesis of a polymeric additive. One such additive is the thermosensitive polymer poly(N-isopropyl acrylamide) (PNIPAM). The use of PNIPAM as a crystallization additive provides a possibility to affect viscosity at separation temperatures and nucleation and growth rates at higher temperatures. In this study, novel PNIPAM derivatives consisting of both isotactic-rich and atactic blocks were used as additives in evaporative crystallization of a model compound, nitrofurantoin (NF). Special attention was paid to possible interactions between NF and PNIPAM and the aggregation state of PNIPAM as a function of temperature and solvent composition. Optical light microscopy and Raman and FTIR spectroscopy were used to investigate the structure of the NF crystals and possible interaction with PNIPAM. A drastic change in the growth mechanism of nitrofurantoin crystals as monohydrate form II (NFMH-II) was observed in the presence of PNIPAM; the morphology of crystals changed from needle to dendritic shape. Additionally, the amphiphilic nature of PNIPAM increased the solubility of nitrofurantoin in water. PNIPAMs with varying molecular weights and stereoregularities resulted in similar changes in the crystal habit of the drug regardless of whether the polymer was aggregated or not. However, with increased additive concentration slower nucleation and growth rates of the crystals were observed. Heating of the crystallization medium resulted in phase separation of the PNIPAM. The phase separation had an influence on the achieved crystal morphology resulting in fewer, visually larger and more irregular dendritic crystals. No proof of hydrogen bond formation between PNIPAM and NF was observed, and the suggested mechanism for

  4. Formation of co-crystals: Kinetic and thermodynamic aspects

    Science.gov (United States)

    Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J. P.

    2009-04-01

    Co-crystallisation is a recent method of great interest for the pharmaceutical industry, since pharmaceutical co-crystals represent useful materials for drug products. In this study, an active pharmaceutical ingredient (carbamazepine (CBZ)) co-crystallized with a vitamin (nicotinamide (NCT)) was chosen as a model substance. This work was focused on the construction of a phase diagram for the system CBZ/NCT, split in six domains for kinetic reasons (the different solid phases which might appear during the crystallisation) and in four domains according to thermodynamic aspects (the stable final phase obtained). Although co-crystals are not ionic compounds, the supersaturation of co-crystals can be evaluated by considering the solubility product. Batch crystallisation operations were carried out in a stirred vessel equipped with an in situ video probe. This latter device was a powerful analysis tool to monitor the CBZ/NCT co-crystals and single CBZ crystals since these two crystalline phases grown in ethanol exhibited needle and platelet habits. As concerns kinetics, the different solid phases which might appear during the experiments were observed and competed against each others. In accordance with thermodynamics, the stable solid form was obtained at the end of the operation. Finally some preliminary results indicate that the nucleation of co-crystals may be favoured by the presence of CBZ crystals. Epitaxial relationships between CBZ/NCT co-crystals and CBZ crystals were suspected.

  5. Plasticity induced phase transformation in molecular crystals

    OpenAIRE

    Koslowski, Marisol

    2014-01-01

    Solid state amorphization (SSA) can be achieved in crystalline materials including metal alloys, intermetallics, semiconductors, minerals and molecular crystals. Even though the mechanisms may differ in different materials, the crystalline to amorphous transformation occurs when the crystal reaches a metastable state in which its free energy is higher than that of the amorphous phase. SSA is observed in metal alloys because of interdiffusion of the crystalline elements during mechanical milli...

  6. Rapid localized crystallization of lysozyme by laser trapping.

    Science.gov (United States)

    Yuyama, Ken-Ichi; Chang, Kai-Di; Tu, Jing-Ru; Masuhara, Hiroshi; Sugiyama, Teruki

    2018-02-28

    Confining protein crystallization to a millimetre size was achieved within 0.5 h after stopping 1 h intense trapping laser irradiation, which shows excellent performance in spatial and temporal controllability compared to spontaneous nucleation. A continuous-wave near-infrared laser beam is tightly focused into a glass/solution interfacial layer of a supersaturated buffer solution of hen egg-white lysozyme (HEWL). The crystallization is not observed during laser trapping, but initiated by stopping the laser irradiation. The generated crystals are localized densely in a circular area with a diameter of a few millimetres around the focal spot and show specific directions of the optical axes of the HEWL crystals. To interpret this unique crystallization, we propose a mechanism that nucleation and the subsequent growth take place in a highly concentrated domain consisting of HEWL liquid-like clusters after turning off laser trapping.

  7. Direct observation of in-plane anisotropy of the superconducting critical current density in Ba (Fe1-xCox) 2As2 crystals

    Science.gov (United States)

    Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.

    2018-01-01

    The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.

  8. Lasing in liquid crystal thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: palto@online.ru

    2006-09-15

    A lasing condition is formulated in matrix form for optically anisotropic thin films. Lasing behavior of liquid-crystal slabs is analyzed. In particular, it is shown that if the spatial extent of a liquid crystal slab is much larger than its thickness, then laser emission is feasible not only along the normal to the slab, but also in the entire angular sector. The generated laser light can be observed experimentally as a spot or as concentric rings on a screen. The lowest lasing threshold corresponds to in-plane sliding modes leaking into the substrate. The feedback required for lasing is provided by reflection from the interfaces, rather than edges, of the liquid-crystal slab operating as a planar Fabry-Perot cavity. For cholesteric liquid crystals, it is shown that energy loss to the sliding modes leaking into the substrates and escaping through their edges is a key factor that limits the efficiency of band-edge emission along the normal to the slab.

  9. Electrolytic coloration and spectral properties of hydroxyl-doped potassium bromide single crystals

    International Nuclear Information System (INIS)

    Qi, Lan; Song, Cuiying; Gu, Hongen

    2013-01-01

    Hydroxyl-doped potassium bromide single crystals are colored electrolytically at various temperatures and voltages by using a pointed cathode and a flat anode. The characteristic OH − spectral band is observed in absorption spectrum of uncolored single crystal. The characteristic O − , OH − , U, V 2 , O 2− −V a + , M L1 , F and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current–time curve for electrolytic coloration of hydroxyl-doped potassium bromide single crystal and its relationship with electrolytic coloration processes are given. Production and conversion of color centers are explained. - Highlights: ► We expanded the traditional electrolysis method. ► Hydroxyl-doped potassium bromide crystals were colored electrolytically for the first time. ► Useful V, F and F-aggregate color centers were produced in colored crystals. ► V color centers were produced directly and F as well as F-aggregate color centers indirectly.

  10. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  11. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  12. Local layer structure of smectic liquid crystals by X-ray micro-diffraction

    CERN Document Server

    Takanishi, Y

    2003-01-01

    The local layer structure of smectic liquid crystal has been measured using time-resolved synchrotron X-ray micro-diffraction. Typical layer disorders observed in surface stabilized (anti-) ferroelectric liquid crystals, i.e. a stripe texture, a needed-like defect and a zigzag defect, are directly analyzed. The detailed analysis slows that the surface anchoring force due to the interaction between the liquid crystal molecule and the alignment thin film plays an important role to realize both the static and dynamic local layer structures. The layer structure of the circular domain observed in the liquid crystal of bent-shaped molecules found to depend on the applied electric field though the optical micrograph shows little difference. The frustrated, double and single layer structures of the bent-shaped molecule liquid crystal are determined depending on the terminal alkyl chain length. (author)

  13. Anomalously temperature-independent birefringence in biaxial optical crystals

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-01

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160 0 C. (letters to the editor)

  14. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    Science.gov (United States)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  15. Crystallization by particle attachment in synthetic, biogenic, and geologic environments

    NARCIS (Netherlands)

    De Yoreo, James; Gilbert, P.U.P.A.; Sommerdijk, N.A.J.M.; Lee Penn, R.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; Wallace, A.F.; Marc Michel, F.; Meldrum, F.C.; Cölfen, H.; Dove, P.M.

    2015-01-01

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that

  16. Investigation of crystallization in glasses containing fission products

    International Nuclear Information System (INIS)

    Malow, G.

    1979-01-01

    Five potential solidification products for high-level waste (four borosilicate glasses and one celsian glass ceramic) have been investigated in terms of crystallization. In all glasses and in the glass ceramic, crystallization, and recrystallization, respectively, were observed by heating above 773 0 K, however, at very different periods of time (0.1d greater than or equal to 100d). The noble metals precipitated into various phases. Crystal growth proceeded at the phase boundary glass-noble metal. In all products rare earth phases crystallized. Silicate phases rarely formed. The leach resistance (by the grain titration and Soxhlet tests) decreased after heat treatment in all cases. The changes were found to be within one order of magnitude for all products. 2 figures, 4 tables

  17. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  18. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  19. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  20. Effect of borax on the wetting properties and crystallization behavior of sodium sulfate

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, N.; Lubelli, B.A.; Hees, R.P.J. van

    2017-01-01

    Borax has been identified as a possible crystallization modifier for sodium sulfate. Understanding the effect of borax on factors influencing transport and crystallization kinetics of sodium sulfate helps to clarify how this modifier might limit crystallization damage. It has been observed that the

  1. Structural and morphological characterization of fullerite crystals prepared from the vapor phase

    International Nuclear Information System (INIS)

    Haluska, M.; Fejdi, P.; Vybornov, M.; Kuzmany, H.

    1993-01-01

    Crystal structure, habits and surface structures of fullerite crystals prepared from vapor phase were characterized by X-ray analysis, interfacial angle measurements and optical and scanning electron microscopy (SEM). The study of selected C 60 crystals confirmed the fcc structure at room temperature. The crystal habit is determined by two types of morphological faces, namely {100} and {111}. SEM was used for the observation of thermal etched surfaces. (orig.)

  2. Scratching experiments on quartz crystals: Orientation effects in chipping

    Science.gov (United States)

    Tellier, C. R.; Benmessaouda, D.

    1994-06-01

    The deformation and microfracture properties of quartz crystals were studied by scratching experiments. The critical load at which microfractures are initiated was found to be orientation dependent, whereas the average width of ductile grooves and chips remained relatively insensitive to crystal orientation. In contrast, a marked anisotropy in the shape of chips was observed. This anisotropy has been interpreted in terms of microfractures propagating preferentially along slip planes. Simple geometrical conditions for the SEM (scanning electron microscopy) observation of active slip planes are proposed.

  3. Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment

    Directory of Open Access Journals (Sweden)

    A. C. Targino

    2006-01-01

    low-Z particles represent significant part of the analyzed cloud residual particles. This indicates that organic material may be poor ice nuclei, in contrast to polluted cases when ice crystal formation was observed at the same environmental conditions and when the cloud residual composition was dominated by mineral dust. The presented results suggest that the chemical composition of cloud nuclei and airmass origin have a strong impact on the ice formation through heterogeneous nucleation in supercooled clouds.

  4. Amine free crystal structure: The crystal structure of d(CGCGCG)2 and methylamine complex crystal

    International Nuclear Information System (INIS)

    Ohishi, Hirofumi; Tsukamoto, Koji; Hiyama, Yoichi; Maezaki, Naoyoshi; Tanaka, Tetsuaki; Ishida, Toshimasa

    2006-01-01

    We succeeded in the crystallization of d(CGCGCG) 2 and methylamine Complex. The crystal was clear and of sufficient size to collect the X-ray crystallographic data up to 1.0 A resolution using synchrotron radiation. As a result of X-ray crystallographic analysis of 2F o - F c map was much clear and easily traced. It is First time monoamine co-crystallizes with d(CGCGCG) 2 . However, methylamine was not found from the complex crystal of d(CGCGCG) 2 and methylamine. Five Mg ions were found around d(CGCGCG) 2 molecules. These Mg ions neutralized the anion of 10 values of the phosphate group of DNA with five Mg 2+ . DNA stabilized only by a metallic ion and there is no example of analyzing the X-ray crystal structure like this. Mg ion stabilizes the conformation of Z-DNA. To use monoamine for crystallization of DNA, we found that we can get only d(CGCGCG) 2 and Mg cation crystal. Only Mg cation can stabilize the conformation of Z-DNA. The method of using the monoamine for the crystallization of DNA can be applied to the crystallization of DNA of long chain of length in the future like this

  5. Crystal Growth Technology

    Science.gov (United States)

    Scheel, Hans J.; Fukuda, Tsuguo

    2004-06-01

    This volume deals with the technologies of crystal fabrication, of crystal machining, and of epilayer production and is the first book on industrial and scientific aspects of crystal and layer production. The major industrial crystals are treated: Si, GaAs, GaP, InP, CdTe, sapphire, oxide and halide scintillator crystals, crystals for optical, piezoelectric and microwave applications and more. Contains 29 contributions from leading crystal technologists covering the following topics: General aspects of crystal growth technology Silicon Compound semiconductors Oxides and halides Crystal machining Epitaxy and layer deposition Scientific and technological problems of production and machining of industrial crystals are discussed by top experts, most of them from the major growth industries and crystal growth centers. In addition, it will be useful for the users of crystals, for teachers and graduate students in materials sciences, in electronic and other functional materials, chemical and metallurgical engineering, micro-and optoelectronics including nanotechnology, mechanical engineering and precision-machining, microtechnology, and in solid-state sciences.

  6. Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals

    CERN Document Server

    Scandale, Walter; Baricordi, S; Dalpiaz, P; Fiorini, M; Guidi, V; Mazzolari, A; Della Mea, G; Milan, R; Ambrosi, G; Zuccon, P; Bertucci, B; Bürger, W; Duranti, M; Cavoto, G; Santacesaria, R; Valente, P; Luci, C; Iacoangeli, F; Vallazza, E; Afonin, A G; Chesnokov, Yu A; Kotov, V I; Maisheev, V A; Yazynin, I A; Kovalenko, A D; Taratin, A M; Denisov, A S; Gavrikov, Y A; Ivanov, Yu M; Lapina, L P; Malyarenko, L G; Skorogobogatov, V V; Suvorov, V M; Vavilov, S A; Bolognini, D; Hasan, S; Mozzanica, A; Prest, M

    2009-01-01

    The interactions of 400 GeV protons with different sequences of bent silicon crystals have been investigated at the H8 beam line of the CERN Super Proton Synchrotron. The multiple volume reflection of the proton beam has been studied in detail on a five-crystal reflector measuring an angular beam deflection =52.96±0.14 µrad. The efficiency was found larger than 80% for an angular acceptance at the reflector entrance of 70 µrad, with a maximal efficiency value of =0.90±0.01±0.03.

  7. Thermo-electric oxidization of iron in lithium niobate crystals

    International Nuclear Information System (INIS)

    Falk, Matthias

    2007-01-01

    Lithium niobate crystals (LiNbO 3 ) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO 3 crystals this treatment leads to a nearly complete oxidization from Fe 2+ to Fe 3+ indicated by the disappearance of the absorption caused by Fe 2+ . During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe 2+ concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10 -6 for oxidized crystals whereas it is about 10 -1 for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from Fe 2+ . A microscopic shock-wave model is developed that explains the observed absorption front by

  8. Prediction of molecular crystal structures

    International Nuclear Information System (INIS)

    Beyer, Theresa

    2001-01-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol -1 of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  9. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  10. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    Science.gov (United States)

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  11. Crystallization of the hydantoin transporter Mhp1 from Microbacterium liquefaciens

    International Nuclear Information System (INIS)

    Shimamura, Tatsuro; Yajima, Shunsuke; Suzuki, Shun’ichi; Rutherford, Nicholas G.; O’Reilly, John; Henderson, Peter J. F.; Iwata, So

    2008-01-01

    Mhp1, a hydantoin transporter from M. liquefaciens, was purified and crystallized. Diffraction data were collected to 2.85 Å resolution; the crystal belonged to the orthorhombic space group P2 1 2 1 2 1 . The integral membrane protein Mhp1 from Microbacterium liquefaciens transports hydantoins and belongs to the nucleobase:cation symporter 1 family. Mhp1 was successfully purified and crystallized. Initial crystals were obtained using the hanging-drop vapour-diffusion method but diffracted poorly. Optimization of the crystallization conditions resulted in the generation of orthorhombic crystals (space group P2 1 2 1 2 1 , unit-cell parameters a = 79.7, b = 101.1, c = 113.8 Å). A complete data set has been collected from a single crystal to a resolution of 2.85 Å with 64 741 independent observations (94% complete) and an R merge of 0.12. Further experimental phasing methods are under way

  12. Growth, structural, optical and surface analysis of piperazinium tartrate: A NLO single crystal

    Science.gov (United States)

    Gupta, Apurva; Raseel Rahman M., K.; Nair, Lekha

    2018-05-01

    Single crystal of piperazinium tartrate (PPZT) was grown by the slow evaporation solution growth technique at room temperature. Crystallinity of grown crystal was examined by powder X-ray diffraction. High transparency and wide band gap were observed in the UV-Visible spectroscopic studies. Intense and broad emissions were observed in the blue region, as that is indicated by photoluminescence spectroscopy. The quality of the grown PPZT single crystals were analyzed by the etching studies using the water as the etchant.

  13. On the growth of calcium tartrate tetrahydrate single crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Calcium tartrate single crystals were grown using silica gel as the growth medium. Calcium for- mate mixed with formic acid was taken as the supernatant solution. It was observed that the nucleation den- sity was reduced and the size of the crystals was improved to a large extent compared to the conventional way.

  14. The light output of BGO crystals

    International Nuclear Information System (INIS)

    Gong Zhufang; Ma Wengan; Lin Zhirong; Wang Zhaomin; Xu Zhizong; Fan Yangmei

    1987-01-01

    The dependence of light output on the surface treatment of BGO crystals has been tested. The results of experiments and Monte Carlo calculation indicate that for a tapered BGO crystal the best way to improve the uniformity and the energy resolution and to obtain higher light output is roughing the surface coupled to photomultiplier tube. The authors also observed that different wrapping method can effect its uniformity and resolutoin. Monte Carlo calculation indicates that the higher one of the 'double peaks' is the photoelectron peak of γ rays

  15. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  16. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    Science.gov (United States)

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  17. Primary crystallization in Al-rich metallic glasses at unusually low temperatures

    International Nuclear Information System (INIS)

    Bokeloh, J.; Boucharat, N.; Roesner, H.; Wilde, G.

    2010-01-01

    The initial stage of the primary crystallization reaction and the glass transition of the marginal metallic glass Al 89 Y 6 Fe 5 were investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), microcalorimetry, X-ray diffraction (XRD) and transmission electron microscopy. A sharp onset of the primary crystallization was found by microcalorimetry and XRD studies at temperatures which were 120 deg. C below the primary crystallization peak observed in conventional DSC. A systematic MDSC study of annealed samples revealed a wide spectrum of glass transition onsets, which show a strong dependence on the annealing conditions. In addition, the glass transition onsets can be linked to the initial stage of the primary crystallization. The spectrum of glass transition onsets observed is discussed with respect to the occurrence of phase separation preceding the nucleation and growth of dendritic aluminium nanocrystals.

  18. Crystal field in ErGa3 - a neutron spectroscopy study

    International Nuclear Information System (INIS)

    Murasik, A.; Czopnik, A.; Clementyev, E.; Schefer, J.

    2000-01-01

    The splitting of the J = 15/2 multiplet of Er in a cubic crystal field has been determined by inelastic scattering from a polycrystalline sample of ErGa 3 . On the base of observed intensities and their temperature variation we have been able to determine two crystal electric fields (CEF) parameters required for cubic symmetry. Least-squares fits of calculated crystal field transitions of the observed neutron inelastic scattering spectra taken at 12, 24, 32, 40, 50 and 80 K, gave the crystal field parameters: B 4 (7.15±0.05) x 10 -5 and B 6 = (1.28±0.05) x 1- -6 MeV yielding the Γ 7 doublet as a ground level with the overall splitting of 10.92 MeV. The results are used to calculate the temperature-depended zero field magnetization and the Schottky anomaly of the heat capacity of the ErGa 3 which yield reasonable agreement with experimental data obtained earlier. (author)

  19. Flow induced/ refined solution crystallization of a semiconducting polymer

    Science.gov (United States)

    Nguyen, Ngoc A.

    Organic photovoltaics, a new generation of solar cells, has gained scientific and economic interests due to the ability of solution-processing and potentially low-cost power production. Though, the low power conversion efficiency of organic/ plastic solar cells is one of the most pertinent challenges that has appealed to research communities from many different fields including materials science and engineering, electrical engineering, chemical engineering, physics and chemistry. This thesis focuses on investigating and controlling the morphology of a semi-conducting, semi-crystalline polymer formed under shear-flow. Molecular structures and processing techniques are critical factors that significantly affect the morphology formation in the plastic solar cells, thus influencing device performance. In this study, flow-induced solution crystallization of poly (3-hexylthiophene) (P3HT) in a poor solvent, 2-ethylnapthalene (2-EN) was utilized to make a paint-like, structural liquid. The polymer crystals observed in this structured paint are micrometers long, nanometers in cross section and have a structure similar to that formed under quiescent conditions. There is pi-pi stacking order along the fibril axis, while polymer chain folding occurs along the fibril width and the order of the side-chain stacking is along fibril height. It was revealed that shear-flow not only induces P3HT crystallization from solution, but also refines and perfects the P3HT crystals. Thus, a general strategy to refine the semiconducting polymer crystals from solution under shear-flow has been developed and employed by simply tuning the processing (shearing) conditions with respect to the dissolution temperature of P3HT in 2-EN. The experimental results demonstrated that shear removes defects and allows more perfect crystals to be formed. There is no glass transition temperature observed in the crystals formed using the flow-induced crystallization indicating a significantly different

  20. Mesoscale martensitic transformation in single crystals of topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Ramírez-Hernández, Abelardo; Zhou, Ye; Sadati, Monirosadat; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.

    2017-09-05

    Liquid crystal blue phases (BPs) are highly ordered at two levels. Molecules exhibit orientational order at nanometer length scales, while chirality leads to ordered arrays of doubletwisted cylinders over micrometer scales. Past studies of polycrystalline BPs were challenged by grain boundaries between randomly oriented crystalline nanodomains. Here, the nucleation of BPs is controlled with considerable precision by relying on chemically nano-patterned surfaces, leading to macroscopic single-crystal BP specimens where the dynamics of meso-crystal formation can be directly observed. Theory and experiments show that transitions between two BPs having a different network structure proceed through local re-organization of the crystalline array, without diffusion of the double twisted cylinders. In solid crystals, martensitic transformations between crystal structures involve the concerted motion of a few atoms, without diffusion. The transformation between BPs, where crystal features arise in the sub-micron regime, is found to be martensitic in nature, with the diffusion-less feature associated to the collective behavior of the double twist cylinders. Single-crystal BPs are shown to offer fertile grounds for the study of directed crystal-nucleation and the controlled growth of soft matter.

  1. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M.M.; Krivolapchuk, V.V.; Petrov, V.N.; Rodin, S.N.; Cherenkov, A.V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. The sensitizing effect of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, the emission is observed in visible and infrared ranges of the photoluminescence spectrum [ru

  2. Tuning crystallization pathways through sequence engineering of biomimetic polymers

    Science.gov (United States)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang; Newcomb, Christina J.; Zhang, Yuliang; Prakash, Arushi; Liao, Zhihao; Baer, Marcel D.; Mundy, Christopher J.; Pfaendtner, James; Noy, Aleksandr; Chen, Chun-Long; de Yoreo, James J.

    2017-07-01

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede the appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct versus two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-step pathway that begins with the creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for the design of self-assembling polymer systems.

  3. Tuning crystallization pathways through sequence engineering of biomimetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiang; Zhang, Shuai; Jiao, Fang; Newcomb, Christina J.; Zhang, Yuliang; Prakash, Arushi; Liao, Zhihao; Baer, Marcel D.; Mundy, Christopher J.; Pfaendtner, James; Noy, Aleksandr; Chen, Chun-Long; De Yoreo, James J.

    2017-04-17

    Two-step nucleation pathways in which disordered, amorphous, or dense liquid states precede appearance of crystalline phases have been reported for a wide range of materials, but the dynamics of such pathways are poorly understood. Moreover, whether these pathways are general features of crystallizing systems or a consequence of system-specific structural details that select for direct vs two-step processes is unknown. Using atomic force microscopy to directly observe crystallization of sequence-defined polymers, we show that crystallization pathways are indeed sequence dependent. When a short hydrophobic region is added to a sequence that directly forms crystalline particles, crystallization instead follows a two-step pathway that begins with creation of disordered clusters of 10-20 molecules and is characterized by highly non-linear crystallization kinetics in which clusters transform into ordered structures that then enter the growth phase. The results shed new light on non-classical crystallization mechanisms and have implications for design of self-assembling polymer systems.

  4. Dehydration and crystallization kinetics of zirconia-yttria gels

    International Nuclear Information System (INIS)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.; Nayar, P.K.K.

    1995-01-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process. The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ''glow effect'' reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form

  5. Influence of crystal habit on trimethoprim suspension formulation.

    Science.gov (United States)

    Tiwary, A K; Panpalia, G M

    1999-02-01

    The role of crystal habit in influencing the physical stability and pharmacokinetics of trimethoprim suspensions was examined. Different habits for trimethoprim (TMP) were obtained by recrystallizing the commercial sample (PD) utilizing solvent-change precipitation method. Four distinct habits (microscopic observation) belonging to the same polymorphic state (DSC studies) were selected for studies. Preformulation and formulation studies were carried out on suspension dosage forms containing these crystals. The freshly prepared suspensions were also evaluated for their pharmacokinetic behaviour on healthy human volunteers using a cross over study. Variation of crystallization conditions produces different habits of TMP. Among the different crystal habits exhibiting same polymorphic state, the most anisometric crystal showed best physical stability in terms of sedimentation volume and redispersibility. However, habit did not significantly affect the extent of TMP excreted in urine. Modification of surface morphology without significantly altering the polymorphic state can be utilized for improving physical stability of TMP suspensions. However, the pharmacokinetic profile remains unaltered.

  6. A study of the crystallization of ZrO

    International Nuclear Information System (INIS)

    Aguilar, D. H.; Torres-Gonzalez, L. C.; Torres-Martinez, L. M.; Lopez, T.; Quintana, P.

    2001-01-01

    ZrO(sub 2)-SiO(sub 2) sol-gel powders were produced using tetraethoxysilane (TEOS) and zirconium propoxide. After gellation, the ZrO(sub 2) crystallization process was investigated using X-ray diffraction (XRD), thermal analysis (DTA/TGA), and scanning electron microscopy (SEM). Fresh gels were amorphous. Thermal treatments were carried out from 100 to 1400 C for a total annealing time of 182 h. Tetragonal zirconia, (Z(t)) was the first phase to crystallize, between 300 and 500 C. Crystallization temperature was lower for zirconia-rich compositions, increasing as silica content was raised. DTA analysis showed that Z(t) crystallization occurred in two stages. Complete tetragonal-monoclinic zirconia transformation occurred near 1000 C, and was clearly observed only in ZrO(sub 2)-rich compositions ( and gt;80%). Silica remains amorphous until 1200 C, when ZrSiO(sub 4) formation took place. A metastable sol-gel phase diagram was proposed to show the crystallization process between 100 and 1400 C

  7. Crystal growth and optical properties of 4-aminobenzophenone (ABP)

    Science.gov (United States)

    Li, Zhengdong; Wu, Baichang; Su, Genbo; Huang, Gongfan

    1997-02-01

    Bulk crystals of 4-aminobenzophenone (ABP) were grown from organic solution. The crystal structure was determined by X-ray analysis. The refractive indices were determined by the method of prism minimum deviation. Some effective nonlinear-optical coefficients deff were measured. A blue second-harmonic emission with wavelengths of 433 and 460 nm were observed during laser diode pumping.

  8. Crystal phases of a glass-forming Lennard-Jones mixture

    International Nuclear Information System (INIS)

    Fernandez, Julian R.; Harrowell, Peter

    2003-01-01

    We compare the potential energy at zero temperature of a range of crystal structures for a glass-forming binary mixture of Lennard-Jones particles. The lowest-energy ordered state consists of coexisting phases of a single component face centered cubic structure and an equimolar cesium chloride structure. An infinite number of layered crystal structures are identified with energies close to this ground state. We demonstrate that the finite size increase of the energy of the coexisting crystal with incoherent interfaces is sufficient to destabilize this ordered phase in simulations of typical size. Two specific local coordination structures are identified as of possible structural significance in the amorphous state. We observe rapid crystal growth in the equimolar mixture

  9. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of

  10. Principles of crystallization, and methods of single crystal growth

    International Nuclear Information System (INIS)

    Chacra, T.

    2010-01-01

    Most of single crystals (monocrystals), have distinguished optical, electrical, or magnetic properties, which make from single crystals, key elements in most of technical modern devices, as they may be used as lenses, Prisms, or grating sin optical devises, or Filters in X-Ray and spectrographic devices, or conductors and semiconductors in electronic, and computer industries. Furthermore, Single crystals are used in transducer devices. Moreover, they are indispensable elements in Laser and Maser emission technology.Crystal Growth Technology (CGT), has started, and developed in the international Universities and scientific institutions, aiming at some of single crystals, which may have significant properties and industrial applications, that can attract the attention of international crystal growth centers, to adopt the industrial production and marketing of such crystals. Unfortunately, Arab universities generally, and Syrian universities specifically, do not give even the minimum interest, to this field of Science.The purpose of this work is to attract the attention of Crystallographers, Physicists and Chemists in the Arab universities and research centers to the importance of crystal growth, and to work on, in the first stage to establish simple, uncomplicated laboratories for the growth of single crystal. Such laboratories can be supplied with equipment, which are partly available or can be manufactured in the local market. Many references (Articles, Papers, Diagrams, etc..) has been studied, to conclude the most important theoretical principles of Phase transitions,especially of crystallization. The conclusions of this study, are summarized in three Principles; Thermodynamic-, Morphologic-, and Kinetic-Principles. The study is completed by a brief description of the main single crystal growth methods with sketches, of equipment used in each method, which can be considered as primary designs for the equipment, of a new crystal growth laboratory. (author)

  11. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  12. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  13. Second harmonic generation in Te crystal using free electron laser

    CERN Document Server

    Yamauchi, T; Minehara, E J

    2002-01-01

    The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)

  14. Surface characterization of amorphous and crystallized Fe 80B 20

    Science.gov (United States)

    Huntley, D. R.; Overbury, S. H.; Zehner, D. M.; Budai, J. D.; Brower, W. E.

    1986-11-01

    Recent studies of catalysis by amorphous metals have prompted an interest in their surface properties. We have utilized Auger electron spectroscopy, X-ray photoelectron spectroscopy and low energy alkali ion scattering to study the surface composition, electronic properties and topography of amorphous and crystallized Fe 80B 20 ribbons. The majorresults are that the surface stoichiometry is approximately that of the bulk, unaltered by segregation. Bulk crystallization results in the diffusion of impurities to the surface, but does not change the Fe/B ratio. A small shift in the B1s core level binding energy was observed on crystalline, annealed surfaces relative to amorphous or sputtered surfaces, but no shifts were observed in the iron core level energies. A weak feature due to the B2p levels was observed in the valence band spectra from sputtered surfaces. The surfaces exhibit atomic scale roughness which is not altered by bulk crystallization. Finally, there were no observable differences in the structure, composition or electronic properties between the two sides of the ribbons.

  15. Smectic liquid crystals in anisotropic colloidal silica gels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Dennis [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Borthwick, Matthew A [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Leheny, Robert L [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2004-05-19

    We report x-ray scattering studies of the smectic liquid crystal octylcyano-biphenol (8CB) confined by strained colloidal silica gels. The gels, comprised of aerosil particles, possess an anisotropic structure that stabilizes long-range nematic order in the liquid crystal while introducing random field effects that disrupt the smectic transition. The short-range smectic correlations that form within this environment are inconsistent with the presence of a topologically ordered state predicted for 3D random field XY systems and are quantitatively like the correlations of smectics confined by isotropic gels. Detailed analysis reveals that the quenched disorder suppresses the anisotropic scaling of the smectic correlation lengths observed in the pure liquid crystal. These results and additional measurements of the smectic-A to smectic-C transition in 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8barS5) indicate that the observed smectic behaviour is dictated by random fields coupling directly to the smectic order while fields coupling to the nematic director play a subordinate role.

  16. Molecular Complex of Lumiflavin and 2-Aminobenzoic Acid : Crystal Structure, Crystal Spectra, and Solution Properties

    OpenAIRE

    Shieh, Huey-Sheng; Ghisla, Sandro; Hanson, Louise Karle; Ludwig, Martha L.; Nordman, Christer E.

    1981-01-01

    The molecular complex lumiflavin-2-aminobenzoic acid monohydrate (C13H12N402●C7H7N02●H2O)crystallizes from aqueous solution as red triclinic prisms. The space group is P1 with cell dimensions a = 9.660 A, b = 14.866 Å, c = 7.045 Å, α = 95.44°, β = 95.86°, and γ = 105.66°. The crystal structure was solved by direct methods and refined by block-diagonal least-squares procedures to an R value of 0.050 on the basis of 1338 observed reflections. The structure is composed of stacks of alternating l...

  17. Electrically Rotatable Polarizer Using One-Dimensional Photonic Crystal with a Nematic Liquid Crystal Defect Layer

    Directory of Open Access Journals (Sweden)

    Ryotaro Ozaki

    2015-09-01

    Full Text Available Polarization characteristics of defect mode peaks in a one-dimensional (1D photonic crystal (PC with a nematic liquid crystal (NLC defect layer have been investigated. Two different polarized defect modes are observed in a stop band. One group of defect modes is polarized along the long molecular axis of the NLC, whereas another group is polarized along its short axis. Polarizations of the defect modes can be tuned by field-induced in-plane reorientation of the NLC in the defect layer. The polarization properties of the 1D PC with the NLC defect layer is also investigated by the finite difference time domain (FDTD simulation.

  18. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  19. L-tyrosine hydrochloride crystals under high pressures via Raman Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Santos, A.O. dos; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Amino acid single crystals have been attracted researchers in recent years due to their potential applications as second harmonic generator. The goal of this work is to produce semi organic single crystals of L-tyrosine hydrochloride (LTHCl) and verify the behavior of their vibrational normal modes under high pressures and the stability of material in these conditions extremes. The LTHCl single crystals were produced for solubilization of amino acid L-tyrosine in hydrochloric acid by slow evaporation technique of the solvent in room temperature. The technique of X-ray diffraction (XRD) and the refinement of structure by the Rietveld method were used to confirm the crystal structure. The LTHCl crystal belongs to the monoclinic crystal system having two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp = 8.49% and Rp = 6.29% with S = 1.13. Raman scattering measurements as a function of pressure was performed in a piece of crystal from the ambient pressure to 7.2 GPa and Nujol was used as pressure medium. It was observed the appearance of a weak band around 163 cm-1 between pressures of 0.5 and 1.0 GPa, which characterize an phase transition undergone by the crystal. Moreover, this band gains intensity as pressure increases while gradual decreasing relative intensity of the very strong band at 123 cm-1 for all range of pressure also was observed. In fact, almost all bands of the spectra have undergone strong decreasing up to 7.2 GPa. However, on release of pressure the crystal has reached the original phase again. Therefore, the results showed this material cannot be suitable for the application (NLO) in this range of pressure. (author)

  20. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  1. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  2. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    The organization of atoms and molecules into crystalline forms is ubiquitous in nature and has been critical to the development of many technologies on which modern society relies. Classical crystal growth theory can describe atomic crystal growth, however, a description of molecular crystal growth is lacking. Molecular crystals are often characterized by anisotropic intermolecular interactions and dissymmetric crystal surfaces with anisotropic growth rates along different crystallographic directions. This thesis describes combination of experimental and computational techniques to relate crystal structure to surface structure and observed growth rates. Molecular imposters, also known as tailor-made impurities, can be used to control crystal growth for practical applications such as inhibition of pathological crystals, but can also be used to understand site specificity at crystal growth surfaces. The first part of this thesis builds on previous real-time in situ atomic force microscopy (AFM) observations of dislocation-actuated growth on the morphologically significant face of hexagonal L-cystine crystals, which aggregate in vivo to form kidney stones in patients suffering from cystinuria. The inhibitory effect of various L-cystine structural mimics (a.k.a. molecular imposters) was investigated through experimental and computational methods to identify the key structural factors responsible for molecular recognition between molecular imposters and L-cystine crystal surface sites. The investigation of L-cystine crystal growth in the presence of molecular imposters through a combination of kinetic analysis using in situ AFM, morphology analysis and birefringence measurements of bulk crystals, and molecular modeling of imposter binding to energetically inequivalent surface sites revealed that different molecular imposters inhibited crystal growth by a Cabrera-Vermilyea pinning mechanism and that imposters bind to a single binding site on the dissymmetric {1000} L

  3. Effect of additionally introduced Zn and Eu dopants on the photoluminescence spectra of Er-Doped GaN crystals

    International Nuclear Information System (INIS)

    Mezdrogina, M. M.; Krivolapchuk, V. V.; Petrov, V. N.; Rodin, S. N.; Cherenkov, A. V.

    2006-01-01

    It is shown that the effect of dopants on the photoluminescence spectrum depends on the conductivity type of the initial GaN crystals. Sensitization of emission is observed in wurtzite p-GaN crystals doped with Er. The same effect was previously observed in such crystals doped with Eu and Zn. In n-type GaN crystals sequentially doped with Eu, Zn, and Er, emission is observed in the visible (λ = 360-440 and 530-560 nm) and IR (λ = 1.54 μm) spectral regions

  4. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  5. Biodegradation of Crystal Violet by Agrobacterium radiobacter

    DEFF Research Database (Denmark)

    Parshetti, G.K.; Parshetti, S.G.; Telke, A.A.

    2011-01-01

    Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine Af-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process...... and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil...

  6. Photographic appraisal of crystal lattice growth technique

    Directory of Open Access Journals (Sweden)

    Kapoor D

    2005-01-01

    Full Text Available Concept of creating mechanical retention for bonding through crystal growth has been successfully achieved in the present study. By using polyacrylic acid, sulphated with sulphuric acid as etchant, abundant crystal growth was demonstrated. Keeping in view the obvious benefits of crystal growth technique, the present SEM study was aimed to observe and compare the changes brought about by different etching agents (phosphoric acid, polyacrylic acid and polyacrylic acid sulphated and to evaluate their advantages and disadvantages in an attempt to reduce iatrogenic trauma caused due to surface enamel alteration. Control and experimental groups were made of 24 and 30 premolars, respectively, for scanning electron microscopic appraisal of normal unetched and etched enamel surface and fracture site and finished surface evaluation. When compared with conventional phosphoric acid and weaker polyacrylic acid, investigations indicated that crystal growth treatment on enamel surface caused minimal iatrogenic trauma and surface alteration were restored to the original untreated condition to a large extent.

  7. Twinning of Polymer Crystals Suppressed by Entropy

    Directory of Open Access Journals (Sweden)

    Nikos Ch. Karayiannis

    2014-09-01

    Full Text Available We propose an entropic argument as partial explanation of the observed scarcity of twinned structures in crystalline samples of synthetic organic polymeric materials. Polymeric molecules possess a much larger number of conformational degrees of freedom than low molecular weight substances. The preferred conformations of polymer chains in the bulk of a single crystal are often incompatible with the conformations imposed by the symmetry of a growth twin, both at the composition surfaces and in the twin axis. We calculate the differences in conformational entropy between chains in single crystals and chains in twinned crystals, and find that the reduction in chain conformational entropy in the twin is sufficient to make the single crystal the stable thermodynamic phase. The formation of cyclic twins in molecular dynamics simulations of chains of hard spheres must thus be attributed to kinetic factors. In more realistic polymers this entropic contribution to the free energy can be canceled or dominated by nonbonded and torsional energetics.

  8. Many-body formation and dissociation of a dipolar chain crystal

    International Nuclear Information System (INIS)

    You, Jhih-Shih; Wang, Daw-Wei

    2014-01-01

    We propose an experimental scheme to effectively assemble chains of dipolar gases with a uniform length in a multi-layer system. The obtained dipolar chains can form a chain crystal with the system temperature easily controlled by the initial lattice potential and the external field strength during processing. When the density of chains increases, we further observe a second order quantum phase transition for the chain crystal to be dissociated toward layers of 2D crystal, where the quantum fluctuation dominates the classical energy and the compressibility diverges at the phase boundary. The experimental implication of such a dipolar chain crystal and its quantum phase transition is also discussed. (paper)

  9. Measurement of the velocity of sound in crystals by pulsed neutron diffraction

    International Nuclear Information System (INIS)

    Willis, B.T.M.; Carlile, C.J.; Ward, R.C.; David, W.I.F.; Johnson, M.W.

    1986-03-01

    The diffraction method of observing elementary excitations in crystals has been applied to the study of one-phonon thermal diffuse scattering from pyrolytic graphite on a high resolution pulsed neutron diffractometer. The variation of the phase velocity of sound as a function of direction in the crystal and efficient method of determining sound velocities in crystals under extreme conditions. (author)

  10. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    International Nuclear Information System (INIS)

    Rathika, A.; Prasad, L. Guru; Raman, R. Ganapathi

    2016-01-01

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  11. Physicochemical properties of dimethylammonium p-nitrophenolate– p-nitrophenol: A nonlinear optical crystal

    Energy Technology Data Exchange (ETDEWEB)

    Rathika, A. [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India); Prasad, L. Guru [Departemnt of Science & Humanities, M. Kumarasamy College of Engineering, Karur (India); Raman, R. Ganapathi, E-mail: ganapathiraman83@gmail.com [Department of Physics, Noorul Islam Centre for Higher Education, Noorul Islam University, Kumaracoil 629 180 (India)

    2016-03-15

    Single crystals of Dimethylammonium p-nitrophenolate–p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  12. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  13. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  14. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Crystal Collimation with Lead Ion Beams at Injection Energy in the LHC

    CERN Document Server

    Rossi, Roberto; Andreassen, Arvid; Butcher, Mark; Dionisio Barreto, Cristovao Andre; Masi, Alessandro; Mirarchi, Daniele; Montesano, Simone; Lamas Garcia, Inigo; Redaelli, Stefano; Scandale, Walter; Serrano Galvez, Pablo; Rijllart, Adriaan; Valentino, Gianluca; Galluccio, Francesca; CERN. Geneva. ATS Department

    2015-01-01

    During this MD, performed on December 2nd 2015, bent silicon crystals were tested with ion beams for a possible usage of crystal-assisted collimation. Tests were performed at injection energy, using both horizontal and vertical crystals. Ion channeling was observed for the first time with LHC beams at the record energy of 450 GeV and the channeled beams were probed with scans performed with secondary collimators. Measurements of cleaning efficiency of a crystal-based collimation system were also performed.

  16. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  17. On dewetting of thin films due to crystallization (crystallization dewetting).

    Science.gov (United States)

    Habibi, Mehran; Rahimzadeh, Amin; Eslamian, Morteza

    2016-03-01

    Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed "crystallization dewetting", using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

  18. Vitrification and Crystallization of Phase-Separated Metallic Liquid

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-02-01

    Full Text Available The liquid–liquid phase separation (LLPS behavior of Fe50Cu50 melt from 3500 K to 300 K with different rapid quenching is investigated by molecular dynamics (MD simulation based on the embedded atom method (EAM. The liquid undergoes metastable phase separation by spinodal decomposition in the undercooled regime and subsequently solidifies into three different Fe-rich microstructures: the interconnected-type structure is kept in the glass and crystal at a higher cooling rate, while the Fe-rich droplets are found to crystalize at a lower cooling rate. During the crystallization process, only Fe-rich clusters can act as the solid nuclei. The twinning planes can be observed in the crystal and only the homogeneous atomic stacking shows mirror symmetry along the twinning boundary. Our present work provides atomic-scale understanding of LLPS melt during the cooling process.

  19. Synthesis and magnetic properties of SmOOH crystals

    Energy Technology Data Exchange (ETDEWEB)

    Samata, Hiroaki, E-mail: samata@maritime.kobe-u.ac.jp [Graduate School of Maritime Sciences, Kobe University, Fukaeminami, Higashinada, Kobe, Hyogo 658-0022 (Japan); Hanioka, Masashi [Graduate School of Maritime Sciences, Kobe University, Fukaeminami, Higashinada, Kobe, Hyogo 658-0022 (Japan); Ozawa, Tadashi C. [Materials Development Group, Superconducting Properties Unit, National Institute for Materials Science, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2016-01-15

    Samarium oxyhydroxide (SmOOH) crystals were synthesized using a flux method. The as-grown crystals were yellowish, transparent, and elongated with a maximum length of approximately 1.0 mm. SmOOH adopts a monoclinic structure in the space group P2{sub 1}/m with a=0.4356 nm, b=0.3766 nm, c=0.6139 nm, and β=108.464°. The magnetic susceptibility of the SmOOH crystals exhibited typical Van Vleck paramagnetism, and the experimental data at temperatures above 200 K were in close agreement with the calculated results using a spin-orbit coupling constant λ=443 K (308 cm{sup −1}). - Highlights: • SmOOH crystals were synthesized via flux method and characterized. • Magnetic susceptibilities above 200 K agreed with theoretical Van Vleck values. • Discrepancies were observed at lower temperatures based on the crystalline field.

  20. Alignment technology and applications of liquid crystal devices

    CERN Document Server

    Takatoh, Kohki; Hasegawa, Ray; Koden, Mitsushiro; Itoh, Nobuyuki; Hasegawa, Masaki

    2005-01-01

    Alignment phenomena are characteristic of liquid crystalline materials, and understanding them is critically important in understanding the essential features and behavior of liquid crystals and the performance of Liquid Crystal Devices (LCDs). Furthermore, in LCD production lines, the alignment process is of practical importance. Alignment Technologies and Applications of Liquid Crystal Devices demonstrates both the fundamental and practical aspects of alignment phenomena in liquid crystals. The physical basis of alignment phenomena is first introduced in order to aid the understanding of the various physical phenomena observed in the interface between liquid crystalline materials and alignment layer surfaces. Methods for the characterization of surfaces, which induce the alignment phenomena, and of the alignment layer itself are introduced. These methods are useful for the research of liquid crystalline materials and devices in academic research as well as in industry. In the practical sections, the alignme...

  1. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  2. Pneumomediastinum following Crystal Use: A Report of Two Cases

    Directory of Open Access Journals (Sweden)

    Samiramis Pourmotabed

    2016-01-01

    Full Text Available Crystal is a synthetic substance with an increasing rate of abuse. It may cause patients to present to the emergency department because of its acute complications. We depict two cases of pneumomediastinum following inhalation of crystal. Both cases had used crystal for recreational purposes. In one case, a young man presenting to the ED with the retrosternal chest pain and neck pain was diagnosed to have pneumomediastinum and pneumopericardium. The other patient presenting with dyspnea and chest pain was shown to have collection of air within mediastinum. Both patients underwent a series of diagnostic evaluations and, after a course of observation, were discharged without a surgical intervention. Patients with chest pain following inhalation of crystal may suffer from this complication.

  3. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    International Nuclear Information System (INIS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S.M.

    2009-01-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T c =51 deg. C (for pure TGS, T c =48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  4. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  5. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  6. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  7. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  8. Partial rotational lattice order–disorder in stefin B crystals

    International Nuclear Information System (INIS)

    Renko, Miha; Taler-Verčič, Ajda; Mihelič, Marko; Žerovnik, Eva; Turk, Dušan

    2014-01-01

    Crystal lattice disorders are a phenomenon which may hamper the determination of macromolecular crystal structures. Using the case of the crystal structure of stefin B, identification of rotational order–disorder and structure determination are described. At present, the determination of crystal structures from data that have been acquired from twinned crystals is routine; however, with the increasing number of crystal structures additional crystal lattice disorders are being discovered. Here, a previously undescribed partial rotational order–disorder that has been observed in crystals of stefin B is described. The diffraction images revealed normal diffraction patterns that result from a regular crystal lattice. The data could be processed in space groups I4 and I422, yet one crystal exhibited a notable rejection rate in the higher symmetry space group. An explanation for this behaviour was found once the crystal structures had been solved and refined and the electron-density maps had been inspected. The lattice of stefin B crystals is composed of five tetramer layers: four well ordered layers which are followed by an additional layer of alternatively placed tetramers. The presence of alternative positions was revealed by the inspection of electron-density score maps. The well ordered layers correspond to the crystal symmetry of space group I422. In addition, the positions of the molecules in the additional layer are related by twofold rotational axes which correspond to space group I422; however, these molecules lie on the twofold axis and can only be related in a statistical manner. When the occupancies of alternate positions and overlapping are equal, the crystal lattice indeed fulfills the criteria of space group I422; when these occupancies are not equal, the lattice only fulfills the criteria of space group I4

  9. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Berrier, A.; Mulot, M.; Swillo, M.; Qiu, M.; Thylen, L.; Anand, S.; Talneau, A.

    2004-01-01

    We report on the first experimental evidence of negative refraction at telecommunication wavelengths by a two-dimensional photonic crystal field. Samples were fabricated by chemically assisted ion beam etching in the InP-based low-index constrast system. Experiments of beam imaging and light collection show light focusing by the photonic crystal field. Finite-difference time-domain simulations confirm that the observed focusing is due to negative refraction in the photonic crystal area

  10. Graded photonic crystals by optical interference holography

    International Nuclear Information System (INIS)

    Han, Chunrui; Tam, Wing Yim

    2012-01-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques. (paper)

  11. Observation of Algebraic Decay of Positional Order in a Smectic Liquid Crystal

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Litster, J. D.; Birgeneau, R. J.

    1980-01-01

    A smectic-A liquid crystal in three dimensions has been predicted to exhibit algebraic decay of the layer correlations rather than true long-range order. As a consequence, the smectic Bragg peaks are expected to be power-law singularities of the form q∥-2+η and q⊥-4+2η, where ∥(⊥) is along (perpe......, the explicit values of η required to describe the measured profiles are in accordance with calculations of η using the harmonic approximation with empirically determined splay and layer compressibility elastic constants. ©1980 The American Physical Society...

  12. Rapid Crystallization of the Bishop Magma

    Science.gov (United States)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  13. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  14. Adsorption of CO on, and S poisoning of, a perfect Ni(111) single crystal and a Ni(111) crystal with small angle boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, G A; Freeman, G B; Chao, J L.R.

    1980-01-01

    A Ni(111) crystal with small angle boundaries was used to examine the adsorption of CO. The adsorption of CO on a perfect Ni(111) single crystal was used for reference. Auger spectra show that the boundary lines on the sample surface provide favorable sites for the adsorbed CO to dissociate at temperatures as low as 25/sup 0/C. The post-dissociation carbon appears mostly in the form of a nickel carbide on the surface. After heating the crystal to 850/sup 0/C, sulfur diffused to the surface and blocked the surface adsorption sites uniformly. The boundary-enhanced dissociation of absorbed CO is no longer observed after the diffusion of sulfur to the crystal surface. AES depth profiling of sulfur concentration at different positions on the crystal with respect to the boundary lines show no evidence that the boundary lines provide an enhanced path for sulfur diffusion. 7 figures.

  15. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France); Boublik, Yvan [CNRS, UMR5237, Centre de Recherche de Biochimie Macromoléculaire (CRBM), 34293 Montpellier (France); Pérez, Efrèn [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Germain, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), BP 10142, 67404 Illkirch CEDEX (France); Lera, Angel R. de [Universidade de Vigo, Departamento de Quimica Organica, Facultad de Química, 36310 Vigo (Spain); Bourguet, William, E-mail: bourguet@cbs.cnrs.fr [INSERM, U554, 34090 Montpellier (France); Université de Montpellier, CNRS, UMR5048, Centre de Biochimie Structurale (CBS), 34090 Montpellier (France)

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  16. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  17. ZnO crystal growth on microelectrode by electrochemical deposition method

    International Nuclear Information System (INIS)

    Kondo, Y; Ashida, A; Nouzu, N; Fujimura, N

    2011-01-01

    Zinc Oxide crystals were grown by constant potential electrochemical deposition method on the substrate with the Pt working electrode which consists of Pt film with large area and μm-sized line and space structured area. In case of depositions with cathodic potential of -0.3V, ZnO crystal is not observed on the micro electrode, but observed on the electrode with large area (0.2 cm 2 ). By using electrolyte with higher pH, ZnO crystal grows on both areas. In case of lower pH, ZnO crystal does not grow on either. From these results, the pH range for growth of ZnO on the microelectrode seems to be higher than that on the electrode with large area. And, it is expected that the pH just on the surface of μm-sized electrode is lower than that in the bulk of electrolyte. Based on these results, it can be concluded that control of the pH in vicinity of the surface is very important to ECD method for micro- and nano-scaled devices.

  18. Synchrotron white beam topography studies of SrLaGaO4 crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.; Lefeld-Sosnowska, M.; Pajaczkowska, A.; Wierzbicka, E.; Malinowska, A.

    2005-01-01

    Strontium lantanum gallate SrLaGaO 4 tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region

  19. A comparison of leaf crystal macropatterns in the two sister genera Piper and Peperomia (Piperaceae).

    Science.gov (United States)

    Horner, Harry T; Wanke, Stefan; Samain, Marie-Stéphanie

    2012-06-01

    This is the first large-scale study comparing leaf crystal macropatterns of the species-rich sister genera Piper and Peperomia. It focuses on identifying types of calcium oxalate crystals and their macropatterns in leaves of both genera. The Piper results are placed in a phylogenetic context to show evolutionary patterns. This information will expand knowledge about crystals and provide specific examples to help study their form and function. One example is the first-time observation of Piper crystal sand tumbling in chlorenchyma vacuoles. Herbarium and fresh leaves were cleared of cytoplasmic content and examined with polarizing microscopy to identify types of crystals and their macropatterns. Selected hydrated herbarium and fresh leaf punches were processed for scanning electron microscopy and x-ray elemental analysis. Vibratome sections of living Piper and Peperomia leaves were observed for anatomical features and crystal movement. Both genera have different leaf anatomies. Piper displays four crystal types in chlorenchyma-crystal sand, raphides, styloids, and druses, whereas Peperomia displays three types-druses, raphides, and prisms. Because of different leaf anatomies and crystal types between the genera, macropatterns are completely different. Crystal macropattern evolution in both is characterized by increasing complexity, and both may use their crystals for light gathering and reflection for efficient photosynthesis under low-intensity light environments. Both genera have different leaf anatomies, types of crystals and crystal macropatterns. Based on Piper crystals associated with photosynthetic tissues and low-intensity light, further study of their function and association with surrounding chloroplasts is warranted, especially active crystal movement.

  20. Crystal growth and characterization of calcium metaborate scintillators

    Science.gov (United States)

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, M.; Yoshikawa, A.

    2013-03-01

    Calcium metaborate CaB2O4 single crystals were grown by the Czochralski (CZ) method with the radio-frequency (RF) heating system. In these crystals, a plane cleavage was observed along the growth direction. The crystals had an 80% transparency, and no absorption bands were detected in the 190-900 nm wavelength range. The 241Am 5.5 MeV α-ray-excited radioluminescence spectrum of CaB2O4 demonstrated a broad intrinsic luminescence peak at 300-400 nm, which originated from the lattice defects or an exciton-based emission. According to the pulse height spectrum, when irradiated by neutrons from a 252Cf source, the scintillation light yielded approximately 3200 photons per neutron (ph/n).

  1. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  2. The bent crystal diffraction spectrometer at the BR2 reactor in Mol

    Science.gov (United States)

    Kaerts, E.; Jacobs, L.; Vandenput, G.; Van Assche, P. H. M.

    1988-05-01

    The DuMond-type bent crystal diffraction spectrometer installed at the BR2 reactor in Mol is presented. The spectrometer is mainly designed to study nuclear γ-transitions following thermal neutron capture. It covers the energy interval 25 ≦ Eγ ≦ 1500 keV. Instead of the traditionally used quartz crystals, a highly perfect silicium crystal is chosen as analysing crystal. Diffraction occurs from the (220) plane. The "quasi-mosaic" width, introduced by bending the crystal, is as small as 0.2″. The integrated reflecting power R of the bent crystal stays constant up to 1.5 MeV in first, 680 keV in second and 300 keV in third diffraction order. For higher photon energies, only an E-1 energy dependence is observed in second and third diffraction order. Consequently, besides improving the energy resolution, the use of these silicium crystals substantially increases the spectrometer efficiency and extends the high energy limit of bent crystal diffraction spectrometers. The diffraction angles are measured with a symmetrical interferometer system which covers an angular range of -6° to +6° with a precision of about 0.01″. Minimum diffraction line widths of 0.9″ have been measured, corresponding to an energy resolution ΔE = 1.35 × 10 -6E2n-1 keV -1. The dominant contribution to the observed line widths arises from the finite extent of the source.

  3. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  4. PAK4 crystal structures suggest unusual kinase conformational movements.

    Science.gov (United States)

    Zhang, Eric Y; Ha, Byung Hak; Boggon, Titus J

    2018-02-01

    In order for protein kinases to exchange nucleotide they must open and close their catalytic cleft. These motions are associated with rotations of the N-lobe, predominantly around the 'hinge region'. We conducted an analysis of 28 crystal structures of the serine-threonine kinase, p21-activated kinase 4 (PAK4), including three newly determined structures in complex with staurosporine, FRAX486, and fasudil (HA-1077). We find an unusual motion between the N-lobe and C-lobe of PAK4 that manifests as a partial unwinding of helix αC. Principal component analysis of the crystal structures rationalizes these movements into three major states, and analysis of the kinase hydrophobic spines indicates concerted movements that create an accessible back pocket cavity. The conformational changes that we observe for PAK4 differ from previous descriptions of kinase motions, and although we observe these differences in crystal structures there is the possibility that the movements observed may suggest a diversity of kinase conformational changes associated with regulation. Protein kinases are key signaling proteins, and are important drug targets, therefore understanding their regulation is important for both basic research and clinical points of view. In this study, we observe unusual conformational 'hinging' for protein kinases. Hinging, the opening and closing of the kinase sub-domains to allow nucleotide binding and release, is critical for proper kinase regulation and for targeted drug discovery. We determine new crystal structures of PAK4, an important Rho-effector kinase, and conduct analyses of these and previously determined structures. We find that PAK4 crystal structures can be classified into specific conformational groups, and that these groups are associated with previously unobserved hinging motions and an unusual conformation for the kinase hydrophobic core. Our findings therefore indicate that there may be a diversity of kinase hinging motions, and that these may

  5. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    Science.gov (United States)

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  6. Effects of humidity and surfaces on the melt crystallization of ibuprofen.

    Science.gov (United States)

    Lee, Dong-Joo; Lee, Suyang; Kim, Il Won

    2012-01-01

    Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with -CH(3), -OH, and -COOH functional groups. Effects of the humidity were studied at room temperature (18-20 °C) with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at -20 °C (relative humidity 36%) to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  7. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C 3 to C 8 ), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10 -4 A sec cm -2 at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references

  8. Effects of impurities on crystal growth in fructose crystallization

    Science.gov (United States)

    Chu, Y. D.; Shiau, L. D.; Berglund, K. A.

    1989-10-01

    The influence of impurities on the crystallization of anhydrous fructose from aqueous solution was studied. The growth kinetics of fructose crystals in the fructose-water-glucose and fructose-water-difructose dianhydrides systems were investigated using photomicroscopic contact nucleation techniques. Glucose is the major impurity likely to be present in fructose syrup formed during corn wet milling, while several difructose dianhydrides are formed in situ under crystallization conditions and have been proposed as a cause in the decrease of overall yields. Both sets of impurities were found to cause inhibition of crystal growth, but the mechanisms responsible in each case are different. It was found that the presence of glucose increases the solubility of fructose in water and thus lowers the supersaturation of the solution. This is probably the main effect responsible for the decrease of crystal growth. Since the molecular structures of difructose dianhydrides are similar to that of fructose, they are probably "tailor-made" impurities. The decrease of crystal growth is probably caused by the incorporation of these impurities into or adsorption to the crystal surface which would accept fructose molecules in the orientation that existed in the difructose dianhydride.

  9. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.

    Science.gov (United States)

    Gulam Razul, M S; Hendry, J G; Kusalik, P G

    2005-11-22

    In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.

  10. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  11. Meniscus Imaging for Crystal-Growth Control

    Science.gov (United States)

    Sachs, E. M.

    1983-01-01

    Silicon crystal growth monitored by new video system reduces operator stress and improves conditions for observation and control of growing process. System optics produce greater magnification vertically than horizontally, so entire meniscus and melt is viewed with high resolution in both width and height dimensions.

  12. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  13. Defect studies of ZnO single crystals electrochemically doped with hydrogen

    Science.gov (United States)

    Čížek, J.; Žaludová, N.; Vlach, M.; Daniš, S.; Kuriplach, J.; Procházka, I.; Brauer, G.; Anwand, W.; Grambole, D.; Skorupa, W.; Gemma, R.; Kirchheim, R.; Pundt, A.

    2008-03-01

    Various defect studies of hydrothermally grown (0001) oriented ZnO crystals electrochemically doped with hydrogen are presented. The hydrogen content in the crystals is determined by nuclear reaction analysis and it is found that already 0.3at.% H exists in chemically bound form in the virgin ZnO crystals. A single positron lifetime of 182ps is detected in the virgin crystals and attributed to saturated positron trapping at Zn vacancies surrounded by hydrogen atoms. It is demonstrated that a very high amount of hydrogen (up to ˜30at.%) can be introduced into the crystals by electrochemical doping. More than half of this amount is chemically bound, i.e., incorporated into the ZnO crystal lattice. This drastic increase of the hydrogen concentration is of marginal impact on the measured positron lifetime, whereas a contribution of positrons annihilated by electrons belonging to O-H bonds formed in the hydrogen doped crystal is found in coincidence Doppler broadening spectra. The formation of hexagonal shape pyramids on the surface of the hydrogen doped crystals by optical microscopy is observed and discussed.

  14. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    International Nuclear Information System (INIS)

    Hu, X.; Lu, Q.; Kaplan, D.; Cebe, P.

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  15. Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides

    DEFF Research Database (Denmark)

    Javadi, Alisa; Garcia-Fernandez, Pedro David; Sapienza, Luca

    2014-01-01

    We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24.......We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24....

  16. Morphology and parameters of crystallization the blend PE/Epoxy/PE-co-PEG

    International Nuclear Information System (INIS)

    Becker, Daniela; Coelho, Luiz Antonio Ferreira; Nack, Fernanda; Silva, Bruna Louise

    2014-01-01

    This study aims to evaluate the morphology and crystallization parameters of high density polyethylene (HDPE) with different concentrations of epoxy (DGEBA / OTBG), and the compatibility of this system was used and the copolymer polyethylene-block-poly (ethylene glycol) (PEG-co-PE). The blends were obtained by mechanical mixing on a torque rheometer (Haake). Determined the crystallization parameters of the test matrix differential scanning calorimetry (DSC) and by X-ray diffraction (XRD). The morphology of the system was analyzed by transmission electron microscopy (TEM). It was observed by XRD analysis that the addition of compatibilizer and epoxy resins do not interfere with the crystal structure of HDPE, indicating that the increase in crystallinity associated with the crystallization kinetics. It was observed that the compatibilizing helped the adhesion, reducing the size of the dispersed phase becomes a more stable morphology and obtaining a distribution of the dispersed epoxy phase. (author)

  17. Crystal structure of tris(hydroxylammonium orthophosphate

    Directory of Open Access Journals (Sweden)

    Malte Leinemann

    2015-11-01

    Full Text Available The crystal structure of the title salt, ([H3NOH]+3·[PO4]3−, consists of discrete hydroxylammonium cations and orthophosphate anions. The atoms of the cation occupy general positions, whereas the anion is located on a threefold rotation axis that runs through the phosphorus atom and one of the phosphate O atoms. In the crystal structure, cations and anions are linked by intermolecular O—H...O and N—H...O hydrogen bonds into a three-dimensional network. Altogether, one very strong O—H...O, two N—H...O hydrogen bonds of medium strength and two weaker bifurcated N—H...O interactions are observed.

  18. MyCrystals - a simple visual data management program for laboratory-scale crystallization experiments

    DEFF Research Database (Denmark)

    Løvgreen, Monika Nøhr; Løvgreen, Mikkel; Christensen, Hans Erik Mølager

    2009-01-01

    MyCrystals is designed as a user-friendly program to display crystal images and list crystallization conditions. The crystallization conditions entry fields can be customized to suit the experiments. MyCrystals is also able to sort the images by the entered crystallization conditions, which...

  19. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  20. Peristence of triamcinolone crystals after intra-vitreal injection: Benign crystalline hyaloidopathy

    Directory of Open Access Journals (Sweden)

    Rafik Zarifa

    2013-01-01

    Full Text Available We report a case of unusually long persistence of triamcinolone crystals after intra-vitreal injection. Crystals were noted on fundus examination predominantly confined to the posterior pole. Optical coherence tomography localized the crystals to the posterior hyaloidal surface. Over 6 years of follow-up the patient has retained good visual acuity and no observable changes in the retina. As the condition clinically resembles both crystalline maculopathy and asteroid hyalosis, we suggest the term ′drug-induced benign crystalline hyaloidopathy′.

  1. Improved ferroelectric and pyroelectric parameters in iminodiacetic acid doped TGS crystal

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2010-01-01

    Single crystals of Iminodiacetic acid (HN(CH 2COOH) 2) doped Triglycine sulphate (IDATGS) has been grown from aqueous solution at constant temperature by slow evaporation technique. The concentration of the dopant in the TGS solution was 2 mol%. The X-ray diffraction analysis indicates that there is significant change in the lattice parameters compared to pure TGS crystal. The IDATGS crystal has larger transition temperature and observed higher and uniform figure of merit over most part of the ferroelectric phase. These crystals also exhibit higher internal bias field and micro-hardness number compared to pure TGS. Therefore IDATGS may be a potential material for IR detectors.

  2. Ice crystal growth under the presence of krypton and methane at low temperature

    Science.gov (United States)

    Kawauchi, Taizo; Yoda, Yoshitaka; Fukutani, Katsuyuki

    2018-02-01

    To investigate the influence of foreign gas inclusion on the crystallization of ice, we studied the low-temperature (74 0.2) of Kr and CH4 enhance the formation of ice Ih and increase the crystal size, while at high foreign gas contents (R ⩽ 0.2) that may develop Kr or CH4 crystals below 92 K, the crystal size and relative amount of ice decrease strongly. The maximum ice Ih crystal size in the order of 200 nm was observed with either Kr or CH4 at 92 K for R = 0.2. We propose that Kr and CH4 induce the crystallization of ice by acting as a surfactant.

  3. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  4. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na3Bi

    Directory of Open Access Journals (Sweden)

    Satya K. Kushwaha

    2015-04-01

    Full Text Available High quality hexagon plate-like Na3Bi crystals with large (001 plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D Dirac semimetal (TDS behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na3Bi. In transport measurements on Na3Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  5. Crystal structure and magnetic susceptibility of UOSe single crystals

    International Nuclear Information System (INIS)

    Kaczorowski, D.; Muenster Univ.; Poettgen, R.; Jeitschko, W.; Gajek, Z.; Zygmunt, A.

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T N =100±2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author)

  6. Crystal structure and magnetic susceptibility of UOSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczorowski, D. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Poettgen, R.; Jeitschko, W. (Muenster Univ. (Germany). Anorganisch-Chemisches Inst.); Gajek, Z.; Zygmunt, A. (Polish Academy of Sciences, Wroclaw (Poland). Inst. for Low Temperature and Structure Research)

    1993-01-01

    The crystal structure and magnetic susceptibility behaviour of UOSe single crystals have been studied. UOSe crystalizes in the tetragonal PbFC1-type structure (space group P4/nmm) with the lattice parameters: a = 390.38(5) pm and c = 698.05(9) pm. It orders antiferromagnetically at T[sub N]=100[+-]2 K and exhibits a very strong anisotropy in the susceptibility vs temperature variation. The magnetic and thermodynamic properties of UOSe are successfully interpreted in the framework of a perturbative ab initio crystal field approach. (Author).

  7. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  8. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  9. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    Science.gov (United States)

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  10. Color centers inside crystallic active media

    Science.gov (United States)

    Mierczyk, Zygmunt; Kaczmarek, Slawomir M.; Kopczynski, Krzysztof

    1995-03-01

    This paper presents research results on color centers induced by radiation of a xenon lamp in non doped crystals of yttrium aluminum garnet Y3Al5O12 (YAG), strontium- lanthanum aluminate SrLaAlO4 (SLAO), strontium-lanthanum gallate SrLaGa3O7 (SLGO), and in doped crystals: Nd:YAG, Cr, Tm, Ho:YAG (CTH:YAG), Nd:SLAO and Nd:SLGO. In all these investigated crystals under the influence of intensive exposure by xenon lamp radiation additional bands connected with centers O-2, O2 and centers F came up near the short-wave absorption edge. In the case of doped crystals the observed processes are much more complicated. In crystals CTH:YAG the greatest perturbations in relation to basic state are present at the short-wave absorption edge, as well as on areas of absorption bands of ions Cr+3 and Tm+3 conditioning the sensibilization process of ions Ho+3. These spectral structure disturbances essentially influence the efficiency of this process, as proven during generating investigations. In the case of SrLaGa3O7:Nd+3 under the influence of exposure substantial changes of absorption spectrum occurred on spectral areas 346 divided by 368 nm, 429 divided by 441 nm and 450 divided by 490 nm. Those changes have an irreversible character. They disappear not before the plate is being held at oxidizing atmosphere. Investigations of laser rods Nd:SLGO, CTH:YAG, and Nd:YAG in a free generation demonstrated that the color centers of these crystals are induced by pomp radiation from the spectral area up to 450 nm.

  11. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  12. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  13. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  14. Ionization annealing of semiconductor crystals. Part two: the experiment

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2014-12-01

    Full Text Available There is a conception that irradiation of semiconductor crystals with high energy electrons (300 keV results in a significant and irreversible deterioration of their electrical, optical and structural properties. Semiconductors are typically irradiated by low voltage electron accelerators with a continuous flow, the current density in such accelerators is 10–5—10–6 A/cm2, the energy — 0,3—1 MeV. All changes in the properties after such irradiation are resistant at room temperature, and marked properties recovery to baseline values is observed only after prolonged heating of the crystals to a high temperature. In contrast, the authors in their studies observe an improvement of the structural properties of semiconductor crystals (annealing of defects under irradiation with powerful (high current pulsed electron beams of high energy (E0 = 0,3–1 MeV, t = 0,1—10 ns, Ω = 1—10 Hz, j = 20—300 A/cm2. In their previous paper, the authors presented theoretical basis of this effect. This article describes an experimental study on the influence of high-current pulsed electron beams on the optical homogeneity of semiconductor GaAs and CdS crystals, confirming the theory put forward earlier.

  15. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  16. Dislocation motion in InSb crystals under a magnetic field

    CERN Document Server

    Darinskaya, E V; Erofeeva, S A

    2002-01-01

    Dislocation displacements under the action of a permanent magnetic field without mechanical loading in differently doped InSb crystals are investigated. The dependences of the mean dislocation path length and the relative number of divergence and tightening half-loops on the magnetic induction and preliminary load are obtained. Experiments on n-InSb crystals with Te impurities and on p-InSb crystals with Ge impurities have shown a sensitivity of the magnetoplasticity to the conductivity type and the dopant content. Study of the magnetoplastic effect in the initial deformed InSb crystals shows that internal stresses decrease the lengths of divergence dislocation paths and simultaneously increase the threshold magnetic field above which the magnetoplastic effect exists. Possible reasons for the observed phenomena are discussed.

  17. HISTORICAL MEMOIR: The play of light in crystals

    Science.gov (United States)

    Zakharchenya, Boris Petrovitch

    2008-11-01

    And God said: 'Let there be light', and there was light. Genesis 1 3 When trapped in a crystal, light interacts with electrons, phonons (crystal lattice vibrations) and defects, generating many effects which are important not only for pure physics, by broadening our comprehension of nature, but also for practical applications. These include: photo-galvanic effects; discrete light scattering on lattice vibrations; laser radiation, first observed in ruby crystals; nonlinear effects resulting in generation of harmonics, so that under incidence of an intense coherent light beam onto a crystal it emits (or reflects) light of different wavelengths; transformation of the electron avalanche in semiconductors and semiconductor microstructures into the flow of coherent 'laser' light; and the capability of polarized light to magnetize electrons and nuclei in a crystal. This is far from being a complete list of the remarkable optical effects that scientists have observed and studied in crystals. Countless scientific papers and monographs have been devoted to these investigations, with quite a number of them leading to the award of Nobel Prizes. Here I'm going to speak very briefly, simplifying the problem as best I can, about a remarkable optical phenomenon in crystals: the generation by light of a quasiparticle called an 'exciton'. Why is it a 'quasiparticle', i.e. 'as if' a particle, and not a true particle? Because it exists in a crystal and not in vacuum and moves in a periodically changing field created by the atoms (ions) of the crystal lattice. In this respect, an electron in a crystal is also a quasiparticle. The idea of the exciton dawned upon Yakov Ilyich Frenkel, the well-known physicist of the Physico-Technical Institute (PhysTech), in 1931. Omitting the details that would require knowledge not only of quantum physics, but also of the history of its development, I'll say only that the Frenkel exciton is the excited state of the crystal, which is created, for

  18. Ion irradiation enhanced crystal nucleation in amorphous Si thin films

    International Nuclear Information System (INIS)

    Im, J.S.; Atwater, H.A.

    1990-01-01

    The nucleation kinetics of the amorphous-to-crystal transition of Si films under 1.5 MeV Xe + irradiation have been investigated by means of in situ transmission electron microscopy in the temperature range T=500--580 degree C. After an incubation period during which negligible nucleation occurs, a constant nucleation rate was observed in steady state, suggesting that homogeneous nucleation occurred. Compared to thermal crystallization, a significant enhancement in the nucleation rate during high-energy ion irradiation (five to seven orders of magnitude) was observed with an apparent activation energy of 3.9±0.75 eV

  19. Second crystal cooling on cryogenically cooled undulator and wiggler double crystal monochromators

    International Nuclear Information System (INIS)

    Knapp, G. S.

    1998-01-01

    Simple methods for the cooling of the second crystals of cryogenically cooled undulator and wiggler double crystal monochromators are described. Copper braids between the first and second crystals are used to cool the second crystals of the double crystal monochromators. The method has proved successful for an undulator monochromator and we describe a design for a wiggler monochromator

  20. Realisation of a novel crystal bender for a fast double crystal monochromator

    CERN Document Server

    Zaeper, R; Wollmann, R; Luetzenkirchen-Hecht, D; Frahm, R

    2001-01-01

    A novel crystal bender for an X-ray undulator beamline as part of a fast double crystal monochromator development for full EXAFS energy range was characterized. Rocking curves of the monochromator crystal system were recorded under different heat loads and bending forces of the indirectly cooled first Si(1 1 1) crystal. The monochromator development implements new piezo-driven tilt tables with wide angular range to adjust the crystals' Bragg angles and a high pressure actuated bender mechanism for the first crystal.

  1. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Mohamad, E-mail: rizwan@nucl.kyushu-u.ac.jp; Uozumi, Yusuke; Matsuo, Kazuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov [Joint Institute for Nuclear Research, JINR, Joliot-Curie Str.6, Dubna (Russian Federation)

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  2. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  3. A Test of Macromolecular Crystallization in Microgravity: Large, Well-Ordered Insulin Crystals

    Science.gov (United States)

    Borgstahl, Gloria E. O.; Vahedi-Faridi, Ardeschir; Lovelace, Jeff; Bellamy, Henry D.; Snell, Edward H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Crystals of insulin grown in microgravity on space shuttle mission STS-95 were extremely well-ordered and unusually large (many > 2 mm). The physical characteristics of six microgravity and six earth-grown crystals were examined by X-ray analysis employing superfine f slicing and unfocused synchrotron radiation. This experimental setup allowed hundreds of reflections to be precisely examined for each crystal in a short period of time. The microgravity crystals were on average 34 times larger, had 7 times lower mosaicity, had 54 times higher reflection peak heights and diffracted to significantly higher resolution than their earth grown counterparts. A single mosaic domain model could account for reflections in microgravity crystals whereas reflections from earth crystals required a model with multiple mosaic domains. This statistically significant and unbiased characterization indicates that the microgravity environment was useful for the improvement of crystal growth and resultant diffraction quality in insulin crystals and may be similarly useful for macromolecular crystals in general.

  4. Crystal growth and piezoelectric properties of Ca3Ta(Ga0.9Sc0.1)3Si2O14 bulk single crystal

    Science.gov (United States)

    Igarashi, Yu; Yokota, Yuui; Ohashi, Yuji; Inoue, Kenji; Yamaji, Akihiro; Shoji, Yasuhiro; Kamada, Kei; Kurosawa, Shunsuke; Yoshikawa, Akira

    2018-03-01

    Ca3Ta(Ga0.9Sc0.1)3Si2O14 langasite-type single crystal with a diameter of 1 in. was grown by Czochralski (Cz) method. Obtained crystal had good crystallinity and its lattice constants exceeded those of Ca3TaGa3Si2O14 (CTGS) according to the X-ray analysis. A crack-free specimen cut from the grown crystal was used for the measurements of dielectric constant ε11T/ε0, electromechanical coupling factor k12, and piezoelectric constant d11. The accuracies of these measurements were better than those for the crystal grown by micro-pulling-down (μ-PD) method. Substitution of Ga with Sc resulted modification of these constants in the directions opposite to those observed after partial substitution of Ga (of CTGS) with Al. This suggests that increase of |d14| was most probably associated with enlargement of average size of the Ga sites. The crystal reported here had greater dimensions as compared to analogous crystals grown by the μ-PD method. As a result, accuracy of determination of acoustic constants of this material may be improved.

  5. In-situ observation of domain wall motion in Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dabin; Cai, Changlong [Laboratory of Thin Film Techniques and Optical Test, Xi' an Technological University, Xi' an 710032 (China); Li, Zhenrong, E-mail: zhrli@mail.xjtu.edu.cn; Li, Fei; Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Education Ministry and International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shujun, E-mail: soz1@psu.edu [Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Cheng, Yaojin [Science and Technology on Low-Light-Level Night Vision Laboratory, Xi' an 710065 (China)

    2014-07-21

    Various domain structures, including wave-like domains, mixed needle-like and laminar domains, typical embedded 90° and 180° domains, have been observed in unpoled rhombohedral, monoclinic, and tetragonal Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} (PIN-PMN-PT) crystals by polarizing light microscope; while in poled tetragonal crystals, the parallel 180° domains were reversed and only vertical 90° domain walls were observed. For 0.24PIN-0.42PMN-0.34PT crystals with morphotropic phase boundary composition, the domain wall motion was in-situ observed as a function of applied electric field along crystallographic [100] direction. With increasing the electric field from 0 to 12 kV/cm, the rhombohedral (R) domains were found to change to monoclinic (M) domains and then to tetragonal (T) domains. The electric field-induced phase transition was also confirmed by X-ray diffraction and the temperature-dependent dielectric behavior.

  6. Study of the influence in crystallization period in MCM-22 zeolite synthesis

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Santos, E.R.F.; Rodrigues, M.G.F.

    2011-01-01

    The synthesis of MCM-22 is accomplished by hydrothermal treatment and long periods needed for crystallization, with the gradual growth of crystals of 10-14 days. MCM-22 catalyst is studied intensively as promising, with high thermal stability. As part of a line of research focused on the development of zeolite with lowest cost, this study aimed to examine the effect in decreasing the period of crystallization in the synthesis of zeolite MCM-22. The materials were characterized by X-ray diffraction (XRD) spectroscopy, X-ray Energy Dispersive (EDX) and Fourier transform infrared spectroscopy and Fourier transform (FT-IR). By XRD it was observed that the hydrothermal treatment used in the synthesis was effective during periods of crystallization and EDX was observed that the samples have a high percentage of silica and low alumina content, which gives them a high ratio SiO 2 /Al 2 O 3 characteristic of the MWW structure. (author)

  7. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); Mullen, Jeffrey D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); University of Oregon, Eugene, OR 97403-1274 (United States); Parekh, Ruchi M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Suffolk County Community College, Selden, NY 11784 (United States); McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States); Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973 (United States); Sweet, Robert M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-09

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  8. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    International Nuclear Information System (INIS)

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-01-01

    Strategies are described for optimizing the signal-to-noise of diffraction data, and for combining data from multiple crystals. One challenge that must be overcome is the non-random orientation of crystals with respect to one another and with respect to the surface that supports them. X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies

  9. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  10. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    Science.gov (United States)

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  11. Liquid crystal interfaces: Experiments, simulations and biosensors

    Science.gov (United States)

    Popov, Piotr

    hydrocarbon surfaces at the atomic level. I show that the vertical alignment of a rod-like liquid crystal molecule first requires its insertion into the alignment layer. In CHAPTER 4, I investigate the Brownian behavior of a tracer molecule at an oil/water interface and explain the experimentally-observed anomaly of its increased mobility. Following my molecular dynamics simulation studies of liquid interfaces, I continue my work in CHAPTER 5 with experimental research. I employ the high sensitivity of liquid crystal alignment to the presence of amphiphiles adsorbed to the liquid crystal surface from water for potential biosensor applications. I propose a more accurate method of sensing using circular polarization and spectrophotometry. In CHAPTER 6, I investigate if cholesteric and smectic liquid crystals can potentially offer new modes of biosensing. In CHAPTER 7, I describe preliminary results toward constructing a liquid crystal biosensor platform with capabilities of specific sensitivity using proteins and antibodies. Finally in CHAPTER 8, I summarize the findings of my studies and research and suggest possible future experiments to further advance our knowledge in interfacial science for future applications.

  12. Observation of in-plane asymmetric strain relaxation during crystal growth and growth interruption in InGaAs/GaAs(001)

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2012-01-01

    In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)

  13. Expectation-based approach for one-dimensional randomly disordered phononic crystals

    International Nuclear Information System (INIS)

    Wu, Feng; Gao, Qiang; Xu, Xiaoming; Zhong, Wanxie

    2014-01-01

    An expectation-based approach to the statistical theorem is proposed for the one-dimensional randomly disordered phononic crystal. In the proposed approach, the expectations of the random eigenstates of randomly disordered phononic crystals are investigated. In terms of the expectations of the random eigenstates, the wave propagation and localization phenomenon in the random phononic crystal could be understood in a statistical perspective. Using the proposed approach, it is proved that for a randomly disordered phononic crystal, the Bloch theorem holds in the perspective of expectation. A one-dimensional randomly disordered binary phononic crystal consisting of two materials with the random geometry size or random physical parameter is addressed by using the proposed approach. From the result, it can be observed that with the increase of the disorder degree, the localization of the expectations of the eigenstates is strengthened. The effect of the random disorder on the eigenstates at higher frequencies is more significant than that at lower frequencies. Furthermore, after introducing the random disorder into phononic crystals, some random divergent eigenstates are changed to localized eigenstates in expectation sense.

  14. New investigations of the guanine trichloro cuprate(II) complex crystal

    Science.gov (United States)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  15. Observation of two regions of selective light reflection from a thin film of a cholesteric liquid crystal

    International Nuclear Information System (INIS)

    Alaverdyan, R B; Dadalyan, T K; Chilingaryan, Yurii S

    2013-01-01

    Two regions of selective light reflection (in the short- and long- wavelength parts of the visible spectrum) from a thin film of a cholesteric liquid crystal (CLC), consisting of the mixture of two CLCs with opposite chirality and a nematic liquid crystal, are experimentally found for the first time. The spectral position of the reflection regions and the separation between them varies depending on the CLC composition and the temperature. The long-wavelength region of reflection corresponds to the region of Bragg reflection from the CLC helix, while the short-wavelength region is probably due to the defects in the structure of the CLC film. (letters)

  16. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    Science.gov (United States)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  17. Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe1.98 Crystals at the Quasiclassical Regime

    Science.gov (United States)

    Lv, Yang-Yang; Li, Xiao; Zhang, Bin-Bin; Deng, W. Y.; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Zhang, Lei; Tian, Mingliang; Sheng, L.; Chen, Yan-Feng

    2017-03-01

    The asymmetric electron dispersion in type-II Weyl semimetal theoretically hosts anisotropic transport properties. Here, we observe the significant anisotropic Adler-Bell-Jackiw (ABJ) anomaly in the Fermi-level delicately adjusted WTe1.98 crystals. Quantitatively, CW , a coefficient representing the intensity of the ABJ anomaly along the a and b axis of WTe1.98 are 0.030 and 0.051 T-2 at 2 K, respectively. We found that the temperature-sensitive ABJ anomaly is attributed to a topological phase transition from a type-II Weyl semimetal to a trivial semimetal, which is verified by a first-principles calculation using experimentally determined lattice parameters at different temperatures. Theoretical electrical transport study reveals that the observation of an anisotropic ABJ along both the a and b axes in WTe1.98 is attributed to electrical transport in the quasiclassical regime. Our work may suggest that electron-doped WTe2 is an ideal playground to explore the novel properties in type-II Weyl semimetals.

  18. The liquid protein phase in crystallization: a case study—intact immunoglobulins

    Science.gov (United States)

    Kuznetsov, Yurii G.; Malkin, Alexander J.; McPherson, Alexander

    2001-11-01

    A common observation by protein chemists has been the appearance, for many proteins in aqueous solutions, of oil like droplets, or in more extreme cases the formation of a second oil like phase. These may accompany the formation of precipitate in "salting out" or "salting in' procedures, but more commonly appear in place of any precipitate. Such phase separations also occur, with even greater frequency, in the presence of polymeric precipitants such as polyethyleneglycol (PEG). In general the appearance of a second liquid phase has been taken as indicative of protein aggregation, though an aggregate state distinctly different from that characteristic of amorphous precipitate. While the latter is thought to be composed of linear and branched assemblies, polymers of a sort, the oil phase suggests a more compact, three-dimensional, but fluid state. An important property of an alternate, fluid phase is that it can mediate transitions between other states, for example, between protein molecules free in solution and protein molecules immobilized in amorphous precipitate or crystals. The "liquid protein" phase can be readily observed in many crystallization experiments either prior to the appearance of visible crystals, or directly participating in the crystal growth process. In some cases the relationship between the liquid phase and developing crystals is intimate. Crystals grow directly from the liquid phase, or appear only after the visible formation of the liquid phase. We describe here our experience with a class of macromolecules, immunoglobulins, and particularly IDEC-151, an IgG specific for CD4 on human lymphocytes. This protein has been crystallized from a Jeffamine-LiSO 4 mother liquor and, its crystallization illustrates many of the features associated with the liquid protein, or protein rich phase.

  19. Origin of the complex crystal structures of elements at intermediate pressure

    International Nuclear Information System (INIS)

    Ackland, G J; Macleod, I R

    2004-01-01

    We present a unifying theory for the observed complex structures of sp-bonded elements under pressure on the basis of nearly free electron picture. In the intermediate pressure regime, the dominant contribution to crystal structure arises from Fermi-surface Brillouin zone interactions-structures which allow this are favoured. This simple theory explains the observed crystal structures, transport properties and the evolution of internal and unit cell parameters with pressure and appears to hold for elements in groups I-VI. We illustrate it with experimental data for these elements and ab initio calculations for Li

  20. Protein Crystal Growth

    Science.gov (United States)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  1. Crystal growth and scintillation properties of Pr-doped oxyorthosilicate for different concentration

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Daisuke, E-mail: totsuka@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co. Ltd (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Fujimoto, Yutaka [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Pejchal, Jan [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2011-07-01

    0.05, 0.1 and 0.25 mol% Pr (with respect to Lu) doped Lu{sub 2}SiO{sub 5} (LSO) single crystals were grown by the micro-pulling down ({mu}-PD) method. The grown crystals were transparent, and a slight segregation of Pr{sup 3+} was observed both in the crystal cross-section and growth direction. Transparency in the visible wavelength range was about 80% in all the crystals. Intense absorptions related with the Pr{sup 3+} 4f-5d transitions were observed around 230 and 255 nm, and weak absorptions due to the 4f-4f transitions were detected around 450 nm. In radioluminescence spectra, the Pr{sup 3+} 5d-4f transitions were observed around 275and 310 nm, and emissions due to the 4f-4f transition were observed around 500 nm. In the pulse height analysis using {sup 137}Cs gamma-ray excitation, Pr 0.1% doped sample showed the highest light yield of 2,800 ph/MeV. In the decay time measurements using different excitation sources (photoluminescence, X- and gamma-ray), two different processes related to the 5d-4f emission peaks were found. Fast decay component corresponds to direct excitation of Pr{sup 3+} (4-6 ns) and slower component (25 ns) reflects the energy migration process from the host lattice to the emission center.

  2. Crystal structure study of new lanthanide silicates with silico-carnotite structure

    International Nuclear Information System (INIS)

    Piccinelli, F.; Lausi, A.; Speghini, A.; Bettinelli, M.

    2012-01-01

    The crystal structures of new rare earth-based silicate compounds (Ca 3 Eu 2 Si 3 O 12 , Ca 3 Gd 2 Si 3 O 12 , Ca 3 Dy 2 Si 3 O 12 , Ca 3 Er 2 Si 3 O 12 and Ca 3 Lu 2 Si 3 O 12 ) have been determined using powder X-ray diffraction. From Rietveld refinement calculations on the collected powder patterns we observe a different distribution of the rare earth ions on the three available crystal sites characterized by different coordination numbers, depending on the ionic radius of the rare earth ion. The reasons of the instability of the silico-carnotite structure for lanthanide ions larger than Eu 3+ have been deduced. In addition, in order to detect crystal phase transitions, the powder patterns of Ca 3 Eu 2 Si 3 O 12 and Ca 3 Sm 2 Si 3 O 12 samples have been collected as a function of the temperature (RT-1000 °C range), but no phase transitions have been observed. - Graphical abstract: Synchrotron X-ray diffraction allows us the accurate determination of the RE 3+ ions distribution on the three available crystal sites of the silico-carnotite structure. Highlights: ► The structure of the Ca 3 M 2 Si 3 O 12 (M=Eu, Gd, Dy, Er and Lu) was determined. ► Different distribution of RE 3+ ions on the three available crystal sites was observed. ► The instability of the silico-carnotite structure for RE=La→Sm was discussed.

  3. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  4. Status of UA9, the Crystal Collimation Experiment in the SPS

    CERN Document Server

    Scandale, W

    2011-01-01

    UA9 was operated at the CERN-SPS for more than two years to investigate the feasibility of halo collimation with bent crystals. Silicon crystals 2 mm long with bending angles of about 170 μrad were used as primary collimators. The crystal collimation process was steadily achieved through channeling, with high efficiency. The crystal orientation was easily set and optimized with an installed goniometer that has an angular accuracy of about ± 10 μrad. In channeling orientation, the loss rate of the halo particles interacting with the crystal is reduced by half an order of magnitude, whilst the residual off momentum halo escaping from the crystal-collimator area is reduced by a factor two to five. The crystal channeling efficiency of about 75% is reasonably consistent with simulations and with single pass data collected in the extracted proton beam of the SPS North Experimental Area. The accumulated observations, shown in this paper, support our expectation that the coherent deflection of the beam halo by a b...

  5. Psychophysical analysis of monitor display functions affecting observer diagnostic performance of CT image on liquid crystal display monitors

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Fujita, H.; Asai, Y.; Uemura, M.; Ookura, Y.; Matsumoto, M.; Johkoh, T.

    2005-01-01

    The aim of the present study was to propose suitable display functions for CT image representation on liquid crystal display (LCD) monitors by analyzing the characteristics of the monitor's typical display functions using psychophysical analysis. The luminance of the LCD monitor was adjusted to a maximum of 275 cd/m 2 and 480 cd/m 2 . Three types of postcalibrated display functions (i.e., GSDF, CIELAB, and Exponential γ 2.2) were evaluated. Luminance calculation of a new grayscale test pattern (NGTP) was done for the conversion of the digital driving level (DDL) into the CT value. The psychophysical gradient δ of display functions for the CT value was evaluated and compared via statistical analysis. The δ value of GSDF and CIE decreased exponentially; however, the δ value of Exponential γ 2.2 showed a convex curve with a peak at a specific point. There was a statistically significant difference among the δ values of the three types of display functions on the 480 cd/m 2 maximum via Kruskal Wallis test (P<0.001). The GSDF was suitable for observation of abdominal and lung CT images; however, the display function combined the Exponential γ 2.2 and the GSDF functions and was ideal for observation of brain CT images by psychophysical analysis. (orig.)

  6. Growth and characterization of La2CoMnO6 crystals doped with Pb

    International Nuclear Information System (INIS)

    Milenov, T.I.; Rafailov, P.M.; Abrashev, M.V.; Nikolova, R.P.; Nakatsuka, A.; Avdeev, G.V.; Veleva, M.N.; Dobreva, S.; Yankova, L.; Gospodinov, M.M.

    2010-01-01

    Crystals of La 2 CoMnO 6 doped with Pb were grown by the high temperature solution growth method. Several crystals were examined by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), X-ray single-crystal diffractometry and polarized Raman spectroscopy. Some variations in the composition of different crystals are observed, however, within the volume of each distinct crystal the composition is found to be fairly constant. Crystals with lateral dimensions larger than 2 mm and thicker than 1 mm contain structural defects as twin lamellae and surface roughness. The results from the characterization of the grown crystals with X-ray diffraction and Raman spectroscopy are consistent with an assumption for a coexistence of an ordered monoclinic and a disordered orthorhombic phase.

  7. Transformation and Crystallization Energetics of Synthetic and Biogenic Amorphous Calcium Carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Radha, A. V. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Forbes, Tori Z. [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States); Killian, Christopher E. [Univ. of Wisconsin, Madison, WI (United States); Gilbert, P.U.P.A [Univ. of Wisconsin, Madison, WI (United States); Navrotsky, Alexandra [Peter A. Rock Thermochemistry Lab. and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), Univ. of California, Davis, CA (United States)

    2010-01-01

    Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC→anhydrous ACC ~ biogenic anhydrous ACC→vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO₂ sequestration.

  8. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  9. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  10. Simulation of liquid crystals. Disclinations and surface modification

    International Nuclear Information System (INIS)

    Downton, M.

    2001-01-01

    In this thesis we investigate the behaviour of molecular models liquid crystals in several different situations. Basic introductory material on liquid crystals and computer simulations is discussed in the first two chapters, we then discuss the research. The third chapter investigates the interaction between a liquid crystal and a modified surface. A confined system of hard spherocylinders in a slab geometry is examined. The surface consists of planar hard walls with elongated molecules grafted perpendicularly onto them. The concentration of grafted molecules is varied to give different surfaces. Several different behaviours are found including planar, homeotropic and tilted anchorings of the liquid crystal. Molecular dynamics simulations of a nematic liquid crystal in slab geometry with twisted boundary conditions are performed. By arranging the initial configuration suitably it is possible to create a simulation cell with two regions of opposite twist separated by a strength half disclination line. The properties of the line are examined both with and without an applied external field. Finally, we again examine the system of grafted molecules on a flat substrate using an atomistic model of both the liquid crystal and the surface molecules. Again the effect of varying the density of grafted molecules is found to change the anchoring characteristics of the surface; both homeotropic and planar anchorings are observed. (author)

  11. Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites

    International Nuclear Information System (INIS)

    Lonkar, Sunil P.; Singh, R.P.

    2009-01-01

    The effect of layered double hydroxide (LDH) nanolayers on the crystallization behavior of polypropylene (PP) was studied based on the preparation of nanocomposites by a melt intercalation method. The isothermal crystallization kinetics and subsequent melting behavior of PP/LDH hybrids were studied with differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide-angle X-ray diffraction (WAXD). Studies revealed that the LDH promoted heterogeneous nucleation, accelerating the crystallization of PP. The Avrami equation successfully describes the isothermal crystallization kinetics of PP/LDH hybrids and signifies heterogeneous nucleation in crystal growth of PP. The varying values of Avrami exponent (n) and half crystallization time (t 1/2 ) of PP and PP/LDH hybrids describes overall crystallization behavior. The crystallite size (D hkl ) and distribution of different crystallites in PP varied in presence of LDH. A significant increase in melting temperature is observed for PP/LDH hybrids. The POM showed that smaller and less perfect crystals were formed in nanocomposites because of molecular interaction between PP chains and LDH. The value of fold surface free energy (σ e ) of PP chains decreased with increasing LDH content. Finally, the overall results signify that LDH at nanometer level acted as nucleating agent and accelerate the overall crystallization process of PP.

  12. Inter-grain coupling and grain charge in dusty plasma Coulomb crystals

    International Nuclear Information System (INIS)

    Smith, M. A.; Goodrich, J.; Mohideen, U.; Rahman, H. U.; Rosenberg, M.; Mendis, D. A.

    1998-01-01

    We have studied the lattice structure and grain charge of dusty plasma Coulomb crystals formed in rectangular conductive grooves as a function of plasma temperature and density. The crystal appears to be made of mutually repulsive columns of grains confined by the walls of the groove. The columns are oriented along the direction of the electrode sheath electric field. A simple phenomenological model wherein the inter-grain spacing results from an attractive electric field induced dipole-dipole force balanced by a repulsive monopole Coulomb force is consistent with observed features of the Coulomb crystal

  13. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  14. Studies on the effect of different operational parameters on the crystallization kinetics of α-lactose monohydrate single crystals in aqueous solution

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2014-09-01

    Supersaturation dependent nucleation, size and morphology of alpha-lactose monohydrate (α-LM) crystals from aqueous solution were investigated by adopting two different crystallization methods, slow evaporation and fast evaporation, in the supersaturation range between σ=0.05 and 1.30. The induction period of nucleation is comparatively long in case of slow evaporation and is very short in case of fast evaporation process as the interconversion between α-L and β-L is uncontrollable in the former and is under control in the latter case. Moreover α-LM crystals with tomahawk morphology were obtained throughout the supersaturation range by slow evaporation method whereas crystals with tomahawk, triangular and needle-like morphologies were obtained in supersaturation ranges σ=0.05-0.5, σ=0.5-0.9 and σ=0.9-1.30 respectively by fast evaporation method. Experimentally observed nucleation parameters were verified with theoretically deuced values. It is realized that the fast evaporation method employed in the present study is found to be highly efficient in controlling the interconversion between α-L and β-L as well as in suppressing the inhibitory activity of β molecule on the nucleation and growth of α-LM crystals when compared to conventional slow evaporation method and is successful in producing the industrially preferred needle-like crystals at high supersaturation ranges.

  15. A top-down approach to crystal engineering of a racemic Δ2-isoxazoline.

    Science.gov (United States)

    Lombardo, Giuseppe M; Rescifina, Antonio; Chiacchio, Ugo; Bacchi, Alessia; Punzo, Francesco

    2014-02-01

    The crystal structure of racemic dimethyl (4RS,5RS)-3-(4-nitrophenyl)-4,5-dihydroisoxazole-4,5-dicarboxylate, C13H12N2O7, has been determined by single-crystal X-ray diffraction. By analysing the degree of growth of the morphologically important crystal faces, a ranking of the most relevant non-covalent interactions determining the crystal structure can be inferred. The morphological information is considered with an approach opposite to the conventional one: instead of searching inside the structure for the potential key interactions and using them to calculate the crystal habit, the observed crystal morphology is used to define the preferential lines of growth of the crystal, and then this information is interpreted by means of density functional theory (DFT) calculations. Comparison with the X-ray structure confirms the validity of the strategy, thus suggesting this top-down approach to be a useful tool for crystal engineering.

  16. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  17. Co-crystallization as a separation technology: controlling product concentrations by co-crystals

    NARCIS (Netherlands)

    Urbanus, J.; Roelands, C.P.M.; Verdoes, D.; Jansens, P.J.; Horst, J.H. ter

    2010-01-01

    Co-crystallization is known as a product formulation technology, but it can also be used as a tool to solve crystallization problems. Product removal by co-crystallization in fermentations is used as a showcase to demonstrate the potential of co-crystallization as a separation technique. In

  18. The nature of γ-hydride in crept zirconium single crystals

    International Nuclear Information System (INIS)

    Akhtar, A.

    1977-01-01

    Single crystals prepared from crystal bar zirconium have been subjected to uniaxial tensile-creep under a vacuum of 10 -4 Pa for 160 h. Transmission electron microscopy of crept crystals has revealed the presence of thin fct γ-zirconium hydride platelets lying parallel to (1100) planes and elongated along the [1120]sub(α) direction. The platelets maintain the following lattice relationship with the hcp (α) matrix: [1120]sub(α)//[110]sub(γ), (0001)sub(α)//(001)sub(γ). This relationship is different from that obtained for needle γ-hydride generally observed in quenched samples. Lattice misfit calculations indicate that the platelets have a large positive misfit normal to the plane of the disc and a small misfit in the plane of the disc, which remains parallel to (1010)sub(α). Displacement fringe contrast is observed inside the platelets under conditions consistent with the lattice misfit. It is proposed that the nucleation of these precipitates occurs at stacking faults in the presence of applied stress. (Auth.)

  19. Crystal growth, spectral and laser properties of Nd:LSAT single crystal

    Science.gov (United States)

    Hu, P. C.; Yin, J. G.; Zhao, C. C.; Gong, J.; He, X. M.; Zhang, L. H.; Liang, X. Y.; Hang, Y.

    2011-10-01

    Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.

  20. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal

    Science.gov (United States)

    Szostak, M. M.; Giermańska, J.

    1990-03-01

    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  1. Recent Advances in Discotic Liquid Crystal-Assisted Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ashwathanarayana Gowda

    2018-03-01

    Full Text Available This article primarily summarizes recent advancement in the field of discotic liquid crystal (DLC nanocomposites. Discotic liquid crystals are nanostructured materials, usually 2 to 6 nm size and have been recognized as organic semiconducting materials. Recently, it has been observed that the dispersion of small concentration of various functionalized zero-, one- and two-dimensional nanomaterials in the supramolecular order of mesophases of DLCs imparts negligible impact on liquid crystalline properties but enhances their thermal, supramolecular and electronic properties. Synthesis, characterization and dispersion of various nanoparticles in different discotics are presented.

  2. Self-powdering and nonlinear optical domain structures in ferroelastic β'-Gd2(MoO4)3 crystals formed in glass

    International Nuclear Information System (INIS)

    Tsukada, Y.; Honma, T.; Komatsu, T.

    2009-01-01

    Ferroelastic β'-Gd 2 (MoO 4 ) 3 , (GMO), crystals are formed through the crystallization of 21.25Gd 2 O 3 -63.75MoO 3 -15B 2 O 3 glass (mol%), and two scientific curious phenomena are observed. (1) GMO crystals formed in the crystallization break into small pieces with a triangular prism or pyramid shape having a length of 50-500 μm spontaneously during the crystallizations in the inside of an electric furnace, not during the cooling in air after the crystallization. This phenomenon is called 'self-powdering phenomenon during crystallization' in this paper. (2) Each self-powdered GMO crystal grain shows a periodic domain structure with different refractive indices, and a spatially periodic second harmonic generation (SHG) depending on the domain structure is observed. It is proposed from polarized micro-Raman scattering spectra and the azimuthal dependence of second harmonic intensities that GMO crystals are oriented in each crystal grain and the orientation of (MoO 4 ) 2- tetrahedra in GMO crystals changes periodically due to spontaneous strains in ferroelastic GMO crystals. - Graphical abstract: This figure shows the polarized optical photograph at room temperature for a particle (piece) obtained by a heat treatment of the glass at 590 deg. C for 2 h in an electric furnace in air. This particle was obtained through the self-powdering behavior in the crystallization of glass. The periodic domain structure is observed. Ferroelastic β'-Gd 2 (MoO 4 ) 3 crystals are formed in the particle, and second harmonic generations are detected, depending on the domain structure.

  3. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.

    Science.gov (United States)

    Ramya, L; Ramakrishnan, Vigneshwar

    2016-07-01

    Antifreeze proteins (AFP) observed in cold-adapting organisms bind to ice crystals and prevent further ice growth. However, the molecular mechanism of AFP-ice binding and AFP-inhibited ice growth remains unclear. Here we report the interaction of the insect antifreeze protein (Tenebrio molitor, TmAFP) with ice crystal by molecular dynamics simulation studies. Two sets of simulations were carried out at 263 K by placing the protein near the primary prism plane (PP) and basal plane (BL) of the ice crystal. To delineate the effect of temperatures, both the PP and BL simulations were carried out at 253 K as well. The analyses revealed that the protein interacts strongly with the ice crystal in BL simulation than in PP simulation both at 263 K and 253 K. Further, it was observed that the interactions are primarily mediated through the interface waters. We also observed that as the temperature decreases, the interaction between the protein and the ice increases which can be attributed to the decreased flexibility and the increased structuring of the protein at low temperature. In essence, our study has shed light on the interaction mechanism between the TmAFP antifreeze protein and the ice crystal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  5. Optical Study of Liquid Crystal Doped with Multiwalled Carbon Nanotube

    Science.gov (United States)

    Gharde, Rita A.; Thakare, Sangeeta Y.

    2014-11-01

    Liquid crystalline materials have been useful for display devices i.e watches, calculators, automobile dashboards, televisions, multi media projectors etc. as well as in electro tunable lasers, optical fibers and lenses. Carbon nanotube is chosen as the main experimental factor in this study as it has been observed that Carbon Nano Tube influence the existing properties of liquid crystal host and with the doping of CNT can enhance1 the properties of LC. The combination of carbon nanotube (CNT) and liquid crystal (LC) materials show considerable interest in the scientific community due to unique physical properties of CNT in liquid crystal. Dispersion of CNTs in LCs can provide us a cheap, simple, versatile and effective means of controlling nanotube orientation on macroscopic scale with no restrictions on nanotube type. LCs have the long range orientational order rendering them to be anisotropic phases. If CNTs can be well dispersed in LC matrix, they will align with their long axes along the LC director to minimize distortions of the LC director field and the free energy. In this paper, we doped liquid crystal (Cholesteryl Nonanoate) by a small amount of multiwall carbon nanotube 0.05% and 0.1% wt. We found that by adding carbon nanotube to liquid crystals the melting point of the mixture is decreased but TNI is increased. It has been also observed that with incereas in concentration of carbon nanotube into liquid crystal shows conciderable effect on LC. The prepared samples were characterized using various techniques to study structural, thermal and optical properties i.e PMS, FPSS, UV-Vis spectroscopy, FT-IR measurements, and DTA.

  6. Semiconducting icosahedral boron arsenide crystal growth for neutron detection

    Science.gov (United States)

    Whiteley, C. E.; Zhang, Y.; Gong, Y.; Bakalova, S.; Mayo, A.; Edgar, J. H.; Kuball, M.

    2011-03-01

    Semiconducting icosahedral boron arsenide, B12As2, is an excellent candidate for neutron detectors, thermoelectric converters, and radioisotope batteries, for which high quality single crystals are required. Thus, the present study was undertaken to grow B12As2 crystals by precipitation from metal solutions (nickel) saturated with elemental boron (or B12As2 powder) and arsenic in a sealed quartz ampoule. B12As2 crystals of 10-15 mm were produced when a homogeneous mixture of the three elements was held at 1150 °C for 48-72 h and slowly cooled (3.5 °C/h). The crystals varied in color and transparency from black and opaque to clear and transparent. X-ray topography (XRT), and elemental analysis by energy dispersive X-ray spectroscopy (EDS) confirmed that the crystals had the expected rhombohedral structure and chemical stoichiometry. The concentrations of residual impurities (nickel, carbon, etc.) were low, as measured by Raman spectroscopy and secondary ion mass spectrometry (SIMS). Additionally, low etch-pit densities (4.4×107 cm-2) were observed after etching in molten KOH at 500 °C. Thus, the flux growth method is viable for growing large, high-quality B12As2 crystals.

  7. Role of crystal arrangement on the mechanical performance of enamel.

    Science.gov (United States)

    An, Bingbing; Wang, Raorao; Zhang, Dongsheng

    2012-10-01

    The superior mechanical properties of enamel, such as excellent penetration and crack resistance, are believed to be related to the unique microscopic structure. In this study, the effects of hydroxyapatite (HAP) crystallite orientation on the mechanical behavior of enamel have been investigated through a series of multiscale numerical simulations. A micromechanical model, which considers the HAP crystal arrangement in enamel prisms, the hierarchical structure of HAP crystals and the inelastic mechanical behavior of protein, has been developed. Numerical simulations revealed that, under compressive loading, plastic deformation progression took place in enamel prisms, which is responsible for the experimentally observed post-yield strain hardening. By comparing the mechanical responses for the uniform and non-uniform arrangement of HAP crystals within enamel prisms, it was found that the stiffness for the two cases was identical, while much greater energy dissipation was observed in the enamel with the non-uniform arrangement. Based on these results, we propose an important mechanism whereby the non-uniform arrangement of crystals in enamel rods enhances energy dissipation while maintaining sufficient stiffness to promote fracture toughness, mitigation of fracture and resistance to penetration deformation. Further simulations indicated that the non-uniform arrangement of the HAP crystals is a key factor responsible for the unique mechanical behavior of enamel, while the change in the nanostructure of nanocomposites could dictate the Young's modulus and yield strength of the biocomposite. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Crystal growth and properties of novel organic nonlinear optical crystals of 4-Nitrophenol urea

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, M. Krishna, E-mail: krishnamohan.m@ktr.srmuniv.ac.in; Ponnusamy, S.; Muthamizhchelvan, C.

    2017-07-01

    Single crystals of 4-Nitrophenol urea have been grown from water using slow evaporation technique at constant temperature, with the vision to improve the properties of the crystals. The unit cell parameters of the grown crystals were determined by single crystal and powder X-Ray diffraction. FTIR studies reveals the presence of different vibrational bands. The Optical studies confirmed that the crystal is transparent up to 360 nm .TGA and DSC studies were carried out to understand the thermal behavior of crystals. The SHG studies show the suitability of the crystals for NLO applications. The etching studies were carried out to study the behavior of the crystals under different conditions.These studies reveal that the crystals of 4-Nitrophenol urea are suitable for device applications. - Highlights: • 4-Nitrophenol urea crystals of dimensions 14 mm × 1 mm were grown. • UV–Visible studies indicate the crystal is transparent in the region of 370–800 nm. • Thermal studies show the crystal starts decomposing at 170 °C. • SHG studies indicate that the crystals have NLO efficiency 3.5 times that of KDP.

  9. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  10. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  11. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  12. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  13. The 2D Selfassembly of Benzimidazole and its Co-crystallization

    Science.gov (United States)

    Costa, Paulo; Teeter, Jacob; Kunkel, Donna; Sinitskii, Alexander; Enders, Axel

    Benzimidazoles (BI) are organic molecules that form ferroelectric crystals. Key to their ferroelectric behavior are the switchable N . . . HN type bonds and how they couple to the electron system of the molecules. We attempted to crystallize BI on various metal surfaces and studied them using STM. We observed that on Au and Ag, BI joins into zipper chains characteristic of its bulk structure that can pack into a continuous 2D layer. Because the dipole of BI lies in the direction of its switchable hydrogen bond, these zippers should in principle have reversible polarizations that point along the direction they run. BI's crystallization is reminiscent to how croconic acid (CA) crystallizes in 2D using O . . . HO bonding, suggesting that these molecules may be able to co-crystallize through OH . . . N bonds. This would present the opportunity to modify BI's properties, such as the energy needed to switch a hydrogen from a donor to acceptor site. When co-deposited, CA and BI successfully combine into a co-crystal formed by building blocks consisting of 2 CA and 2 BI molecules. These findings demonstrate the usefulness of using STM as a preliminary check to verify if two molecules are compatible with each other without having to attempt crystallization with multiple solvents and mixing methods.

  14. X-ray dosimetry of TlGaSe2 single crystals

    International Nuclear Information System (INIS)

    Kerimova, E.M.; Mustafaeva, S.N.; Mamedbeili, S.D.; Jabarov, J.N.; Iskenderova, P.M.; Kazimov, S.B.

    2002-01-01

    TlGaSe 2 compound belongs to group of layered semiconductors of A 3 B 3 C 2 6 -type. Photoelectric and optical properties of TlGaSe 2 single crystals were investigated in detail. Influence of gamma-, electron and neutron radiation on photoelectric properties of TlGaSe 2 single crystals is investigated too. The present work deals with experimental results relative to X-ray dosimetric characteristics of TlGaSe 2 crystals at 300 K. X-ray conductivity and X-ray dosimetric characteristic measurements are carried out in low load resistance regime. The source of X-ray radiation is the installation of X-ray diffraction analysis (URS-55a) with the BCV-2(Cu). Intensity of X-ray radiation (E) is regulated by measurement with current variation in tube at each given value of X-ray radiation dose E (R/min) are measured by crystal dosimeter DRGZ-02. X-ray conductivity coefficients K σ characterising X-ray sensitivity of investigated crystals are determined as the relative change of conductivity under X-ray radiation a per dose. There have been determined values of characteristic coefficients of TlGaSe 2 single crystal X-ray conductivity at different values of accelerating voltage (V a ) on the tube and corresponding doses of X-ray radiation. Analysis of obtained data showed that X-ray conductivity coefficients K σ in studied crystals are regularly decreased (from 0.276 to 0.033) as with the rise of dose (E=0.75-78.0 R/min) as with the increase of values of V a on X-ray tube (V a =254-50 keV). One of the possible reasons of observed regularities is that X-ray conductivity in investigated crystals, especially at comparatively low V a is due predominantly to radiation of thin layer of crystal. In this case with the rise of radiation intensity there have been started to prevail the mechanism of surface quadratic recombination which leads to observed decrease of X-ray conductivity. With the rise of accelerating potential 'effective hardness' is increased, as a result of which there

  15. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  16. Role of local assembly in the hierarchical crystallization of associating colloidal hard hemispheres

    Science.gov (United States)

    Lei, Qun-li; Hadinoto, Kunn; Ni, Ran

    2017-10-01

    Hierarchical self-assembly consisting of local associations of simple building blocks for the formation of complex structures widely exists in nature, while the essential role of local assembly remains unknown. In this work, by using computer simulations, we study a simple model system consisting of associating colloidal hemispheres crystallizing into face-centered-cubic crystals comprised of spherical dimers of hemispheres, focusing on the effect of dimer formation on the hierarchical crystallization. We found that besides assisting the crystal nucleation because of increasing the symmetry of building blocks, the association between hemispheres can also induce both reentrant melting and reentrant crystallization depending on the range of interaction. Especially when the interaction is highly sticky, we observe a novel reentrant crystallization of identical crystals, which melt only in a certain temperature range. This offers another axis in fabricating responsive crystalline materials by tuning the fluctuation of local association.

  17. Optical spectroscopy and crystal-field analysis of U3+: Ba2YCl7

    International Nuclear Information System (INIS)

    Karbowiak, M.; Mech, A.; Drozdzyndki, J.; Gajek, Z.; Edelstein, N.M.

    2002-01-01

    High resolution absorption spectra of a U 3+ (0.3%): Ba 2 YCl 7 single crystal were recorded in the 4000-50 000 cm -1 range at 7 K. The observed crystal-field levels were assigned and fit to the parameters of the simplified angular overlap model (AOM) as well as a semi-empirical Hamiltonian representing the combined atomic and one-electron crystal-field interactions. The starting values of the AOM parameters were obtained from ab initio calculations. The analysis of the spectra allowed the assignment of 65 crystal-field levels with a relatively small rms deviation of 25 cm -1 and has shown that the AOM approach can predict quite well the B q k crystal-field parameters. The value determined for the crystal-field strength parameter, N v , corresponds well with those determined for U 3+ in other chloride single crystals. (authors)

  18. Ferroelectric domain structures in -oriented K0.15Na0.85NbO3 lead-free single crystal

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2015-03-01

    Full Text Available In this work, ferroelectric domain structures of -oriented K0.15Na0.85NbO3 single crystal are characterized. Transmission electron microscopy (TEM observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1 2 { eeo } and 1 2 { ooe } in electron diffraction patterns are observed in the crystal, revealing the a+a+c− tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K0.15Na0.85NbO3 crystal are observed by piezoresponse force microscopy (PFM, and the results assure its good ferroelectric properties.

  19. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  20. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    CERN Document Server

    Scandale, Walter; Carnera, Alberto; Della Mea, Gianantonio; De Salvador, Davide; Milan, Riccardo; Vomiero, Alberto; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli,Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik; Afonin, Alexander G; Baranov, Vladimir T; Chesnokov, Yury A; Kotov, Vladilen I; Maisheev, Vladimir A; Yaznin, Igor A; Afansiev, Sergey V; Kovalenko, Alexander D; Taratin, Alexander M; Denisov, Alexander S; Gavrikov, Yury A; Ivanov, Yuri M; Ivochkin, Vladimir G; Kosyanenko, Sergey V; Petrunin, Anatoli A; Skorobogatov, Vyacheslav V; Suvorov, Vsevolod M; Bolognini, Davide; Foggetta,Luca; Hasan, Said; Prest, Michela

    2007-01-01

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  1. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  2. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  3. Parity violation and parity conservation in unstirred crystallization: Effect of first crystals

    Energy Technology Data Exchange (ETDEWEB)

    Szurgot, M. [Center of Mathematics and Physics, Technical University of Lodz (Poland)

    2012-02-15

    Statistics of nucleation of chiral forms was studied to establish the effect of the number of first crystals and their handedness on distributions of enantiomers. Various bimodal, trimodal and unimodal distributions are obtained in unstirred crystallization, depending on the number of initial crystals and growth conditions. The binomial distribution satisfactorily describes experimental distributions of enantiomeric excess and may be used to predict distributions and probabilities of nucleation of enantiomers. The first nucleated crystals determine the handedness of secondary crystals, and number of initial crystals governs statistics of chiral nucleation. According to the binomial distribution if single crystals nucleate as the first, the bimodal distributions result with D and L peaks. If LD, LL, and DD pairs are nucleated as first, trimodal distributions with D, R, and L peaks are created, and if groups of crystals of various handedness nucleate as the first the unimodal distributions of enantiomeric excess with racemate R peaks are formed. Chiral nucleation experiments on sodium bromate were the basis for the theoretical considerations and verifications of predictions resulting from binomial distributions on probabilities of the creation of L and D crystals, and racemates, and the presence of D, L, and R peaks in the distributions. Growth conditions affect the number of the first crystals and effectiveness of cloning, and as a result, the distributions of enantiomers. Formation of pure enantiomers and/or racemates proves that the conservation of chiral symmetry, and the breakage of chiral symmetry can occur in unstirred crystallization. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Synchrotron white beam topography studies of SrLaGaO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wieteska, K. [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Wierzchowski, W. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)]. E-mail: wierzc_w@sp.itme.edu.pl; Graeff, W. [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Lefeld-Sosnowska, M. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Pajaczkowska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Wierzbicka, E. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Malinowska, A. [Institute of Experimental Physics, University of Warsaw, Hoza 69, 00-681 Warsaw (Poland); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2005-09-29

    Strontium lantanum gallate SrLaGaO{sub 4} tetragonal single crystal was investigated by white beam synchrotron radiation topography. Projection and section topographs were taken in back reflection and transmission geometry. The central 'core' crystal region was practically free of defects; only one extended 'oval' defect with strong boundary contrast was observed. The strong white-black contrasts connected with elongated volume defects and cracks were observed in surrounding the 'core' region.

  5. Durability of building stones against artificial salt crystallization

    Science.gov (United States)

    Min, K.; Park, J.; Han, D.

    2005-12-01

    Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.

  6. Deep Space Detection of Oriented Ice Crystals

    Science.gov (United States)

    Marshak, A.; Varnai, T.; Kostinski, A. B.

    2017-12-01

    The deep space climate observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sun-lit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We constructed a yearlong time series of flash latitudes, scattering angles and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice crystals floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo.

  7. Laser generated soliton waveguides in photorefractive crystals

    International Nuclear Information System (INIS)

    Vlad, V.I.; Fazio, E.; Bertolotti, M.; Bosco, A.; Petris, A.

    2005-01-01

    Non-linear photo-excited processes using the photorefractive effect are revisited with emphasis on spatial soliton generation in special laser beam propagation conditions. The soliton beams can create reversible or irreversible single-mode waveguides in the propagating materials. The important features are the 3D orientation and graded index profile matched to the laser fundamental mode. Bright spatial solitons are theoretically demonstrated and experimentally observed for the propagation of c.w. and pulsed femtosecond laser beams in photorefractive materials such as Bi 12 SiO 20 (BSO) and lithium niobate crystals. Applications in high coupling efficiency, adaptive optical interconnections and photonic crystal production are possible

  8. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  9. Opal-based photonic crystal with double photonic bandgap structure

    Science.gov (United States)

    Romanov, S. G.; Yates, H. M.; Pemble, M. E.; DeLa Rue, R. M.

    2000-09-01

    The interior surfaces of one part of a piece of artificial opal have been coated with GaP so that the remaining part of the opal crystal remains empty, thus forming a photonic heterostructure. Two Bragg resonances have been observed in the optical transmission and reflectance spectra. These two resonances were found to behave differently with changes in the polarization of the incident light and the angle of propagation of the light with respect to the (111) planes of opal. Depolarization of the light was observed to occur most effectively at frequencies within the stop-bands, apparently due to the re-coupling of the propagating electromagnetic wave to a different system of eigenmodes when it crosses the interface separating two parts of the double photonic crystal.

  10. Neutron scattering experiments of the ionic crystal deformed plastically with uniaxial compression under high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori; Minakawa, Nobuaki; Aizawa, Kazuya; Ozawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-04-01

    As an aim of huge growth of alkali halide (AH) single crystal, a mosaic structure of small size AH single crystal deformed plastically with uniaxial compression under high temperature was evaluated due to its neutron irradiation experiment. Using TAS-2 installed at JRR-3M guide hole of Japan Atomic Energy Research Institute, locking curve at a representative face factor of the specimen was measured to observe the mosaic structure accompanied with expansion of the crystal due to compression. As a result, though the specimen before compression could be supposed to be divided to some parts already, the locking curve under 10 sec. of compression time showed already some fracture to divisions to suppose finer degradation of the crystal, and division of the locking curve at 600 sec. of compression time could be observed onto its 220 face. And, every compressed specimens showed some changes of crystallization method from standard sample. (G.K.)

  11. Photoluminescence and lasing properties of MAPbBr3 single crystals grown from solution

    Science.gov (United States)

    Aryal, Sandip; Lafalce, Evan; Zhang, Chuang; Zhai, Yaxin; Vardeny, Z. Valy

    Recent studies of solution-grown single crystals of inorganic-organic hybrid lead-trihalide perovskites have suggested that surface traps may play a significant role in their photophysics. We study electron-hole recombination in single crystal MAPbBr3 through such trap states using cw photoluminescence (PL) and ps transient photoinduced absorption (PA) spectroscopies. By varying the depth of the collecting optics we examined the contributions from surface and bulk radiative recombination. We found a surface dominated PL band at the band-edge that is similar to that observed from polycrystalline thin films, as well as a weaker red-shifted emission band that originates from the bulk crystal. The two PL bands are distinguished in their temperature, excitation intensity and polarization dependencies, as well as their ps dynamics. Additionally, amplified spontaneous emission and crystal-related cavity lasing modes were observed in the same spectral range as the PL band assigned to the surface recombination. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  12. Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam molecules

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Horstman

    2016-12-01

    Full Text Available A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl-2H-1λ6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ6,2-benzothiazine-3-amidopyridin-1-ium–2,5-dihydroxybenzoic acid, 2C15H13N3O4S·C7H6O4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809 (2:0.191 (2 ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the ab plane.

  13. Fabrication of radiation detector using PbI2 crystals

    International Nuclear Information System (INIS)

    Shoji, T.; Ohba, K.; Suehiro, T.; Hiratate, Y.

    1995-01-01

    Radiation detectors have been fabricated from lead iodide (PbI 2 ) crystals grown by two methods: zone melting and Bridgman methods. In response characteristics of the detector fabricated from crystals grown by the zone melting method, a photopeak for γ-rays from an 241 Am source (59.5 KeV) has been clearly observed with applied detector bias of 500 V at room temperature. The hole drift mobility is estimated to be about 5.5 cm 2 /Vs from measurement of pulse rise time for 5.48 MeV α-rays from 241 Am. By comparing the detector bias versus saturated peak position of the PbI 2 detector with that of CdTe detector, the average energy for producing electron-hole pairs is estimated to be about 8.4 eV for the PbI 2 crystal. A radiation detector fabricated from PbI 2 crystals grown by the Bridgman method, however, exhibited no response for γ-rays

  14. Influence of hybrid fibrils of 2,5-bis(2-benzoxazolyl) thiophene and halloysite nanotubes on the crystallization behaviour of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mingxian; Guo, Baochun; Du, Mingliang; Zou, Quanliang; Jia, Demin, E-mail: psbcguo@scut.edu.c [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-04-07

    2,5-bis(2-benzoxazolyl) thiophene (BBT) included polypropylene (PP)/halloysite nanotubes (HNTs) composites showed substantially increased mechanical properties and this was attributed to the changed crystallinity of the PP matrix by BBT (Liu et al 2007 Nanotechnology 18 455703). This paper intends to give a detailed study on the influence of BBT hybrid fibrils on the crystallization of the PP matrix by using the observations of polarized optical microscopy (POM) and scanning electron microscopy, together with the comparisons of the activation energy of crystallization. The POM results show that PP crystals could epitaxially grow on the BBT and hybrid fibril substrates, indicating the nucleating ability of BBT. Oriented PP ribbon-like crystals with a thickness of 200 nm around BBT fibrils are observed. The formation of this unique crystal morphology is attributed to the epitaxial crystallization under the shearing orientation effect. A new transition peak well above the glass transition of PP is observed, which is attributed to the glass transition of the confined amorphous PP in the ribbon-like crystal layers around the fibrils. The fold-surface free energy of the BBT included composites is substantially decreased, suggesting facilitated crystallization in the presence of hybrid fibrils.

  15. Influence of hybrid fibrils of 2,5-bis(2-benzoxazolyl) thiophene and halloysite nanotubes on the crystallization behaviour of polypropylene

    International Nuclear Information System (INIS)

    Liu, Mingxian; Guo, Baochun; Du, Mingliang; Zou, Quanliang; Jia, Demin

    2009-01-01

    2,5-bis(2-benzoxazolyl) thiophene (BBT) included polypropylene (PP)/halloysite nanotubes (HNTs) composites showed substantially increased mechanical properties and this was attributed to the changed crystallinity of the PP matrix by BBT (Liu et al 2007 Nanotechnology 18 455703). This paper intends to give a detailed study on the influence of BBT hybrid fibrils on the crystallization of the PP matrix by using the observations of polarized optical microscopy (POM) and scanning electron microscopy, together with the comparisons of the activation energy of crystallization. The POM results show that PP crystals could epitaxially grow on the BBT and hybrid fibril substrates, indicating the nucleating ability of BBT. Oriented PP ribbon-like crystals with a thickness of 200 nm around BBT fibrils are observed. The formation of this unique crystal morphology is attributed to the epitaxial crystallization under the shearing orientation effect. A new transition peak well above the glass transition of PP is observed, which is attributed to the glass transition of the confined amorphous PP in the ribbon-like crystal layers around the fibrils. The fold-surface free energy of the BBT included composites is substantially decreased, suggesting facilitated crystallization in the presence of hybrid fibrils.

  16. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  17. Mechanical properties of hydroxyapatite single crystals from nanoindentation data

    Science.gov (United States)

    Zamiri, A.; De, S.

    2011-01-01

    In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492

  18. Twinning structures in near-stoichiometric lithium niobate single crystals

    International Nuclear Information System (INIS)

    Yao, Shuhua; Chen, Yanfeng

    2010-01-01

    A near-stoichiometric lithium niobate single crystal has been grown by the Czochralski method in a hanging double crucible with a continuous powder supply system. Twins were found at one of the three characteristic growth ridges of the as-grown crystal. The twin structure was observed and analyzed by transmission synchrotron topography. The image shifts ΔX and ΔY in the transmission synchrotron topograph were calculated for the 3 anti 2 anti 12 and 0 anti 222 reflections based on results from high-resolution X-ray diffractometry. It is confirmed that one of the {01 anti 1 anti 2} m planes is the composition face of the twin and matrix crystals. The formation mechanism of these twins is discussed. (orig.)

  19. Irradiation damage of alkali halide crystals during positron bombardment

    International Nuclear Information System (INIS)

    Arefiev, K.P.; Arefiev, V.P.; Vorobiev, S.A.

    1978-01-01

    The bleaching effect of positron irradiation of KCl and KBr single crystals previously coloured with electrons or protons was investigated. Positrons injection in the coloured alkali halide samples reduced the F-centres concentration considerably. For KCl crystals thicker than the positrons range the appearance of additional bands in the absorption spectra is noticeable. The experimental data show that the bleaching phenomenon should be observed merely throughout the positron exposure both for irradiated and non-irradiated regions of the sample. Irradiation effects, due to positron source, on the peak counting rate of (γ-γ) angular correlation in KCl crystals under applied magnetic field were also investigated. The growth of peak counting rate shows the increase of positronium-like states formation near defects of cation sublattice. (author)

  20. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  1. A continuous Czochralski silicon crystal growth system

    Science.gov (United States)

    Wang, C.; Zhang, H.; Wang, T. H.; Ciszek, T. F.

    2003-03-01

    Demand for large silicon wafers has driven the growth of silicon crystals from 200 to 300 mm in diameter. With the increasing silicon ingot sizes, melt volume has grown dramatically. Melt flow becomes more turbulent as melt height and volume increase. To suppress turbulent flow in a large silicon melt, a new Czochralski (CZ) growth furnace has been designed that has a shallow melt. In this new design, a crucible consists of a shallow growth compartment in the center and a deep feeding compartment around the periphery. Two compartments are connected with a narrow annular channel. A long crystal may be continuously grown by feeding silicon pellets into the dedicated feeding compartment. We use our numerical model to simulate temperature distribution and velocity field in a conventional 200-mm CZ crystal growth system and also in the new shallow crucible CZ system. By comparison, advantages and disadvantages of the proposed system are observed, operating conditions are determined, and the new system is improved.

  2. Scattering of x-ray from crystal surfaces

    International Nuclear Information System (INIS)

    Andrews, S.R.; Cowley, R.A.

    1985-01-01

    X-ray measurements performed on a variety of materials demonstrate that it is possible to observe diffuse scattering that originates in the abrupt change of density at a crystal surface. Such a discontinuity gives rise, in general, to rods of scattering in reciprocal space which are most intense close to the Bragg peaks tau and are well defined for sufficiently smooth surfaces. For wave-vector transfer Q=tau+q the q-dependence of the intensity of scattering gives information on the topographic structure of the crystal surface. Experimental results on crystals of GaAs and KTaO 3 , with surfaces prepared in various ways, were obtained using conventional x-ray techniques with a rotating anode source and can be described by a continuum model of the surface. There are discrepancies between the predictions of the models and the experimental results and the suggest that further experiments are needed to achieve a more complete understanding. (author)

  3. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Directory of Open Access Journals (Sweden)

    J.-F. Gayet

    2012-01-01

    Full Text Available During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C. The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C and nadir looking remote sensing observations (DLR WALES Lidar. Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved

  4. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Science.gov (United States)

    Gayet, J.-F.; Mioche, G.; Bugliaro, L.; Protat, A.; Minikin, A.; Wirth, M.; Dörnbrack, A.; Shcherbakov, V.; Mayer, B.; Garnier, A.; Gourbeyre, C.

    2012-01-01

    During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/-58 °C). The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C) and nadir looking remote sensing observations (DLR WALES Lidar). Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm-3, 30 km-1 and 0.5 g m-3, respectively) are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC) and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g m-3 may be observed near the cloud top

  5. Optical properties of GaS:Ho3+ and GaS:Tm3+ single crystals

    International Nuclear Information System (INIS)

    Jin, Moon-Seog; Kim, Chang-Dae; Kim, Wha-Tek

    2004-01-01

    GaS:Ho 3+ and GaS:Tm 3+ single crystals were grown by using the chemical transport reaction method. We measured the optical absorption, the infra-red absorption, and the photoluminescence spectra of the single crystals. The direct and the indirect energy band gaps of the single crystals at 13 K were identified. Infra-red absorption peaks at 6 K appeared in the single crystals. Broad emission bands at 6 K were observed at 464 nm and 580 nm for GaS:Ho 3+ and 462 nm and 581 nm for GaS:Tm 3+ . These broad emission bands were identified as originating from donor-acceptor pair recombinations. Sharp emission peak groups were observed near 435 nm, 495 nm, and 660 nm for GaS:Ho 3+ and near 672 nm for GaS:Tm 3+ . These sharp emission peak groups were identified as being due to the electron transitions between the energy levels of Ho 3+ and Tm 3+ . Especially, white photoluminescence was obtained in the GaS:Ho 3+ single crystal.

  6. Research and Development of Crystal Purification for Product of Uranium Crystallization Process

    Energy Technology Data Exchange (ETDEWEB)

    Yano, K. [Japan Atomic Energy Agency - JAEA (Japan)

    2009-06-15

    Uranium crystallization has been developed as a part of advanced aqueous reprocessing for FBR spent fuel. Although the purity of uranyl nitrate hexahydrate (UNH) crystal from the crystallization process is supposed to meet a specification of FBR blanket fuel, an improvement of its purity is able to reduce the cost of fuel fabrication and storage (in case interim storage of recovered uranium is required). In this work, UNH crystal purification was developed as additional process after crystallization. Contamination of the crystal is caused by mother solution and solid state impurities. They are inseparable by washing and filtration. Mother solution on the surface of UNH crystals is removable by washing, but it is difficult to remove that in an obstructed part of crystalline aggregate by washing. Major elements of solid state impurities are cesium and barium. Cesium precipitates with tetravalent plutonium as a double nitrate, Cs{sub 2}Pu(NO{sub 3}){sub 6}. Barium crystallizes as Ba(NO{sub 3}){sub 2} because of its low solubility in nitric acid solution. It is difficult to separate their particle from UNH crystal by solid-liquid separation such as simple filtration. As a kind of crystal purification, there are some methods using sweating. Sweating is a phenomenon that a crystal melts partly below its melting point and it is caused by depression of freezing point due to impurity. It is considerably applicable for removal of mother solution. Concerning the solid state impurities, which has higher melting point than that of UNH crystal, it is supposed that they are separable by melting UNH crystal and filtration. The behaviors of impurities and applicability of sweating and melting-filtration operations to the purification for UNH crystal were investigated experimentally on a beaker and an engineering scale. With regard to behaviors of impurities, the conditions of cesium and barium precipitation were surveyed and it was clarified that there were most impurities on the

  7. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H; Morita, Y; Ohshima, T

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  9. Diffuse Phase Transition In Non-Stoichiometric LiRbSO4 Crystals

    OpenAIRE

    Al Houty, L.; Kassem, M. E.; El-Muraikhi, M.; Mohammad, A. A.

    1992-01-01

    The influence of changing the ratio of Li2S04 on the structure transition of (RbxLi1-x)2S04 , LRS crystals, where x ranged from 0.1 to 0. 7, was studied by thermal analysis techniques in the temperature range 300 - 600 K. Multiple peaks in the DT A traces were observed for crystals having x = 0.1 and x = 0.2. The values of CP decreased while that ofT, increased with increasing Rb+ content. The excess of the specific heat for LRS crystals showed a broadening in the temperature dependence espec...

  10. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    International Nuclear Information System (INIS)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.; LaDuca, Robert L.

    2009-01-01

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)] n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)] n chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group

  11. Effect of chemical and isotope substitution in LiH crystals on polariton emission

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    Measurements of fine structure of phonon-free line of free exciton radiation in mixed crystals LiH x F 1-x (o x D 1-x (O x F 1-x crystals a sharp increase in the intensity of phonon-free line of free exciton radiation as compared with its LO repetitions is observed. The experimental results suggest manifestation of polariton effects in mixed crystals produced on the basis of lithium hydride. 17 refs., 2 figs

  12. An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers

    Science.gov (United States)

    Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.

    2018-01-01

    Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.

  13. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  14. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    International Nuclear Information System (INIS)

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R.; Burger, A.

    2009-01-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  15. Evaluation of radar reflectivity factor simulations of ice crystal populations from in situ observations for the retrieval of condensed water content in tropical mesoscale convective systems

    Directory of Open Access Journals (Sweden)

    E. Fontaine

    2017-06-01

    measured CWCIKP. It is shown that an overestimation of the concentration by about +50 % increases the relative errors of retrieved CWCs by only +29 %, while possible shattering, which impacts only the concentration of small hydrometeors, increases the relative error by about +4 %. Moreover, all cloud events with encountered graupel particles were studied and compared to events without observed graupel particles. Overall, graupel particles seem to have the largest impact on high crystal number-concentration conditions and show relative errors in retrieved CWCs that are higher than for events without graupel particles.

  16. Production and several properties of single crystal austenitic stainless steels

    International Nuclear Information System (INIS)

    Okamoto, Kazutaka; Yoshinari, Akira; Kaneda, Junya; Aono, Yasuhisa; Kato, Takahiko

    1998-01-01

    The single crystal austenitic stainless steels Type 316L and 304L were grown in order to improve the resistance to stress corrosion cracking (SCC) using a unidirectional solidification method which can provide the large size single crystals. The mechanical properties and the chemical properties were examined. The orientation and temperature dependence of tensile properties of the single crystals were measured. The yield stress of the single crystal steels are lower than those of the conventional polycrystal steels because of the grain boundary strength cannot be expected in the single crystal steels. The tensile properties of the single crystal austenitic stainless steel Type 316L depend strongly on the orientation. The tensile strength in orientation are about 200 MPa higher than those in the and orientations. The microstructure of the single crystal consists of a mixture of the continuous γ-austenitic single crystal matrix and the δ-ferrite phase so that the effects of the γ/δ boundaries on the chemical properties were studied. The effects of the δ-ferrite phases and the γ/δ boundaries on the resistance to SCC were examined by the creviced bent beam test (CBB test). No crack is observed in all the CBB test specimens of the single crystals, even at the γ/δ boundaries. The behavior of the radiation induced segregation (RIS) at the γ/δ boundaries in the single crystal austenitic stainless steel Type 316L was evaluated by the electron irradiation test in the high voltage electron microscope (HVEM). The depletion of oversized solute chromium at the γ/δ boundary in the single crystal austenitic stainless steel Type 316L is remarkably lower than that at the grain boundary in the polycrystalline-type 316L. (author)

  17. Crystals in the LHC

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  18. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo

    CERN Document Server

    Shiltsev, V.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; Assmann, R.; Previtali, V.; Scandale, W.; Chesnokov, Y.; Yazynin, I.; Guidi, V.; Ivanov, Y.

    2010-01-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding be...

  19. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy.

    Science.gov (United States)

    Aviv, Hagit; Nemtsov, Irena; Mastai, Yitzhak; Tischler, Yaakov R

    2017-10-19

    We present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules. The LF-Raman spectra of racemic and enantiopure crystals exhibit a significant variation, which we attribute to different hydrogen-bond networks in the chiral crystal structures. Across a representative set of amino acids, we observed that when comparing racemic versus enantiopure crystals, the available LFV modes and their relative scattering intensity are strong functions of side chain polarity. Thus, LF-Raman can be used as a method that is complementary to the currently used methods for characterizing crystal chirality due to simpler, faster, and more sensitive measurements, along with the small sample size required, which is limited by the laser-beam diameter in the focus.

  20. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  1. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Malik, Praveen; Raina, K.K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  2. Effect of amaranth on dielectric, thermal and optical properties of KDP single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Senthilkumar; Paulraj, Rajesh, E-mail: rajeshp@ssn.edu.in; Ramasamy, P.

    2017-01-15

    Bulk single crystals of pure and amaranth doped KDP were grown using point seed technique. Effect of amaranth doping on KDP crystals was analyzed using powder XRD, thermal analysis (TG/DTA), dielectric, photoconductivity and etching studies. The phase purity and crystallinity of pure and dye doped crystals were confirmed by powder X-ray diffraction analysis. It is observed from TG-DTA analysis that the decomposition point decreased while doping with amaranth. Dielectric constant and loss increases with increasing temperatures. The photoconductivity decreases with the increase of amaranth concentration. - Highlights: • Pure and amaranth doped KDP crystals grown from point seed technique. • The addition of amaranth changes the decomposition points of dye doped KDP crystals. • Dielectric constant is increased. • It shows positive photoconductivity.

  3. Systematic Modelling and Crystal Size Distribution Control for Batch Crystallization Processes

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli; Singh, Ravendra; Sin, Gürkan

    Crystallization processes form an important class of separation methods that are frequently used in the chemical, the pharmaceutical and the food industry. The specifications of the crystal product are usually given in terms of crystal size, shape and purity. In order to predict the desired cryst...

  4. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  5. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un [Ithaca, NY; Gruner, Sol M [Ithaca, NY

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  6. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  7. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  8. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  9. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  10. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  11. Magnetoplastic effect in irradiated NaCl and LiF crystals

    International Nuclear Information System (INIS)

    Al'shitz, V.I.; Darinskaya, E.V.; Kazakova, O.L.

    1997-01-01

    The effect of low x-ray irradiation doses (≅10 2 rad) on the magnetoplastic effect - the detachment of dislocations from paramagnetic centers under the action of an external magnetic field B - in alkali-halide crystals has been investigated. The measurements were performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The dependence of the mean free path l of the dislocations on the rotational frequency ν of a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated crystals this dependence is a single-step dependence and is characterized by a critical frequency ν c ∝B 2 above which the magnetoplastic effect is not observed. The frequency ν c depends only on the type of paramagnetic centers, and not on their density. Even the lowest irradiation dose employed ( c2 , that is insensitive to the irradiation dose, and that corresponds to the appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical frequency ν c1 , as a rule, also varies with the dose, reflecting the change in state of the impurity complexes (Ca in NaCl and Mg in LiF). Specifically, it is shown for NaCl(Ca) crystals that as the irradiation dose increases, the frequency ν c1 increases, gradually approaching the value ν c2 , so that by the time the dose is ≅300 rad, the dependence l(ν) once again becomes a single-step dependence, dropping sharply only for ν≥ν c2 . It is shown that the addition of a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the critical frequency ν c1 corresponding to them initially equals ν c2 for crystals with no Ni. The recombination kinetics of radiation defects in the case in which the samples are irradiated under a tungsten lamp was investigated. A possible physical model of the observed dependences is discussed

  12. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  13. Scintillation activity in an unirradiated single crystal of 3-hydroxyxanthine

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Alexander, C. Jr.

    1976-01-01

    A method of growing single crystals (approximately 4mm long) of 3-hydroxyxanthine is described. Observed scintillations occurring in an unirradiated single crystal of this potent oncogen as the temperature is lowered from 300 to 90 K are shown. It was found that these scintillations occur upon heating or cooling and do not diminish in activity as the number of heating and cooling cycles increase. It was found that a short duration u.v. exposure would terminate the scintillation activity and various attempts (such as annealing and pressure changes) to rejuvenate them were unsuccessful. With these observations in mind speculation is made concerning the mechanisms associated with the production of purine N-oxide derivatives. (U.K.)

  14. Magnetoresistance in molybdenite (MoS2) crystals

    International Nuclear Information System (INIS)

    Chakraborty, B.R.; Dutta, A.K.

    1975-01-01

    The principal magnetoresistance ratios of molybdenite (MoS 2 ), the naturally occurring semiconducting crystal, have been investigated at magnetic fields ranging from 4.5 KOe and within the temperature range 300 0 K to 700 0 K. Unlike some previous observations, magnetoresistance has been found to be negative. (author)

  15. Specific heat measurements in KCN:KCL mixed crystals

    International Nuclear Information System (INIS)

    Ghivelder, L.

    1983-01-01

    An adiabatic calorimeter to perform specific heat measurements of small samples (approximatelly 150 mg) was built. The measurements were taken from 6 to 120 K, iN KCN:KCL mixed crystals, in order to observe the evolution of the antiferroelectric phase transition - that occurs at 83 K in KCN pure. From the experimental results the values of the phase transition critical temperature are found, for some particular concentrations of the mixture, and it was detected that this phase transition disappears with only 10% of Cl - . This result is explained in terms of a change of the potential wells in the crystal. (Author) [pt

  16. Channelling phenomenon in the gamma irradiated Benzo-quinone and other compounds observed under the scanning electron microscope

    International Nuclear Information System (INIS)

    Suleiman, Y.M.

    1984-01-01

    Scanning Electron Microscope (S.E.M.), has been used to examine the gamma irradiated pure crystals of Benzo-quinone and other compounds in the polycrystaline form. After gamma irradiation, shallow lines (channels) were observed on the crystal's surfaces when the crystal layers arrangements are parallel to the photons beam direction. Holes were also observed when those layers of the crystals are in the nonparallel case. The phenomenon has been studied and analysed in connected with the H-atom bonds disruption, and H-atoms migration through the crystal's layers. (author)

  17. Direct observation of gliding dislocations interactions with defects in irradiated niobium single crystals by means of the high voltage electronic microscopy (HVEM)

    International Nuclear Information System (INIS)

    Otero, M.P.

    1985-01-01

    The interactions of gliding dislocations with defects in irradiated niobium that result in the formation of dislocations channels. The effects in the mechanical behaviour of [941]- and [441]- oriented Nb single crystals due to oxygen addition, neutron and electron irradiation was observed either by macroscopic deformation in a Instron machine or 'in-situ' deformation in the HVEM-High Voltage Electron Microscope. Some specimens were irradiated at IPNS-Intense Pulsed Neutron Source, at 325 K, with 5 x 10 17 n/cm 2 , others were irradiated with electrons in the HVEM. The interactions between gliding dislocations with clusters point defects and dislocations were observed. The primary mechanism for removal of the clusters by the gliding dislocations was the 'sweeping' of the clusters along with the gliding dislocations. As to the point defects, they were 'swept' by the gliding dislocations and left as aligned loops close to the intersections of the gliding dislocations with the upper and lower specimen surfaces. For the illustration of this phenomena, a schematic drawing was made. The mechanism of 'bowing-out' interaction of dislocations with defect clusters was also observed. The reported anomalous slip observed to operate in the [941]- oriented Nb was also directly observed and a qualitive explanation along with a schematic drawing was proposed. This would explain the softenig observed after the yield stress in the [941]- oriented Nb deformed in the Instron machine. (Author) [pt

  18. Global and Local Loss Suppression in the UA9 Crystal Collimation Experiment

    CERN Document Server

    Montesano, S

    2012-01-01

    UA9 was operated in the CERN-SPS for some years in view of investigating the feasibility of the halo collimation assisted by bent crystals. Silicon crystals 2 mm long with bending angles of about 150 μrad are used as primary collimators. The crystal collimation process is obtained consistently through channeling with high efficiency. The loss profiles in the area of the crystal collimator setup and in the downstream dispersion suppressor area show a steady reduction of slightly less than one order of magnitude at the onset of the channeling process. This result holds both for protons and for lead ions. The corresponding loss map in the accelerator ring is accordingly reduced. These observations strongly support our expectation that the coherent deflection of the beam halo by a bent crystal should enhance the collimation efficiency in hadron colliders, such as LHC.

  19. Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD-DSC and micro-TA

    International Nuclear Information System (INIS)

    Yonemochi, Etsuo; Hoshino, Takafumi; Yoshihashi, Yasuo; Terada, Katsuhide

    2005-01-01

    It is very difficult to follow rapid changes in polymorphic transformation and crystallization and to estimate the species recrystallized from the amorphous form. The aim of this study was to clarify the structural changes of amorphous terfenadine and to evaluate the polymorphs crystallized from amorphous samples using XRD-DSC and an atomic force microscope with a thermal probe (micro-TA). Amorphous samples were prepared by grinding or rapid cooling of the melt. The rapid structural transitions of samples were followed by the XRD-DSC system. On the DSC trace of the quenched terfenadine, two exotherms were observed, while only one exothermic peak was observed in the DSC scan of a ground sample. From the in situ data obtained by the XRD-DSC system, the stable form of terfenadine was recrystallized during heating of the ground amorphous sample, whereas the metastable form was recrystallized from the quenched amorphous sample and the crystallized polymorph changed to the stable form. Obtained data suggested that recrystallized species could be related to the homogeneity of samples. When the stored sample surface was scanned by atomic force microscopy (AFM), heterogeneous crystallization was observed. By using micro-TA, melting temperatures at various points were measured, and polymorph forms I and II were crystallized in each region. The percentages of the crystallized form I stored at 120 and 135 deg C were 47 and 79%, respectively. This result suggested that increasing the storage temperature increased the crystallization of form I, the stable form, confirming the temperature dependency of the crystallized form. The crystallization behavior of amorphous drug was affected by the annealing temperature. Micro-TA would be useful for detecting the inhomogeneities in polymorphs crystallized from amorphous drug

  20. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    Science.gov (United States)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  1. Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals

    International Nuclear Information System (INIS)

    Viswanath, B.; Shastry, V.V.; Ramamurty, U.; Ravishankar, N.

    2010-01-01

    The deterioration of the mechanical properties of bone with age is related to several factors including the structure, organization and chemistry of the constituent phases; however, the relative contribution of each of these factors is not well understood. In this study, we have investigated the effect of chemistry (calcium deficiency) on the mechanical properties of single crystals of hydroxyapatite. Single crystals of stoichiometric crystals grown by the flux method and calcium-deficient platelet crystals grown using wet chemical methods were used as model systems. Using nanoindentation, we show that calcium deficiency leads to an 80% reduction in the hardness and elastic modulus and at least a 75% reduction in toughness in plate-shaped hydroxyapatite crystals. Measurement of local mechanical properties using nanoindentation and nanoscale chemistry through elemental mapping in a transmission electron microscope points to a direct correlation between the observed spatial variation in composition and the large scatter in the measured hardness and modulus values.

  2. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    Science.gov (United States)

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.

  3. Synthesis and characterization of L-tyrosine hydrochloride crystals submitted to high and low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Santos, A.O. dos; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: New materials are emerging and generate advances in nonlinear optics that studies the phenomena related to changes in optical properties when occurs interaction of light with the matter. Semi organic crystals present such properties. The goal is this work is to produce semi organic single crystal of L-tyrosine hydrochloride (LTHCl) and verify their thermal stability when subjected to high and low temperatures. The single crystals of LTHCl were produced for solubilization of amino acid L-tyrosine in hydrochloric acid using slow solvent evaporation technique at a constant temperature of 25 deg C. The X-ray diffraction (XRD) and refining by the Rietveld method were used to confirm the structure of the material. The thermal stability was investigated using DSC, TGA-DTA. The LTHCl crystal belongs to the monoclinic system, with two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp= 8.49% and Rp= 6.29% with S=1.13. Thermal analysis shown an endothermic event at about 160°C, which can be associated with phase transition occurred in LTHCl crystal. It was also observed that the crystal melting point occurs at a temperature of 230°C. No water of crystallization was found in the crystal structure, which was confirmed by Raman spectroscopy and thermal analysis. From the Raman spectroscopy experiments in function of temperature, no significant changes was observe in the behavior of vibrational normal modes between temperatures of -253 and 170 deg C. Finally, a monoclinic crystal system LTHCl is stable up to 160°C at high temperatures and -253°C at low temperatures. Therefore, our investigation has proved that LTHCl crystals can be used in this range of temperature without the lost of their nonlinear optical properties. (author)

  4. Salvage and storage of infectious disease protein targets in the SSGCID high-throughput crystallization pathway using microfluidics

    International Nuclear Information System (INIS)

    Christensen, Jeff; Gerdts, Cory J.; Clifton, Mathew C.; Stewart, Lance

    2011-01-01

    SSGCID protein crystals were salvaged and stored using the MPCS Plug Maker and CrystalCards when high-throughput traditional sitting-drop vapor diffusion initially failed. The MPCS Plug Maker is a microcapillary-based protein-crystallization system for generating diffraction-ready crystals from nanovolumes of protein. Crystallization screening using the Plug Maker was used as a salvage pathway for proteins that failed to crystallize during the initial observation period using the traditional sitting-drop vapor-diffusion method. Furthermore, the CrystalCards used to store the crystallization experiments set up by the Plug Maker are shown be a viable container for long-term storage of protein crystals without a discernable loss of diffraction quality with time. Use of the Plug Maker with SSGCID proteins is demonstrated to be an effective crystal-salvage and storage method

  5. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  6. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  7. Crystal structure and dynamics of K2-x(NH4)xSeO4 mixed crystals studied by x-ray and neutron scattering

    International Nuclear Information System (INIS)

    Smirnov, L.S.; Natkaniec, I.; Loose, A.

    2006-01-01

    The K 2-x (NH 4 ) x SeO 4 mixed crystals have been studied by powder X-ray and neutron diffraction and inelastic incoherent neutron scattering in a wide temperature range from 300 to 16 K. No phase transition is observed in (NH 4 ) 2 SeO 4 in the range from room temperature to 20 K. The reorientation potential barriers of ammonium ions in the K 2-x (NH 4 ) x SeO 4 mixed crystals increase with the increasing concentration of ammonium ions

  8. single crystals

    Indian Academy of Sciences (India)

    2018-05-18

    May 18, 2018 ... Abstract. 4-Nitrobenzoic acid (4-NBA) single crystals were studied for their linear and nonlinear optical ... studies on the proper growth, linear and nonlinear optical ..... between the optic axes and optic sign of the biaxial crystal.

  9. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    Science.gov (United States)

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  10. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  11. Macromolecular crystallization in microgravity

    International Nuclear Information System (INIS)

    Snell, Edward H; Helliwell, John R

    2005-01-01

    Density difference fluid flows and sedimentation of growing crystals are greatly reduced when crystallization takes place in a reduced gravity environment. In the case of macromolecular crystallography a crystal of a biological macromolecule is used for diffraction experiments (x-ray or neutron) so as to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal then the greater the molecular structure detail that can be extracted. It is this structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences, with major potential in understanding disease pathologies. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyse the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural advances. Finally, limitations and alternatives to microgravity and future directions for this research are covered. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry and mathematics meet to enable insight to the fundamentals of life. As the reader will see, there is a great deal of physics involved when the microgravity environment is applied to crystallization, some of it known, and undoubtedly much yet to

  12. Crystal orientation mapping applied to the Y-TZP/WC composite

    CERN Document Server

    Faryna, M; Sztwiertnia, K

    2002-01-01

    Crystal orientation measurements made by electron backscattered diffraction (EBSD) in the scanning electron microscope (SEM) and microscopic observations provided the basis for a quantitative investigation of microstructure in an yttria stabilized, tetragonal zirconia-based (Y-TZP) composite. Automatic crystal orientation mapping (ACOM) in a SEM can be preferable to transmission electron microscopy (TEM) for microstructural characterization, since no sample thinning is required, extensive crystal data is already available, and the analysis area is greatly increased. A composite with a 20 vol.% tungsten carbide (WC) content was chosen since it revealed crystal relationships between the matrix and carbide phase already established by TEM analysis. However, this composite was difficult to investigate in the EBSD/ SEM since it is non-conductive, the Y-TZP grain size is of the order of the system resolution, and the sample surface, though carefully prepared, reveals a distinctive microtopography. In this paper, so...

  13. Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals

    Science.gov (United States)

    Conn, Fiona W.; Jong, Michael Alexander; Tan, Andre; Tseng, Robert; Park, Eunice; Ohayon, Yoel P.; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C.

    2017-10-01

    DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.

  14. Fabrication and characterization of poly(L-lactic acid) gels induced by fibrous complex crystallization with solvents

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yasuhiro [ORNL; Fukatsu, Akinobu [Shizuoka University, Hamamatsu, Japan; Wang, Yangyang [ORNL; Miyamoto, Kazuaki [Shizuoka University, Hamamatsu, Japan; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Tasaka, Shigeru [Shizuoka University, Hamamatsu, Japan

    2014-01-01

    Complex crystal induced gelation of poly(L-lactic acid) (PLLA) solutions was studied for a series of solvents, including N,N-dimethylformamide (DMF). By cooling the solutions prepared at elevated temperatures, PLLA gels were produced in solvents that induced complex crystals ( -crystals) with PLLA. Fibrous structure of PLLA in the gel with DMF was observed by polarizing optical microscopy, field emission electron microscopy, and atomic force microscopy. Upon heating, the crystal form of PLLA in the DMF gel changed from -crystal to a-crystal, the major crystal form in common untreated PLLA films, but the morphology and high elastic modulus of the gel remained until the a-crystal dissolved at higher temperature. In addition, a solvent exchanging method was developed, which allowed PLLA gels to be prepared in other useful solvents that do not induce -crystals without losing the morphology and mechanical properties.

  15. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2013-11-01

    Full Text Available We report the crystallization of electrodeposited germanium (Ge thin films on n-silicon (Si (100 by rapid melting process. The electrodeposition was carried out in germanium (IV chloride: propylene glycol (GeCl4:C3H8O2 electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  16. Twinning behavior in the Ti-5at.% Al single crystals during cyclic loading along [0001

    International Nuclear Information System (INIS)

    Xiao Lin

    2005-01-01

    Cyclic deformation behavior of Ti-5at.% Al single crystals subjected to pull-push cyclic load along [0001] crystallographic orientation was studied. A higher cyclic stress response was displayed in the Ti-5Al single crystal oriented for [0001] than that oriented for single prism slip. Optical microscopy and transmission electron microscopy examinations show that twinning is a dominant plastic deformation mode in the single crystals during cycling. Trace analysis of prepolished surfaces was used to identify the twin systems primarily responsible for deformation. The major twin type observed was {101-bar 2}, {112-bar 2}, {101-bar 1} and {112-bar 1}. slip was observed in the neighboring region of twins in the fatigued specimens. The activation of multiple twinning systems contributed to the higher cyclic saturation stress in Ti-5Al single crystals oriented for [0001

  17. Crystal-Tolerant Glass Approach For Mitigation Of Crystal Accumulation In Continuous Melters Processing Radioactive Waste

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Rodriguez, Carmen P.; Lang, Jesse B.; Huckleberry, Adam R.; Matyas, Josef; Owen, Antoinette T.

    2012-01-01

    High-level radioactive waste melters are projected to operate in an inefficient manner as they are subjected to artificial constraints, such as minimum liquidus temperature (T L ) or maximum equilibrium fraction of crystallinity at a given temperature. These constraints substantially limit waste loading, but were imposed to prevent clogging of the melter with spinel crystals [(Fe, Ni, Mn, Zn)(Fe, Cr) 2 O 4 ]. In the melter, the glass discharge riser is the most likely location for crystal accumulation during idling because of low glass temperatures, stagnant melts, and small diameter. To address this problem, a series of lab-scale crucible tests were performed with specially formulated glasses to simulate accumulation of spinel in the riser. Thicknesses of accumulated layers were incorporated into empirical model of spinel settling. In addition, T L of glasses was measured and impact of particle agglomeration on accumulation rate was evaluated. Empirical model predicted well the accumulation of single crystals and/or smallscale agglomerates, but, excessive agglomeration observed in high-Ni-Fe glass resulted in an under-prediction of accumulated layers, which gradually worsen over time as an increased number of agglomerates formed. Accumulation rate of ∼14.9 +- 1 nm/s determined for this glass will result in ∼26 mm thick layer in 20 days of melter idling

  18. Crystal plasticity study of single crystal tungsten by indentation tests

    International Nuclear Information System (INIS)

    Yao, Weizhi

    2012-01-01

    Owing to its favorable material properties, tungsten (W) has been studied as a plasma-facing material in fusion reactors. Experiments on W heating in plasma sources and electron beam facilities have shown an intense micro-crack formation at the heated surface and sub-surface. The cracks go deep inside the irradiated sample, and often large distorted areas caused by local plastic deformation are present around the cracks. To interpret the crack-induced microscopic damage evolution process in W, one needs firstly to understand its plasticity on a single grain level, which is referred to as crystal plasticity. In this thesis, the crystal plasticity of single crystal tungsten (SCW) has been studied by spherical and Berkovich indentation tests and the finite element method with a crystal plasticity model. Appropriate values of the material parameters included in the crystal plasticity model are determined by fitting measured load-displacement curves and pile-up profiles with simulated counterparts for spherical indentation. The numerical simulations reveal excellent agreement with experiment. While the load-displacement curves and the deduced indentation hardness exhibit little sensitivity to the indented plane at small indentation depths, the orientation of slip directions within the crystals governs the development of deformation hillocks at the surface. It is found that several factors like friction, indentation depth, active slip systems, misoriented crystal orientation, misoriented sample surface and azimuthal orientation of the indenter can affect the indentation behavior of SCW. The Berkovich indentation test was also used to study the crystal plasticity of SCW after deuterium irradiation. The critical load (pop-in load) for triggering plastic deformation under the indenter is found to depend on the crystallographic orientation. The pop-in loads decrease dramatically after deuterium plasma irradiation for all three investigated crystallographic planes.

  19. Laser damage metrology in biaxial nonlinear crystals using different test beams

    Science.gov (United States)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  20. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.