WorldWideScience

Sample records for nonmagnetic thin plate

  1. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  2. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  3. Ultrabroadband elastic cloaking in thin plates.

    Science.gov (United States)

    Farhat, Mohamed; Guenneau, Sebastien; Enoch, Stefan

    2009-07-10

    Control of waves with metamaterials is of great topical interest, and is fueled by rapid progress in broadband acoustic and electromagnetic cloaks. We propose a design for a cloak to control bending waves propagating in isotropic heterogeneous thin plates. This is achieved through homogenization of a multilayered concentric coating filled with piecewise constant isotropic elastic material. Significantly, our cloak displays no phase shift for both backward and forward scattering. To foster experimental efforts, we provide a simplified design of the cloak which is shown to work in a more than two-octave frequency range (30 Hz to 150 Hz) when it consists of 10 layers using only 6 different materials overall. This metamaterial should be easy to manufacture, with potential applications ranging from car industry to anti-earthquake passive systems for smart buildings, depending upon the plate dimensions and wavelengths.

  4. Transient vibration of thin viscoelastic orthotropic plates

    Czech Academy of Sciences Publication Activity Database

    Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/

  5. Deconvolution using thin-plate splines

    International Nuclear Information System (INIS)

    Toussaint, Udo v.; Gori, Silvio

    2007-01-01

    The ubiquitous problem of estimating 2-dimensional profile information from a set of line integrated measurements is tackled with Bayesian probability theory by exploiting prior information about local smoothness. For this purpose thin-plate-splines (the 2-D minimal curvature analogue of cubic-splines in 1-D) are employed. The optimal number of support points required for inversion of 2-D tomographic problems is determined using model comparison. Properties of this approach are discussed and the question of suitable priors is addressed. Finally, we illustrated the properties of this approach with 2-D inversion results using data from line-integrated measurements from fusion experiments

  6. Illumination estimation via thin-plate spline interpolation.

    Science.gov (United States)

    Shi, Lilong; Xiong, Weihua; Funt, Brian

    2011-05-01

    Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.

  7. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  8. The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary

    Directory of Open Access Journals (Sweden)

    Daniel W. Zietlow

    2012-12-01

    Full Text Available The experimentally measured resonance frequencies of a thin annular plate with a small ratio of inner to outer radii and clamped on the inner boundary are compared to the predictions of classical thin-plate (CTP theory and a finite-element (FE model. The results indicate that, contrary to the conclusions presented in a number of publications, CTP theory does not accurately predict the frequencies of a relatively small number of resonant modes at lower frequencies. It is shown that these inaccuracies are attributable to shear deformations, which are thought to be negligible in thin plates and are neglected in CTP theory. Of particular interest is the failure of CTP theory to accurately predict the resonance frequency of the lowest vibrational mode, which was shifted approximately 30% by shear motion at the inner boundary.

  9. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  10. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed

    2014-04-10

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  11. Platonic scattering cancellation for bending waves in a thin plate

    KAUST Repository

    Farhat, Mohamed; Chen, P.-Y.; Bagci, Hakan; Enoch, S.; Guenneau, S.; Alù , A.

    2014-01-01

    We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.

  12. Ultrasonic diagnosis of spot welding in thin plates

    International Nuclear Information System (INIS)

    Kim, No You; Hong, Min Sung

    2005-01-01

    Spot welding widely used in automotive and aerospace industries has made it possible to produce more precise and smaller electric part by robotization and systemization of welding process. The quality of welding depends upon the size of nugget between the overlapped steel plates. Recently, the thickness of the steel plates becomes much thinner and hence, it introduces the smaller size of nugget. Therefore, it is necessary to develop the criterion to evaluate the quality of weld in order to obtain the optimal welding conditions for the better performance. In this paper, a thin steel plates, 0.1 mm through 0.3 mm thickness, have been spot-welded at different welding conditions and the nugget sizes are examined by defocused scanning microscopy. The relationships between nugget sizes and weldability have been investigated experimentally. The result of ultrasonic technique shows the good agreement with that of the tensile test.

  13. Methodical Specifics of Thermal Experiments with Thin Carbon Reinforced Plates

    Directory of Open Access Journals (Sweden)

    O. V. Denisov

    2015-01-01

    Full Text Available Polymer composite materials (CM are widely used in creation of large space constructions, especially reflectors of space antennas. Composite materials should provide high level of specific stiffness and strength for space structures. Thermal conductivity in reinforcement plane is a significant factor in case of irregular heating space antennas. Nowadays, data on CM reinforcement plane thermal conductivity are limited and existing methods of its defining are imperfect. Basically, traditional methods allow us to define thermal conductivity in perpendicular direction towards the reinforcement plane on the samples of round or rectangular plate. In addition, the thickness of standard samples is larger than space antenna thickness. Consequently, new methods are required. Method of contact heating, which was developed by BMSTU specialists with long hollow carbon beam, could be a perspective way. This article is devoted to the experimental method of contact heating on the thin carbon plates.Thermal tests were supposed to provide a non-stationary temperature field with a gradient being co-directional with the plane reinforcement in the material sample. Experiments were conducted in vacuum chamber to prevent unstructured convection. Experimental thermo-grams processing were calculated by 1-d thermal model for a thin plate. Influence of uncertainty of experimental parameters, such as (radiation emission coefficients of sample surface, glue, temperature sensors and uncertainty of sensors placement on the result of defined thermal conductivity has been estimated. New data on the thermal conductivity in reinforcement plane were obtained within 295 - 375 K temperature range, which can be used to design and develop reflectors of precision space antennas. In the future it is expedient to conduct tests of thin-wall plates from carbon fiber-reinforced plastic in wide temperature range, especially in the low-range temperatures.

  14. Investigation of acoustic field near to elastic thin plate using integral method

    Directory of Open Access Journals (Sweden)

    В.І. Токарев

    2004-01-01

    Full Text Available  Investigation of acoustic field near to elastic thin plate using  integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.

  15. Exact result in strong wave turbulence of thin elastic plates

    Science.gov (United States)

    Düring, Gustavo; Krstulovic, Giorgio

    2018-02-01

    An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5 -Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛ ℓ , where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.

  16. Buckling of Flat Thin Plates under Combined Loading

    Directory of Open Access Journals (Sweden)

    Ion DIMA

    2015-03-01

    Full Text Available This article aims to provide a quick methodology to determine the critical values of the forces applied to the central plane of a flat isotropic plate at which a change to the stable configuration of equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, there will be presented only the most used configurations such as: rectangular flat thin plates, boundary conditions with simply supported (hinged or clamped (fixed edges, combined loadings with single compression or single shear or combination between them, compression and shear, with or without transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and elevator. The reserve factor and the critical stresses will be calculated using comparatively two methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, for a simply supported plate under combined loading, compression on the both sides and shear.

  17. Thin-plate spline analysis of mandibular growth.

    Science.gov (United States)

    Franchi, L; Baccetti, T; McNamara, J A

    2001-04-01

    The analysis of mandibular growth changes around the pubertal spurt in humans has several important implications for the diagnosis and orthopedic correction of skeletal disharmonies. The purpose of this study was to evaluate mandibular shape and size growth changes around the pubertal spurt in a longitudinal sample of subjects with normal occlusion by means of an appropriate morphometric technique (thin-plate spline analysis). Ten mandibular landmarks were identified on lateral cephalograms of 29 subjects at 6 different developmental phases. The 6 phases corresponded to 6 different maturational stages in cervical vertebrae during accelerative and decelerative phases of the pubertal growth curve of the mandible. Differences in shape between average mandibular configurations at the 6 developmental stages were visualized by means of thin-plate spline analysis and subjected to permutation test. Centroid size was used as the measure of the geometric size of each mandibular specimen. Differences in size at the 6 developmental phases were tested statistically. The results of graphical analysis indicated a statistically significant change in mandibular shape only for the growth interval from stage 3 to stage 4 in cervical vertebral maturation. Significant increases in centroid size were found at all developmental phases, with evidence of a prepubertal minimum and of a pubertal maximum. The existence of a pubertal peak in human mandibular growth, therefore, is confirmed by thin-plate spline analysis. Significant morphological changes in the mandible during the growth interval from stage 3 to stage 4 in cervical vertebral maturation may be described as an upward-forward direction of condylar growth determining an overall "shrinkage" of the mandibular configuration along the measurement of total mandibular length. This biological mechanism is particularly efficient in compensating for major increments in mandibular size at the adolescent spurt.

  18. Thin-plate spline quadrature of geodetic integrals

    Science.gov (United States)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  19. Thin Fresnel zone plate lenses for focusing underwater sound

    International Nuclear Information System (INIS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-01-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens

  20. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  1. TPSLVM: a dimensionality reduction algorithm based on thin plate splines.

    Science.gov (United States)

    Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming

    2014-10-01

    Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.

  2. The effect on the multipolar electromagnet for the levitation of thin iron plate

    Energy Technology Data Exchange (ETDEWEB)

    Osabe, H [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Watada, M [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Torii, S [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan); Ebihara, D [Dept. of Electrical and Electronic Engineering, Musashi Inst. of Technology, Tokyo (Japan)

    1996-12-31

    The thin iron plate is needed to be transported without the degradation of the quality of surface, and magnetic levitation technology is one of the solutions to satisfy these requirements. Magnetic saturation in the objective, however, is a severe problem for the levitation of the thin iron plate. Design and evaluation method of the electromagnet is studied to avoid the saturation. In this paper, the shape of the electromagnet is studied to obtain the maximum attractive force without the saturation in the thin iron plate. The magnetic saturation position is investigated first, and it is proved that the saturation occurs in the iron plate especially when it is very thin. Therefore, the preferable shape of electromagnet should be investigated to secure the large cross sectional area of flux path in the plate. The authors propose the Multipolar electromagnet to solve this problem. The relationship between the electromagnet shape and the cross sectional area of flux path in the plate is studied. (orig.)

  3. Pinning in nonmagnetic borocarbides

    International Nuclear Information System (INIS)

    Zholobenko, A.N.; Mikitik, G.P.; Fil, V.D.; Kim, J.D.; Lee, S.I.

    2005-01-01

    The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by the method which does not require the free flux flow regime. The anticipated critical current densities are estimated. These values are by two orders of magnitude higher than those measured 'directly' in transport (magnetic) experiments. The giant peak-effect in the field dependences of the Labush parameter is revealed in the Y-based borocarbides. Its behavior is well approximated by the collective pinning theory

  4. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface

    Directory of Open Access Journals (Sweden)

    Jiu-Jiu Chen

    2017-11-01

    Full Text Available The study for exotic topological effects of sound has attracted uprising interests in fundamental physics and practical applications. Based on the concept of valley pseudospin, we demonstrate the topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface, where a deterministic two-fold Dirac degeneracy is form by two plate modes. We show that the topological property can be controlled by the height of stubs deposited on the plate. By adjusting the relative heights of adjacent stubs, the valley vortex chirality and band inversion are induced, giving rise to a phononic analog of valley Hall phase transition. We further numerically demonstrate the valley states of plate-mode waves with robust topological protection. Our results provide a new route to design unconventional elastic topological insulators and will significantly broaden its practical application in the engineering field.

  5. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  6. Evaluation of wall thinning of piping with reinforcing plates using ECT with controlled exciting field

    International Nuclear Information System (INIS)

    Ichihara, Toshiaki; Xie, Shejuan; Uchimoto, Tetsuya; Takagi, Toshiyuki

    2011-01-01

    No effective inspection method exists at present for detection and evaluation of wall thinning under the reinforcing plates to T-tubes in nuclear power plants, and the establishment of the inspection method is highly required. In this study, eddy current testing (ECT) with controlled exciting field is applied to evaluation of wall thinning under the reinforcing plates of T-tubes, and their feasibility is discussed. In order to induce eddy current field in deep region of doubled plates, pulse excitation and probe structures are investigated. Through experiments using specimens simulating tubes with reinforcing plates, it is shown that pulsed ECT and conventional TR type eddy current probe with optimized configuration have a capability of detecting and sizing the wall thinning under reinforcing plates. (author)

  7. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techni...

  8. Free Vibration Analyses of FGM Thin Plates by Isogeometric Analysis Based on Classical Plate Theory and Physical Neutral Surface

    Directory of Open Access Journals (Sweden)

    Shuohui Yin

    2013-01-01

    Full Text Available The isogeometric analysis with nonuniform rational B-spline (NURBS based on the classical plate theory (CPT is developed for free vibration analyses of functionally graded material (FGM thin plates. The objective of this work is to provide an efficient and accurate numerical simulation approach for the nonhomogeneous thin plates and shells. Higher order basis functions can be easily obtained in IGA, thus the formulation of CPT based on the IGA can be simplified. For the FGM thin plates, material property gradient in the thickness direction is unsymmetrical about the midplane, so effects of midplane displacements cannot be ignored, whereas the CPT neglects midplane displacements. To eliminate the effects of midplane displacements without introducing new unknown variables, the physical neutral surface is introduced into the CPT. The approximation of the deflection field and the geometric description are performed by using the NURBS basis functions. Compared with the first-order shear deformation theory, the present method has lower memory consumption and higher efficiency. Several numerical results show that the present method yields highly accurate solutions.

  9. Surface effects on the electroelastic responses of a thin piezoelectric plate with nanoscale thickness

    International Nuclear Information System (INIS)

    Yan Zhi; Jiang Liying

    2012-01-01

    This work aims to investigate the electroelastic responses of a thin piezoelectric plate under mechanical and electrical loads with the consideration of surface effects. Surface effects, including surface elasticity, residual surface stress and surface piezoelectricity, are incorporated into the conventional Kirchhoff plate theory for a piezoelectric plate via the surface piezoelectricity model and the generalized Young-Laplace equations. Different from the results predicted by the conventional plate theory ignoring the surface effects, the proposed model predicts size-dependent behaviours of the piezoelectric thin plate with nanoscale thickness. It is found that surface effects have significant influence on the electroelastic responses of the piezoelectric nanoplate. This work is expected to provide more accurate predictions on characterizing nanofilm or nanoribbon based piezoelectric devices in nanoelectromechanical systems. (paper)

  10. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  11. Simplified description of out-of-plane waves in thin annular elastic plates

    DEFF Research Database (Denmark)

    Zadeh, Maziyar Nesari; Sorokin, Sergey

    2013-01-01

    Dispersion relations are derived for the out-of-plane wave propagation in planar elastic plates with constant curvature using the classical Kirchhoff thin plate theory. The dispersion diagrams and the mode shapes are compared with their counterparts for a straight plate strip and the role...... of curvature is assessed for plates with unconstrained edges. Elementary Bernoulli–Euler theory for a beam of rectangular cross-section with the circular shape of its axis is also employed to analyze the wave guide properties of this structure in its out-of-plane deformation. The applicability range...... of the elementary beam theory is validated. The wave finite element method in the formulation of the three-dimensional elasticity theory is used to ensure that the comparison of dispersion diagrams is performed in the frequency range, where the classical thin plate theory is valid. Thus, the paper summarizes...

  12. stability analysis of ssss thin rectangular plate using multi

    African Journals Online (AJOL)

    user

    The stability analysis of all four edges simply supported (SSSS) thin ... average percentage difference of K – values from two previous works and the present study when compared with ... freedom eigen value problem of the elastic buckling of.

  13. Experimental and numerical study of guided wave propagation in a thin metamaterial plate

    International Nuclear Information System (INIS)

    Zhu, R.; Huang, G.L.; Huang, H.H.; Sun, C.T.

    2011-01-01

    In this Letter, both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. Through the numerical simulation, a new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. Experiments were conducted to validate the numerical design. In the experiment, piezoelectric transducers were used to generate and receive guided wave signals. The results show that the numerical predictions are in very good agreement with the experimental measurements. Specifically, the connection between the local resonance in the thin plate and its wave attenuation mechanism was discussed. -- Highlights: → Both in-plane and out-of-plane guided waves in a thin plate with local resonators are studied numerically and experimentally. → A new metamaterial plate design is achieved for a low-frequency bandgap in both in-plane and out-of-plane guided waves. → Experiments were conducted to validate the numerical design. → The connection between the local resonance in the thin plate and its wave attenuation mechanism was investigated.

  14. Radiographic testing methods for welds of thin titanium plates and thin wall tubes

    International Nuclear Information System (INIS)

    1984-01-01

    This standard stipulates the testing method by X-ray radiography for the welded parts of titanium plates and titanium tubes with thickness not exceeding 8 mm. The other items than those stipulated here shall be in accordance with JIS Z 3107-1973 ''Testing method by radiography for the welded part of titanium and method of grade classification of radiographs''. As the photographing method of radiographs, the performance of the equipment and materials for testing, the direction of X-ray irradiation, the thickness of parent materials and welds, the use of penetrameters, the arrangement for photographing, the requirement for radiographs and the observation of radiographs are specified. The X-ray apparatuses, photo-sensitive materials and the tools for photographing and observation must be such that the radiographs clearly showing the defects in the welds being tested can be taken or observed. The JIS Z 3107 is insufficient for the test of thin materials like titanium, therefore, this standard was set down. As the thickness of welds, the thickness of parent materials was taken. In this standard, the titanium penetrameters were adopted because they can be made and they conform to practical state. If magnified photographing is carried out with microfocus X-ray apparatuses, precise photographing can be made. (Kako, I.)

  15. Antibacterial Properties of Titanate Nano fiber Thin Films Formed on a Titanium Plate

    International Nuclear Information System (INIS)

    Yada, M.; Inoue, Y.; Morita, T.; Torikai, T.; Watari, T.; Noda, I.; Hotokebuchi, T.

    2013-01-01

    A sodium titanate nano fiber thin film and a silver nanoparticle/silver titanate nano fiber thin film formed on the surface of a titanium plate exhibited strong antibacterial activities against methicillin-resistant Staphylococcus aureus, which is one of the major bacteria causing in-hospital infections. Exposure of the sodium titanate nano fiber thin film to ultraviolet rays generated a high antibacterial activity due to photo catalysis and the sodium titanate nano fiber thin film immediately after its synthesis possessed a high antibacterial activity even without exposure to ultraviolet rays. Elution of silver from the silver nanoparticle/silver titanate nano fiber thin film caused by the silver ion exchange reaction was considered to contribute substantially to the strong antibacterial activity. The titanate nano fiber thin films adhered firmly to titanium. Therefore, these titanate nano fiber thin film/titanium composites will be extremely useful as implant materials that have excellent antibacterial activities.

  16. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates.

    Science.gov (United States)

    Joshi, S G; Zaitsev, B D; Kuznetsova, I E; Teplykh, A A; Pasachhe, A

    2006-12-22

    The characteristics of the three lowest order plate waves (A(0), S(0), and SH(0)) propagating in piezoelectric plates whose thickness h is much less than the acoustic wavelength lambda are theoretically analyzed. It is found that these waves can provide much higher values of electromechanical coupling coefficient K(2) and lower values of temperature coefficient of delay (TCD) than is possible with surface acoustic waves (SAWs). For example, in 30Y-X lithium niobate, the SH(0) mode has K(2)=0.46 and TCD=55 ppm/degrees C. The corresponding values for SAW in the widely used, strong coupling material of 128Y-X lithium niobate are K(2)=0.053 and TCD=75 ppm/degrees C. Another important advantage of plate waves is that, unlike the case of SAWs, they can operate satisfactorily in contact with a liquid medium, thus making possible their use in liquid phase sensors.

  17. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wang

    2018-01-01

    Full Text Available This study performs a structural optimization of anatomical thin titanium mesh (ATTM plate and optimal designed ATTM plate fabricated using additive manufacturing (AM to verify its stabilization under fatigue testing. Finite element (FE analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  18. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    Science.gov (United States)

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  19. Measurement errors for thermocouples attached to thin plates

    International Nuclear Information System (INIS)

    Sobolik, K.B.; Keltner, N.R.; Beck, J.V.

    1989-01-01

    This paper discusses Unsteady Surface Element (USE) methods which are applied to a model of a thermocouple wire attached to a thin disk. Green's functions are used to develop the integral equations for the wire and the disk. The model can be used to evaluate transient and steady state responses for many types of heat flux measurement devices including thin skin calorimeters and circular foil (Gardon) head flux gauges. The model can accommodate either surface or volumetric heating of the disk. The boundary condition at the outer radius of the disk can be either insulated or constant temperature. Effect on the errors of geometrical and thermal factors can be assessed. Examples are given

  20. The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,

    Science.gov (United States)

    1987-06-11

    Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1

  1. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    Science.gov (United States)

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  2. Development of quadrilateral spline thin plate elements using the B-net method

    Science.gov (United States)

    Chen, Juan; Li, Chong-Jun

    2013-08-01

    The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.

  3. The directional propagation characteristics of elastic wave in two-dimensional thin plate phononic crystals

    International Nuclear Information System (INIS)

    Wen Jihong; Yu, Dianlong; Wang Gang; Zhao Honggang; Liu Yaozong; Wen Xisen

    2007-01-01

    The directional propagation characteristics of elastic wave during pass bands in two-dimensional thin plate phononic crystals are analyzed by using the lumped-mass method to yield the phase constant surface. The directions and regions of wave propagation in phononic crystals for certain frequencies during pass bands are predicted with the iso-frequency contour lines of the phase constant surface, which are then validated with the harmonic responses of a finite two-dimensional thin plate phononic crystals with 16x16 unit cells. These results are useful for controlling the wave propagation in the pass bands of phononic crystals

  4. The ion plating of optical thin films for the infrared

    International Nuclear Information System (INIS)

    Reid, I.M.; Macleod, H.A.; Carter, M.J.; Henderson, E.

    1979-01-01

    Although excellent humidity resistance was achieved with diode ion plated zinc sulphide antireflection films on germanium substrates the abrasion resistance was found to be poor. This could be attributed to an intense columnar structure with very loose packing. To improve the abrasion resistance it was found necessary to add a third electrode which allowed the discharge to be sustained at lower pressures, and to heat the substrates during deposition. (author)

  5. Experimental investigation of thermal loading of a horizontal thin plate using infrared camera

    Directory of Open Access Journals (Sweden)

    M.Y. Abdollahzadeh Jamalabadi

    2014-07-01

    Full Text Available This study reports the results of experimental investigations of the characteristics of thermal loading of a thin plate by discrete radiative heat sources. The carbon–steel thin plate is horizontally located above the heat sources. Temperature distribution of the plate is measured using an infrared camera. The effects of various parameters, such as the Rayleigh number, from 107 to 1011, the aspect ratio, from 0.05 to 0.2, the distance ratio, from 0.05 to 0.2, the number of heaters, from 1 to 24, the thickness ratio, from 0.003 to 0.005, and the thermal radiative emissivity, from 0.567 to 0.889 on the maximum temperature and the length of uniform temperature region on a thin plate are explored. The results indicate that the most effective parameters on the order of impact on the maximum temperature is Rayleigh number, the number of heat sources, the distance ratio, the aspect ratio, the surface emissivity, and the plate thickness ratio. Finally, the results demonstrated that there is an optimal distance ratio to maximize the region of uniform temperature on the plate.

  6. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    Science.gov (United States)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-04-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  7. Fingerprint Matching by Thin-plate Spline Modelling of Elastic Deformations

    NARCIS (Netherlands)

    Bazen, A.M.; Gerez, Sabih H.

    2003-01-01

    This paper presents a novel minutiae matching method that describes elastic distortions in fingerprints by means of a thin-plate spline model, which is estimated using a local and a global matching stage. After registration of the fingerprints according to the estimated model, the number of matching

  8. Spectral and directional radiation characteristics of thin-film coated isothermal semitransparent plates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R P; Viskanta, R

    1975-01-01

    An analysis is presented for predicting the effective spectral directional radiation characteristics of an isothermal, semitransparent sheet surrounded on both sides by massive dielectrics. The sheet can be coated with an optically thin film and used as selective cover plates for solar collectors. Directional and polarization effects and the spectral transmittance and reflectance are considered. Sample results for candidate materials are presented.

  9. Flow influence on a mode of flow choking in the airfoil cascade of the thin plates

    Directory of Open Access Journals (Sweden)

    Л.Г. Волянська

    2005-01-01

    Full Text Available  Flow of viscous compressible gas is considered in the airfoil cascade of the thin plates with great negative angle of attack. Influence of wall boundary layer upon a mode of  flow choking in the airfoil cascade is estimated in the article.

  10. Nondestructive evaluation of wall thinning occurred under reinforced plate by MFL method

    International Nuclear Information System (INIS)

    Kikuchi, Hiroaki; Sato, Kaito; Shimizu, Isamu

    2013-01-01

    Basic study on applying magnetic flux leakage (MFL) method using ac excitation to a nondestructive evaluation of wall thinning occurred under reinforcing plates in nuclear power plants were performed. Frequently, MFL method by means of dc field for exciting specimens is adopted, and only intensity of magnetic flux density is evaluated. On the other hand, MFL with alternating current enable us to utilize not only amplitude of magnetic flux density but also phase difference, which contributes to evaluation with higher accuracy. Here, specimens with slit and pipe with imitated wall thinning are prepared and magnetized using magnetic yoke with ac field, and then the leakage magnetic flux density and the phase difference on the specimen surface are investigated. Additionally, specimens imitated wall thinning occurred under reinforcing plates were investigated by MFL with ac excitation. (author)

  11. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  12. Modeling of damage evaluation in thin composite plate loaded by pressure loading

    Directory of Open Access Journals (Sweden)

    Dudinský M.

    2012-12-01

    Full Text Available This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis has been performed by means of the finite element method (FEM. The numerical implementation uses layered plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means of the Newton- Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm based on the continuum damage mechanics (CDM. The analysis was performed using own program created in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials and three different laminate stacking sequences (LSS was simulated. Evolution of stresses vs. strains and also evolution of damage variables in critical points of the structure are shown.

  13. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    actuator drive is the only form-fit continuous drive solution currently available for the development of high performance nonmagnetic motors. In this research focus will be on the non magnetic compact high efficiency driver for the piezo actuators and on employing energy recovery from the capacitive...

  14. Nonmagnetic impurities in magnetic superconductors

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1989-01-01

    The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented

  15. Hydrodynamic resistance of the friction plates with longitudinal mikroborizdkamy and thin elastic coating

    Directory of Open Access Journals (Sweden)

    В.І. Коробов

    2008-03-01

    Full Text Available  Weight measurements in a water tunnel have shown that there exist a range of parameters of longitudinally fine-ribbed surface such that turbulent friction in flow over the surface is less then that over a smooth flat plate of the same projected area. Damping coating made from the thin layer of an elastic material and have interior longitudinal ribs of rigidity (overturn riblets is more effective than usual riblets.

  16. Thin-plate spline (TPS) graphical analysis of the mandible on cephalometric radiographs.

    Science.gov (United States)

    Chang, H P; Liu, P H; Chang, H F; Chang, C H

    2002-03-01

    We describe two cases of Class III malocclusion with and without orthodontic treatment. A thin-plate spline (TPS) analysis of lateral cephalometric radiographs was used to visualize transformations of the mandible. The actual sites of mandibular skeletal change are not detectable with conventional cephalometric analysis. These case analyses indicate that specific patterns of mandibular transformation are associated with Class III malocclusion with or without orthopaedic therapy, and visualization of these deformations is feasible using TPS graphical analysis.

  17. Thin layer chromatography of glucose and sorbitol on Cu(II)-impregnated silica gel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hadzija, O. (Ruder Boskovic Inst., Zagreb (Croatia)); Spoljar, B. (Ruder Boskovic Inst., Zagreb (Croatia)); Sesartic, L. (Inst. of Immunology, Zagreb (Croatia))

    1994-04-01

    A thin-layer chromatographic (TLC) separation of glucose and sorbitol on CU(II)-impregnated silica gel plates with n-propanol: Water (4:1) v/v as developer and potassium permanganate as detecting reagent has been worked out. The new impregnant is completely insoluble in water and thus enables the use of an aqueous developer. The R[sub f]-values are 55 and 10 for glucose and sorbitol, respectively. (orig.)

  18. Landmark-based elastic registration using approximating thin-plate splines.

    Science.gov (United States)

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  19. Microstructures and Mechanical Properties of Austempering SUS440 Steel Thin Plates

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chen

    2016-02-01

    Full Text Available SUS440 is a high-carbon stainless steel, and its martensite matrix has high heat resistance, high corrosion resistance, and high pressure resistance. It has been widely used in mechanical parts and critical materials. However, the SUS440 martempered matrix has reliability problems in thin plate applications and thus research uses different austempering heat treatments (tempering temperature: 200 °C–400 °C to obtain a matrix containing bainite, retained austenite, martensite, and the M7C3 phase to investigate the relationships between the resulting microstructure and tensile mechanical properties. Experimental data showed that the austempering conditions of the specimen affected the volume fraction of phases and distribution of carbides. After austenitizing heat treatment (1080 °C for 30 min, the austempering of the SUS440 thin plates was carried out at a salt-bath temperature 300 °C for 120 min and water quenching was then used to obtain the bainite matrix with fine carbides, with the resulting material having a higher tensile fracture strength and average hardness (HRA 76 makes it suitable for use as a high-strength thin plate for industrial applications.

  20. A pinned or free-floating rigid plate on a thin viscous film

    KAUST Repository

    Trinh, Philippe  H.; Wilson, Stephen  K.; Stone, Howard  A.

    2014-01-01

    © 2014 Cambridge University Press. A pinned or free-floating rigid plate lying on the free surface of a thin film of viscous fluid, which itself lies on top of a horizontal substrate that is moving to the right at a constant speed is considered. The focus of the present work is to describe how the competing effects of the speed of the substrate, surface tension, viscosity, and, in the case of a pinned plate, the prescribed pressure in the reservoir of fluid at its upstream end, determine the possible equilibrium positions of the plate, the free surface, and the flow within the film. The present problems are of interest both in their own right as paradigms for a range of fluid-structure interaction problems in which viscosity and surface tension both play an important role, and as a first step towards the study of elastic effects.

  1. A pinned or free-floating rigid plate on a thin viscous film

    KAUST Repository

    Trinh, Philippe H.

    2014-11-11

    © 2014 Cambridge University Press. A pinned or free-floating rigid plate lying on the free surface of a thin film of viscous fluid, which itself lies on top of a horizontal substrate that is moving to the right at a constant speed is considered. The focus of the present work is to describe how the competing effects of the speed of the substrate, surface tension, viscosity, and, in the case of a pinned plate, the prescribed pressure in the reservoir of fluid at its upstream end, determine the possible equilibrium positions of the plate, the free surface, and the flow within the film. The present problems are of interest both in their own right as paradigms for a range of fluid-structure interaction problems in which viscosity and surface tension both play an important role, and as a first step towards the study of elastic effects.

  2. Investigation of the Section Thickness Measurement in Tomosynthesis by Thin Metal Plate Edge Method.

    Science.gov (United States)

    Ikeno, Kaoru; Akita, Tsunemichi; Hanai, Kozo; Muramatsu, Yoshihisa

    When performing tomosynthesis, the section thickness needs to be set depending on a radiographic part and its diagnostic purpose. However, the section thickness in tomosynthesis has not been clearly defined and its measurement method has not been established yet. In this study, we devised the alternative measurement method to diagnose the section thickness using an edge of thin metal plate, and compared with the simulation results, the wire and bead method reported in the previous papers. The tomographic image of the thin metal plate positioned on the table top inclining 30 degrees, which showed the edge spread function (ESF) of each tomographic height, was taken, and then the line spread function (LSF) was obtained by differentiating the ESF image. For the next, a profile curve was plotted by maximum values of LSF of each tomographic height, and a section thickness was calculated using the full width at half maximum (FWHM) of the profile curve. The edge method derived the section thickness close to the simulation results than the other methods. Further, the section thickness depends on the thickness of the metal plate and not the material. The thickness of the metal plate suitable for the evaluation of section thickness is 0.3 mm that is equivalent to pixel size of the flat panel detector (FPD). We conducted quantitative verification to establish the measurement method of the section thickness. The edge method is a useful technique as well as the wire and bead method for grasping basic characteristics of an imaging system.

  3. Vortex Shedding Characteristics of the Wake of a Thin Flat Plate with a Circular Trailing Edge

    Science.gov (United States)

    Rai, Man Mohan

    2018-01-01

    The near and very near wake of a thin flat plate with a circular trailing edge are investigated with direct numerical simulations (DNS). Data obtained for two different Reynolds numbers (based on plate thickness, D) are the main focus of this study. The separating boundary layers are turbulent in both cases. An earlier investigation of one of the cases (Case F) showed shed vortices in the wake that were about 1.0 D to 4.0 D in spanwise length. Considerable variation in both the strength and frequency of these shed vortices was observed. One objective of the present investigation is to determine the important contributors to this variability in strength and frequency of shed vortices and their finite spanwise extent. Analysis of the data shows that streamwise vortices in the separating boundary layer play an important role in strengthening/weakening of the shed vortices and that high/low-speed streaks in the boundary layer are important contributors to variability in shedding frequency. Both these features of the boundary layer contribute to the finite extent of the vortices in the spanwise direction. The second plate DNS (Case G, with 40 percent of the plate thickness of Case F) shows that while shedding intensity is weaker than obtained in Case F, many of the wake features are similar to that of Case F. This is important in understanding the path to the wake of the thin plate with a sharp trailing edge where shedding is absent. Here we also test the efficacy of a functional relationship between the shedding frequency and the Reynolds numbers based on the boundary layer momentum thickness (Re (sub theta) and D (Re (sub D)); data for developing this behavioral model is from Cases F & G and five earlier DNSs of the flat plate wake.

  4. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines

    Science.gov (United States)

    Shen, Xiang; Liu, Bin; Li, Qing-Quan

    2017-03-01

    The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates

  5. Non-linear analysis of skew thin plate by finite difference method

    International Nuclear Information System (INIS)

    Kim, Chi Kyung; Hwang, Myung Hwan

    2012-01-01

    This paper deals with a discrete analysis capability for predicting the geometrically nonlinear behavior of skew thin plate subjected to uniform pressure. The differential equations are discretized by means of the finite difference method which are used to determine the deflections and the in-plane stress functions of plates and reduced to several sets of linear algebraic simultaneous equations. For the geometrically non-linear, large deflection behavior of the plate, the non-linear plate theory is used for the analysis. An iterative scheme is employed to solve these quasi-linear algebraic equations. Several problems are solved which illustrate the potential of the method for predicting the finite deflection and stress. For increasing lateral pressures, the maximum principal tensile stress occurs at the center of the plate and migrates toward the corners as the load increases. It was deemed important to describe the locations of the maximum principal tensile stress as it occurs. The load-deflection relations and the maximum bending and membrane stresses for each case are presented and discussed

  6. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  7. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  8. Single-electron pulse-height spectra in thin-gap parallel-plate chambers

    CERN Document Server

    Fonte, Paulo J R; Peskov, Vladimir; Policarpo, Armando

    1999-01-01

    Single-electron pulse-height spectra were measured in 0.6 and 1.2 mm parallel-plate chambers developed for the TOF system of the ALICE /LHC-HI experiment. Mixtures of Ar with ethane, isobutane, and SF/sub 6/ were studied. The observed spectrum shows a clear peak for all gases, suggesting efficient single-electron detection in thin parallel-plate structures. The pulse-height spectrum can be described by the weighted sum of an exponential and a Polya distribution, the Polya contribution becoming more important at higher gains. Additionally, it was found that the maximum gain, above 10/sup 6/, is limited by the appearance of streamers and depends weakly on the gas composition. The suitability of each mixture for single-electron detection is also quantitatively assessed. (8 refs).

  9. Experimental investigations of sandwich panels using high performance concrete thin plates exposed to fire

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    Structural sandwich panels using thin high performance concrete (HPC) plates offer a possibility to address the modern environmental challenges faced by the construction industry. Fire resistance is a major necessity in structures using HPC. This paper presents experimental studies at elevated...... temperatures for panels with 30 mm thick plates stiffened by structural ribs, thick insulation layers, and steel shear connecting systems. Parametric variation assessing the role of each component of the sandwich structure was performed on unloaded specimens of reduced size. Full size walls were tested...... with load. Tests were performed in standard furnaces, following the conditions of REI certification tests. Unloaded specimens successfully passed tests. Loaded specimens met the R and I requirements, failing E due to sustained flaming of the insulation. They exhibited multiple cracking of their exposed...

  10. Analysis of thin plates with holes by using exact geometrical representation within XFEM.

    Science.gov (United States)

    Perumal, Logah; Tso, C P; Leng, Lim Thong

    2016-05-01

    This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

  11. Alternate model of Chladni figures for the circular homogenous thin plate case with open boundaries

    International Nuclear Information System (INIS)

    Trejo-Mandujano, H A; Mijares-Bernal, G; Ordoñez-Casanova, E G

    2015-01-01

    The wave equation is a direct but a complex approach to solve analytically for the Chladni figures, mainly because of the complications that non-smooth and open boundary conditions impose. In this paper, we present an alternate solution model based on the principle of Huygens-Fresnel and on the ideas of Bohr for the hydrogen atom. The proposed model has been implemented numerically and compared, with good agreement, to our own experimental results for the case of a thin homogenous circular plate with open boundaries

  12. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Crecy, F de

    1994-12-31

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs.

  13. Registration of segmented histological images using thin plate splines and belief propagation

    Science.gov (United States)

    Kybic, Jan

    2014-03-01

    We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to standard methods at a fraction of the computational cost.

  14. Pseudo-cubic thin-plate type Spline method for analyzing experimental data

    International Nuclear Information System (INIS)

    Crecy, F. de.

    1993-01-01

    A mathematical tool, using pseudo-cubic thin-plate type Spline, has been developed for analysis of experimental data points. The main purpose is to obtain, without any a priori given model, a mathematical predictor with related uncertainties, usable at any point in the multidimensional parameter space. The smoothing parameter is determined by a generalized cross validation method. The residual standard deviation obtained is significantly smaller than that of a least square regression. An example of use is given with critical heat flux data, showing a significant decrease of the conception criterion (minimum allowable value of the DNB ratio). (author) 4 figs., 1 tab., 7 refs

  15. Topological valley-chiral edge states of Lamb waves in elastic thin plates

    Science.gov (United States)

    Wang, Jian; Mei, Jun

    2018-05-01

    We investigate the nontrivial topology of the band structure of Lamb waves in a thin phononic crystal plate. When inversion symmetry is broken, a valley pseudospin degree of freedom is formed around K and K‧ valleys for the A0 Lamb mode, which is decoupled from the S0 and SH0 modes in the low-frequency regime. Chiral edge states are explicitly demonstrated, which are immune to defects and exhibit unidirectional transport behaviors when intervalley scattering is weak. The quantum valley Hall effect is thus simulated in a simple way in the context of Lamb waves.

  16. Interpretation of moving EM dipole-dipole measurements using thin plate models

    International Nuclear Information System (INIS)

    Oksama, M.; Suppala, I.

    1998-01-01

    The three dimensional inversion of electromagnetic data is still rather problematic, because forward modelling programs are usually time consuming. They are based on numerical methods like finite element or integral equation methods. In the study a specific model for interpretation: two thin plates, which are located in a horizontally layered earth with two layers has been chosen. The model is rather limited, but in a few geological cases it is relevant. This interpretation method has been applied for two geophysical EM-systems, the slingram-system and the airborne electromagnetic system of the Geological Survey of Finland (GTK)

  17. Interpretation of moving EM dipole-dipole measurements using thin plate models

    Energy Technology Data Exchange (ETDEWEB)

    Oksama, M.; Suppala, I. [Geological Survey of Finland, Espoo (Finland)

    1998-09-01

    The three dimensional inversion of electromagnetic data is still rather problematic, because forward modelling programs are usually time consuming. They are based on numerical methods like finite element or integral equation methods. In the study a specific model for interpretation: two thin plates, which are located in a horizontally layered earth with two layers has been chosen. The model is rather limited, but in a few geological cases it is relevant. This interpretation method has been applied for two geophysical EM-systems, the slingram-system and the airborne electromagnetic system of the Geological Survey of Finland (GTK) 5 refs.

  18. Contribution of apparently non-operating loadings to the buckling of thin shells and plates

    International Nuclear Information System (INIS)

    Delaigue, Didier.

    1980-02-01

    This work includes four parts: in the first part, the Kirchhoff-Love theory of thin shells is described, a theory taken up and developed by Koiter and whose modelling seems to meet the problems of engineers. The second part deals with the buckling of a thin plate subjected to a load along a part of its edge, of which a part or all is seemingly inoperative. In the third part the study is extended to shells of any shape subjected to a conservative loading of the ''dead-loading'' type along part of their edges. On the basis of the results of the previous study, a study is then made on the taking into account of any load applied to the edge of a thin shell. In the fourth part the previous results are applied to the study of the buckling of a thin shell with a circular base subjected along a part of its edge to a normal prestress and to twisting moments linear density [fr

  19. Photo-induced hydrophilicity of TiO2-xNx thin films on PET plates

    International Nuclear Information System (INIS)

    Chou, H.-Y.; Lee, E.-K.; You, J.-W.; Yu, S.-S.

    2007-01-01

    TiO 2-x N x thin films were deposited on PET (polyethylene terephthalate) plates by sputtering a TiN target in a N 2 /O 2 plasma and without heating. X-ray photoemission spectroscopy (XPS) was used to investigate the N 1s, Ti 2p core levels and the nitrogen composition in the TiO 2-x N x films. The results indicate that Ti-O-N bonds are formed in the thin films. Two nitrogen states, substitution and interstitial nitrogen atoms, were attributed to peaks at 396 and 399 eV, respectively. It was observed that the nitrogen atoms occupy both the substitutive and interstitial sites in respective of the nitrogen content in the thin films. UV-VIS absorption spectroscopy of PET coated thin films shows a significant shift of the absorption edge to lower energy in the visible-light region. UV and visible-light irradiation are used to activate PET coated thin films for the development of hydrophilicity. The photo-induced surface wettability conversion reaction of the thin films has been investigated by means of water contact angle measurement. PET plates coated with TiO 2-x N x thin films are found to exhibit lower water contact angle than non-coated plates when the surface is illuminated with UV and visible light. The effects of nitrogen doping on photo-generated hydrophilicity of the thin films are investigated in this work

  20. Experimental Studies on the Fire Behaviour of High Performance Concrete Thin Plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2015-01-01

    In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents experimen......In recent decades, the use of structural high performance concrete (HPC) sandwich panels made with thin plates has increased as a response to modern environmental challenges. Fire endurance is a requirement in structural HPC elements, as for most structural elements. This paper presents....... The parametric assessment of the specimen performance included: thickness of the specimen, testing apparatus, and concrete mix (both with and without polypropylene fibres). The results verified the ability of H-TRIS to impose an equivalent thermal boundary condition to that imposed during a standard furnace test......, with good repeatability, and at comparatively low economic and temporal costs. The results demonstrated that heat induced concrete spalling occurred 1 to 5 min earlier, and in a more destructive manner, for thinner specimens. An analysis is presented combining the thermal material degradation, vapour pore...

  1. RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach.

    Science.gov (United States)

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.

  2. Quantification of the spatial strain distribution of scoliosis using a thin-plate spline method.

    Science.gov (United States)

    Kiriyama, Yoshimori; Watanabe, Kota; Matsumoto, Morio; Toyama, Yoshiaki; Nagura, Takeo

    2014-01-03

    The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green-Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis. © 2013 Elsevier Ltd. All rights reserved.

  3. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Science.gov (United States)

    Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing

    2017-01-01

    Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  4. 3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.

    Directory of Open Access Journals (Sweden)

    Yucong Chen

    Full Text Available Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF for the reference craniofacial model. Second, the thin-plate spline transform (TPST is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.

  5. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  6. Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate

    Science.gov (United States)

    Issokolo, Remi J. Noumana; Dikandé, Alain M.

    2018-05-01

    A thin liquid film falling on a uniformly heated horizontal plate spreads into fingering ripples that can display a complex dynamics ranging from continuous waves, nonlinear spatially localized periodic wave patterns (i.e., rivulet structures) to modulated nonlinear wavetrain structures. Some of these structures have been observed experimentally; however, conditions under which they form are still not well understood. In this work, we examine profiles of nonlinear wave patterns formed by a thin liquid film falling on a uniformly heated horizontal plate. For this purpose, the Benney model is considered assuming a uniform temperature distribution along the film propagation on the horizontal surface. It is shown that for strong surface tension but a relatively small Biot number, spatially localized periodic-wave structures can be analytically obtained by solving the governing equation under appropriate conditions. In the regime of weak nonlinearity, a multiple-scale expansion combined with the reductive perturbation method leads to a complex Ginzburg-Landau equation: the solutions of which are modulated periodic pulse trains which amplitude and width and period are expressed in terms of characteristic parameters of the model.

  7. The power flow angle of acoustic waves in thin piezoelectric plates.

    Science.gov (United States)

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  8. Multiple scattering and stop band characteristics of flexural waves on a thin plate with circular holes

    Science.gov (United States)

    Wang, Zuowei; Biwa, Shiro

    2018-03-01

    A numerical procedure is proposed for the multiple scattering analysis of flexural waves on a thin plate with circular holes based on the Kirchhoff plate theory. The numerical procedure utilizes the wave function expansion of the exciting as well as scattered fields, and the boundary conditions at the periphery of holes are incorporated as the relations between the expansion coefficients of exciting and scattered fields. A set of linear algebraic equations with respect to the wave expansion coefficients of the exciting field alone is established by the numerical collocation method. To demonstrate the applicability of the procedure, the stop band characteristics of flexural waves are analyzed for different arrangements and concentrations of circular holes on a steel plate. The energy transmission spectra of flexural waves are shown to capture the detailed features of the stop band formation of regular and random arrangements of holes. The increase of the concentration of holes is found to shift the dips of the energy transmission spectra toward higher frequencies as well as deepen them. The hexagonal hole arrangement can form a much broader stop band than the square hole arrangement for flexural wave transmission. It is also demonstrated that random arrangements of holes make the transmission spectrum more complicated.

  9. Determination of stress multipliers for thin perforated plates with square array of holes

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Murli, B.; Kushwaha, H.S.

    1991-01-01

    The peak stress multipliers are required to determine the maximum stresses in perforated plates for the realistic evaluation of their fatigue life. The Section III of ASME Boiler and Pressure Vessels Code does not provide any information about such multipliers to be used in thin perforated plates with square penetration pattern. Although such multipliers for membrane loadings are available in literature, they were obtained either by classical analysis or by photoelastic experiments and there is no significant finite element analysis in this area. Also it has been a common practice among designers to apply the same multipliers for loads producing bending type of stress. The stress multipliers in bending are lower than those in membrane. Therefore a reduction of resultant peak stress occurs if proper stress multipliers are used for bending. The present paper is aimed at developing a finite element technique which can be used for determining the peak stress multipliers in thin plates for membrane as well as bending loads. A quarter symmetric part of a 3 x 3 square array was chosen for the analysis. The results were obtained by computer programs PAFEC and COSMOS/M using 2-D plane stress elements for the membrane and degenerated 3-D shell element for the bending part. The results for the membrane are compared with Bailey, Hicks and Hulbert and with Meijers' finite element results for the bending part. A study was made at the initial stage by analysing a 6 x 6 square array to see the effect of holes beyond one pitch, which were left out by the 3 x 3 array and the effect of additional holes was found to be negligible. Therefore it was decided to carry out further analysis with 3 x 3 square array. Photoelastic experiments were also performed to validate the results obtained by theoretical analysis. (author)

  10. Minimizing the scattering of a nonmagnetic cloak

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    Nonmagnetic cloak offers a feasible way to achieve invisibility at optical frequencies using materials with only electric responses. In this letter, we suggest an approximation of the ideal nonmagnetic cloak and quantitatively study its electromagnetic characteristics using a full-wave scattering...

  11. Rigorous analysis of non-magnetic cloaks

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    Nonmagnetic cloak offers a feasible way to achieve invisibility at optical frequencies using materials with only electric responses. In this letter, we suggest an approximation of the ideal nonmagnetic cloak and quantitatively study its electromagnetic characteristics using a full-wave scattering...... to the surrounding material at the outer boundary. Our analysis also provides the flexibility of reducing the scattering in an arbitrary direction....

  12. Simulation Study on the Deflection Response of the 921A Steel thin plate under Explosive Impact Load

    Science.gov (United States)

    Zhang, Yu-Xiang; Chen, Fang; Han, Yan

    2018-03-01

    The Ship cabin would be subject to high-intensity shock wave load when it is attacked by anti-ship weapons, causing its side board damaged. The time course of the deflection of the thin plate made of 921A steel in different initial conditions under the impact load is researched by theoretical analysis and numerical simulation. According to the theory of elastic-plastic deformation of the thin plate, the dynamic response equation of the thin plate under the explosion impact load is established with the method of energy, and the theoretical calculation value is compared with the result from the simulation method. It proved that the theoretical calculation method has better reliability and accuracy in different boundary size.

  13. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    OpenAIRE

    Jun Zhang; Yaolu Liu; Wensheng Yan; Ning Hu

    2017-01-01

    We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA) thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our invest...

  14. Fixation of the stressed state of glass plates by coating them with thin films using a plasma focus installation

    Science.gov (United States)

    Kolokoltsev, V. N.; Degtiarev, V. F.; Borovitskaya, I. V.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Eriskin, A. A.

    2018-01-01

    Elastic deformation in transparent mediums is usually studied by the photoelasticity method. For opaque mediums the method of film coating and strain gauge method are used. After the external load was removed, the interference pattern corresponding to elastic deformation of the material disappears. It is found that the elastic deformation state of the thin glass plate under the action of concentrated load can be fixed during the deposition of a thin metal film. Deposition of thin copper films was carried out by passing of plasma through the copper tube installed inside the Plasma Focus installation. After removing of the load, interference pattern on the glass plates was observed in the form of Newton’s rings and isogers in non-monochromatic light on the CCD scanners which uses uorescent lamps with cold cathode. It is supposed that the copper film fixes the relief of the surface of the glass plate at the time of deformation and saves it when the load is removed. In the case of a concentrated load, this relief has the shape of a thin lens of large radius. For this reason, the interference of coherent light rays in a thin air gap between the glass of the scanners atbed and the lens surface has the shape of Newton's rings. In this case, when scanning the back side of the plate, isogyres are observed. The presented method can be used in the analysis of the mechanical stress in a various optical elements.

  15. Deposition of indium tin oxide thin films by cathodic arc ion plating

    International Nuclear Information System (INIS)

    Yang, M.-H.; Wen, J.-C.; Chen, K.-L.; Chen, S.-Y.; Leu, M.-S.

    2005-01-01

    Indium tin oxide (ITO) thin films have been deposited by cathodic arc ion plating (CAIP) using sintered oxide target as the source material. In an oxygen atmosphere of 200 deg. C, ITO films with a lowest resistivity of 2.2x10 -4 Ω-cm were obtained at a deposition rate higher than 450 nm/min. The carrier mobility of ITO shows a maximum at some medium pressures. Although morphologically ITO films with a very fine nanometer-sized structure were observed to possess the lowest resistivity, more detailed analyses based on X-ray diffraction are attempted to gain more insight into the factors that govern electron mobility in this investigation

  16. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    Science.gov (United States)

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  17. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  18. Influence of Basalt FRP Mesh Reinforcement on High-Performance Concrete Thin Plates at High Temperatures

    DEFF Research Database (Denmark)

    Hulin, Thomas; Lauridsen, Dan H.; Hodicky, Kamil

    2015-01-01

    A basalt fiber–reinforced polymer (BFRP) mesh was introduced as reinforcement in high-performance concrete (HPC) thin plates (20–30 mm) for implementation in precast sandwich panels. An experimental program studied the BFRP mesh influence on HPC exposed to high temperature. A set of standard...... furnace tests compared performances of HPC with and without BFRP mesh, assessing material behavior; another set including polypropylene (PP) fibers to avoid spalling compared the performance of BFRP mesh reinforcement to that of regular steel reinforcement, assessing mechanical properties......, requiring the use of steel. Microscope observations highlighted degradation of the HPC-BFRP mesh interface with temperature due to the melting polymer matrix of the mesh. These observations call for caution when using fiber-reinforced polymer (FRP) reinforcement in elements exposed to fire hazard....

  19. Experimental procedure for the characterization of cyclic behavior from very thin plate specimens

    International Nuclear Information System (INIS)

    Maury, A.; Moulin, D.

    1983-01-01

    Many investigators, including those involved in the INTERNATIONAL BENCHMARK PROJECT ON SIMPLIFIED METHODS FOR ELEVATED TEMPERATURE DESIGN AND ANALYSIS - PROBLEM II, have tried to reproduce experimentally observed behavior by inelastic calculations. Unfortunately, the material characteristics used in the computer code were established from monotonic tensile tests performed with specimens extracted from the plate product itself (1.45 mm thick) employed to construct the ratchetting specimen. It now appears that the cyclic behavior of the material is much more relevant to the phenomenon observed. Hence the need to make this kind of characterization. Nevertheless, the practical problem is to produce cyclic stresses, i.e. tensile and compressive stresses, with very thin specimens. The main difficulty is to prevent the buckling effect. A new special device set up for this particular purpose is described here. The solution adopted was to create uniformly distributed alternative pure bending stresses in the thin plate specimen. Bending moments were produced by two end-grips fixed to the specimen, and these grips were mounted on a conventional test-machine which was displacement-controlled. To reduce tensile and compressive membrane stresses inside the specimen, the grips had two parallel axles of rotation. The forces produced by the machine and the displacements of a number of points of the specimen were continuously recorded during the test, so that cyclically stabilized, bending moments could be evaluated easily for each curvature variation imposed. The very first cyclic experimental data obtained, at room temperature, for the material of the sodium test specimen, a 316 type stainless steel, are presented. It may be noted that the simple specimens were very easy to prepare and hence inexpensive. (orig.)

  20. Thin-plate spline analysis of the cranial base in subjects with Class III malocclusion.

    Science.gov (United States)

    Singh, G D; McNamara, J A; Lozanoff, S

    1997-08-01

    The role of the cranial base in the emergence of Class III malocclusion is not fully understood. This study determines deformations that contribute to a Class III cranial base morphology, employing thin-plate spline analysis on lateral cephalographs. A total of 73 children of European-American descent aged between 5 and 11 years of age with Class III malocclusion were compared with an equivalent group of subjects with a normal, untreated, Class I molar occlusion. The cephalographs were traced, checked and subdivided into seven age- and sex-matched groups. Thirteen points on the cranial base were identified and digitized. The datasets were scaled to an equivalent size, and statistical analysis indicated significant differences between average Class I and Class III cranial base morphologies for each group. Thin-plate spline analysis indicated that both affine (uniform) and non-affine transformations contribute toward the total spline for each average cranial base morphology at each age group analysed. For non-affine transformations, Partial warps 10, 8 and 7 had high magnitudes, indicating large-scale deformations affecting Bolton point, basion, pterygo-maxillare, Ricketts' point and articulare. In contrast, high eigenvalues associated with Partial warps 1-3, indicating localized shape changes, were found at tuberculum sellae, sella, and the frontonasomaxillary suture. It is concluded that large spatial-scale deformations affect the occipital complex of the cranial base and sphenoidal region, in combination with localized distortions at the frontonasal suture. These deformations may contribute to reduced orthocephalization or deficient flattening of the cranial base antero-posteriorly that, in turn, leads to the formation of a Class III malocclusion.

  1. Creating high-resolution digital elevation model using thin plate spline interpolation and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pohjola, J.; Turunen, J.; Lipping, T.

    2009-07-01

    In this report creation of the digital elevation model of Olkiluoto area incorporating a large area of seabed is described. The modeled area covers 960 square kilometers and the apparent resolution of the created elevation model was specified to be 2.5 x 2.5 meters. Various elevation data like contour lines and irregular elevation measurements were used as source data in the process. The precision and reliability of the available source data varied largely. Digital elevation model (DEM) comprises a representation of the elevation of the surface of the earth in particular area in digital format. DEM is an essential component of geographic information systems designed for the analysis and visualization of the location-related data. DEM is most often represented either in raster or Triangulated Irregular Network (TIN) format. After testing several methods the thin plate spline interpolation was found to be best suited for the creation of the elevation model. The thin plate spline method gave the smallest error in the test where certain amount of points was removed from the data and the resulting model looked most natural. In addition to the elevation data the confidence interval at each point of the new model was required. The Monte Carlo simulation method was selected for this purpose. The source data points were assigned probability distributions according to what was known about their measurement procedure and from these distributions 1 000 (20 000 in the first version) values were drawn for each data point. Each point of the newly created DEM had thus as many realizations. The resulting high resolution DEM will be used in modeling the effects of land uplift and evolution of the landscape in the time range of 10 000 years from the present. This time range comes from the requirements set for the spent nuclear fuel repository site. (orig.)

  2. Surface enhanced Raman scattering imaging of developed thin-layer chromatography plates.

    Science.gov (United States)

    Freye, Chris E; Crane, Nichole A; Kirchner, Teresa B; Sepaniak, Michael J

    2013-04-16

    A method for hyphenating surface enhanced Raman scattering (SERS) and thin-layer chromatography (TLC) is presented that employs silver-polymer nanocomposites as an interface. Through the process of conformal blotting, analytes are transferred from TLC plates to nanocomposite films before being imaged via SERS. A procedure leading to maximum blotting efficiency was established by investigating various parameters such as time, pressure, and type and amount of blotting solvent. Additionally, limits of detection were established for test analytes malachite green isothiocyanate, 4-aminothiophenol, and Rhodamine 6G (Rh6G) ranging from 10(-7) to 10(-6) M. Band broadening due to blotting was minimal (∼10%) as examined by comparing the spatial extent of TLC-spotted Rh6G via fluorescence and then the SERS-based spot size on the nanocomposite after the blotting process. Finally, a separation of the test analytes was carried out on a TLC plate followed by blotting and the acquisition of distance × wavenumber × intensity three-dimensional TLC-SERS plots.

  3. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods

    International Nuclear Information System (INIS)

    Nazarov, S A

    2008-01-01

    Korn inequalities have been obtained for junctions of massive elastic bodies, thin plates, and rods in many different combinations. These inequalities are asymptotically sharp thanks to the introduction of various weight factors in the L 2 -norms of the displacements and their derivatives. Since thin bodies display different reactions to stretching and bending, such Korn inequalities are necessarily anisotropic. Junctions of elastic bodies with contrasting stiffness are allowed, but the constants in the inequalities obtained are independent of both the relative thickness h element of (0,1] and the relative rigidity μ element of (0,+∞). The norms corresponding to rigidly clamped elements of a structure are essentially different from the norms corresponding to hard-movable or movable elements that are not fastened directly, but only by means of neighbouring elements; therefore, an adequate structure of the weighted anisotropic norms is determined by the geometry of the whole junction. Each variant of Korn inequality is supplied with an example confirming the optimal choice of the weight factors

  4. Elastic behavior and onset of cracking in cement composite plates reinforced by perforated thin steel sheets

    Science.gov (United States)

    Aronchik, V.

    1996-03-01

    Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.

  5. Spacer grid for fuel assembly of nuclear reactor comprising opposite support points made with elastic thin plates

    International Nuclear Information System (INIS)

    Feutrel, C.

    1983-01-01

    Two series of thin walls form square cells, each containing a fuel pencil. Support points are made in the cells walls. Splines obtained by two parallel slots in the length of the cells. The reaction of fuel pencil produce a deformation of the elastic splines made in the plate, for compensation of the tolerance allowed on the diameter of the pencils [fr

  6. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  7. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  8. Doping properties of ZnO thin films for photovoltaic devices grown by URT-IP (ion plating) method

    International Nuclear Information System (INIS)

    Iwata, K.; Sakemi, T.; Yamada, A.; Fons, P.; Awai, K.; Yamamoto, T.; Matsubara, M.; Tampo, H.; Sakurai, K.; Ishizuka, S.; Niki, S.

    2004-01-01

    The Uramoto-gun with Tanaka magnetic field (URT)-ion plating (IP) method is a novel ion plating technique for thin film deposition. This method offers the advantage of low-ion damage, low deposition temperatures, large area deposition and high growth rates. Ga-doped ZnO thin films were grown using the URT-IP method, and the doping properties were evaluated. The opposing goals of low Ga composition and low resistivity are required for industrial applications of transparent conductive oxide (TCO). We have carried out a comparison between the carrier concentration and Ga atomic concentration in Ga-doped ZnO thin films and found the trade-off point for optimal TCO performance. The optimum growth conditions were obtained using a 3% Ga 2 O 3 content ZnO target

  9. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  10. Development of a selective thin film and of a hermetically sealed flat plate solar collector with gas filling

    Science.gov (United States)

    Zernial, W.

    1982-12-01

    The industrial productibility of a selective absorbing thin film was investigated on the basis of reactive cathodic sputtering of Ni. On substrates of 1.8 sq m of Al, Cu, steel and stainless steel, solar absorption values up to 97% were achieved at emissivities of 5 to 10%. A prototype flat plate collector for high temperatures with two covers and hermetical sealing was developed. The technical data of the collector were measured, dependent on the selectivity of the absorber, gas fillings of dry air, argon or SF6 and the geometry and were compared with those of an evacuated flat plate collector. A hermetical sealed double flat plate collector for low temperatures was developed which has the advantage of lower no load temperatures and higher energy gain for heating swimming pool water compared with a conventional flat plate collector. The insolation values on collectors were measured and were used for a calculation of the energy gains of different collector types.

  11. Mandibular transformations in prepubertal patients following treatment for craniofacial microsomia: thin-plate spline analysis.

    Science.gov (United States)

    Hay, A D; Singh, G D

    2000-01-01

    To analyze correction of mandibular deformity using an inverted L osteotomy and autogenous bone graft in patients exhibiting unilateral craniofacial microsomia (CFM), thin-plate spline analysis was undertaken. Preoperative, early postoperative, and approximately 3.5-year postoperative posteroanterior cephalographs of 15 children (age 10+/-3 years) with CFM were scanned, and eight homologous mandibular landmarks digitized. Average mandibular geometries, scaled to an equivalent size, were generated using Procrustes superimposition. Results indicated that the mean pre- and postoperative mandibular configurations differed statistically (PThin-plate spline analysis indicated that the total spline (Cartesian transformation grid) of the pre- to early postoperative configuration showed mandibular body elongation on the treated side and inferior symphyseal displacement. The affine component of the total spline revealed a clockwise rotation of the preoperative configuration, whereas the nonaffine component was responsible for ramus, body, and symphyseal displacements. The transformation grid for the early and late postoperative comparison showed bilateral ramus elongation. A superior symphyseal displacement contrasted with its earlier inferior displacement, the affine component had translocated the symphyseal landmarks towards the midline. The nonaffine component demonstrated bilateral ramus lengthening, and partial warps suggested that these elongations were slightly greater on the nontreated side. The affine component of the pre- and late postoperative comparison also demonstrated a clockwise rotation. The nonaffine component produced the bilateral ramus elongations-the nontreated side ramus lengthening slightly more than the treated side. It is concluded that an inverted L osteotomy improves mandibular morphology significantly in CFM patients and permits continued bilateral ramus growth. Copyright 2000 Wiley-Liss, Inc.

  12. Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions

    International Nuclear Information System (INIS)

    Baratchart, L; Hardin, D P; Saff, E B; Lima, E A; Weiss, B P

    2013-01-01

    Recently developed scanning magnetic microscopes measure the magnetic field in a plane above a thin-plate magnetization distribution. These instruments have broad applications in geoscience and materials science, but are limited by the requirement that the sample magnetization must be retrieved from measured field data, which is a generically nonunique inverse problem. This problem leads to an analysis of the kernel of the related magnetization operators, which also has relevance to the ‘equivalent source problem’ in the case of measurements taken from just one side of the magnetization. We characterize the kernel of the operator relating planar magnetization distributions to planar magnetic field maps in various function and distribution spaces (e.g., sums of derivatives of L p (Lebesgue spaces) or bounded mean oscillation (BMO) functions). For this purpose, we present a generalization of the Hodge decomposition in terms of Riesz transforms and utilize it to characterize sources that do not produce a magnetic field either above or below the sample, or that are magnetically silent (i.e. no magnetic field anywhere outside the sample). For example, we show that a thin-plate magnetization is silent (i.e. in the kernel) when its normal component is zero and its tangential component is divergence free. In addition, we show that compactly supported magnetizations (i.e. magnetizations that are zero outside of a bounded set in the source plane) that do not produce magnetic fields either above or below the sample are necessarily silent. In particular, neither a nontrivial planar magnetization with fixed direction (unidimensional) compact support nor a bidimensional planar magnetization (i.e. a sum of two unidimensional magnetizations) that is nontangential can be silent. We prove that any planar magnetization distribution is equivalent to a unidimensional one. We also discuss the advantages of mapping the field on both sides of a magnetization, whenever experimentally

  13. Stable, microfabricated thin layer chromatography plates without volume distortion on patterned, carbon and Al₂O₃-primed carbon nanotube forests.

    Science.gov (United States)

    Jensen, David S; Kanyal, Supriya S; Gupta, Vipul; Vail, Michael A; Dadson, Andrew E; Engelhard, Mark; Vanfleet, Richard; Davis, Robert C; Linford, Matthew R

    2012-09-28

    Some of us recently described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests via direct infiltration/coating of the CNTs by low pressure chemical vapor deposition (LPCVD) of silicon from SiH₄, followed by high temperature oxidation of the CNTs and Si. Herein we present an improved microfabrication process for the preparation of these TLC plates. First, a few nanometers of carbon and/or a thin film of Al₂O₃ is deposited on the CNTs. This method of priming the CNTs for subsequent depositions appears to be new. X-ray photoelectron spectroscopy confirms the presence of additional oxygen after carbon deposition. After priming, the plates are coated by rapid, conformal deposition of an inorganic material that does not require subsequent oxidation, i.e., by a fast pseudo atomic layer deposition (ψ-ALD) of SiO₂ from trimethylaluminum and tris(tert-butoxy)silanol. Unlike devices described previously, faithful reproduction of the features in the masks is still observed after oxidation. A bonded, amino phase on the resulting plates shows fast, highly efficient separations of fluorescent dyes (plate heights in the range of 1.6-7.7 μm). Extensive characterization of the new materials by TEM, SEM, EDAX, DRIFT, and XPS is reported. A substantially lower process temperature for the removal of the CNT scaffold is possible as a result of the already oxidized materials used. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Digital elevation model production from scanned topographic contour maps via thin plate spline interpolation

    International Nuclear Information System (INIS)

    Soycan, Arzu; Soycan, Metin

    2009-01-01

    GIS (Geographical Information System) is one of the most striking innovation for mapping applications supplied by the developing computer and software technology to users. GIS is a very effective tool which can show visually combination of the geographical and non-geographical data by recording these to allow interpretations and analysis. DEM (Digital Elevation Model) is an inalienable component of the GIS. The existing TM (Topographic Map) can be used as the main data source for generating DEM by amanual digitizing or vectorization process for the contours polylines. The aim of this study is to examine the DEM accuracies, which were obtained by TMs, as depending on the number of sampling points and grid size. For these purposes, the contours of the several 1/1000 scaled scanned topographical maps were vectorized. The different DEMs of relevant area have been created by using several datasets with different numbers of sampling points. We focused on the DEM creation from contour lines using gridding with RBF (Radial Basis Function) interpolation techniques, namely TPS as the surface fitting model. The solution algorithm and a short review of the mathematical model of TPS (Thin Plate Spline) interpolation techniques are given. In the test study, results of the application and the obtained accuracies are drawn and discussed. The initial object of this research is to discuss the requirement of DEM in GIS, urban planning, surveying engineering and the other applications with high accuracy (a few deci meters). (author)

  15. Thin-plate spline graphical analysis of the mandible in mandibular prognathism.

    Science.gov (United States)

    Chang, Hsin-Fu; Chang, Hong-Po; Liu, Pao-Hsin; Chang, Chih-Han

    2002-11-01

    The chin cup has been used to treat skeletal mandibular prognathism in growing patients for 200 years. The pull on the orthopedic-force chin cup is oriented along a line from the mandibular symphysis to the mandibular condyle. Various levels of success have been reported with this restraining device. The vertical chin cup produces strong vertical compression stress on the maxillary molar regions when the direction of traction is 20 degrees more vertical than the chin-condyle line. This treatment strategy may prevent relapse due to counter-clockwise rotation of the mandible. In this report, we describe a new strategy for using chin-cup therapy involving thin-plate spline (TPS) analysis of lateral cephalometric roentgenograms to visualize transformation of the mandible. The actual sites of mandibular skeletal change are not detectable with conventional cephalometric analysis. A case of mandibular prognathism treated with a chin cup and a case of dental Class III malocclusion without orthodontic treatment are described. The case analysis illustrates that specific patterns of mandibular transformation are associated with Class III malocclusion with or without orthopedic therapy, and that visualization of these deformations is feasible using TPS graphical analysis.

  16. Ethnicity and skeletal Class III morphology: a pubertal growth analysis using thin-plate spline analysis.

    Science.gov (United States)

    Alkhamrah, B; Terada, K; Yamaki, M; Ali, I M; Hanada, K

    2001-01-01

    A longitudinal retrospective study using thin-plate spline analysis was used to investigate skeletal Class III etiology in Japanese female adolescents. Headfilms of 40 subjects were chosen from the archives of the Orthodontic department at Niigata University Dental Hospital, and were traced at IIIB and IVA Hellman dental ages. Twenty-eight homologous landmarks, representing hard and soft tissue, were digitized. These were used to reproduce a consensus for the profilogram, craniomaxillary complex, mandible, and soft tissue for each age and skeletal group. Generalized least-square analysis revealed a significant shape difference between age-matched groups (P spline and partial warps (PW)3 and 2 showed a maxillary retrusion at stage IIIB opposite an acute cranial base at stage IVA. Mandibular total spline and PW4, 5 showed changes affecting most landmarks and their spatial interrelationship, especially a stretch along the articulare-pogonion axis. In soft tissue analysis, PW8 showed large and local changes which paralleled the underlying hard tissue components. Allometry of the mandible and anisotropy of the cranial base, the maxilla, and the mandible asserted the complexity of craniofacial growth and the difficulty of predicting its outcome.

  17. Thin-plate spline analysis of craniofacial morphology in subjects with adenoid or tonsillar hypertrophy.

    Science.gov (United States)

    Baroni, Michela; Ballanti, Fabiana; Polimeni, Antonella; Franchi, Lorenzo; Cozza, Paola

    2011-04-01

    To compare the skeletal features of subjects with adenoid hypertrophy with those of children with tonsillar hypertrophy using thin-plate spline (TPS) analysis. A group of 20 subjects (9 girls and 11 boys; mean age 8.4 ± 0.9 years) with adenoid hypertrophy (AG) was compared with a group of 20 subjects (10 girls and 10 boys; mean age 8.2 ± 1.1 years) with tonsillar hypertrophy (TG). Craniofacial morphology was analyzed on the lateral cephalograms of the subjects in both groups by means of TPS analysis. A cross-sectional comparison was performed on both size and shape differences between the two groups. AG exhibited statistically significant shape and size differences in craniofacial configuration with respect to TG. Subjects with adenoid hypertrophy showed an upward dislocation of the anterior region of the maxilla, a more downward/backward position of the anterior region of the mandibular body and an upward/backward displacement of the condylar region. Conversely, subjects with tonsillar hypertrophy showed a downward dislocation of the anterior region of the maxilla, a more upward/forward position of the anterior region of the mandibular body and a downward/forward displacement of the condylar region. Subjects with adenoid hypertrophy exhibited features suggesting a more retrognathic mandible while subjects with tonsillar hypertrophy showed features suggesting a more prognathic mandible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Thin-plate spline analysis of craniofacial growth in Class I and Class II subjects.

    Science.gov (United States)

    Franchi, Lorenzo; Baccetti, Tiziano; Stahl, Franka; McNamara, James A

    2007-07-01

    To compare the craniofacial growth characteristics of untreated subjects with Class II division 1 malocclusion with those of subjects with normal (Class I) occlusion from the prepubertal through the postpubertal stages of development. The Class II division 1 sample consisted of 17 subjects (11 boys and six girls). The Class I sample also consisted of 17 subjects (13 boys and four girls). Three craniofacial regions (cranial base, maxilla, and mandible) were analyzed on the lateral cephalograms of the subjects in both groups by means of thin-plate spline analysis at T1 (prepubertal) and T2 (postpubertal). Both cross-sectional and longitudinal comparisons were performed on both size and shape differences between the two groups. The results showed an increased cranial base angulation as a morphological feature of Class II malocclusion at the prepubertal developmental phase. Maxillary changes in either shape or size were not significant. Subjects with Class II malocclusion exhibited a significant deficiency in the size of the mandible at the completion of active craniofacial growth as compared with Class I subjects. A significant deficiency in the size of the mandible became apparent in Class II subjects during the circumpubertal period and it was still present at the completion of active craniofacial growth.

  19. Applying Emax model and bivariate thin plate splines to assess drug interactions.

    Science.gov (United States)

    Kong, Maiying; Lee, J Jack

    2010-01-01

    We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95 per cent point-wise confidence interval as well as its 95 per cent simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies.

  20. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    Science.gov (United States)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  1. A thin-plate spline analysis of the face and tongue in obstructive sleep apnea patients.

    Science.gov (United States)

    Pae, E K; Lowe, A A; Fleetham, J A

    1997-12-01

    The shape characteristics of the face and tongue in obstructive sleep apnea (OSA) patients were investigated using thin-plate (TP) splines. A relatively new analytic tool, the TP spline method, provides a means of size normalization and image analysis. When shape is one's main concern, various sizes of a biologic structure may be a source of statistical noise. More seriously, the strong size effect could mask underlying, actual attributes of the disease. A set of size normalized data in the form of coordinates was generated from cephalograms of 80 male subjects. The TP spline method envisioned the differences in the shape of the face and tongue between OSA patients and nonapneic subjects and those between the upright and supine body positions. In accordance with OSA severity, the hyoid bone and the submental region positioned inferiorly and the fourth vertebra relocated posteriorly with respect to the mandible. This caused a fanlike configuration of the lower part of the face and neck in the sagittal plane in both upright and supine body positions. TP splines revealed tongue deformations caused by a body position change. Overall, the new morphometric tool adopted here was found to be viable in the analysis of morphologic changes.

  2. Boundary integral equation methods and numerical solutions thin plates on an elastic foundation

    CERN Document Server

    Constanda, Christian; Hamill, William

    2016-01-01

    This book presents and explains a general, efficient, and elegant method for solving the Dirichlet, Neumann, and Robin boundary value problems for the extensional deformation of a thin plate on an elastic foundation. The solutions of these problems are obtained both analytically—by means of direct and indirect boundary integral equation methods (BIEMs)—and numerically, through the application of a boundary element technique. The text discusses the methodology for constructing a BIEM, deriving all the attending mathematical properties with full rigor. The model investigated in the book can serve as a template for the study of any linear elliptic two-dimensional problem with constant coefficients. The representation of the solution in terms of single-layer and double-layer potentials is pivotal in the development of a BIEM, which, in turn, forms the basis for the second part of the book, where approximate solutions are computed with a high degree of accuracy. The book is intended for graduate students and r...

  3. A high-quality narrow passband filter for elastic SV waves via aligned parallel separated thin polymethylmethacrylate plates

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2017-08-01

    Full Text Available We designed a high-quality filter that consists of aligned parallel polymethylmethacrylate (PMMA thin plates with small gaps for elastic SV waves propagate in metals. Both the theoretical model and the full numerical simulation show the transmission spectrum of the elastic SV waves through such a filter has several sharp peaks with flawless transmission within the investigated frequencies. These peaks can be readily tuned by manipulating the geometry parameters of the PMMA plates. Our investigation finds that the same filter performs well for different metals where the elastic SV waves propagated.

  4. Effect of Chloride on Tensile and Bending Capacities of Basalt FRP Mesh Reinforced Cementitious Thin Plates under Indoor and Marine Environments

    Directory of Open Access Journals (Sweden)

    Yan Xie

    2016-01-01

    Full Text Available This paper presented a durability experimental study for thin basalt fiber reinforced polymer (BFRP mesh reinforced cementitious plates under indoor and marine environment. The marine environment was simulated by wetting/drying cycles (wetting in salt water and drying in hot air. After 12 months of exposure, the effects of the chloride on the tensile and bending behaviors of the thin plate were investigated. In addition to the penetration of salt water, the chloride in the thin plate could be also from the sea sand since it is a component of the plate. Experimental results showed that the effect of the indoor exposure on the tensile capacity of the plate is not pronounced, while the marine exposure reduced the tensile capacity significantly. The bending capacity of the thin plates was remarkably reduced by both indoor and marine environmental exposure, in which the effect of the marine environment is more severe. The tensile capacity of the meshes extracted from the thin plates was tested, as well as the meshes immersed in salt solution for 30, 60, and 90 days. The test results confirmed that the chloride is the reason of the BFRP mesh deterioration. Moreover, as a comparison, the steel mesh reinforced thin plate was also tested and it has a similar durability performance.

  5. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  6. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    Science.gov (United States)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  7. Thin-plate Spline Analysis of the Effects of Face Mask Treatment in Children with Maxillary Retrognathism

    OpenAIRE

    Jenny Zwei-Chieng Chang; Yi-Jane Chen; Jane Chung-Chen Yao; Frank Hsin-Fu Chang

    2006-01-01

    Face mask therapy is indicated for growing patients who suffer from maxillary retrognathia. Most previous studies used conventional cephalometric analysis to evaluate the effects of face mask treatment. Cephalometric analysis has been shown to be insufficient for complex craniofacial configurations. The purpose of this study was to investigate changes in the craniofacial structure of children with maxillary retrognathism following face mask treatment by means of thin-plate spline analysis. ...

  8. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  9. Effects of early activator treatment in patients with class II malocclusion evaluated by thin-plate spline analysis.

    Science.gov (United States)

    Lux, C J; Rübel, J; Starke, J; Conradt, C; Stellzig, P A; Komposch, P G

    2001-04-01

    The aim of the present longitudinal cephalometric study was to evaluate the dentofacial shape changes induced by activator treatment between 9.5 and 11.5 years in male Class II patients. For a rigorous morphometric analysis, a thin-plate spline analysis was performed to assess and visualize dental and skeletal craniofacial changes. Twenty male patients with a skeletal Class II malrelationship and increased overjet who had been treated at the University of Heidelberg with a modified Andresen-Häupl-type activator were compared with a control group of 15 untreated male subjects of the Belfast Growth Study. The shape changes for each group were visualized on thin-plate splines with one spline comprising all 13 landmarks to show all the craniofacial shape changes, including skeletal and dento-alveolar reactions, and a second spline based on 7 landmarks to visualize only the skeletal changes. In the activator group, the grid deformation of the total spline pointed to a strong activator-induced reduction of the overjet that was caused both by a tipping of the incisors and by a moderation of sagittal discrepancies, particularly a slight advancement of the mandible. In contrast with this, in the control group, only slight localized shape changes could be detected. Both in the 7- and 13-landmark configurations, the shape changes between the groups differed significantly at P thin-plate spline analysis turned out to be a useful morphometric supplement to conventional cephalometrics because the complex patterns of shape change could be suggestively visualized.

  10. Thin-plate spline analysis of the effects of face mask treatment in children with maxillary retrognathism.

    Science.gov (United States)

    Chang, Jenny Zwei-Chieng; Liu, Pao-Hsin; Chen, Yi-Jane; Yao, Jane Chung-Chen; Chang, Hong-Po; Chang, Chih-Han; Chang, Frank Hsin-Fu

    2006-02-01

    Face mask therapy is indicated for growing patients who suffer from maxillary retrognathia. Most previous studies used conventional cephalometric analysis to evaluate the effects of face mask treatment. Cephalometric analysis has been shown to be insufficient for complex craniofacial configurations. The purpose of this study was to investigate changes in the craniofacial structure of children with maxillary retrognathism following face mask treatment by means of thin-plate spline analysis. Thirty children with skeletal Class III malocclusions who had been treated with face masks were compared with a group of 30 untreated gender-matched, age-matched, observation period-matched, and craniofacial configuration-matched subjects. Average geometries, scaled to an equivalent size, were generated by means of Procrustes analysis. Thin-plate spline analysis was then performed for localization of the shape changes. Face mask treatment induced a forward displacement of the maxilla, a counterclockwise rotation of the palatal plane, a horizontal compression of the anterior border of the symphysis and the condylar region, and a downward deformation of the menton. The cranial base exhibited a counterclockwise deformation as a whole. We conclude that thin-plate spline analysis is a valuable supplement to conventional cephalometric analysis.

  11. A 680 V LDMOS on a thin SOI with an improved field oxide structure and dual field plate

    International Nuclear Information System (INIS)

    Wang Zhongjian; Cheng Xinhong; Xia Chao; Xu Dawei; Cao Duo; Song Zhaorui; Yu Yuehui; Shen Dashen

    2012-01-01

    A 680 V LDMOS on a thin SOI with an improved field oxide (FOX) and dual field plate was studied experimentally. The FOX structure was formed by an 'oxidation-etch-oxidation' process, which took much less time to form, and had a low protrusion profile. A polysilicon field plate extended to the FOX and a long metal field plate was used to improve the specific on-resistance. An optimized drift region implant for linear-gradient doping was adopted to achieve a uniform lateral electric field. Using a SimBond SOI wafer with a 1.5 μm top silicon and a 3 μm buried oxide layer, CMOS compatible SOI LDMOS processes are designed and implemented successfully. The off-state breakdown voltage reached 680 V, and the specific on-resistance was 8.2 Ω·mm 2 . (semiconductor devices)

  12. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  13. Influence of inclined Lorentz force on micropolar fluids in a square cavity with uniform and nonuniform heated thin plate

    Energy Technology Data Exchange (ETDEWEB)

    Periyadurai, K. [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Muthtamilselvan, M., E-mail: muthtamill@yahoo.co.in [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Doh, Deog-Hee [Division of Mechanical Engineering, College of Engineering,Korea Maritime Ocean University, Busan 606781 (Korea, Republic of)

    2016-12-15

    In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid. - Highlights: • We investigate the effect of inclined magnetic field on micropolar fluid in a cavity. • The effects of uniform and non-uniform heated plate are studied. • The present numerical results are compared with the experimental results. • The addition of vortex viscosity parameter declines the heat transfer performance. • The high heat transfer rate occurs in the vertical plate compared to the horizontal one.

  14. Mutual Inductance Problem for a System Consisting of a Current Sheet and a Thin Metal Plate

    Science.gov (United States)

    Fulton, J. P.; Wincheski, B.; Nath, S.; Namkung, M.

    1993-01-01

    Rapid inspection of aircraft structures for flaws is of vital importance to the commercial and defense aircraft industry. In particular, inspecting thin aluminum structures for flaws is the focus of a large scale R&D effort in the nondestructive evaluation (NDE) community. Traditional eddy current methods used today are effective, but require long inspection times. New electromagnetic techniques which monitor the normal component of the magnetic field above a sample due to a sheet of current as the excitation, seem to be promising. This paper is an attempt to understand and analyze the magnetic field distribution due to a current sheet above an aluminum test sample. A simple theoretical model, coupled with a two dimensional finite element model (FEM) and experimental data will be presented in the next few sections. A current sheet above a conducting sample generates eddy currents in the material, while a sensor above the current sheet or in between the two plates monitors the normal component of the magnetic field. A rivet or a surface flaw near a rivet in an aircraft aluminum skin will disturb the magnetic field, which is imaged by the sensor. Initial results showed a strong dependence of the flaw induced normal magnetic field strength on the thickness and conductivity of the current-sheet that could not be accounted for by skin depth attenuation alone. It was believed that the eddy current imaging method explained the dependence of the thickness and conductivity of the flaw induced normal magnetic field. Further investigation, suggested the complexity associated with the mutual inductance of the system needed to be studied. The next section gives an analytical model to better understand the phenomenon.

  15. A robust method of thin plate spline and its application to DEM construction

    Science.gov (United States)

    Chen, Chuanfa; Li, Yanyan

    2012-11-01

    In order to avoid the ill-conditioning problem of thin plate spline (TPS), the orthogonal least squares (OLS) method was introduced, and a modified OLS (MOLS) was developed. The MOLS of TPS (TPS-M) can not only select significant points, termed knots, from large and dense sampling data sets, but also easily compute the weights of the knots in terms of back-substitution. For interpolating large sampling points, we developed a local TPS-M, where some neighbor sampling points around the point being estimated are selected for computation. Numerical tests indicate that irrespective of sampling noise level, the average performance of TPS-M can advantage with smoothing TPS. Under the same simulation accuracy, the computational time of TPS-M decreases with the increase of the number of sampling points. The smooth fitting results on lidar-derived noise data indicate that TPS-M has an obvious smoothing effect, which is on par with smoothing TPS. The example of constructing a series of large scale DEMs, located in Shandong province, China, was employed to comparatively analyze the estimation accuracies of the two versions of TPS and the classical interpolation methods including inverse distance weighting (IDW), ordinary kriging (OK) and universal kriging with the second-order drift function (UK). Results show that regardless of sampling interval and spatial resolution, TPS-M is more accurate than the classical interpolation methods, except for the smoothing TPS at the finest sampling interval of 20 m, and the two versions of kriging at the spatial resolution of 15 m. In conclusion, TPS-M, which avoids the ill-conditioning problem, is considered as a robust method for DEM construction.

  16. Interactive deformation registration of endorectal prostate MRI using ITK thin plate splines.

    Science.gov (United States)

    Cheung, M Rex; Krishnan, Karthik

    2009-03-01

    Magnetic resonance imaging with an endorectal coil allows high-resolution imaging of prostate cancer and the surrounding normal organs. These anatomic details can be used to direct radiotherapy. However, organ deformation introduced by the endorectal coil makes it difficult to register magnetic resonance images for treatment planning. In this study, plug-ins for the volume visualization software VolView were implemented on the basis of algorithms from the National Library of Medicine's Insight Segmentation and Registration Toolkit (ITK). Magnetic resonance images of a phantom simulating human pelvic structures were obtained with and without the endorectal coil balloon inflated. The prostate not deformed by the endorectal balloon was registered to the deformed prostate using an ITK thin plate spline (TPS). This plug-in allows the use of crop planes to limit the deformable registration in the region of interest around the prostate. These crop planes restricted the support of the TPS to the area around the prostate, where most of the deformation occurred. The region outside the crop planes was anchored by grid points. The TPS was more accurate in registering the local deformation of the prostate compared with a TPS variant, the elastic body spline. The TPS was also applied to register an in vivo T(2)-weighted endorectal magnetic resonance image. The intraprostatic tumor was accurately registered. This could potentially guide the boosting of intraprostatic targets. The source and target landmarks were placed graphically. This TPS plug-in allows the registration to be undone. The landmarks could be added, removed, and adjusted in real time and in three dimensions between repeated registrations. This interactive TPS plug-in allows a user to obtain a high level of accuracy satisfactory to a specific application efficiently. Because it is open-source software, the imaging community will be able to validate and improve the algorithm.

  17. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    Science.gov (United States)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  18. 3D shape recovery of a newborn skull using thin-plate splines.

    Science.gov (United States)

    Lapeer, R J; Prager, R W

    2000-01-01

    The objective of this paper is to construct a mesh-model of a newborn skull for finite element analysis to study its deformation when subjected to the forces present during labour. The current state of medical imaging technology has reached a level which allows accurate visualisation and shape recovery of biological organs and body-parts. However, a sufficiently large set of medical images cannot always be obtained, often because of practical or ethical reasons, and the requirement to recover the shape of the biological object of interest has to be met by other means. Such is the case for a newborn skull. A method to recover the three-dimensional (3D) shape from (minimum) two orthogonal atlas images of the object of interest and a homologous object is described. This method is based on matching landmarks and curves on the orthogonal images of the object of interest with corresponding landmarks and curves on the homologous or 'master'-object which is fully defined in 3D space. On the basis of this set of corresponding landmarks, a thin-plate spline function can be derived to warp from the 'master'-object space to the 'slave'-object space. This method is applied to recover the 3D shape of a newborn skull. Images from orthogonal view-planes are obtained from an atlas. The homologous object is an adult skull, obtained from CT-images made available by the Visible Human Project. After shape recovery, a mesh-model of the newborn skull is generated.

  19. Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex.

    Science.gov (United States)

    Rosas, Antonio; Bastir, Markus

    2002-03-01

    The relationship between allometry and sexual dimorphism in the human craniofacial complex was analyzed using geometric morphometric methods. Thin-plate splines (TPS) analysis has been applied to investigate the lateral profile of complete adult skulls of known sex. Twenty-nine three-dimensional (3D) craniofacial and mandibular landmark coordinates were recorded from a sample of 52 adult females and 52 adult males of known age and sex. No difference in the influence of size on shape was detected between sexes. Both size and sex had significant influences on shape. As expected, the influence of centroid size on shape (allometry) revealed a shift in the proportions of the neurocranium and the viscerocranium, with a marked allometric variation of the lower face. Adjusted for centroid size, males presented a relatively larger size of the nasopharyngeal space than females. A mean-male TPS transformation revealed a larger piriform aperture, achieved by an increase of the angulation of the nasal bones and a downward rotation of the anterior nasal floor. Male pharynx expansion was also reflected by larger choanae and a more posteriorly inclined basilar part of the occipital clivus. Male muscle attachment sites appeared more pronounced. In contrast, the mean-female TPS transformation was characterized by a relatively small nasal aperture. The occipital clivus inclined anteriorly, and muscle insertion areas became smoothed. Besides these variations, both maxillary and mandibular alveolar regions became prognathic. The sex-specific TPS deformation patterns are hypothesized to be associated with sexual differences in body composition and energetic requirements. Copyright 2002 Wiley-Liss, Inc.

  20. Effect of the Process Parameters on the Formability, Microstructure, and Mechanical Properties of Thin Plates Fabricated by Rheology Forging Process with Electromagnetic Stirring Method

    Science.gov (United States)

    Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil

    2014-01-01

    A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.

  1. Validation of the CQUAD4 element for vibration and shock analysis of thin laminated composite plate structure

    Science.gov (United States)

    Lesar, Douglas E.

    1992-01-01

    The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship

  2. Evaluation of Thin Plate Hydrodynamic Stability through a Combined Numerical Modeling and Experimental Effort

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Bojanowski, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Wilson, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Solbrekken, G [Univ. of Missouri, Columbia, MO (United States); Jesse, C. [Univ. of Missouri, Columbia, MO (United States); Kennedy, J. [Univ. of Missouri, Columbia, MO (United States); Rivers, J. [Univ. of Missouri, Columbia, MO (United States); Schnieders, G. [Univ. of Missouri, Columbia, MO (United States)

    2017-05-01

    An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the other represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.

  3. Molecular plating of thin lanthanide layers with improved material properties for nuclear applications

    International Nuclear Information System (INIS)

    Vascon, Alessio

    2013-01-01

    This work describes experiments to gain an improved understanding of the processes associated with the electrochemical production of thin lanthanide layers for nuclear science investigations, i.e., nuclear targets. Nd, Sm, and Gd layers were prepared by means of the so-called molecular plating (MP) technique, where electrodeposition from an organic medium is usually performed in the constant current mode using two-electrode cells. The obtained results allowed the identification of optimized production conditions, which led to a significantly improved layer quality. Constant current density MP is a mass-transport controlled process. The applied current is maintained constant by constant fluxes of electroactive species towards the cathode - where the layer is grown - and the anode. The investigations showed the cell potentials of the electrodeposition systems to be always dominated by the ohmic drop produced by the resistance of the solutions used for the studies. This allowed to derive an expression relating cell potential with concentration of the electroactive species. This expression is able to explain the trends recorded with different electrolyte concentrations and it serves as a basis to get towards a full understanding of the reasons leading to the characteristic minima observed in the evolution of the cell potential curves with time. The minima were found to correspond to an almost complete depletion of the Nd ions obtained by dissolution of the model salt used for the investigations. Nd was confirmed to be deposited at the cathode as derivatives of Nd 3+ - possibly as carboxylate, oxide or hydroxide. This fact was interpreted on the basis of the highly negative values of the standard redox potentials typical for lanthanide cations. Among the different electroactive species present in the complex MP solutions, the Nd 3+ ions were found to contribute to less than 20% to the total current. Because of electrolysis, also the mixed solvent contributed to the

  4. The application of LA-ICP-MS in the examination of the thin plating layers found in late Roman coins

    Energy Technology Data Exchange (ETDEWEB)

    Vlachou-Mogire, C. [Numismatic Museum, 12 El. Venizelou Avenue, 106 71 Athens (Greece)], E-mail: vlachou_mogire@yahoo.co.uk; Stern, B.; McDonnell, J.G. [Department of Archaeological Sciences, University of Bradford, Bradford BD7 1RD (United Kingdom)

    2007-12-15

    During the late Roman period the production of complex copper alloy (Cu-Sn-Pb-Ag) coins with a silvered surface, became common practice. Previous analyses of these coins did not solve key technological issues and in particular, the silvering process. Two methods have been suggested for the production of the thin plating layers in late Roman coins the dipping in molten silver chloride and the use of silvering pastes. However, there are questions about their use. More recent research showed that hot-dipping methods, such as the dipping in molten silver chloride, were not really suitable for mass production. Also, the earliest references to the use of silvering pastes dated to 17th century AD. A review of ancient sources and historic literature indicated silver amalgam plating as the possible method for the production of the plating in late Roman coins. Results derived from non-destructive LA-ICP-MS analysis have demonstrated, for the first time, the presence of Hg in the surface layers of these coins. The optimization of the method and the factors influenced the analyses results, are discussed. The examination of the coins by means of EPMA confirmed the ICP-MS results. The introduction of a new technique for the examination of plating layers, helped in the identification of amalgam silvering as the method used in the production of the coins.

  5. 57Fe Moessbauer spectroscopic study on surface products of thin iron plates exposed to ambient atmosphere as a means of environmental monitoring

    International Nuclear Information System (INIS)

    Matsuo, Motoyuki; Kobayashi, Takaaki

    1993-01-01

    Conversion electron and transmission Moessbauer spectroscopy were applied to the analysis of thin iron plates exposed to the ambient atmosphere. The degree of corrosion of the iron plates was classified into three categories according to the kind and thickness of rust evaluated by Moessbauer spectra. The severe corrosion took place in seaside and roadside areas. The medium corrosion was observed in urban areas, and the weak corrosion occurred in suburban and mountainous areas. This fact implies that the surface products of iron plates can successfully reflect the ambient atmosphere to which the plates were exposed. (orig.)

  6. Cortical surface registration using spherical thin-plate spline with sulcal lines and mean curvature as features.

    Science.gov (United States)

    Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min

    2012-04-30

    Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    Science.gov (United States)

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  8. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    Directory of Open Access Journals (Sweden)

    Corrado Costa

    2012-05-01

    Full Text Available In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples’ color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix. This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data.

  9. Fabrication and Characteristics of High Capacitance Al Thin Films Capacitor Using a Polymer Inhibitor Bath in Electroless Plating Process.

    Science.gov (United States)

    Cho, Young-Lae; Lee, Jung-Woo; Lee, Chang-Hyoung; Choi, Hyung-Seon; Kim, Sung-Su; Song, Young Il; Park, Chan; Suh, Su-Jeong

    2015-10-01

    An aluminum (Al) thin film capacitor was fabricated for a high capacitance capacitor using electrochemical etching, barrier-type anodizing, and electroless Ni-P plating. In this study, we focused on the bottom-up filling of Ni-P electrodes on Al2O3/Al with etched tunnels. The Al tunnel pits were irregularly distributed on the Al foil, diameters were in the range of about 0.5~1 μm, the depth of the tunnel pits was approximately 35~40 μm, and the complex structure was made full filled hard metal. To control the plating rate, the experiment was performed by adding polyethyleneimine (PEI, C2H5N), a high molecular substance. PEI forms a cross-link at the etching tunnel inlet, playing the role of delaying the inlet plating. When the PEI solution bath was used after activation, the Ni-P layer was deposited selectively on the bottoms of the tunnels. The characteristics were analyzed by adding the PEI addition quantity rate of 100~600 mg/L into the DI water. The capacitance of the Ni-P/Al2O3 (650~700 nm)/Al film was measured at 1 kHz using an impedance/gain phase analyzer. For the plane film without etch tunnels the capacitance was 12.5 nF/cm2 and for the etch film with Ni-P bottom-up filling the capacitance was 92 nF/cm2. These results illustrate a remarkable maximization of capacitance for thin film metal capacitors.

  10. Analytical and numerical description of the PELE fragmentation upon impact with thin target plates

    NARCIS (Netherlands)

    Verreault, J.

    2015-01-01

    The PELE ammunition is characterized by a low-density filling material surrounded by a high-density brittle jacket material. An analytical model describing the fragmentation of this ammunition behind a target plate is presented. This model assumes uniaxial strain in the filling and uses the

  11. The Transition from Thick to Thin Plate Wake Physics: Whither Vortex Shedding?

    Science.gov (United States)

    Rai, Man Mohan

    2016-01-01

    The near and very near wake of a flat plate with a circular trailing edge is investigated with data from direct numerical simulations. Computations were performed for six different combinations of the Reynolds numbers based on plate thickness (D) and boundary layer momentum thickness upstream of the trailing edge (theta). Unlike the case of the cylinder, these Reynolds numbers are independent parameters for the flat plate. The separating boundary layers are turbulent in all the cases investigated. One objective of the study is to understand the changes in the wake vortex shedding process as the plate thickness is reduced (increasing theta/D). The value of D varies by a factor of 16 and that of theta by approximately 5 in the computations. Vortex shedding is vigorous in the low theta/D cases with a substantial decrease in shedding intensity in the large theta/D cases. Other shedding characteristics are also significantly altered with increasing theta/D. A visualization of the shedding process in the different cases is provided and discussed. The basic shedding mechanism is explored in depth. The effect of changing theta/D on the time-averaged, near-wake velocity statistics is also discussed. A functional relationship between the shedding frequency and the Reynolds numbers mentioned above is obtained.

  12. Auto-ignition of methane-air mixtures flowing along an array of thin catalytic plates

    Science.gov (United States)

    Treviño, C.

    2010-12-01

    In this paper, the heterogeneous ignition of a methane-air mixture flowing along an infinite array of catalytic parallel plates has been studied by inclusion of gas expansion effects and the finite heat conduction on the plates. The system of equations considers the full compressible Navier-Stokes equations coupled with the energy equations of the plates. The gas expansion effects which arise from temperature changes have been considered. The heterogeneous kinetics considers the adsorption and desorption reactions for both reactants. The limits of large and small longitudinal thermal conductance of the plate material are analyzed and the critical conditions for ignition are obtained in closed form. The governing equations are solved numerically using finite differences. The results show that ignition is more easily produced as the longitudinal wall thermal conductance increases, and the effects of the gas expansion on the catalytic ignition process are rather small due to the large value of the activation energy of the desorption reaction of adsorbed oxygen atoms.

  13. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    Science.gov (United States)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  14. Optimization of a functionally graded circular plate with inner rigid thin obstacles. I. Continuous problems

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Lovíšek, J.

    2011-01-01

    Roč. 91, č. 9 (2011), s. 711-723 ISSN 0044-2267 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : functionally graded plate * optimal design Subject RIV: BA - General Mathematics Impact factor: 0.863, year: 2011 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201000119/abstract

  15. UXC55 Non-Magnetic Robot

    CERN Document Server

    Najjar, Tony

    2017-01-01

    As part of the collaboration between CMS and the Lebanese American University, we are looking into building a non-magnetic inspection rover capable of roaming around UXC55 and specifically under the detector. The robot should be specifically tailored and engineered to cope with the strong magnetic field in the cavern (300 G on average with peaks up to 1500 G) as well as other constraints such as flammability and geometry. Moreover, we are also taking part in the development of the instrumentation and wireless communication of the rover. The biggest challenge in setting up a non-magnetic rover lies in the actuation mechanism, in other words, getting it to move; motors are rotary actuators that rely on the concept of a rotor “trying to catch up” to a rotating magnetic field. We quickly realize the complication with using this popular technology; the strong field created by the CMS magnet greatly interferes with the motor, rendering it utterly stalled. Our approach, on the other hand, consists of using compl...

  16. Shock-induced thermal wave propagation and response analysis of a viscoelastic thin plate under transient heating loads

    Science.gov (United States)

    Li, Chenlin; Guo, Huili; Tian, Xiaogeng

    2018-04-01

    This paper is devoted to the thermal shock analysis for viscoelastic materials under transient heating loads. The governing coupled equations with time-delay parameter and nonlocal scale parameter are derived based on the generalized thermo-viscoelasticity theory. The problem of a thin plate composed of viscoelastic material, subjected to a sudden temperature rise at the boundary plane, is solved by employing Laplace transformation techniques. The transient responses, i.e. temperature, displacement, stresses, heat flux as well as strain, are obtained and discussed. The effects of time-delay and nonlocal scale parameter on the transient responses are analyzed and discussed. It can be observed that: the propagation of thermal wave is dynamically smoothed and changed with the variation of time-delay; while the displacement, strain, and stress can be rapidly reduced by nonlocal scale parameter, which can be viewed as an important indicator for predicting the stiffness softening behavior for viscoelastic materials.

  17. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate

    Science.gov (United States)

    Lotfy, Kh.

    2018-05-01

    In this article, theoretical discussions for a novel mathematical-physical Photothermal diffusion (PTD) model in the generalized thermoelasticity theory with photothermal processes and chemical action are introduced. The mean idea of this model depends on the interaction between quasi-particles (plasma waves) that depends on the kind of the used materials, the mechanical forces acting on the surface, the generalized thermo and mass diffusion (due to coupling of temperature fields with thermal waves and chemical potential) and the elastic waves. The one dimensional Laplace transforms is used to obtain the exact solution for some physical and chemical quantities for a thin circular plate of a semiconducting polymer nanocomposite such as silicon (Si). New variables are deduced and discussed. The obtained results of the physical quantities are presented analytically and illustrated graphically with some important applications.

  18. A Study of Stress Wave Propagation in Thin Plate Loaded by an Oblique Impact

    Czech Academy of Sciences Publication Activity Database

    Trnka, Jan; Kolman, Radek; Dvořáková, Pavla; Veselý, Eduard

    2009-01-01

    Roč. 3, č. 3 (2009), s. 322-331 ISSN 1970-8734 R&D Projects: GA ČR GA101/07/0588; GA ČR GA101/06/0914 Institutional research plan: CEZ:AV0Z20760514 Keywords : Stress wave propagation * Thin-wall structures * Double-pulse holointerferometry * Finite Element Method Subject RIV: BH - Optics, Masers, Lasers

  19. Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines

    International Nuclear Information System (INIS)

    Coselmon, Martha M.; Balter, James M.; McShan, Daniel L.; Kessler, Marc L.

    2004-01-01

    The advent of dynamic radiotherapy modeling and treatment techniques requires an infrastructure to weigh the merits of various interventions (breath holding, gating, tracking). The creation of treatment planning models that account for motion and deformation can allow the relative worth of such techniques to be evaluated. In order to develop a treatment planning model of a moving and deforming organ such as the lung, registration tools that account for deformation are required. We tested the accuracy of a mutual information based image registration tool using thin-plate splines driven by the selection of control points and iterative alignment according to a simplex algorithm. Eleven patients each had sequential CT scans at breath-held normal inhale and exhale states. The exhale right lung was segmented from CT and served as the reference model. For each patient, thirty control points were used to align the inhale CT right lung to the exhale CT right lung. Alignment accuracy (the standard deviation of the difference in the actual and predicted inhale position) was determined from locations of vascular and bronchial bifurcations, and found to be 1.7, 3.1, and 3.6 mm about the RL, AP, and IS directions. The alignment accuracy was significantly different from the amount of measured movement during breathing only in the AP and IS directions. The accuracy of alignment including thin-plate splines was more accurate than using affine transformations and the same iteration and scoring methodology. This technique shows promise for the future development of dynamic models of the lung for use in four-dimensional (4-D) treatment planning

  20. Development of dual PZT transducers for reference-free crack detection in thin plate structures.

    Science.gov (United States)

    Sohn, Hoon; Kim, Seuno Bum

    2010-01-01

    A new Lamb-wave-based nondestructive testing (NDT) technique, which does not rely on previously stored baseline data, is developed for crack monitoring in plate structures. Commonly, the presence of damage is identified by comparing "current data" measured from a potentially damaged stage of a structure with "baseline data" previously obtained at the intact condition of the structure. In practice, structural defects typically take place long after collection of the baseline data, and the baseline data can be also affected by external loading, temperature variations, and changing boundary conditions. To eliminate the dependence on the baseline data comparison, the authors previously developed a reference-free NDT technique using 2 pairs of collocated lead zirconate titanate (PZT) transducers placed on both sides of a plate. This reference-free technique is further advanced in the present study by the necessity of attaching transducers only on a single surface of a structure for certain applications such as aircraft. To achieve this goal, a new design of PZT transducers called dual PZT transducers is proposed. Crack formation creates Lamb wave mode conversion due to a sudden thickness change of the structure. This crack appearance is instantly detected from the measured Lamb wave signals using the dual PZT transducers. This study also suggests a reference-free statistical approach that enables damage classification using only the currently measured data set. Numerical simulations and experiments were conducted using an aluminum plate with uniform thickness and fundamental Lamb waves modes to demonstrate the applicability of the proposed technique to reference-free crack detection.

  1. Imaging flaws in thin metal plates using a magneto-optic device

    Science.gov (United States)

    Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.

    1992-01-01

    An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.

  2. Tuneable surface enhanced Raman spectroscopy hyphenated to chemically derivatized thin-layer chromatography plates for screening histamine in fish.

    Science.gov (United States)

    Xie, Zhengjun; Wang, Yang; Chen, Yisheng; Xu, Xueming; Jin, Zhengyu; Ding, Yunlian; Yang, Na; Wu, Fengfeng

    2017-09-01

    Reliable screening of histamine in fish was of urgent importance for food safety. This work presented a highly selective surface enhanced Raman spectroscopy (SERS) method mediated by thin-layer chromatography (TLC), which was tailored for identification and quantitation of histamine. Following separation and derivatization with fluram, plates were assayed with SERS, jointly using silver nanoparticle and NaCl. The latter dramatically suppressed the masking effect caused by excessive fluram throughout the plate, thus offering clear baseline and intensive Raman fingerprints specific to the analyte. Under optimized conditions, the usability of this method was validated by identifying the structural fingerprints of both targeted and unknown compounds in fish samples. Meanwhile, the quantitative results of this method agreed with those by an HPLC method officially suggested by EU for histamine determination. Showing remarkable cost-efficiency and user-friendliness, this facile TLC-SERS method was indeed screening-oriented and may be more attractive to controlling laboratories of limited resource. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A New Approach for Studying Nonlinear Dynamic Response of a Thin Plate with Internal Resonance in a Fractional Viscoelastic Medium

    Directory of Open Access Journals (Sweden)

    Yury A. Rossikhin

    2015-01-01

    Full Text Available In the previous analysis, the dynamic behaviour of a nonlinear plate embedded into a fractional derivative viscoelastic medium has been studied by the method of multiple time scales under the conditions of the internal resonances two-to-one and one-to-one, as well as the internal combinational resonances for the case when the linear parts of nonlinear equations of motion occur to be coupled. A new approach proposed in this paper allows one to uncouple the linear parts of equations of motion of the plate, while the same method, the method of multiple time scales, has been utilized for solving nonlinear equations. The influence of viscosity on the energy exchange mechanism between interacting nonlinear modes has been analyzed. It has been shown that for some internal resonances there exist such particular cases when it is possible to obtain two first integrals, namely, the energy integral and the stream function, which allows one to reduce the problem to the calculation of elliptic integrals. The new approach enables one to solve the problems of vibrations of thin bodies more efficiently.

  4. [Confirmation of an excess of cancer mortality in a cohort of workers of a chromium thin-layer plating].

    Science.gov (United States)

    Girardi, Paolo; Bressan, Vittoria; Mabilia, Tommy; Merler, Enzo

    2015-01-01

    to extend up to year 2013 the follow-up for mortality of a cohort of workers in a chromium and nickel plating plant, where an excess of lung cancers was already identified. 10 years after the first study about cancer mortality in a cohort of workers involved in the chromium thin-layer plating, published in 2006, we updated the evaluation of themortality of a cohort ofworkers employed in the same chromiumthin-layer plating factory with at least 6 months of work between 1968 and 1994.The mortality rates are compared with those of the Italian and Veneto Region (Northern Italy) populations.The dose-response relationship between work duration and lung cancer is assessed by adjusted Poisson regression. 127 unskilled or skilled workers involved in the production process. in the updated follow-up, 35 deaths occurred among the subjects under study: 19 for cancer (of which 11 for lung cancer and 3 for pancreatic cancer). A marked excess ofmortality due to lung cancer is observed. In addition, the newfollowup shows a significant excess of pancreatic cancer mortality. Lung cancer mortality is positively associated with work duration and the risk increases by 13%(95%CI 1-26) for each additional year of work. the extension of followup confirms that this cohort expresses an increased mortality from cancer deaths, due to a marked excess of lung and pancreatic cancers. The effect of smoking has only a secondary effect in the cancer onset expressed by this cohort. The risk of lung cancer increased with work duration and thus with occupational exposure to chromium and nickel.

  5. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed

    2014-08-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  6. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed; Enoch, Stefan; Guenneau, Sé bastien

    2014-01-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  7. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    International Nuclear Information System (INIS)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian; Lu Chunhua; Xu Zhongzi

    2008-01-01

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  8. Antisymmetric-Symmetric Mode Conversion of Ultrasonic Lamb Waves and Negative Refraction on Thin Steel Plate

    International Nuclear Information System (INIS)

    Kim, Young H.; Sung, Jin Woo

    2013-01-01

    In this study, focusing of ultrasonic Lamb wave by negative refraction with mode conversion from antisymmetric to symmetric mode was investigated. When a wave propagates backward by negative refraction, the energy flux is antiparallel to the phase velocity. Backward propagation of Lamb wave is quite well known, but the behavior of backward Lamb wave at an interface has rarely been investigated. A pin-type transducer is used to detect Lamb wave propagating on a steel plate with a step change in thickness. Conversion from forward to backward propagating mode leads to negative refraction and thus wave focusing. By comparing the amplitudes of received Lamb waves at a specific frequency measured at different distance between transmitter and interface, the focusing of Lamb wave due to negative refraction was confirmed.

  9. Band structure analysis of a thin plate with periodic arrangements of slender beams

    Science.gov (United States)

    Serrano, Ó.; Zaera, R.; Fernández-Sáez, J.

    2018-04-01

    This work analyzes the wave propagation in structures composed of a periodic arrangement of vertical beams rigidly joined to a plate substrate. Three different configurations for the distribution of the beams have been analyzed: square, triangular, and hexagonal. A dimensional analysis of the problem indicates the presence of three dimensionless groups of parameters controlling the response of the system. The main features of the wave propagation have been found using numerical procedures based on the Finite Element Method, through the application of the Bloch's theorem for the corresponding primitive unit cells. Illustrative examples of the effect of the different dimensionless parameters on the dynamic behavior of the system are presented, providing information relevant for design.

  10. Perforation of Thin Aluminum Alloy Plates by Blunt Projectiles - Experimental and Numerical Investigation

    Science.gov (United States)

    Wei, Gang; Zhang, Wei

    2013-06-01

    Reducing the armor weight has become a research focus in terms of armored material with the increasing requirement of the mobility and flexibility of tanks and armored vehicles in modern local wars. Due to high strength-to-density ratio, aluminum alloy has become a potential light armored material. In this study, both lab-scale ballistic test and finite element simulation were adopted to examine the ballistic resistance of aluminum alloy targets. Blunt high strength steel projectiles with 12.7 mm diameter were launched by light gas gun against 3.3 mm thick aluminum alloy plates at velocity of 90 ~ 170 m/s. The ballistic limit velocity was obtained. Plugging failure and obvious structure deformation of targets were observed, and with the impact velocity increasing, the target structure deformation decrease gradually. Corresponding 2D finite element simulations were conducted by ABAQUS/EXPLICIT combined with material performance testing. Good agreement between the numerical simulations and the experimental results was found. National Natural Science Foundation of China (No.: 11072072).

  11. Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode

    Science.gov (United States)

    Church, P.; Cornish, R.; Cullis, I.; Lynch, N.

    2000-03-01

    Ballistic experiments have been performed using aluminum spheres against 10-mm rolled homogenous armour (RHA), MARS270, MARS300, and titanium alloy plates to investigate the influence of the plugging mechanism on material properties. The experiments have measured the threshold for plug mass and velocity as well as the recovered aluminum sphere mass over a range of velocities. Some of the experiments have been simulated using the in-house second generation Eulerian hydrocode GRIM. The calculations feature advanced material algorithms derived from interrupted tensile testing techniques and a triaxial failure model derived from notched tensile tests over a range of strain rates and temperatures. The effect of mesh resolution on the results has been investigated and understood. The simulation results illustrate the importance of the constitutive model in the shear localization process and the subsequent plugging phenomena. The stress triaxiality is seen as the dominant feature in controlling the onset and subsequent propagation of the crack leading to the shear plug. The simulations have demonstrated that accurate numerics coupled with accurate constitutive and fracture algorithms can successfully reproduce the observed experimental features. However, extrapolation of the fracture data leads to the simulations overpredicting the plug damage. The reasons for this are discussed.

  12. Reducing the Lift-Off Effect on Permeability Measurement for Magnetic Plates From Multifrequency Induction Data

    OpenAIRE

    Lu, Mingyang; Zhu, Wenqian; Yin, Liyuan; Peyton, Anthony J.; Yin, Wuliang; Qu, Zhigang

    2017-01-01

    Lift-off variation causes errors in eddy current measurement of nonmagnetic plates as well as magnetic plates. For nonmagnetic plates, previous work has been carried out to address the issue. In this paper, we follow a similar strategy, but try to reduce the lift-off effect on another index--zero-crossing frequency for magnetic plates. This modified index, termed as the compensated zero-crossing frequency, can be obtained from the measured multifrequency inductance spectral data using the alg...

  13. Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.

    Science.gov (United States)

    Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E

    2015-03-01

    Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

  14. Advancements in ion beam figuring of very thin glass plates (Conference Presentation)

    Science.gov (United States)

    Civitani, M.; Ghigo, M.; Hołyszko, J.; Vecchi, G.; Basso, S.; Cotroneo, V.; DeRoo, C. T.; Schwartz, E. D.; Reid, P. B.

    2017-09-01

    The high-quality surface characteristics, both in terms of figure error and of micro-roughness, required on the mirrors of a high angular resolution x-ray telescope are challenging, but in principle well suited with a deterministic and non-contact process like the ion beam figuring. This process has been recently proven to be compatible even with very thin (thickness around 0.4mm) sheet of glasses (like D263 and Eagle). In the last decade, these types of glass have been investigated as substrates for hot slumping, with residual figure errors of hundreds of nanometres. In this view, the mirrors segments fabrication could be envisaged as a simple two phases process: a first replica step based on hot slumping (direct/indirect) followed by an ion beam figuring which can be considered as a post-fabrication correction method. The first ion beam figuring trials, realized on flat samples, showed that the micro-roughness is not damaged but a deeper analysis is necessary to characterize and eventually control/compensate the glass shape variations. In this paper, we present the advancements in the process definition, both on flat and slumped glass samples.

  15. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2018-03-01

    Full Text Available For the elastic SV (transverse waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young’s modulus, such as polymethylmethacrylate (PMMA, compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ∼20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  16. Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals

    Science.gov (United States)

    Zhang, J.; Zeng, L. H.; Hu, C. L.; Yan, W. S.; Pennec, Yan; Hu, N.

    2018-03-01

    For the elastic SV (transverse) waves in metals, a high-quality narrow passband filter that consists of aligned parallel thin plates with small gaps is designed. In order to obtain a good performance, the thin plates should be constituted by materials with a smaller mass density and Young's modulus, such as polymethylmethacrylate (PMMA), compared to the embedded materials in which the elastic SV waves propagate. Both the theoretical model and the full numerical simulation show that the transmission spectrum of the designed filter demonstrates several peaks with flawless transmission within 0 KHz ˜20 KHz frequency range. The peaks can be readily tuned by manipulating the geometrical parameters of the plates. Therefore, the current design works well for both low and high frequencies with a controllable size. Even for low frequencies on the order of kilohertz, the size of this filter can be still limited to the order of centimeters, which significantly benefits the real applications. The investigation also finds that the same filter is valid when using different metals and the reason behind this is explained theoretically. Additionally, the effect of bonding conditions of interfaces between thin plates and the base material is investigated using a spring model.

  17. TPS-HAMMER: improving HAMMER registration algorithm by soft correspondence matching and thin-plate splines based deformation interpolation.

    Science.gov (United States)

    Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang

    2010-02-01

    We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  18. Thin-plate spline analysis of arch form in a Southern European population with an ideal natural occlusion.

    Science.gov (United States)

    Camporesi, Matteo; Franchi, Lorenzo; Baccetti, Tiziano; Antonini, Antonino

    2006-04-01

    The purpose of the present study was to identify the mean configuration of the clinical arch form in a sample of Southern European subjects with ideal natural occlusion by means of Procrustes analysis, and to compare the identified configuration with 10 commercially produced arch forms by means of thin-plate spline (TPS) analysis. The sample comprised the study casts of 50 subjects (26 males and 24 females). The mean age of the sample was 26 years +/- 4 years. All subjects were young Caucasian adults of Southern European ancestry, and presented with an ideal natural occlusion. The three-dimensional (3D) co-ordinates of all dental points (facial axis points) were digitized using a 3D electromagnetic digitizer. The morphometric technique of TPS analysis with permutation tests was used to compare the configurations of landmarks in the various specimens. No sexual dimorphism was found for either upper or lower arch forms when the shape of the arches was assessed independently from size. The commercially available arch form that showed the least, though statistically significant, shape difference with respect to the average calculated configuration was the Brader arch form.

  19. Self-organizing map analysis using multivariate data from theophylline tablets predicted by a thin-plate spline interpolation.

    Science.gov (United States)

    Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo

    2013-01-01

    The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.

  20. A Combination of TsHARP and Thin Plate Spline Interpolation for Spatial Sharpening of Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Xuehong Chen

    2014-03-01

    Full Text Available There have been many studies and much attention paid to spatial sharpening for thermal imagery. Among them, TsHARP, based on the good correlation between vegetation index and land surface temperature (LST, is regarded as a standard technique because of its operational simplicity and effectiveness. However, as LST is affected by other factors (e.g., soil moisture in the areas with low vegetation cover, these areas cannot be well sharpened by TsHARP. Thin plate spline (TPS is another popular downscaling technique for surface data. It has been shown to be accurate and robust for different datasets; however, it has not yet been attempted in thermal sharpening. This paper proposes to combine the TsHARP and TPS methods to enhance the advantages of each. The spatially explicit errors of these two methods were firstly estimated in theory, and then the results of TPS and TsHARP were combined with the estimation of their errors. The experiments performed across various landscapes and data showed that the proposed combined method performs more robustly and accurately than TsHARP.

  1. Self-organizing map analysis using multivariate data from theophylline powders predicted by a thin-plate spline interpolation.

    Science.gov (United States)

    Yasuda, Akihito; Onuki, Yoshinori; Kikuchi, Shingo; Takayama, Kozo

    2010-11-01

    The quality by design concept in pharmaceutical formulation development requires establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline powders were prepared based on the standard formulation. The angle of repose, compressibility, cohesion, and dispersibility were measured as the response variables. These responses were predicted quantitatively on the basis of a nonlinear TPS. A large amount of data on these powders was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the powders could be classified into several distinctive clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and powder characteristics. For instance, the quantities of microcrystalline cellulose (MCC) and magnesium stearate (Mg-St) were classified distinctly into each cluster, indicating that the quantities of MCC and Mg-St were crucial for determining the powder characteristics. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline powder formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Components of soft tissue deformations in subjects with untreated angle's Class III malocclusions: thin-plate spline analysis.

    Science.gov (United States)

    Singh, G D; McNamara, J A; Lozanoff, S

    1998-01-01

    While the dynamics of maxillo-mandibular allometry associated with treatment modalities available for the management of Class III malocclusions currently are under investigation, developmental aberration of the soft tissues in untreated Class III malocclusions requires specification. In this study, lateral cephalographs of 124 prepubertal European-American children (71 with untreated Class III malocclusion; 53 with Class I occlusion) were traced, and 12 soft-tissue landmarks digitized. Resultant geometries were scaled to an equivalent size and mean Class III and Class I configurations compared. Procrustes analysis established statistical difference (P thin-plate spline (TPS) analysis indicated that both affine and non-affine transformations contribute towards the deformation (total spline) of the averaged Class III soft tissue configuration. For non-affine transformations, partial warp 8 had the highest magnitude, indicating large-scale deformations visualized as a combination of columellar retrusion and lower labial protrusion. In addition, partial warp 5 also had a high magnitude, demonstrating upper labial vertical compression with antero-inferior elongation of the lower labio-mental soft tissue complex. Thus, children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the maxillary soft tissue complex in combination with antero-inferior mandibular soft tissue elongation. This pattern of deformations may represent gene-environment interactions, resulting in Class III malocclusions with characteristic phenotypes, that are amenable to orthodontic and dentofacial orthopedic manipulations.

  3. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-05-01

    This paper describes theoretical and experimental investigations into the sound absorption and transmission properties of micro-perforated panels (MPP) backed by an air cavity and a thin plate. A fully coupled modal approach is proposed to calculate the absorption coefficient and the transmission loss of finite-sized micro-perforated panels-cavity-panel (MPPCP) partitions with conservative boundary conditions. It is validated against infinite partition models and experimental data. A practical methodology is proposed using collocated pressure-velocity sensors to evaluate in an anechoic environment the transmission and absorption properties of conventional MPPCPs. Results show under which conditions edge scattering effects should be accounted for at low frequencies. Coupled mode analysis is also performed and analytical approximations are derived from the resonance frequencies and mode shapes of a flexible MPPCP. It is found that the Helmholtz-type resonance frequency is deduced from the one associated to the rigidly backed MPPCP absorber shifted up by the mass-air mass resonance of the flexible non-perforated double-panel. Moreover, it is shown analytically and experimentally that the absorption mechanisms at the resonances are governed by a large air-frame relative velocity over the MPP surface, with either in-phase or out-of-phase relationships, depending on the MPPCP parameters.

  4. The Feasibility of Structural Health Monitoring Using the Fundamental Shear Horizontal Guided Wave in a Thin Aluminum Plate

    Directory of Open Access Journals (Sweden)

    Jorge Franklin Mansur Rodrigues Filho

    2017-05-01

    Full Text Available Structural health monitoring (SHM is emerging as an essential tool for constant monitoring of safety-critical engineering components. Ultrasonic guided waves stand out because of their ability to propagate over long distances and because they can offer good estimates of location, severity, and type of damage. The unique properties of the fundamental shear horizontal guided wave (SH0 mode have recently generated great interest among the SHM community. The aim of this paper is to demonstrate the feasibility of omnidirectional SH0 SHM in a thin aluminum plate using a three-transducer sparse array. Descriptions of the transducer, the finite element model, and the imaging algorithm are presented. The image localization maps show a good agreement between the simulations and experimental results. The SH0 SHM method proposed in this paper is shown to have a high resolution and to be able to locate defects within 5% of the true location. The short input signal as well the non-dispersive nature of SH0 leads to high resolution in the reconstructed images. The defect diameter estimated using the full width at half maximum was 10 mm or twice the size of the true diameter.

  5. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  6. Thin-plate spline analysis of mandibular morphological changes induced by early class III treatment: a long-term evaluation.

    Science.gov (United States)

    Franchi, Lorenzo; Pavoni, Chiara; Cerroni, Silvia; Cozza, Paola

    2014-08-01

    To evaluate the long-term mandibular morphological changes induced by early treatment of class III malocclusion with rapid maxillary expansion (RME) and facial mask (FM). Twenty-five subjects [10 boys, 15 girls; mean age at T1 (start of treatment) 9.3±1.6 years] with class III disharmony were treated with RME and FM therapy followed by fixed appliances. The patients were re-evaluated at the end of growth (T2), about 8.5 years after the end of the treatment (mean age, 18.6±2.0 years). Sixteen subjects with untreated class III malocclusion comprised the control group. Mandibular shape changes were analysed on the lateral cephalograms of the subjects of both groups by means of thin-plate spline (TPS) analysis. Procrustes average mandibular configurations were subjected to TPS analysis by means of both cross-sectional between-group comparisons at T1 and at T2 and longitudinal within-group comparisons. Statistical analysis of shape differences was performed using a generalized Goodall F test. In the long term, the treated group exhibited a significant upward and forward direction of condylar growth. On the contrary, untreated class III subjects showed an upward and backward direction of condylar growth associated with a downward and forward deformation of the mandibular symphysis. Limitations are related to the small sample size of both treated and control groups and to the retrospective nature of the study. Early treatment of class III malocclusion with RME and FM is able to produce significant and favourable long-term mandibular shape changes characterized by an anterior morphogenetic rotation. © The Author 2013. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Thin-plate spline analysis of the short- and long-term effects of rapid maxillary expansion.

    Science.gov (United States)

    Franchi, Lorenzo; Baccetti, Tiziano; Cameron, Christopher G; Kutcipal, Elizabeth A; McNamara, James A

    2002-04-01

    The aim of this study was to investigate the short- and long-term effects induced by rapid maxillary expansion (RME) on the shape of the maxillary and circummaxillary structures by means of thin-plate spline (TPS) analysis. The sample consisted of 42 patients who were compared with a control sample of 20 subjects. The treated subjects underwent Haas-type RME, followed by fixed appliance therapy. Postero-anterior (PA) cephalograms were analysed for each treated subject at T1 (pre-treatment), T2 (immediate post-expansion), and T3 (long-term observation), and were available at T1 and T3 for the control group (CG). The mean age at T1 was 11 years and 10 months for both groups. The mean chronological ages at T3 were 20 years, 6 months for the treated group (TG) and 17 years, 8 months for the control group. The study focused on shape changes in the maxillary, nasal, zygomatic, and orbital regions. TPS analysis revealed significant shape changes in the TG. They consisted of an upward and lateral displacement of the two halves of the naso-maxillary complex as a result of active expansion in the short-term, and normalization of maxillary shape in the transverse dimension in the long-term (the initial transverse deficiency of the maxilla in the treated group was eliminated by RME therapy both in the short- and long-term). At the end of the observation period, the nasal cavities were larger when compared with both their pre-expansion configuration and the final configuration in the controls. RME with the Haas appliance appears to be an efficient therapeutic means to induce permanent favourable changes in the shape of the naso-maxillary complex.

  8. A Thin Plate Spline-Based Feature-Preserving Method for Reducing Elevation Points Derived from LiDAR

    Directory of Open Access Journals (Sweden)

    Chuanfa Chen

    2015-09-01

    Full Text Available Light detection and ranging (LiDAR technique is currently one of the most important tools for collecting elevation points with a high density in the context of digital elevation model (DEM construction. However, the high density data always leads to serious time and memory consumption problems in data processing. In this paper, we have developed a thin plate spline (TPS-based feature-preserving (TPS-F method for LiDAR-derived ground data reduction by selecting a certain amount of significant terrain points and by extracting geomorphological features from the raw dataset to maintain the accuracy of constructed DEMs as high as possible, while maximally keeping terrain features. We employed four study sites with different topographies (i.e., flat, undulating, hilly and mountainous terrains to analyze the performance of TPS-F for LiDAR data reduction in the context of DEM construction. These results were compared with those of the TPS-based algorithm without features (TPS-W and two classical data selection methods including maximum z-tolerance (Max-Z and the random method. Results show that irrespective of terrain characteristic, the two versions of TPS-based approaches (i.e., TPS-F and TPS-W are always more accurate than the classical methods in terms of error range and root means square error. Moreover, in terms of streamline matching rate (SMR, TPS-F has a better ability of preserving geomorphological features, especially for the mountainous terrain. For example, the average SMR of TPS-F is 89.2% in the mountainous area, while those of TPS-W, max-Z and the random method are 56.6%, 34.7% and 35.3%, respectively.

  9. Thin-plate-type embedded ultrasonic transducer based on magnetostriction for the thickness monitoring of the secondary piping system of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Seung Hyun [Center for Safety Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

  10. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  11. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    International Nuclear Information System (INIS)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L.; Orlando, Marcos T.D.

    2015-01-01

    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of 99 Mo- 99m Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  12. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.

    Science.gov (United States)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L

    2016-02-07

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  13. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    International Nuclear Information System (INIS)

    Schellenberg, Graham; Goertzen, Andrew L; Stortz, Greg

    2016-01-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x–y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5–82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  14. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    Science.gov (United States)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  15. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  16. Effects of nonmagnetic interparticle forces on magnetorheological fluids

    International Nuclear Information System (INIS)

    Klingenberg, D J; Olk, C H; Golden, M A; Ulicny, J C

    2010-01-01

    Effects of nonmagnetic interparticle forces on the on- and off-state behavior of magnetorheological fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.

  17. Effects of nonmagnetic interparticle forces on magnetorheological fluids

    International Nuclear Information System (INIS)

    Klingenberg, D J; Olk, C K; Golden, M A; Ulicny, J C

    2009-01-01

    Effects of nonmagnetic interparticle forces on the on- and off-state behavior of MR fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.

  18. Flow induced deformation and collapse of a thin rectangular plate with application to the Engineering Test Reactor nuclear fuel elements

    International Nuclear Information System (INIS)

    Davis, C.D.

    1981-01-01

    This work examines a single flat fuel plate bounded by two channels and determines static plate deflections, resultant forces and bending stresses due to pressure differential and hydrodynamic loadings. The classical then reactangular plate equations are used to model the fuel plate. These equations contain as an input the hydrodynamic loading function for modeling the fluid-structural interaction. Two models of the channel flow are developed. One assumes the accelerating potential core flow is laminar with developing two-dimensional laminar boundary layers being formed on the channel walls. The Schlichting entry length solution for developing laminar flow is found to be valid the entire length of the channel. The second model assumes the core flow is fully-developed turbulent the entire length of the channel. Hydrodynamic loading functions are developed for both flow models containing parameters for fluid density, fluid velocity, Reynolds number and channel and plate dimensions. Hence the effects of each parameter can be examined independently. A criterion is developed for predicting ETR fuel plate collapse at high channel flow velocities, 1067 cm/s (420 in/sec) (R/sub e/ = 60,000). The criterion predicts that in order to prevent ETR plate collapse the inlet velocities between channels must not differ by more than 2%

  19. Homogenization of a thermal problem with the fourier conditions in the thin plates of a heat exchanger

    International Nuclear Information System (INIS)

    Rahmattulla, A.A.; Taghite, M.B.

    1996-01-01

    In this paper was studied a thermal problem with the fourier boundary conditions on the edges of the holes in a periodically perforated plate of a heat exchanger. This problem contains several reduced parameters which can be very small (the period ε of the distribution of the holes, the reduced thickness e of the plate and the three Biot numbers relative to the different parts of the boundary). The homogenization technique was used to estimate the field of temperatures attainable in the upper plate, depending on the relative order of magnitude of the smell parameters. (authors). 9 refs

  20. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  1. Magnetism at the Interface of Magnetic Oxide and Nonmagnetic Semiconductor Quantum Dots.

    Science.gov (United States)

    Saha, Avijit; Viswanatha, Ranjani

    2017-03-28

    Engineering interfaces specifically in quantum dot (QD) heterostructures provide several prospects for developing multifunctional building block materials. Precise control over internal structure by chemical synthesis offers a combination of different properties in QDs and allows us to study their fundamental properties, depending on their structure. Herein, we studied the interface of magnetic/nonmagnetic Fe 3 O 4 /CdS QD heterostructures. In this work, we demonstrate the decrease in the size of the magnetic core due to annealing at high temperature by the decrease in saturation magnetization and blocking temperature. Furthermore, surprisingly, in a prominently optically active and magnetically inactive material such as CdS, we observe the presence of substantial exchange bias in spite of the nonmagnetic nature of CdS QDs. The presence of exchange bias was proven by the increase in magnetic anisotropy as well as the presence of exchange bias field (H E ) during the field-cooled magnetic measurements. This exchange coupling was eventually traced to the in situ formation of a thin antiferromagnetic FeS layer at the interface. This is verified by the study of Fe local structure using X-ray absorption fine structure spectroscopy, demonstrating the importance of interface engineering in QDs.

  2. Drilling and cutting of thin metal plates in water with radiation of a repetitively pulsed Nd : YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Glova, A F; Lysikov, A Yu [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2011-10-31

    The conditions of drilling and cutting of 0.15-mm-thick titanium and stainless steel plates in water with the radiation of a repetitively pulsed Nd : YAG laser having the mean power up to 30 W are studied experimentally in the absence of water and gas jets. Dependences of the maximal cutting speed in water on the radiation power are obtained, the cutting efficiency is determined, and the comparison with the conditions of drilling and cutting of plates in air is carried out.

  3. Numerical analysis of microstructure formation of magnetic particles and nonmagnetic particles in MR fluids

    International Nuclear Information System (INIS)

    Ido, Y; Yamaguchi, T; Inagaki, T

    2009-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in MR fluids is investigated using the particle method simulation. Nonmagnetic sphere particles are rearranged in the field direction due to the chain-like cluster formation of magnetic particles. In the contrast, the nonmagnetic spherocylinder particles are not sufficiently rearranged in the field direction by using the cluster formation of sphere magnetic particles.

  4. Flat sources for active acoustic shielding based on distributed control of a vibrating plate coupled with a thin cavity

    NARCIS (Netherlands)

    Berkhoff, A.P.; Ho, J.H.

    2013-01-01

    Air cavities between plates are often used to improve noise insulation by passive means, especially at high frequencies. Such configurations may suffer from resonances, such as due to the mass-air-mass resonance. Lightweight structures, which tend to be undamped, may suffer from structural

  5. In situ Silver Spot Preparation and on-Plate Surface-Enhanced Raman Scattering Detection in Thin Layer Chromatography Separation

    Science.gov (United States)

    Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.

    2013-05-01

    An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.

  6. Nonmagnetic impurity in the spin-gap state

    International Nuclear Information System (INIS)

    Nagaosa, N.; Ng, T.

    1995-01-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon

  7. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  8. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  9. Influence of disorder on superconductivity in non-magnetic rare ...

    Indian Academy of Sciences (India)

    Influence of disorder on superconductivity in non-magnetic rare-earth nickel borocarbides. G FUCHS1,∗. , K-H M ¨ULLER1, J FREUDENBERGER1, K NENKOV1,. S-L DRECHSLER1, S V SHULGA1, D LIPP2, A GLADUN2,. T CICHOREK3 and P GEGENWART3. 1Institut für Festkörper- und Werkstofforschung, D-01171 ...

  10. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  11. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    Science.gov (United States)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  12. A new method for fabrication of thin plates and thin-walled cylinder made of fiber reinforced metal (FRM) and its application for the rotating drum of the nuclear fuel centrifugal separator

    International Nuclear Information System (INIS)

    Okamura, Tatsuya

    1978-01-01

    The composite materials using resins as the base materials show the defect that the characteristics deteriorate rapidly at elevated temperature. Therefore the FRMs using relatively ductile metals as the base materials combined with reinforcing fibers have been considered. The result of study on the combination of base materials and fibers and the manufacturing method is rarely reported in Japan. In FRMs, direct contact of fibers mutually must be avoided, especially making nodes lowers the strength extremely. The fibers must be long monofilaments of 0.1 to 0.2 mm diameter. High precision wire winding machines are required for making uniform FRMs. For the diffusion joining of preformed materials, in which fibers are put in order on metallic foils, pressure and heat are applied. The author succeeded to develop the technique for making thin-walled cylinders of FRMs, including the method of winding brittle filaments and the method of pressurizing and heating based on the difference of thermal expansion of dies. The mechanical properties of thin plates and thin-walled cylinders made of monofilaments of B, SiC and SUS and aluminum alloy foils were obtained, and rotation test of the cylinders was carried out. It was clarified that the FRMs of B-Al and SiC-Al groups are very excellent materials, and most suitable for the rotary drums of super-high speed centrifuges. (Kako, I.)

  13. Thin-plate spline analysis of treatment effects of rapid maxillary expansion and face mask therapy in early Class III malocclusions.

    Science.gov (United States)

    Baccetti, T; Franchi, L; McNamara, J A

    1999-06-01

    An effective morphometric method (thin-plate spline analysis) was applied to evaluate shape changes in the craniofacial configuration of a sample of 23 children with Class III malocclusions in the early mixed dentition treated with rapid maxillary expansion and face mask therapy, and compared with a sample of 17 children with untreated Class III malocclusions. Significant treatment-induced changes involved both the maxilla and the mandible. Major deformations consisted of forward displacement of the maxillary complex from the pterygoid region and of anterior morphogenetic rotation of the mandible, due to a significant upward and forward direction of growth of the mandibular condyle. Significant differences in size changes due to reduced increments in mandibular dimensions were associated with significant shape changes in the treated group.

  14. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations.

    Science.gov (United States)

    Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L

    1997-04-01

    This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.

  15. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping

    International Nuclear Information System (INIS)

    Schaly, B; Bauman, G S; Battista, J J; Dyk, J Van

    2005-01-01

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of ∼10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (∼2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy

  16. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    Science.gov (United States)

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  17. Electroless plating of low-resistivity Cu–Mn alloy thin films with self-forming capacity and enhanced thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Sung-Te, E-mail: stchen@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Dali 412, Taichung, Taiwan (China); Chen, Giin-Shan [Department of Materials Science and Engineering, Feng Chia University, Seatwen 407, Taichung, Taiwan (China)

    2015-11-05

    Previous studies have typically used sputter deposition to fabricate Cu–Mn alloy thin films with concentrated solute additions which have exceeded several atomic percentages, and the electrical resistivity values of the resultant films from previous studies are relatively high, ranging from 2.5 to 3.5 μΩ-cm. Herein, we proposed a different approach by using electroless process to plate dilute Cu–Mn (0.1 at.%) alloy thin films on dielectric layers (SiO{sub 2}). Upon forming-gas annealing, the Mn incorporated into Cu–Mn films was segregated toward the SiO{sub 2} side, eventually converting itself into a few atomic layer thickness at the Cu/SiO{sub 2} interface, and forming films with a low level of resistivity the same as that of pure Cu films (2.0 μΩ-cm). The interfacial layer served as not only a diffusion barrier, but also an adhesion promoter that prevented the film’s agglomeration during annealing at elevated temperatures. The mechanism for the dual-function performance by the Mn addition was elucidated by interfacial bonding analysis, as well as dynamic (adhesive strength) and thermodynamic (surface-tension) measurements. - Highlights: • Electroless plating is proposed to grow dilute (0.1%) Cu–Mn films on SiO{sub 2} layers. • Adequate annealing results in a self-forming of MnO{sub x} at the Cu/SiO{sub 2} interface. • The role of interfacial MnO{sub x} as a barrier and adhesion promoter is demonstrated. • The treated dilute film has a low ρ level of pure Cu, in contrast to concentrated films. • Its potential as a single entity replacement of Cu interconnect is presented.

  18. Stable, Microfabricated Thin Layer Chromatography Plates without Volume Distortion on Patterned, Carbon and Al2O3-Primed Carbon Nanotube Forests

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Gupta, Vipul; Vail, Michael A.; Dadson, Andrew; Engelhard, Mark H.; Vanfleet, Richard; Davis, Robert C.; Linford, Matthew R.

    2012-09-28

    In a recent report (Song, J.; et al., Advanced Functional Materials 2011, 21, 1132-1139) some of us described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests, which were directly infiltrated/coated with silicon by low pressure chemical vapor deposition (LPCVD) of silicon using SiH4. Following infiltration, the nanotubes were removed from the assemblies and the silicon simultaneously converted to SiO2 in a high temperature oxidation step. However, while straightforward, this process had some shortcomings, not the least of which was some distortion of the lithographically patterned features during the volume expansion that accompanied oxidation. Herein we overcome theis issue and also take substantial steps forward in the microfabrication of TLC plates by showing: (i) A new method for creating an adhesion promotion layer on CNT forests by depositing a few nanometers of carbon followed by atomic layer deposition (ALD) of Al2O3. This method for appears to be new, and X-ray photoelectron spectroscopy confirms the expected presence of oxygen after carbon deposition. ALD of Al2O3 alone and in combination with the carbon on patterned CNT forests was also explored as an adhesion promotion layer for CNT forest infiltration. (ii) Rapid, conformal deposition of an inorganic material that does not require subsequent oxidation: fast pseudo-ALD growth of SiO2 via alumina catalyzed deposition of tris(tert-butoxy)silanol onto the carbon/Al2O3-primed CNT forests. (iii) Faithful reproduction of the features in the masks used to microfabricate the TLC plates (M-TLC) this advance springs from the previous two points. (iv) A bonded (amino) phase on a CNT-templated microfabricated TLC plate. (v) Fast, highly efficient (125,000 - 225,000 N/m) separations of fluorescent dyes on M-TLC plates. (vi) Extensive characterization of our new materials by TEM, SEM, EDAX, DRIFT, and XPS. (vii) A substantially lower process temperature for the

  19. A comparative study of pulsed Nd:YAG laser welding and TIG welding of thin Ti6Al4V titanium alloy plate

    International Nuclear Information System (INIS)

    Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun

    2013-01-01

    This paper reports on a study aiming at comparing properties of the Ti6Al4V titanium alloy joints between pulsed Nd:YAG laser welding and traditional fusion welding. To achieve the research purpose, Ti6Al4V titanium alloy plates with a thickness of 0.8 mm were welded using pulsed Nd:YAG laser beam welding (LBW) and gas tungsten arc welding (TIG), respectively. Residual distortions, weld geometry, microstructure and mechanical properties of the joints produced with LBW and TIG welding were compared. During the tensile test, with the aid of a high speed infrared camera, evolution of the plastic strain within tensile specimens corresponding to LBW and TIG welding were recorded and analyzed. Compared with the TIG, the welded joint by LBW has the characters of small overall residual distortion, fine microstructure, narrow heat-affected zone (HAZ), high Vickers hardness. LBW welding method can produce joints with higher strength and ductility. It can be concluded that Pulsed Nd:YAG laser welding is much more suitable for welding the thin Ti6Al4V titanium alloy plate than TIG welding.

  20. Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate-a conjugate analysis

    International Nuclear Information System (INIS)

    Dogan, M.; Sivrioglu, Mecit; Yılmaz, Onder

    2014-01-01

    Highlights: • Optimum fin shape is determined for natural convection and radiation heat transfer. • Fin array with the optimum shape has a much greater average heat transfer coefficient. • The most important factors affecting the heat transfer coefficient are determined. - Abstract: Steady state natural convection and radiation heat transfer from various shaped thin fin-arrays on a horizontal base plate has been numerically investigated. A conjugate analysis has been carried out in which the conservation equations of mass, momentum and energy for the fluid in the two fin enclosure are solved together with the heat conduction equation in the fin and the base plate. Heat transfer by radiation is also considered in analysis. The heat transfer coefficient has been determined for each of the fin array considered in the present study at the same base and the same total area. The results of the analysis show that there are some important geometrical factors affecting the design of fin arrays. Taking into consideration these factors, an optimum fin shape that yields the highest average heat transfer coefficient has been determined

  1. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    Science.gov (United States)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  2. Measuring and predicting the dynamic effects of a confined thin metal plate pulse heated into the liquid-vapor regime

    International Nuclear Information System (INIS)

    Baxter, R.C.

    1977-01-01

    The dynamic response of a confined thin layer of lead heated rapidly and uniformly to a supercritical state was investigated. Lead targets 0.025 mm and 0.05 mm thick were contained between a thin titanium tamping layer and a thick layer of fused quartz with several different gap widths between the lead and the confining surfaces. After being heated by an electron beam for about 50 ns, lead specimens expanded to a state of approximately half liquid and half vapor. Measurements of the stress in the quartz and the velocity of the tamper produced by the expanding lead were compared with one dimensional hydrodynamic computer program predictions. Measured and predicted peak stresses in the quartz for no gaps were approximately 12 kilobars and agreed within one kilobar. Peak stresses decreased rapidly with gap size to values, at 0.02 mm gaps, of about one kilobar for the 0.025 mm lead targets and five kilobars for the 0.05 mm targets. These values were confirmed by measurements. Predictions and measurements of tamper velocity (momentum) were within 10% only when the lead and confining walls were in close contact. The observed velocities for even very small gaps were substantially below predictions. These differences are attributed primarily to separation of the liquid and vapor phases during the expansion

  3. Electrical characterization of γ-Al2O3 thin film parallel plate capacitive sensor for trace moisture detection

    Science.gov (United States)

    Kumar, Lokesh; Kumar, Shailesh; Khan, S. A.; Islam, Tariqul

    2012-10-01

    A moisture sensor was fabricated based on porous thin film of γ-Al2O3 formed between the parallel gold electrodes. The sensor works on capacitive technique. The sensing film was fabricated by dipcoating of aluminium hydroxide sol solution obtained from the sol-gel method. The porous structure of the film of γ-Al2O3 phase was obtained by sintering the film at 450 °C for 1 h. The electrical parameters of the sensor have been determined by Agilent 4294A impedance analyzer. The sensor so obtained is found to be sensitive in moisture range 100-600 ppmV. The response time of the sensor in ppmV range moisture is very low ~ 24 s and recovery time is ~ 37 s.

  4. Electromagnetic Screening and Skin-Current Distribution with Magnetic and Non-Magnetic Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, E [Dept. of Plasma Physics, Royal Institute of Technology, Stockholm (SE)

    1974-12-15

    In many applications it is permissible to assume that eddy currents are essentially confined to the skin of the conductor. However, the perfect-conductor approach, commonly employed for skin-current estimates, requires that also mud << L{sub t}, where mu is the relative permeability of the conductor, d its skin depth, and L{sub t} a characteristic length along its surface. The need for this restriction does not seem to be sufficiently well known. In this note simple formulae giving quantitative estimates - valid for arbitrary mud/L - for far-field skin-currents, eddy current losses and screening efficiency are derived for several simple configurations. Boundary conditions that should allow calculations for more complicated configurations are also presented. The parameter mud is important also for non-magnetic materials. Thus, the equivalence of a thin real screen (thickness D) and an infinitely thin screen with the same rhoomegaD will be improved if - in addition - mud is the same for both

  5. Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process

    Science.gov (United States)

    Bong, Hyuk Jong; Barlat, Frédéric; Lee, Myoung-Gyu

    2016-08-01

    Formability increase in non-conventional forming profiles programmed in the servo-press was investigated using finite element analysis. As an application, forming experiment on a 0.15-mm-thick ferritic stainless steel sheet for a bipolar plate, a primary component of a proton exchange membrane fuel cell, was conducted. Four different forming profiles were considered to investigate the effects of forming profiles on formability and shape accuracy. The four motions included conventional V motion, holding motion, W motion, and oscillating motion. Among the four motions, the holding motion, in which the slide was held for a certain period at the bottom dead point, led to the best formability. Finite element simulations were conducted to validate the experimental results and to probe the formability improvement in the non-conventional forming profiles. A creep model to address stress relaxation effect along with tool elastic recovery was implemented using a user-material subroutine, CREEP in ABAQUS finite element software. The stress relaxation and variable contact conditions during the holding and oscillating profiles were found to be the main mechanism of formability improvement.

  6. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  7. Removal of antibiotics in a parallel-plate thin-film-photocatalytic reactor: Process modeling and evolution of transformation by-products and toxicity.

    Science.gov (United States)

    Özkal, Can Burak; Frontistis, Zacharias; Antonopoulou, Maria; Konstantinou, Ioannis; Mantzavinos, Dionissios; Meriç, Süreyya

    2017-10-01

    Photocatalytic degradation of sulfamethoxazole (SMX) antibiotic has been studied under recycling batch and homogeneous flow conditions in a thin-film coated immobilized system namely parallel-plate (PPL) reactor. Experimentally designed, statistically evaluated with a factorial design (FD) approach with intent to provide a mathematical model takes into account the parameters influencing process performance. Initial antibiotic concentration, UV energy level, irradiated surface area, water matrix (ultrapure and secondary treated wastewater) and time, were defined as model parameters. A full of 2 5 experimental design was consisted of 32 random experiments. PPL reactor test experiments were carried out in order to set boundary levels for hydraulic, volumetric and defined defined process parameters. TTIP based thin-film with polyethylene glycol+TiO 2 additives were fabricated according to pre-described methodology. Antibiotic degradation was monitored by High Performance Liquid Chromatography analysis while the degradation products were specified by LC-TOF-MS analysis. Acute toxicity of untreated and treated SMX solutions was tested by standard Daphnia magna method. Based on the obtained mathematical model, the response of the immobilized PC system is described with a polynomial equation. The statistically significant positive effects are initial SMX concentration, process time and the combined effect of both, while combined effect of water matrix and irradiated surface area displays an adverse effect on the rate of antibiotic degradation by photocatalytic oxidation. Process efficiency and the validity of the acquired mathematical model was also verified for levofloxacin and cefaclor antibiotics. Immobilized PC degradation in PPL reactor configuration was found capable of providing reduced effluent toxicity by simultaneous degradation of SMX parent compound and TBPs. Copyright © 2017. Published by Elsevier B.V.

  8. Bending and stretching of plates

    CERN Document Server

    Mansfield, E H; Hemp, W S

    1964-01-01

    The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a

  9. Soft tissue thin-plate spline analysis of pre-pubertal Korean and European-Americans with untreated Angle's Class III malocclusions.

    Science.gov (United States)

    Singh, G D; McNamara, J A; Lozanoff, S

    1999-01-01

    The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.

  10. Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both.

    Science.gov (United States)

    Stayton, C Tristan

    2009-05-01

    Finite element (FE) models are popular tools that allow biologists to analyze the biomechanical behavior of complex anatomical structures. However, the expense and time required to create models from specimens has prevented comparative studies from involving large numbers of species. A new method is presented for transforming existing FE models using geometric morphometric methods. Homologous landmark coordinates are digitized on the FE model and on a target specimen into which the FE model is being transformed. These coordinates are used to create a thin-plate spline function and coefficients, which are then applied to every node in the FE model. This function smoothly interpolates the location of points between landmarks, transforming the geometry of the original model to match the target. This new FE model is then used as input in FE analyses. This procedure is demonstrated with turtle shells: a Glyptemys muhlenbergii model is transformed into Clemmys guttata and Actinemys marmorata models. Models are loaded and the resulting stresses are compared. The validity of the models is tested by crushing actual turtle shells in a materials testing machine and comparing those results to predictions from FE models. General guidelines, cautions, and possibilities for this procedure are also presented.

  11. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  12. Thin-plate spline analysis of mandibular shape changes induced by functional appliances in Class II malocclusion : A long-term evaluation.

    Science.gov (United States)

    Franchi, Lorenzo; Pavoni, Chiara; Faltin, Kurt; Bigliazzi, Renato; Gazzani, Francesca; Cozza, Paola

    2016-09-01

    The purpose of this work was to evaluate the long-term morphological mandibular changes induced by functional treatment of Class II malocclusion with mandibular retrusion. Forty patients (20 females, 20 males) with Class II malocclusion consecutively treated with either a Bionator or an Activator followed by fixed appliances were compared with a control group of 40 subjects (19 females, 21 males) with untreated Class II malocclusion. Lateral cephalograms were available at the start of treatment (T1, mean age 9.9 years), at the end of treatment with functional appliances (T2, mean age 12.2 years), and for long-term follow-up (T3, mean age 18.3 years). Mandibular shape changes were analyzed on lateral cephalograms of the subjects in both groups via thin-plate spline (TPS) analysis. Shape differences were statistically analyzed by conducting permutation tests on Goodall F statistics. In the long term, both the treated and control groups exhibited significant longitudinal mandibular shape changes characterized by upward and forward dislocation of point Co associated with a vertical extension in the gonial region and backward dislocation of point B. Functional appliances induced mandible's significant posterior morphogenetic rotation over the short term. The treated and control groups demonstrated similar mandibular shape over the long term.

  13. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    Science.gov (United States)

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  14. A new procedure for investigating three-dimensional stress fields in a thin plate with a through-the-thickness crack

    Science.gov (United States)

    Yi, Dake; Wang, TzuChiang

    2018-06-01

    In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.

  15. Computation of transient 3-D eddy current in nonmagnetic conductor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1978-01-01

    A numerical procedure was developed to solve transient three-dimensional (3-D) eddy current problems for nonmagnetic conductor. Integral equation formulation in terms of vector potential is used to simplify the matching of boundary conditions. The resulting equations and their numerical approximation were shown to be singular and to require special handling. Several types of symmetries were introduced. They not only reduce the number of algebraic equations to be solved, but also modify the nature of the equations and render them nonsingular. Temporal behavior was obtained with the Runge-Kutta method. The program is tested in several examples of eddy currents for its spatial and temporal profiles, shielding, boundary surface effects, and application of various symmetry options

  16. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  17. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  18. Interaction of the electromagnetic waves and non-magnetized plasmas

    International Nuclear Information System (INIS)

    Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong

    2002-01-01

    The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%

  19. A modified Katsumata probe - ion sensitive probe for measurement in non-magnetized plasmas

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Hubička, Zdeněk; Adámek, Petr; Olejníček, Jiří; Kment, Štěpán; Adámek, Jiří; Stöckel, Jan

    2015-01-01

    Roč. 86, č. 7 (2015), "073510-1"-"073510-7" ISSN 0034-6748 R&D Projects: GA MŠk LH12043 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : Katsumata probe * non-magnetized plasma * magnetron * ion temperature * non-magnetized plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.336, year: 2015

  20. Paper microzone plates.

    Science.gov (United States)

    Carrilho, Emanuel; Phillips, Scott T; Vella, Sarah J; Martinez, Andres W; Whitesides, George M

    2009-08-01

    This paper describes 96- and 384-microzone plates fabricated in paper as alternatives to conventional multiwell plates fabricated in molded polymers. Paper-based plates are functionally related to plastic well plates, but they offer new capabilities. For example, paper-microzone plates are thin (approximately 180 microm), require small volumes of sample (5 microL per zone), and can be manufactured from inexpensive materials ($0.05 per plate). The paper-based plates are fabricated by patterning sheets of paper, using photolithography, into hydrophilic zones surrounded by hydrophobic polymeric barriers. This photolithography used an inexpensive formulation photoresist that allows rapid (approximately 15 min) prototyping of paper-based plates. These plates are compatible with conventional microplate readers for quantitative absorbance and fluorescence measurements. The limit of detection per zone loaded for fluorescence was 125 fmol for fluorescein isothiocyanate-labeled bovine serum albumin, and this level corresponds to 0.02 the quantity of analyte per well used to achieve comparable signal-to-noise in a 96-well plastic plate (using a solution of 25 nM labeled protein). The limits of detection for absorbance on paper was approximately 50 pmol per zone for both Coomassie Brilliant Blue and Amaranth dyes; these values were 0.4 that required for the plastic plate. Demonstration of quantitative colorimetric correlations using a scanner or camera to image the zones and to measure the intensity of color, makes it possible to conduct assays without a microplate reader.

  1. An enhanced computational method for age-at-death estimation based on the pubic symphysis using 3D laser scans and thin plate splines.

    Science.gov (United States)

    Stoyanova, Detelina; Algee-Hewitt, Bridget F B; Slice, Dennis E

    2015-11-01

    The pubic symphysis is frequently used to estimate age-at-death from the adult skeleton. Assessment methods require the visual comparison of the bone morphology against age-informative characteristics that represent a series of phases. Age-at-death is then estimated from the age-range previously associated with the chosen phase. While easily executed, the "morphoscopic" process of feature-scoring and bone-to-phase-matching is known to be subjective. Studies of method and practitioner error demonstrate a need for alternative tools to quantify age-progressive change in the pubic symphysis. This article proposes a more objective, quantitative method that analyzes three-dimensional (3D) surface scans of the pubic symphysis using a thin plate spline algorithm (TPS). This algorithm models the bending of a flat plane to approximately match the surface of the bone and minimizes the bending energy required for this transformation. Known age-at-death and bending energy were used to construct a linear model to predict age from observed bending energy. This approach is tested with scans from 44 documented white male skeletons and 12 casts. The results of the surface analysis show a significant association (regression p-value = 0.0002 and coefficient of determination = 0.2270) between the minimum bending energy and age-at-death, with a root mean square error of ≈19 years. This TPS method yields estimates comparable to established methods but offers a fully integrated, objective and quantitative framework of analysis and has potential for use in archaeological and forensic casework. © 2015 Wiley Periodicals, Inc.

  2. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Dinh-Hoi [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Physics Department, Hue University’s College of Education, 34 Le Loi, Hue (Viet Nam); Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  3. Separation of magnetic from non-magnetic information in the Bitter pattern method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2001-01-01

    The paper deals with the problem of separating magnetic and non-magnetic contributions to the image contrast in the Bitter pattern method. With the help of the digital image difference procedure, it is demonstrated for the first time for the Bitter method that the separation is easy to achieve for relatively soft magnetic specimens, when an external field can be applied to simply produce the non-magnetic reference image of the specimen area under study. It is also shown that obtaining satisfactory results is principally impossible when removing the colloid from the specimen surface is used for the purpose of recording the non-magnetic image

  4. Large, Tunable Magnetoresistance in Nonmagnetic III-V Nanowires.

    Science.gov (United States)

    Li, Sichao; Luo, Wei; Gu, Jiangjiang; Cheng, Xiang; Ye, Peide D; Wu, Yanqing

    2015-12-09

    Magnetoresistance, the modulation of resistance by magnetic fields, has been adopted and continues to evolve in many device applications including hard-disk, memory, and sensors. Magnetoresistance in nonmagnetic semiconductors has recently raised much attention and shows great potential due to its large magnitude that is comparable or even larger than magnetic materials. However, most of the previous work focus on two terminal devices with large dimensions, typically of micrometer scales, which severely limit their performance potential and more importantly, scalability in commercial applications. Here, we investigate magnetoresistance in the impact ionization region in InGaAs nanowires with 20 nm diameter and 40 nm gate length. The deeply scaled dimensions of these nanowires enable high sensibility with less power consumption. Moreover, in these three terminal devices, the magnitude of magnetoresistance can be tuned by the transverse electric field controlled by gate voltage. Large magnetoresistance between 100% at room temperature and 2000% at 4.3 K can be achieved at 2.5 T. These nanoscale devices with large magnetoresistance offer excellent opportunity for future high-density large-scale magneto-electric devices using top-down fabrication approaches, which are compatible with commercial silicon platform.

  5. Fuel cell end plate structure

    Science.gov (United States)

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  6. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    Science.gov (United States)

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  7. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  8. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  9. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  10. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    Science.gov (United States)

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  11. Cold plate

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin, Christopher M.; O' Connell, Kevin M.; Schultz, Mark D.; Tian, Shurong

    2018-02-13

    A cold plate, an electronic assembly including a cold plate, and a method for forming a cold plate are provided. The cold plate includes an interface plate and an opposing plate that form a plenum. The cold plate includes a plurality of active areas arranged for alignment over respective heat generating portions of an electronic assembly, and non-active areas between the active areas. A cooling fluid flows through the plenum. The plenum, at the non-active areas, has a reduced width and/or reduced height relative to the plenum at the active areas. The reduced width and/or height of the plenum, and exterior dimensions of cold plate, at the non-active areas allow the non-active areas to flex to accommodate surface variations of the electronics assembly. The reduced width and/or height non-active areas can be specifically shaped to fit between physical features of the electronics assembly.

  12. Selected-area growth of nickel micropillars on aluminum thin films by electroless plating for applications in microbolometers

    Directory of Open Access Journals (Sweden)

    Do Ngoc Hieu

    2017-06-01

    Full Text Available An optimization process of electroless plating of nickel was carried out with NiCl2 as the nickel ion source, NaH2PO2 as the reduction agent, CH3COONa and Na3C6H5O7 as complexing agents. Electroless plated nickel layers on sputtered aluminum corning glass substrates with a resistivity of about 75.9 μΩ cm and a nickel concentration higher than 93% were obtained. This optimum process was successfully applied in growing nickel micropillars at selected areas with a well-controlled height. The microstructure of the masking layers was fabricated by means of optical photolithography for subsequent growth of nickel micropillars on selected areas. Micropillars size was defined by the opening size and the height was controlled by adjusting the plating time at a growth rate of 0.41 μm/min. This result shows that electroless nickel plating could be a good candidate for growing micropillars for applications in microbolometers.

  13. Plating laboratory

    International Nuclear Information System (INIS)

    Seamster, A.G.; Weitkamp, W.G.

    1984-01-01

    The lead plating of the prototype resonator has been conducted entirely in the plating laboratory at SUNY Stony Brook. Because of the considerable cost and inconvenience in transporting personnel and materials to and from Stony Brook, it is clearly impractical to plate all the resonators there. Furthermore, the high-beta resonator cannot be accommodated at Stony Brook without modifying the set up there. Consequently the authors are constructing a plating lab in-house

  14. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  15. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    International Nuclear Information System (INIS)

    Li Yi; Xu Ben; Li Qiu-Lin; Liu Wei; Hu Shen-Yang; Li Yu-Lan

    2015-01-01

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau—Lifshitz—Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening. (paper)

  16. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  17. Comparison of non-magnetic and magnetic beads in bead-based assays

    NARCIS (Netherlands)

    Hansenová Maňásková, S.; van Belkum, A.; Endtz, H.P.; Bikker, F.J.; Veerman, E.C.I.; van Wamel, W.J.B.

    2016-01-01

    Multiplex bead-based flow cytometry is an attractive way for simultaneous, rapid and cost-effective analysis of multiple analytes in a single sample. Previously, we developed various bead-based assays using non-magnetic beads coated with Staphylococcus aureus and Streptococcus pneumoniae antigens

  18. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  19. Experimental study of thin square slabs, embedded on all four sides (pressure vessel floors)

    International Nuclear Information System (INIS)

    Valentin, A.

    1967-03-01

    This work was designed to test experimentally the mechanical strength of large thin plates made of non-magnetic stainless steel and subjected to transverse forces; these plates are intended to be used as the flooring of pressure vessels. The characteristics are as follows: Test 1: type: NS 22 S - Ugine; overall cross-section mm x mm: 1497 x 1555,5; thickness mm: 3 Test 2: type: Fluginox 130 - Ugine; overall cross-section mm x mm: 2100 x 2100; thickness mm: 3 Test 3: type: 832 MVR - Avesta; overall cross-section mm x mm: 2090 x 2090; thickness mm: 5. The plates were mounted on frames, each pillar of which had been previously pre-stressed, at its centre point, with a force of 300 kg (test 1), 600 kg (test 2), 800 kg (test 3). The experiments showed that the amounts of flexion at the centre w were related to the loads q by equations of the type: qa 4 /Dh = w/h[A+B(w/h) 2 ] where 2a, h and D represent respectively the length of a side, the thickness and the rigidity under flexion of the plates held on the four sides. The coefficients A and B have been determined for different cases; the equations obtained are discussed. It is shown in particular that prestressing of the pillars is beneficial but that the movement of the plates at their edges cannot be considered to be non-existent with the set-ups used. (author) 1967 [fr

  20. The effect of a flat-plate-type obstacle on the thin liquid film accompanied by a high speed gas flow

    International Nuclear Information System (INIS)

    Fukano, Tohru; Kadoguchi, Katsuhiko; Kanamori, Mikio; Tominaga, Akira.

    1989-01-01

    A flatplate-type obstacle, which simulates a grid-type spacer in a nuclear reactor, is set in an air-water cocurrent stratified flow to investigate liquid film breakdown occurring near the obstacle. We made detailed visual observations and measurements of the velocity profile of the air flow and the axial distributions of liquid film thickness and static pressure near the obstacle. Experimental parameters were the inclination of the rectangular duct, the configuration of the obstacle, i.e., with and without a projection and a hole, which is bored in order to delay the onset of dry patch formation near the obstacle and the gap between the plate and the lower-wall surface. The results show that the plate itself does not promote dry patch formation but the projection, even if it is in contact with the wall surface at only one point, has a strong effect on the liquid film breakdown. In general the film breakdown occurs in front of the projection in a wide range of flow conditions due to the leading edge down-wash of the stream and due also to the rejection of water by gravitational force in the case of the upward flow in the inclined duct. By setting a hole in or in front of the projection the occurrence of the dry patch formation is delayed. (author)

  1. VIE-FG-FFT for Analyzing EM Scattering from Inhomogeneous Nonmagnetic Dielectric Objects

    Directory of Open Access Journals (Sweden)

    Shu-Wen Chen

    2014-01-01

    Full Text Available A new realization of the volume integral equation (VIE in combination with the fast Fourier transform (FFT is established by fitting Green’s function (FG onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.

  2. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  3. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  4. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  5. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    Science.gov (United States)

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  6. ANALYSIS OF NONMAGNETIC METAL INDUCTION HEATING PROCESSES BY FLAT-TYPE CIRCULAR SOLENOIDAL FIELD

    Directory of Open Access Journals (Sweden)

    Yu. Batygin

    2016-12-01

    Full Text Available The article analyzes the electromagnetic processes in the system of induction heating with estimating the main characteristics of heating the non-magnetic sheet metal. The analytical expressions for numerical estimates of the induced current in terms of the phase of the excitation signal are presented. The dependence for the heating temperature of the considered circular sheet metal area for the time corresponding to the interval phase has been determined.

  7. Self-phase modulation in a thin fused silica plate upon interaction with a converging beam of down-chirped femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Grudtsyn, Ya V; Zubarev, I G; Mamaev, S B; Mikheev, L D; Stepanov, S G; Yalovoi, V I [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Koribut, A V [Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region (Russian Federation); Kuchik, I E; Trofimov, V A [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Semjonov, S L [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-31

    The mechanism of spectral broadening and self-compression of down-chirped femtosecond pulses in the visible range (473 nm) upon nonlinear interaction of a converging Gaussian beam with a 1-mm-thick fused silica plate is experimentally and theoretically investigated. It is found experimentally that when the intensity increases and plasma is formed in the sample, the regime of femtosecond pulse splitting is transformed into the single-pulse generation regime during nonlinear interaction. As a result of selfcompression, the duration of the initial transform-limited pulse is reduced by a factor of 3. Based on the numerical solution of the generalised nonlinear Schrödinger equation, with the plasma formation disregarded, it is shown that the profile, spectrum and temporal phase of the pulse transmitted through the sample acquire a stationary shape behind the focal plane of the focusing mirror. The calculation results are in good agreement with experimental data. The possibility of parametric amplification of the pulse spectral components under given experimental conditions is discussed. (extreme light fields and their applications)

  8. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  9. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  10. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  11. DOES TUBULARIZED INCISED PLATE URETHROPLASTY FIT

    African Journals Online (AJOL)

    posterior or proximal hypospadias. Patient age ranged from 22 months to 9 years (mean 5.4 years). Twenty-two cases were primary, while. 10 cases were repeat cases after failed onlay procedures with preserved urethral plate. Cases with severe chordee necessitating ex- cision of the urethral plate or with a very thin.

  12. Asymmetrical Supercapacitor Composed of Thin Co(OH)2 Nanoflakes on Three-Dimensional Ni/Si Microchannel Plates with Superior Electrochemical Performance

    International Nuclear Information System (INIS)

    Li, Mai; Xu, Shaohui; Cherry, Christopher; Zhu, Yiping; Huang, Rong; Qi, Ruijuan; Yang, Pingxiong; Wang, Lianwei; Chu, Paul K.

    2014-01-01

    Graphical abstract: The paper studied the formation mechanism and growth process of nanostructured Co(OH) 2 . The first step of Co(OH) 2 growth involves nucleation of nanorods and tiny nanowires and the second is interconnection growth based on those nanostructures. By using the Co(OH) 2 /Ni/Si-MCPs electrode as the positive electrode and CNTs/nickel foam (CNTs/NF) as the negative electrode, the device assembled with CR2025 batteries exhibits high energy density (38.39 Wh kg −1 ), high power density (5400 W kg −1 at 9.67 Wh kg −1 ), and stable power characteristic (2000 times with 80.63% retention). After charging each supercapacitor for 10 s, the device can power a 5 mm diameter light-emitting diode (LED) with different colors efficiently, for example, a blue LED for 20 min. - Abstract: Nanoscale cobalt hydroxide (Co(OH) 2 ) particles are fabricated by electrodeposition on three-dimensional nickel/silicon microchannel plates (Ni/Si-MCPs) as the active electrode materials on the surface and sidewall of the Ni/Si-MCPs for miniature supercapacitors. The relationship among the electrodeposition time, morphology, formation mechanism of Co(OH) 2 nanostructure, and capacitor performance is studied. Using an optimal electrodeposition time of 6 min, the Co(OH) 2 supercapacitor has a capacitance of 697.56 F g −1 (5.72 F cm −2 ) at 2 mA cm −2 and the retention ratio is 91.20% after 2500 cycles. The large areal capacitance and excellent rate capability can be attributed to the unique 3D ordered porous architecture which facilitates electron and ion transport, enlarges the liquid-solid interfacial area, and enhances the utilization efficiency of the active materials. Meanwhile, the weight and size of the device are reduced. By using the Co(OH) 2 /Ni/Si-MCPs electrode as the positive electrode and CNTs/nickel foam (CNTs/NF) as the negative electrode, the device assembled with CR2025 batteries exhibits high energy density (38.39 Wh kg −1 ), high power density (5400

  13. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    International Nuclear Information System (INIS)

    Jonkkari, I; Syrjala, S; Kostamo, E; Kostamo, J; Pietola, M

    2012-01-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate–plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ∼ 0.3 μm) and rough (Ra ∼ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights. (paper)

  14. [Radiographic findings in 4 cows with traumatic reticuloperitonitis caused by a nonmagnetic copper wire].

    Science.gov (United States)

    Braun, U; Gansohr, B; Flückiger, M

    2003-04-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum; however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered.

  15. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  16. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Kityk, I.V.; Gray, E. MacA.

    2007-01-01

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage

  17. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  18. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2007-10-15

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.

  19. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  20. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  1. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    International Nuclear Information System (INIS)

    Lee, J H; Nam, Y J; Park, M K; Yamane, R

    2009-01-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  2. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  3. Multi-Instrument Characterization of the Surfaces and Materials in Microfabricated, Carbon Nanotube-Templated Thin Layer Chromatography Plates. An Analogy to ‘The Blind Men and the Elephant’

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, David S.; Kanyal, Supriya S.; Madaan, Nitesh; Hancock, Jared M.; Dadson, Andrew; Vail, Michael A.; Vanfleet, Richard; Shutthanandan, V.; Zhu, Zihua; Engelhard, Mark H.; Linford, Matthew R.

    2013-08-08

    Herein we apply a suite of surface/materials analytical tools to characterize some of the materials created in the production of microfabricated thin layer chromatography plates. Techniques used include X-ray photoelectron spectroscopy (XPS), valence band spectroscopy, static time-of-flight secondary ion spectrometry (ToF-SIMS) in both positive and negative ion modes, Rutherford backscattering spectroscopy (RBS), and helium ion microscopy (HIM). Materials characterized include: the Si(100) substrate with native oxide: Si/SiO2, alumina (35 nm) deposited as a diffusion barrier on the Si/SiO2: Si/SiO2/Al2O3, iron (6 nm) thermally evaporated on the Al2O3: Si/SiO2/Al2O3/Fe, the iron film annealed in H2 to make Fe catalyst nanoparticles: Si/SiO2/Al2O3/Fe(NP), and carbon nanotubes (CNTs) grown from the Fe nanoparticles: Si/SiO2/Al2O3/Fe(NP)/CNT. The Fe thin films and nanoparticles are found in an oxidized state. Some of the analyses of the CNTs/CNT forests reported appear to be unique: the CNT forest appears to exhibit an interesting ‘channeling’ phenomenon by RBS, we observe an odd-even effect in the ToF-SIMS spectra of Cn- species for n = 1 – 6, with ions at even n showing greater intensity than the neighboring signals, and ions with n ≥ 6 showing a steady decrease in intensity, and valence band characterization of CNTs using X-radiation is reported. The information obtained from the combination of the different analytical tools provides a more complete understanding of our materials than a single technique, which is analogous to the story of ‘The Blind Men and the Elephant’. (Of course there is increasing emphasis on the use of multiple characterization tools in surface and materials analysis.) The raw XPS and ToF-SIMS spectra from this study will be submitted to Surface Science Spectra for archiving.

  4. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    Science.gov (United States)

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  5. Muon spin relaxation and nonmagnetic Kondo state in PrInAg2

    International Nuclear Information System (INIS)

    MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society

  6. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  7. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  8. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  9. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  10. Development of a high-throughput method based on thin-film microextraction using a 96-well plate system with a cork coating for the extraction of emerging contaminants in river water samples.

    Science.gov (United States)

    Morés, Lucas; Dias, Adriana Neves; Carasek, Eduardo

    2018-02-01

    In this study, a new method was developed in which a biosorbent material is used as the extractor phase in conjunction with a recently described sample preparation technique called thin-film microextraction and a 96-well plate system. The method was applied for the determination of emerging contaminants, such as 3-(4-methylbenzylidene) camphor, ethylparaben, triclocarban, and bisphenol A in water samples. The separation and detection of the analytes were performed by high-performance liquid chromatography with diode array detection. These contaminants are considered hazardous to human health and other living beings. Thus, the development of an analytical method to determine these compounds is of great interest. The extraction parameters were evaluated using multivariate and univariate optimization techniques. The optimum conditions for the method were 3 h of extraction time, 20 min of desorption with 300 μL of acetonitrile and methanol (50:50, v/v), and the addition of 5% w/v sodium chloride to the sample. The analytical figures of merit showed good results with linear correlation coefficients higher than 0.99, relative recoveries of 72-125%, interday precision (n = 3) of 4-18%, and intraday precision (n = 9) of 1-21%. The limit of detection was 0.3-5.5 μg/L, and the limit of quantification was 0.8-15 μg/L. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.F. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Gamino, M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Andrade, A.M.H. de [Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Vázquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Correa, M.A. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@fisica.ufrn.br [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  12. Bipolar plates for PEM fuel cells

    Science.gov (United States)

    Middelman, E.; Kout, W.; Vogelaar, B.; Lenssen, J.; de Waal, E.

    The bipolar plates are in weight and volume the major part of the PEM fuel cell stack, and are also a significant contributor to the stack costs. The bipolar plate is therefore a key component if power density has to increase and costs must come down. Three cell plate technologies are expected to reach targeted cost price levels, all having specific advantages and drawbacks. NedStack has developed a conductive composite materials and a production process for fuel cell plates (bipolar and mono-polar). The material has a high electric and thermal conductivity, and can be processed into bipolar plates by a proprietary molding process. Process cycle time has been reduced to less than 10 s, making the material and process suitable for economical mass production. Other development work to increase material efficiency resulted in thin bipolar plates with integrated cooling channels, and integrated seals, and in two-component bipolar plates. Total thickness of the bipolar plates is now less than 3 mm, and will be reduced to 2 mm in the near future. With these thin integrated plates it is possible to increase power density up to 2 kW/l and 2 kW/kg, while at the same time reducing cost by integrating other functions and less material use.

  13. Mathematical analysis of thin plate models

    CERN Document Server

    Destuynder, Philippe

    1996-01-01

    Ce livre est destiné aux enseignants, chercheurs et étudiants désireux de se familiariser avec les différents modèles de plaques minces et d'en maîtriser les problèmes mathématiques et d'approximation sous-jacents. Il contient essentiellement des résultats nouveaux et des applications originales à l'étude du délaminage des structures multicouche. La démarche est guidée par un souci de mettre en avant les points délicats dans la théorie des plaques minces.

  14. Plate tectonics

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.

    's continental drift theory was later disproved, it was one of the first times that the idea of crustal movement had been introduced to the scientific community; and it has laid the groundwork for the development of modern plate tectonics. In the early... of the structure of the atom was to physical sciences and the theory of evolution was to the life sciences. Tectonics is the study of the forces within the Earth that give rise to continents, ocean basins, mountain ranges, earthquake belts and other large-scale...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Share Create Your Plate ! Share: Seven Simple Steps to Create Your Plate It's simple and effective ... foods within each food category. Try these seven steps to get started: Using your dinner plate, put ...

  16. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  17. Creep analysis of fuel plates for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein

  18. Corrosion behavior of beryllium copper and other nonmagnetic alloys in simulated drilling environments

    International Nuclear Information System (INIS)

    Cribb, W.R.; Booker, J.; Kane, R.D.; Turn, J.C.

    1984-01-01

    Beryllium copper (BeCu) alloys are known to exhibit high strength and good electrical conductivity. Other attractive properties, low magnetic susceptibility and resistance to galling, make these alloys strong contenders for use as drill collars and instrument housings in drilling equipment. Environmental cracking and corrosion tests were conducted in autoclaves at 66, 121 and 149 C (150, 250 and 300 F) in environments as severe as 10% H 2 S, 20% CO 2 balance N 2 . The results indicate Brush Alloy 25 adequately resists environmental cracking for these conditions, whereas certain nonmagnetic stainless steel cracked. Brush Alloy 25 exhibits acceptable corrosion rates at or below temperatures of 149 C (300 F) in environments with up to 1% H 2 S. Acceptable rates were also observed for environments containing up to 10% H 2 S at 66 C (150 F). The alloy showed this similar acceptable behavior in billet or tube form regardless of the aging treatment

  19. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    Science.gov (United States)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  20. Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.

    2006-01-01

    Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors

  1. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A

    2005-01-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases

  2. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071, Salamanca (Spain)

    2005-11-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases.

  3. Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl

    2017-01-01

    The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.

  4. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  6. Physical and mechanical properties of high manganese non-magnetic steel and its application to various products for commercial use

    International Nuclear Information System (INIS)

    Sasaki, Terufumi; Watanabe, Kenji; Nohara, Kiyohiko; Ono, Yutaka; Kondo, Nobuyuki; Sato, Shuzo.

    1982-01-01

    In order to develop new high manganese non-magnetic steels that can be employed to extensive applications ranging from cryogenic to elevated temperature uses, the effects of C and Mn on their magnetic permeability, thermal expansion coefficient and mechanical properties are investigated. It is found that the relation between thermal expansion coefficient, β, and both C and Mn contents can be expressed by the following linear regression equation: β( x 10 -6 / 0 C) = 17.66 + 3.82 C (%) - 0.22 Mn (%). Good mechanical properties are exhibited in the wide range of Mn contents between 18 % and 30 % at room temperature, while there is a tendency that this optimum range of Mn content is narrowed at cryogenic temperature. Then, H-shapes, round bars and deformed bars are manufactured at the workshops using 5t vacuum melted ingots, aiming to establish the conditions for practical processes for final products and to study such various characteristics of the products as their physical and mechanical properties, machinability and weldability. As a result, it is shown that all of those products have excellent properties as non-magnetic steels. In addition, the manufacturing of non-magnetic pinch rolls attached to the electro-magnetic stirring equipment on the continuous casting machine is described in detail as one of the practical applications of the high Mn non-magnetic steels. (author)

  7. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  8. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  9. Application of generalized function to dynamic analysis of thick plates

    International Nuclear Information System (INIS)

    Zheng, D.; Weng, Z.

    1987-01-01

    The structures with thick plates have been used extensively in national defence, mechanical engineering, chemical engineering, nuclear engineering, civil engineering, etc.. Various theories have been established to deal with the problems of elastic plates, which include the classical theory of thin plates, the improved theory of thick plates, three-dimensional elastical theory. In this paper, the derivative of δ-function is handled by using the generalized function. The dynamic analysis of thick plates subjected the concentrated load is presented. The improved Donnell's equation of thick plates is deduced and employed as the basic equation. The generalized coordinates are solved by using the method of MWR. The general expressions for the dynamic response of elastic thick plates subjected the concentrated load are given. The numerical results for rectangular plates are given herein. The results are compared with those obtained from the improved theory and the classical theory of plates. (orig./GL)

  10. stress distribution in continuo ribution in continuous thin ribution

    African Journals Online (AJOL)

    eobe

    studied stresses in thin-walled box girder bridges but stress distribution walled box girder bridges .... the classical thin plate theory and trigonometric series. Lertsima et al. ..... remedied by applying spline finite strip method. Compared to other ...

  11. PELE 正侵穿金属薄靶轴向剩余速度近似计算与分析%Approximate calculation on the axial residual velocity of the PELE penetrate thin metal target plate

    Institute of Scientific and Technical Information of China (English)

    樊自建; 冉宪文; 汤文辉; 于国栋; 李泽斌; 陈为科

    2015-01-01

    By using the shock wave theory,the process that PELE (Penetrator with Enhanced Lateral Efficiency)penetrated a thin metal target was analyzed.The energy loss of the PELE in the process of penetrating the target plate could be divided into the energy obtained by plug when jacket and filling impacted the target,the increased internal energy of jacket and filling,and the shear energy dissipated in the outer and inner edge on the front end of jacket in the process of penetrating the target,etc.Based on the principle of conservation of energy and the method to determine these energies,the approximate formula of the axial residual velocity of PELE was presented.Results show that the axial residual velocity and the calculated results are in good agreement with the experimental data.Compared with the energy loss in different conditions,the filling material has little effect on projectile penetrating ability,and the energy that the plug obtained is the largest while the shear dissipated energy can be neglected.%运用冲击波理论,对横向效应增强型弹丸(Penetration with Enhanced Lateral Efficiency,PELE)侵穿金属靶板的机理进行了分析,将 PELE 侵彻过程中能量损失分为外壳和内芯撞击靶板区域环形塞块获得的能量,冲击波影响范围内外壳和内芯增加的内能,外壳前端外沿和内沿对靶板冲塞剪切耗能等,给出了确定这些能量的计算方法;并依据能量守恒原理,给出了 PELE 正撞金属薄靶板靶后剩余速度的近似计算公式。公式计算结果与多种条件下实验结果均吻合较好。分析计算所得各能量损失结果表明,弹体内芯材料的变化对弹体侵彻能力的影响较小;侵彻中靶板塞块获得的能量在弹体侵彻动能损失中比重最大;外壳前端内沿对靶板的剪切能耗对弹体动能损失的影响可以忽略。

  12. The local domain wall position in ferromagnetic thin wires: simultaneous measurement of resistive and transverse voltages at multiple points

    International Nuclear Information System (INIS)

    Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.

    2002-01-01

    We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)

  13. Measurement of the neutrino component of an antineutrino beam observed by a nonmagnetized detector

    International Nuclear Information System (INIS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Fleming, B. T.; Linden, S. K.; Spitz, J.; Brice, S. J.; Brown, B. C.; Ford, R.; Garcia, F. G.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Polly, C. C.; Russell, A. D.; Stefanski, R. J.; Zeller, G. P.; Bugel, L.; Conrad, J. M.; Karagiorgi, G.; Nguyen, V.

    2011-01-01

    Two methods are employed to measure the neutrino flux of the antineutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high-purity ν μ -induced charged-current single π + (CC1π + ) sample while the second exploits the difference between the angular distributions of muons created in ν μ and ν μ charged-current quasielastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the predominately antineutrino beam is overestimated--the CC1π + analysis indicates the predicted ν μ flux should be scaled by 0.76±0.11, while the CCQE angular fit yields 0.65±0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well-modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of antineutrino beams observed by future nonmagnetized detectors.

  14. New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites

    International Nuclear Information System (INIS)

    Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B

    2004-01-01

    New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration

  15. Induced magnetization spiral in a nonmagnetic metal sandwiched between two ferromagnets

    CERN Document Server

    Mathon, J; Villeret, M; Muniz, R B; Edwards, D M

    2000-01-01

    Calculation of the magnetic moment induced in a non-magnetic metal, sandwiched between two ferromagnets with magnetizations at an arbitrary angle, is reported. It is found that the induced magnetization rotates along a complex three-dimensional spiral and can undergo many complete 360 deg. rotations. A simple free-electron model is used to derive an analytic formula for the twist angle phi inside the spacer. This demonstrates that, contrary to the behavior of magnetization inside a domain wall in a ferromagnet, phi varies non-uniformly inside the spacer and exhibits plateaus of almost constant rotation separated by regions of sharp rotations by large angles. The calculation is extended to the case of a realistic Co/Cu/Co(0 0 1) trilayer described by s, p, d tight-binding bands fitted to an ab initio band structure. An analytic formula for the components of the induced moment (and hence, for phi) is derived using the stationary phase approximation. Its validity is tested against a fully numerical calculation u...

  16. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  17. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    International Nuclear Information System (INIS)

    Singh, S. C.; Gopal, R.; Kotnala, R. K.

    2015-01-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects

  18. A finite element for plates and shells

    International Nuclear Information System (INIS)

    Muller, A.; Feijoo, R.A.; Bevilacqua, L.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt

  19. Dynamic Response of Three-Layered Annular Plate with Imperfections

    Directory of Open Access Journals (Sweden)

    Pawlus Dorota

    2015-02-01

    Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.

  20. The baffle influence on sound radiation characteristics of a plate

    Directory of Open Access Journals (Sweden)

    Bao Liu

    2017-01-01

    Full Text Available The acoustic radiation characteristics of the baffle plates and unbaffle plates are calculated and compared by single-layer potential and double-layer potential. Based on the boundary integral equation, the sound pressure integral equation of the baffle and the baffle are deduced respectively. According to the boundary compatibility condition, the sound pressure and the vibration velocity of the plates are obtained. Further, the dynamic equation of the structure is substituted into the vibration equation in the form of the baffle plate and the baffle plate. The sound pressure difference and the displacement of a plate surface are in the form of the vibration mode superposition and the acoustic radiation impedance of the double integral form is obtained, which determines vibration mode coefficient and sound radiation parameters. The effect of the baffle on the acoustic radiation characteristics of the thin plate is analyzed by comparing the acoustic radiation parameters with the simple and simple rectangular plate in water.

  1. Free vibration analysis of rectangular plates with central cutout

    Directory of Open Access Journals (Sweden)

    Kanak Kalita

    2016-12-01

    Full Text Available A nine-node isoparametric plate element in conjunction with first-order shear deformation theory is used for free vibration analysis of rectangular plates with central cutouts. Both thick and thin plate problems are solved for various aspect ratios and boundary conditions. In this article, primary focus is given to the effect of rotary inertia on natural frequencies of perforated rectangular plates. It is found that rotary inertia has significant effect on thick plates, while for thin plates the rotary inertia term can be ignored. It is seen that the numerical convergence is very rapid and based on comparison with experimental and analytical data from literature, it is proposed that the present formulation is capable of yielding highly accurate results. Finally, some new numerical solutions are provided here, which may serve as benchmark for future research on similar problems.

  2. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  3. Real-space distribution of the Hall current densities and their spin polarization in nonmagnetic zine-blende semiconductors

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Drchal, Václav

    2012-01-01

    Roč. 86, č. 19 (2012), "195204-1"-"195204-8" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : nonmagnetic semiconductors * spin Hall currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  4. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  5. A folded plate clamped along one side only

    Science.gov (United States)

    Nazarov, Serguei A.; Slutskij, Andrey S.

    2017-12-01

    An asymptotic model of a folded thin elastic plate is posed on two plane domains and contains transmission conditions at the common line segment of their boundaries. These conditions become non-local and inhomogeneous if only one side of the plate is fixed. Solvability and smoothness results and error estimates for the model are derived. xml:lang="fr"

  6. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields

    International Nuclear Information System (INIS)

    Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi

    2009-01-01

    The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced

  7. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  8. Gain stabilized microchannel plates and a treatment method for microchannel plates

    International Nuclear Information System (INIS)

    1979-01-01

    Microchannel plates having increased gain and significantly improved aging characteristics are provided by forming a thin film of a cesium compound on the channel walls. In an exemplary embodiment, a suface film of cesium hydroxide is applied to the interior wall surfaces of an MCP by saturating the plate with a solution of the compound, then allowing the solvent to evaporate. The cesium hydroxide residue on the walls subsequently is converted to cesium oxide by a high temperature bake. Microchannel plates are used in image amplifiers, radiation detectors and such like equipment. (Auth.)

  9. Mounting Thin Samples For Electrical Measurements

    Science.gov (United States)

    Matus, L. G.; Summers, R. L.

    1988-01-01

    New method for mounting thin sample for electrical measurements involves use of vacuum chuck to hold a ceramic mounting plate, which holds sample. Contacts on mounting plate establish electrical connection to sample. Used to make electrical measurements over temperature range from 77 to 1,000 K and does not introduce distortions into magnetic field during Hall measurements.

  10. Vibro-acoustic analysis of composite plates

    International Nuclear Information System (INIS)

    Sarigül, A S; Karagözlü, E

    2014-01-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed

  11. Vibro-acoustic analysis of composite plates

    Science.gov (United States)

    Sarigül, A. S.; Karagözlü, E.

    2014-03-01

    Vibro-acoustic analysis plays a vital role on the design of aircrafts, spacecrafts, land vehicles and ships produced from thin plates backed by closed cavities, with regard to human health and living comfort. For this type of structures, it is required a coupled solution that takes into account structural-acoustic interaction which is crucial for sensitive solutions. In this study, coupled vibro-acoustic analyses of plates produced from composite materials have been performed by using finite element analysis software. The study has been carried out for E-glass/Epoxy, Kevlar/Epoxy and Carbon/Epoxy plates with different ply angles and numbers of ply. The effects of composite material, ply orientation and number of layer on coupled vibro-acoustic characteristics of plates have been analysed for various combinations. The analysis results have been statistically examined and assessed.

  12. Modeling the hydrodynamics of Phloem sieve plates

    DEFF Research Database (Denmark)

    Jensen, Kaare Hartvig; Mullendore, Daniel Leroy; Holbrook, Noel Michele

    2012-01-01

    Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play...... understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species...... a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly...

  13. Radiation shielding plate

    International Nuclear Information System (INIS)

    Kobayashi, Torakichi; Sugawara, Takeo.

    1983-01-01

    Purpose: To reduce the weight and stabilize the configuration of a radiation shielding plate which is used in close contact with an object to be irradiated with radiation rays. Constitution: The radiation shielding plate comprises a substrate made of lead glass and a metallic lead coating on the surface of the substrate by means of plating, vapor deposition or the like. Apertures for permeating radiation rays are formed to the radiation shielding plate. Since the shielding plate is based on a lead glass plate, a sufficient mechanical strength can be obtained with a thinner structure as compared with the conventional plate made of metallic lead. Accordingly, if the shielding plate is disposed on a soft object to be irradiated with radiation rays, the object and the plate itself less deform to obtain a radiation irradiation pattern with distinct edges. (Moriyama, K.)

  14. Subduction Drive of Plate Tectonics

    Science.gov (United States)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under

  15. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  16. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  17. Buckling transition and boundary layer in non-Euclidean plates.

    Science.gov (United States)

    Efrati, Efi; Sharon, Eran; Kupferman, Raz

    2009-07-01

    Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... foods you want, but changes the portion sizes so you are getting larger portions of non-starchy ... plate. Then on one side, cut it again so you will have three sections on your plate. ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... of the differences in types of vegetables. When creating your plate at home, remember that half of ... effective for both managing diabetes and losing weight. Creating your plate lets you still choose the foods ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ... Plate Create Your Plate is a simple and effective way to manage your blood glucose levels and ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ... Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook ...

  3. Radiographic findings in 4 cows with traumatic reticuloperitonitis due to a non-magnetic foreign body composed of copper

    International Nuclear Information System (INIS)

    Braun, U.; Gansohr, B.; Flückiger, M.

    2003-01-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered

  4. Weld Repair of Thin Aluminum Sheet

    Science.gov (United States)

    Beuyukian, C. S.; Mitchell, M. J.

    1986-01-01

    Weld repairing of thin aluminum sheets now possible, using niobium shield and copper heat sinks. Refractory niobium shield protects aluminum adjacent to hole, while copper heat sinks help conduct heat away from repair site. Technique limits tungsten/inert-gas (TIG) welding bombardment zone to melt area, leaving surrounding areas around weld unaffected. Used successfully to repair aluminum cold plates on Space Shuttle, Commercial applications, especially in sealing fractures, dents, and holes in thin aluminum face sheets or clad brazing sheet in cold plates, heat exchangers, coolers, and Solar panels. While particularly suited to thin aluminum sheet, this process also used in thicker aluminum material to prevent surface damage near weld area.

  5. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  6. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.

    2006-01-01

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed

  7. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

    2006-05-15

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed.

  8. Investigation of technology for manufacturing the non-magnetic temperature-sensitive composite materials and their properties

    International Nuclear Information System (INIS)

    Kobelev, A.G.; Kolesnikov, F.V.; Gul'bin, V.N.; Nikitin, I.S.

    2004-01-01

    Investigation results are presented on structure and properties of nonmagnetic thermobimetals on the basis of beryllium bronze which is used both as active and passive layers. The second layer of thermosensitive element consists of stainless steel 12Kh18N10T, titanium base alloy VT1-0 and aluminum base alloy AD1. The manufacturing of the layered composite materials includes explosion welding, plastic deformation and heat treatment. It is established that strain hardening of the thermobimetals results in an increase of yield strength, microstresses, hardness and specific resistance [ru

  9. Creating a context for excellence and innovation: comparing chief nurse executive leadership practices in magnet and non-magnet hospitals.

    Science.gov (United States)

    Porter-O'grady, Tim

    2009-01-01

    Chief nurse executives create a context for leadership, innovation, and practice in hospitals. It is valuable to get a sense of nurse executives' perceptions regarding their leadership practices and how they value them. Furthermore, it is of interest to see if there is significant differentiation in these perceptions between chief nurse executives in Magnet hospitals and those in non-Magnet hospitals. This article discusses a study of the leadership practices of these 2 groups of nurse executive's leadership practices and reports the results. Concluding is a brief discussion regarding impact and importance of the nurse executive related to excellence and innovation.

  10. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  11. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  12. Modeling the hydrodynamics of phloem sieve plates

    Directory of Open Access Journals (Sweden)

    Kaare Hartvig Jensen

    2012-07-01

    Full Text Available Sieve plates have an enormous impact on the efficiency of the phloem vascular system of plants, responsible for the distribution of photosynthetic products. These thin plates, which separate neighboring phloem cells, are perforated by a large number of tiny sieve pores and are believed to play a crucial role in protecting the phloem sap from intruding animals by blocking flow when the phloem cell is damaged. The resistance to the flow of viscous sap in the phloem vascular system is strongly affected by the presence of the sieve plates, but the hydrodynamics of the flow through them remains poorly understood. We propose a theoretical model for quantifying the effect of sieve plates on the phloem in the plant, thus unifying and improving previous work in the field. Numerical simulations of the flow in real and idealized phloem channels verify our model, and anatomical data from 19 plant species are investigated. We find that the sieve plate resistance is correlated to the cell lumen resistance, and that the sieve plate and the lumen contribute almost equally to the total hydraulic resistance of the phloem translocation pathway.

  13. Method for nanomodulation of metallic thin films following the replica-antireplica process based on porous alumina membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.L. [Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Central de Chile, Santa Isabel 1186, 8330601 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile); Denardin, J.C.; Escrig, J. [Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Ecuador 3493, 9170124 Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago (Chile)

    2017-03-15

    In this paper we have introduced a method for modulation of metallic thin films by sputtering of metals on anodized aluminum templates. Using a high deposition rate during deposition of the non-magnetic metal on the Al pattern, we have separated the two metallic surfaces and, thus, imprinted a pattern of nanohills on a non-magnetic metallic film, such as Au, Ag or Cu. The morphology of the nanostructured metallic films was determined by scanning electron microscopy. Thus, we have confirmed that the ordering degree of the Al template remained after the replication process. Additionally, and as an example of use of these films, we have prepared Supermalloy thin films deposited by sputtering onto these nanostructured non-magnetic metals. The room temperature magnetic behavior of these thin films is also studied. Interestingly, we have found that when the external magnetic field is applied out of plane of the substrate, the coercivity increases linearly as we increase the radius of the nanohills. These soft magnetic films can open new opportunities for magnetic field sensor applications. - Highlights: • A very soft magnetic film is investigated on ordered nanohills. • It is possible to imprint a metallic pattern directly from the etched aluminum foil. • These nanopatterned substrates add an additional degree of freedom. • A method for modulation of metallic thin films.

  14. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  15. Hydroelastic Oscillations of a Circular Plate, Resting on Winkler Foundation

    Science.gov (United States)

    Kondratov, D. V.; Mogilevich, L. I.; Popov, V. S.; Popova, A. A.

    2018-01-01

    The forced hydroelastic oscillations of a circular plate resting on elastic foundation are investigated. The oscillations are caused by a stamp vibration under interaction with a plate through a thin layer of viscous incompressible liquid. The axis-symmetric problem for the regime of the steady-state harmonic oscillations is considered. On the basis of hydroelasticity problem solution the laws of plate deflection and pressure in the liquid are found. The functions of the amplitudes deflection distribution and liquid pressure along the plate are constructed. The presented mathematical model provides for investigating viscous liquid layer interaction dynamics with a circular plate resting on an elastic foundation. The above-mentioned model makes it possible to define the plate oscillations resonance frequencies and the corresponding amplitudes of deflection and liquid pressure, as well.

  16. Free Vibration of Rectangular Plates with Attached Discrete Sprung Masses

    Directory of Open Access Journals (Sweden)

    Ding Zhou

    2012-01-01

    Full Text Available A direct approach is used to derive the exact solution for the free vibration of thin rectangular plates with discrete sprung masses attached. The plate is simply supported along two opposite edges and elastically supported along the two other edges. The elastic support can represent a range of boundary conditions from free to clamped supports. Considering only the compatibility of the internal forces between the plate and the sprung masses, the equations of the coupled vibration of the plate-spring-mass system are derived. The exact expressions for mode and frequency equations of the coupled vibration of the plate and sprung masses are determined. The solutions converge steadily and monotonically to exact values. The correctness and accuracy of the solutions are demonstrated through comparison with published results. A parametric study is undertaken focusing on the plate with one or two sprung masses. The results can be used as a benchmark for further investigation.

  17. Visual illusions and plate design: the effects of plate rim widths and rim coloring on perceived food portion size.

    Science.gov (United States)

    McClain, A D; van den Bos, W; Matheson, D; Desai, M; McClure, S M; Robinson, T N

    2014-05-01

    The Delboeuf Illusion affects perceptions of the relative sizes of concentric shapes. This study was designed to extend research on the application of the Delboeuf illusion to food on a plate by testing whether a plate's rim width and coloring influence perceptual bias to affect perceived food portion size. Within-subjects experimental design. Experiment 1 tested the effect of rim width on perceived food portion size. Experiment 2 tested the effect of rim coloring on perceived food portion size. In both experiments, participants observed a series of photographic images of paired, side-by-side plates varying in designs and amounts of food. From each pair, participants were asked to select the plate that contained more food. Multilevel logistic regression examined the effects of rim width and coloring on perceived food portion size. Experiment 1: participants overestimated the diameter of food portions by 5% and the visual area of food portions by 10% on plates with wider rims compared with plates with very thin rims (Pfood portion sizes. Experiment 2: participants overestimated the diameter of food portions by 1.5% and the visual area of food portions by 3% on plates with rim coloring compared with plates with no coloring (P=0.01). The effect of rim coloring was greater with smaller food portion sizes. The Delboeuf illusion applies to food on a plate. Participants overestimated food portion size on plates with wider and colored rims. These findings may help design plates to influence perceptions of food portion sizes.

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law ... Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday ... Carbohydrates Types of Carbohydrates Carbohydrate Counting Make Your Carbs ...

  20. From Plate Tectonic to Continental Dynamics

    Science.gov (United States)

    Molnar, P. H.

    2017-12-01

    By the early 1970s, the basics of plate tectonics were known. Although much understanding remained to be gained, as a topic of research, plate tectonics no longer defined the forefront of earth science. Not only had it become a foundation on which to build, but also the methods used to reveal it became tools to take in new directions. For me as a seismologist studying earthquakes and active processes, the deformation of continents offered an obvious topic to pursue. Obviously examining the deformation of continents and ignoring the widespread geologic evidence of both ongoing and finite deformation of crust would be stupid. I was blessed with the opportunity to learn from and collaborate with two of the best, Paul Tapponnier and Clark Burchfiel. Continental deformation differed from plate tectonics both because deformation was widespread but more importantly because crust shortens (extends) horizontally and thickens (thins), processes that can be ignored where plate tectonics - the relative motion of rigid plates - occurs. Where a plate boundary passes into a continent, not only must the forces that move plates do work against friction or other dissipative processes, but where high terrain is created, they must also do work against gravity, to create gravitational potential energy in high terrain. Peter Bird and Kenneth Piper and Philip England and Dan McKenzie showed that a two-dimensional thin viscous sheet with vertically averaged properties enabled both sources of resistance to be included without introducing excessive complexity and to be scaled by one dimensionless number, what the latter pair called the Argand number. Increasingly over the past thirty years, emphasis has shifted toward the role played by the mantle lithosphere, because of both its likely strength and its negative buoyancy, which makes it gravitationally unstable. Despite progress since realizing that rigid plates (the essence of plate tectonics) provides a poor description of continental

  1. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  2. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  3. Experimental study of a water-mist jet issuing normal to a heated flat plate

    Directory of Open Access Journals (Sweden)

    Vouros Andreas

    2016-01-01

    Full Text Available A parametric experimental study on the development of a round jet spray impacting a smooth, heated, flat plate has been accomplished. The main objective of this effort was to provide information characterizing the flow structure of a developing mist jet, issuing vertically towards an upward facing, horizontal heated plate, by means of simultaneous droplet size and velocity measurements. Phase Doppler Anemometry was used, providing also information on liquid volume flux. The fine spray of small atomized droplets (0.5-5.0 μm, was generated using a medical nebulizer. Two low Reynolds number jets (Re=2952, 3773 issuing from a cylindrical pipe have been tested. The distance between the jets’ exit and the plate was 50 cm. A stainless steel non-magnetic flat plate of dimensions 1000x500x12mm3 was used as target wall. Constant heat flux boundary conditions were established during measurements. Results indicate that the heat flux from the plate is influencing the evolution of the spray jet, diminishing its velocity and turbulence. Average droplet sizes are affected little by the heat flux, although for the non-heated sprays, droplet sizes increase at locations very close to the plate. A significant effect on droplet volume flow rate is also reported.

  4. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report

  5. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Directory of Open Access Journals (Sweden)

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  6. Create Your Plate

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Create Your Plate Create Your Plate is a ...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal Planning ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ... Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... ready, you can try new foods within each food category. Try these seven steps to get started: Using your dinner plate, put a line down the middle of the plate. Then on one side, cut it ... and starchy foods. See this list of grains and starchy foods . ...

  10. Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks

    Directory of Open Access Journals (Sweden)

    A. F. Kravets

    2017-05-01

    Full Text Available In this work we focus on magnetic relaxation in Mn80Ir20(12 nm/Cu(6 nm/Py(dF antiferromagnet/Cu/ferromagnet (AFM/Cu/FM multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of the free and localized spins in the AFM layer. The results obtained could be used for tailoring the dissipative properties of spintronic devices incorporating antiferromagnetic layers.

  11. The interface of the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2

    KAUST Repository

    Nazir, S.

    2010-11-05

    The electronic and magnetic properties of the cubic pyriteCoS2/FeS2interface are studied using the all-electron full-potential linearized augmented plane wave method. We find that this contact between a ferromagneticmetal and a nonmagnetic semiconductor shows a metallic character. The CoS2 stays close to half-metallicity at the interface, while the FeS2 becomes metallic. The magnetic moment of the Co atoms at the interface slightly decreases as compared to the bulk value and a small moment is induced on the Fe atoms. Furthermore, at the interfaceferromagnetic ordering is found to be energetically favorable as compared to antiferromagnetic ordering.

  12. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  13. Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers

    Science.gov (United States)

    Jabar, A.; Masrour, R.

    2017-12-01

    In this paper, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and magnetic layer effects on the bilayer transitions of a spin-5/2 Blume-Capel model formed by two magnetic blocs separated by a non-magnetic spacer of finite thickness. The thermalization process of magnetization for systems sizes has been given. We have shown that the magnetic order in the two magnetic blocs depend on the thickness of the magnetic layer. In the total magnetization profiles, the susceptibility peaks correspond to the reduced critical temperature. This critical temperature is displaced towards higher temperatures when increasing the number of magnetic layers. In addition, we have discussed and interpreted the behaviors of the magnetic hysteresis loops.

  14. Towards stacked zone plates

    International Nuclear Information System (INIS)

    Werner, S; Rehbein, S; Guttman, P; Heim, S; Schneider, G

    2009-01-01

    Fresnel zone plates are the key optical elements for soft and hard x-ray microscopy. For short exposure times and minimum radiation load of the specimen the diffraction efficiency of the zone plate objectives has to be maximized. As the efficiency strongly depends on the height of the diffracting zone structures the achievable aspect ratio of the nanostructures determines these limits. To reach aspect ratios ≥ 20:1 for high efficient optics we propose to superimpose zone plates on top of each other. With this multiplication approach the final aspect ratio is only limited by the number of stacked zone plate layers. For the stack process several nanostructuring process steps have to be developed and/or improved. Our results show for the first time two layers of zone plates stacked on top of each other.

  15. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    Science.gov (United States)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  16. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  17. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    International Nuclear Information System (INIS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N.R.; Jorge, G.A.; Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S.; Vildosola, V.; García, D.J.

    2016-01-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn 5 (M=Co, Rh) and for the non-magnetic YMIn 5 and LaMIn 5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn 5 is an excellent approximation to the one of GdCoIn 5 in the full temperature range, for GdRhIn 5 we find a better agreement with LaCoIn 5 , in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn 5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  18. Lattice specific heat for the RMIn{sub 5} (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Facio, Jorge I., E-mail: jorge.facio@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Betancourth, D.; Cejas Bolecek, N.R. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Jorge, G.A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Vildosola, V. [Centro Atómico Constituyentes, CNEA, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); García, D.J. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn{sub 5} (M=Co, Rh) and for the non-magnetic YMIn{sub 5} and LaMIn{sub 5} (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn{sub 5} is an excellent approximation to the one of GdCoIn{sub 5} in the full temperature range, for GdRhIn{sub 5} we find a better agreement with LaCoIn{sub 5}, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn{sub 5} (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  19. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  20. Method for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2015-04-14

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  1. Novel approach to high-throughput determination of endocrine disruptors using recycled diatomaceous earth as a green sorbent phase for thin-film solid-phase microextraction combined with 96-well plate system.

    Science.gov (United States)

    Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo

    2017-12-15

    A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measuring plate thickness using spatial local wavenumber filtering

    International Nuclear Information System (INIS)

    Kang, To; Han, Soon Woo; Park, Jin Ho; Lee, Jeong Han; Park, Gyu Hae; Jeon, Jun Young

    2016-01-01

    Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation

  3. Reduction of eddy current losses around bushing holes on the top-plate of a high efficient transformer

    Directory of Open Access Journals (Sweden)

    Mehmet Aytaç ÇINAR

    2017-08-01

    Full Text Available Low voltage winding leads cause local eddy current losses in top-plate of the transformer tank. In this paper, this loss component which also causes local hot spots is investigated. Top-plate design is modified using stainless steel non-magnetic material, around the low voltage bushing holes. Manufacturing issues and cost as well as power losses are considered as main criteria during modification study. Magnetic flux distributions and eddy current losses are analysed and compared for different designs. Comparisons are based on 3D finite element simulations and experimental studies. Obtained results show that, insertion of single I-shaped stainless steel plate reduces eddy current losses around low voltage bushing holes to nearly zero.

  4. Neutron reflectivity of electrodeposited thin magnetic films

    International Nuclear Information System (INIS)

    Cooper, Joshaniel F.K.; Vyas, Kunal N.; Steinke, Nina-J.; Love, David M.; Kinane, Christian J.; Barnes, Crispin H.W.

    2014-01-01

    Highlights: • Electrodeposited magnetic bi-layers were measured by polarised neutron reflectivity. • When growing a CoNiCu alloy from a single bath a Cu rich region is initially formed. • This Cu rich region is formed in the first layer but not subsequent ones. • Ni deposition is inhibited in thin film growth and Co deposits anomalously. • Alloy magnetism and neutron scattering length give a self-consistent model. - Abstract: We present a polarised neutron reflectivity (PNR) study of magnetic/non-magnetic (CoNiCu/Cu) thin films grown by single bath electrodeposition. We find that the composition is neither homogeneous with time, nor consistent with bulk values. Instead an initial, non-magnetic copper rich layer is formed, around 2 nm thick. This layer is formed by the deposition of the dilute, but rapidly diffusing, Cu 2+ ions near the electrode surface at the start of growth, before the region is depleted and the deposition becomes mass transport limited. After the region has been depleted, by growth etc., this layer does not form and thus may be prevented by growing a copper buffer layer immediately preceding the magnetic layer growth. As has been previously found, cobalt deposits anomalously compared to nickel, and even inhibits Ni deposition in thin films. The layer magnetisation and average neutron scattering length are fitted independently but both depend upon the alloy composition. Thus these parameters can be used to check for model self-consistency, increasing confidence in the derived composition

  5. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  6. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  7. High loading uranium plate

    International Nuclear Information System (INIS)

    Wiencek, T.C.; Domagala, R.F.; Thresh, H.R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pari of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat hiving a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process

  8. Alternative bipolar plates design and manufacturing for PEM fuel cell

    International Nuclear Information System (INIS)

    Lee Chang Chuan; Norhamidi Muhamad; Jaafar Sahari

    2006-01-01

    Bipolar plates is one of the important components in fuel cell stack, it comprise up to 80% of the stack volume. Traditionally, these plates have been fabricated from graphite, owing to its chemical nobility, and high electrical and thermal conductivity; but these plates are brittle and relatively thick. Therefore increasing the stack volume and size. Alternatives to graphite are carbon-carbon composite, carbon-polymer composite and metal (aluminum, stainless steel, titanium and nickel based alloy). The use of coated and uncoated metal bipolar plates has received attention recently due to the simplicity of plate manufacturing. The thin nature of the metal substrate allows for smaller stack design with reduced weight. Lightweight coated metals as alternative to graphite plate is being developed. Beside the traditional method of machining and slurry molding, metal foam for bipolar plates fabrication seems to be a good alternative. The plates will be produced with titanium powder by Powder Metallurgy method using space holders technique to produce the meal foam flow-field. This work intends to facilitate the materials and manufacturing process requirements to produce cost effective foamed bipolar plates for fuel cell

  9. Interface alloying in multilayer thin films using polarized neutron reflectometry

    International Nuclear Information System (INIS)

    Basu, Saibal

    2013-01-01

    Polarized Neutron Reflectometry (PNR) is an excellent tool to probe magnetic depth profile in multilayer thin film samples. In case of multilayer films with alternating magnetic and non-magnetic layers, PNR can provide magnetic depth profile at the interfaces with better than nanometer resolution. Using PNR and Xray Reflectometry (XRR) together one can obtain chemical composition and magnetic structure, viz. magnetic moment density at interfaces in multilayer films. We have used these two techniques to obtain kinetics of alloy formation at the interfaces and the magnetic nature of the alloy at the interfaces in several important thin films with magnetic/non-magnetic bilayers. These include Ni/Ti, Ni/Al and Si/Ni pairs. Results obtained from these studies will be presented in this talk. (author)

  10. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  11. Create Your Plate

    Medline Plus

    Full Text Available ... Plate is a simple and effective way to manage your blood glucose levels and lose weight. With ... been easier. It can be a challenge to manage portion control wherever you are. Now, our best- ...

  12. Create Your Plate

    Medline Plus

    Full Text Available ... Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a- ...

  13. Create Your Plate

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  14. Create Your Plate

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets ...

  15. Create Your Plate

    Medline Plus

    Full Text Available ... Children and Type 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  16. Create Your Plate

    Medline Plus

    Full Text Available ... diabetes. Other Ways to Give Become a Member Vehicle Donation Planned Giving Options Memorial Giving Brochures & Envelopes ... to manage your blood glucose levels and lose weight. With this method, you fill your plate with ...

  17. Create Your Plate

    Medline Plus

    Full Text Available ... breast cancer and AIDS combined. Your gift today will help us get closer to curing diabetes and ... on one side, cut it again so you will have three sections on your plate. Fill the ...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning ... serving of dairy or both as your meal plan allows. Choose healthy fats in small amounts. For ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... these seven steps to get started: Using your dinner plate, put a line down the middle of ... Fitness Food Recipes Planning Meals What Can I Eat Weight Loss Fitness In My Community Calendar of ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart-Healthy Foods Holiday Meal ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create Your ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... Us in the Fight for a Cure Your tax-deductible gift today can fund critical diabetes research ... Close www.diabetes.org > Food and Fitness > Food > Planning Meals > Create Your Plate Share: Print Page Text ...

  4. Create Your Plate

    Medline Plus

    Full Text Available ... critical diabetes research and support vital diabetes education services that improve the lives of those with diabetes. $50 $100 $250 $500 Other Other Ways ... Meals > Create Your Plate ...

  5. Create Your Plate

    Medline Plus

    Full Text Available ... 800-342-2383) Give by Mail Close ... your plate with more non-starchy veggies and smaller portions of starchy foods and protein—no special tools or counting required! You can ...

  6. Humvee Armor Plate Drilling

    National Research Council Canada - National Science Library

    2004-01-01

    When drilling holes in hard steel plate used in up-armor kits for Humvee light trucks, the Anniston Army Depot, Anniston, Alabama, requested the assistance of the National Center for Defense Manufacturing and Machining (NCDMM...

  7. Create Your Plate

    Medline Plus

    Full Text Available ... Easy Advocacy Checklists for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  8. Create Your Plate

    Medline Plus

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... Complications Health Insurance For Parents & Kids Know Your Rights We Can Help Enroll in the Living WIth ...

  9. Create Your Plate

    Medline Plus

    Full Text Available ... blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ... today and help fund grants supporting next generation scientists. Donate Today We Can Help - we-can-help. ...

  10. BAO Plate Archive Project

    Science.gov (United States)

    Mickaelian, A. M.; Gigoyan, K. S.; Gyulzadyan, M. V.; Paronyan, G. M.; Abrahamyan, H. V.; Andreasyan, H. R.; Azatyan, N. M.; Kostandyan, G. R.; Samsonyan, A. L.; Mikayelyan, G. A.; Farmanyan, S. V.; Harutyunyan, V. L.

    2017-12-01

    We present the Byurakan Astrophysical Observatory (BAO) Plate Archive Project that is aimed at digitization, extraction and analysis of archival data and building an electronic database and interactive sky map. BAO Plate Archive consists of 37,500 photographic plates and films, obtained with 2.6m telescope, 1m and 0.5m Schmidt telescopes and other smaller ones during 1947-1991. The famous Markarian Survey (or the First Byurakan Survey, FBS) 2000 plates were digitized in 2002-2005 and the Digitized FBS (DFBS, www.aras.am/Dfbs/dfbs.html) was created. New science projects have been conducted based on this low-dispersion spectroscopic material. Several other smaller digitization projects have been carried out as well, such as part of Second Byurakan Survey (SBS) plates, photographic chain plates in Coma, where the blazar ON 231 is located and 2.6m film spectra of FBS Blue Stellar Objects. However, most of the plates and films are not digitized. In 2015, we have started a project on the whole BAO Plate Archive digitization, creation of electronic database and its scientific usage. Armenian Virtual Observatory (ArVO, www.aras.am/Arvo/arvo.htm) database will accommodate all new data. The project runs in collaboration with the Armenian Institute of Informatics and Automation Problems (IIAP) and will continues during 4 years in 2015-2018. The final result will be an Electronic Database and online Interactive Sky map to be used for further research projects. ArVO will provide all standards and tools for efficient usage of the scientific output and its integration in international databases.

  11. Neutron imaging plates

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    Imaging plates have been used in the field of medical diagnosis since long ago, but their usefulness was verified as the two-dimensional detector for analyzing the X-ray crystalline structure of high bio molecules like protein, and they have contributed to the remarkable progress in this field. The great contribution is due to the excellent features, such as the detection efficiency of about 100%, the positional resolution smaller than 0.2 mm, the dynamic range of five digits, and the area of several hundreds mm square. The neutron imaging plates have not yet obtained the sufficient results. It was planned to construct the neutron diffractometer for biological matters, and to put imaging plate neutron detectors (IP-ND) to practical use as the detector. The research on the development of IP-NDs was carried out, and the IPp-NDs having the performance comparable with that for X-ray were able to be produced. Imaging plates are the integral type two-dimensional radiation detector using photostimulated luminescence matters, and their principle is explained. As to neutron imaging plates, the converter, neutron detection efficiency and the flight of secondary particles in photo-stimulated luminescence matters are described. As for the present state of development of neutron imaging plates, the IP-NDs made for trial, the dynamic range, the positional resolution, the detection efficiency and the kinds of converters, and the application of IP-NDs are reported. (K.I.)

  12. The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2016-01-01

    Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.

  13. A variational analysis for large deflection of skew plates under ...

    African Journals Online (AJOL)

    In the present paper, the static behaviour of thin isotropic skew plates under uniformly distributed load is analyzed with the geometric nonlinearity of the model properly handled. A variational method based on total potential energy has been implemented through assumed displacement field. The computational work has ...

  14. Interaction of Vortex Ring with Cutting Plate

    Science.gov (United States)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  15. Imaging plates for nuclear radiations

    International Nuclear Information System (INIS)

    Abe, Ken; Takebe, Masahiro

    1997-01-01

    Full text. The imaging plate (IP, hereafter) is a new opto-electronic X-ray film developed by Fuji Photo Film Co. Ltd., formed with a large area of thin flexible plastic plate coated with photo-estimulable storage phosphor (e.g. Ba F Br: Eu 2+ ). Recently, it has been found highly sensitive to soft X-ray (SR), soft electrons, and also usual alpha, beta, gamma rays and others, e.g. cosmic rays, energy heavy ions, and moreover neutrons through suitable converters inside or outside of the IP. Many types of IP are now used in various fields, such as medical examinations, auto-radiography in vivo/ in situ/ in vitro, X-ray/neutron diffraction/ radiography, electron microscopy. RI contamination, assay of ore. The IP has other striking performances, e.e. extremely low intrinsic noises, a high position resolution, high detection efficiency (100-1000 times) as high as an X-ray film), extremely wide dynamic range of dose (more than 10 5 ). Besides the thermal fading yet left unresolved materially, the only feature lacking and that one has ben longing for is the radiation identification by itself. We found out that the IP has a full potential ability of radiation identification in itself. One evidence found is that the ratio of the twin peaks of the PSL (photo-stimulated luminescence) excitation spectra indicates simply the particle energies, studied and now established. Another is that the photo-beaching provides the fluorescent responses different enough to discriminate the radiations, yet in progress with cyclotron experiments, into the usage of double labeled bio tracers

  16. On liquid films on an inclined plate

    KAUST Repository

    BENILOV, E. S.

    2010-08-18

    This paper examines two related problems from liquid-film theory. Firstly, a steady-state flow of a liquid film down a pre-wetted plate is considered, in which there is a precursor film in front of the main film. Assuming the former to be thin, a full asymptotic description of the problem is developed and simple analytical estimates for the extent and depth of the precursor film\\'s influence on the main film are provided. Secondly, the so-called drag-out problem is considered, where an inclined plate is withdrawn from a pool of liquid. Using a combination of numerical and asymptotic means, the parameter range where the classical Landau-Levich-Wilson solution is not unique is determined. © 2010 Cambridge University Press.

  17. Analysis of a complex shape chain plate using Transmission Photoelasticity

    Directory of Open Access Journals (Sweden)

    Dasari N.

    2010-06-01

    Full Text Available Most chains are an assembly [1] of five parts namely, outer plate, inner plate, bush, pin and roller. Two inner plates are press fitted with two bushes to form an inner block assembly. The outer plates are press fitted with pins after keeping the pins through the assembled bushes of the inner block. Roller is a rotating member and placed over the bush during inner block assembly. Inner block assembly is the load transfer member from sprocket tooth. The outer block assembly helps in holding and also to pull the inner block over the sprocket teeth. If a chain length is in odd number of pitches, it requires an offset plate as shown in Figure 1 to connect two ends of the chain together to make chain endless. When the chain is assembled with an offset plate, the chain fatigue life was observed only 20 to 25% of the total life of a chain, assembled without an offset plate. The holes in the offset plate are of the same size as in the outer and inner plates respectively and it is a complex in shape chain plate. A inbuilt thinning zone at the centre of the chain plate as shown in Figure 1 is unavoidable. The stresses and its distribution in this complex shape chain plate geometry play a critical role in the fatigue life performance of a chain assembly. However, it is difficult identify the stress distribution and stress concentration zones precisely using only the conventional industrial friendly tools such as routine quality control test, breaking load test and numerical computations. In this context the transmission photoelastic technique has made it possible to identify the stress distribution, its concentration and also to quantify the stress and strain [2-3] at any point in the chain plate. This paper explains how transmission photoelastic technique is used to estimate the stress distribution and its concentration zones in a complex chain plate when it isloaded. An epoxy chain plate model was made through the casting method using a Perspex mould [2

  18. Cadmium plating replacements

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  19. Sound insulation performance of plates with interconnected distributed piezoelectric patches

    Directory of Open Access Journals (Sweden)

    Yi Kaijun

    2017-02-01

    Full Text Available This paper deals with the sound insulation performance of a thin plate with interconnected distributed piezoelectric patches. Piezoelectric patches are periodically bonded on the surfaces of the plate in a collocated fashion, and are interconnected via an inductive circuit network. This piezoelectric system is termed as piezo-electromechanical (PEM plate in the paper. Homogenization methods are involved under a sub-wavelength assumption to analytically develop the dynamical equations for the PEM plate. The dispersion relationships and energy densities of the wave modes propagating in the PEM plate are studied; the sub-wavelength assumption is verified for the simulations in this paper. The coincidence frequency of the PEM plate is researched, and results show that the coincidence frequency of the PEM plate will disappear at certain circumstances; mathematical and physical explanations are made for this phenomenon. The disappearance of the coincidence frequency is used to optimize the value of inductance, for the purpose of improving the sound transmission loss of the PEM plate.

  20. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  1. Nonmagnetic concrete. Guide for the superconductive magnetically levitated train system (Maglev); Hijisei concrete. Chodendo jiki fujoshiki tetsudoyo guide way

    Energy Technology Data Exchange (ETDEWEB)

    Tottori, S; Sato, T [Railway Technical Research Institute, Tokyo (Japan)

    1994-07-01

    Non-magnetization is applied to concrete structures with which magnetic environment is a problem, such as a guideway for superconductive magnetically levitated train system (Maglev) and geomagnetism observation facilities. As an example, this paper introduces the conception and the design methods of guideways for Maglev. If reinforcing bars or tensing materials of common steel are placed close to a vehicle, inductive current is generated in the steel due to moving magnetic field, causing a problem to form part of driving resistance. The inductive current includes loop current and eddy current. The former current may be prevented if the contact resistance in steels with each other is about one ohm or more, but the latter current has no other means but to minimize it as long as the material is electrically conductive. Conceivable measures may include the use as reinforcing bars of non magnetic high Mn-steel with electric specific resistance of 4 to 5 times as large as that for common steel reinforcing bars, and the use of continuous reinforcing fibers such as aramid. The latter material requires strength design especially importantly, but has obtained good result when it was constructed at the experimental linear motor train guideway at Miyazaki, Japan. 5 refs., 6 figs.

  2. Comparison of the enrollment percentages of magnet and non-magnet schools in a large urban school district.

    Directory of Open Access Journals (Sweden)

    Emily Arcia

    2006-12-01

    Full Text Available Are magnet schools in a position to meet diversity ideals? As districts are declared unitary and released from court ordered desegregation, many are framing their commitments to fairness and equity in terms of diversity˜i.e., comparable rates of participation and comparable educational outcomes in all segments the student population. In this study, the enrollment statistics for magnet and contiguous non-magnet public schools in Miami-Dade County Public Schools, a large, urban district that had been released from court ordered desegregation, were compared to each other and to district enrollment averages at two time points: the year the district was declared unitary and four years hence. Findings indicated that within four years of being declared unitary, the gains that the magnet schools had made with regards to Black/non-Black desegregation had eroded substantially. Also, in the four year span, magnet schools had not made significant strides in meeting the diversity ideals adopted by the district at being released from supervision by the court. These findings highlight the difficulty of attaining diversity in student enrollment characteristics when quotas are not used and suggest that recruitment and enrollment policies must be crafted with care if districts are to achieve diversity goals.

  3. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    International Nuclear Information System (INIS)

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  4. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  5. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe4As3

    International Nuclear Information System (INIS)

    Wu, Dapeng

    2015-01-01

    Highlights: • CaFe 3.64 Pt 0.36 As 3 and CaFe 3.64 Ga 0.36 As 3 were grown using Sn flux method. • The two magnetic transition temperatures of CaFe 4 As 3 remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe 4 As 3 . • The magnetic structure of CaFe 4 As 3 is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe 4 As 3 and investigated the structure and physical properties of CaFe 3.64 X 0.36 As 3 (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe 4 As 3 is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe 4 As 3

  6. Status of Joining Thin Sheet and Thin Wall Tubes of 14YWT

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, David T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Unocic, Kinga A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tang, Wei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feng, Zhili [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-18

    Beginning this fiscal year, the FCRD research project initiated an investigation on joining thin sections of the advanced ODS 14YWT ferritic alloy. Friction stir welding (FSW) was investigated as a method to join thin plate and tubing of 14YWT since it is a solid state joining method that has been shown in past studies to be a promising method for joining plates of ODS alloys, such as 14YWT. However, this study will attempt to be the first to demonstrate if FSW can successfully join thin plates and thin wall tubing of 14YWT. In the first FSW attempt, a 1.06 cm thick plate of 14YWT (SM13 heat) was successfully rolled at 1000ºC to the target thickness of 0.1 cm with no edge cracking. This achievement is a highlight since previous attempts to roll 14YWT plates have resulted in extensive cracking. For the FSW run, a pin tool being developed by the ORNL FSW Process Development effort was used. The first FSW run successfully produced a bead-on-plate weld in the 0.1 cm thick plate. The quality of the weld zone appears very good with no evidence of large defects such as cavities. The microstructural characterization study of the bead-on-plate weld zone has been initiated to compare the results of the microstructure analysis with those obtained in the reference microstructural analysis of the 14YWT (SM13 heat) that showed ultra-fine grain size of 0.43 μm and a high number density of ~2-5 nm sizes oxygen-enriched nanoclusters.

  7. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  8. Plating on Zircaloy-2

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Jones, A.

    1979-03-01

    Zircaloy-2 is a difficult alloy to coat with an adherent electroplate because it easily forms a tenacious oxide film in air and aqueous solutions. Procedures reported in the literature and those developed at SLL for surmounting this problem were investigated. The best results were obtained when specimens were first etched in either an ammonium bifluoride/sulfuric acid or an ammonium bifluoride solution, plated, and then heated at 700 0 C for 1 hour in a constrained condition. Machining threads in the Zircaloy-2 for the purpose of providing sites for mechanical interlocking of the plating also proved satisfactory

  9. NICKEL PLATING PROCESS

    Science.gov (United States)

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  10. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  11. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  12. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  13. Influence of nonmagnetic disorder on specific heat and electrical resistivity in Kondo lattice system CePd{sub 1−x}Ge{sub x}In

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, D., E-mail: d.gnida@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland); Dominyuk, N.; Zaremba, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv (Ukraine); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland)

    2015-02-15

    Highlights: • Interplay of Kondo and RKKY interactions in the presence of nonmagnetic disorder. • Suppression of the coherent Kondo state by nonmagnetic impurities. • Observation of quantum interference phenomena in Ce-based Kondo system. • Coexistence of incoherent Kondo effect and Altshuler-Aronov quantum correction. - Abstract: The alloy system CePd{sub 1−x}Ge{sub x}In with 0.1⩽x⩽0.4 was investigated by means of heat capacity and electrical resistivity measurements. Its low-temperature behavior has been found to be governed by the interplay of Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in the presence of atomic disorder in nonmagnetic atoms sublattice. The coherent Kondo state, observed for CePdIn, gradually vanishes with increasing the Ge-content. The incoherent Kondo state, which characterizes Ge-rich alloys, appears very sensitive to applied magnetic field. The observed systematic changes in the temperature- and field-dependent electrical transport in CePd{sub 1−x}Ge{sub x}In manifest the important role of quantum correction due to electron-electron interactions in weakly localized regime.

  14. Non-magnetic impurity effect on suppression of Tc and gap evolution in the two-gap superconductor Lu2Fe3Si5

    International Nuclear Information System (INIS)

    Nakajima, Y.; Hidaka, H.; Tamegai, T.

    2013-01-01

    Highlights: ► Non-magnetic impurities suppress T c and the amplitude of gaps in Lu 2 Fe 3 Si 5 . ► Critical scattering rate is higher than that expected in s ± -pairing scenario. ► The evolution of two distinct gaps dose not show merging the amplitude of gaps. -- Abstract: We report the suppression of T c and the evolution of amplitudes of the two gaps with the introduction of non-magnetic impurities in a two-gap superconductor Lu 2 Fe 3 Si 5 . While T c rapidly decreases by a small amount of substitution of Sc for Lu, the suppression of T c is more than ten times slower than that expected from the Abrikosov–Gor’kov equation describing the reduction of T c in a superconductor with sign reversal in the gap function. The evolution of two distinct gaps by the introduction of non-magnetic impurities does not show merging the amplitude of two gaps, which is strikingly different from the typical two-gap superconductor MgB 2

  15. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  16. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  17. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  18. Create Your Plate

    Medline Plus

    Full Text Available ... meal-planning, . In this section Food Planning Meals Diabetes Meal Plans and a Healthy Diet Create Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future ...

  19. Create Your Plate

    Medline Plus

    Full Text Available ... tool is not to scale because of the differences in types of vegetables. When creating your plate ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  20. Create Your Plate

    Medline Plus

    Full Text Available ... Your Plate Meal Planning for Vegetarian Diets Gluten Free Diets Holiday Meal Planning Cook with Heart-Healthy Foods donate en -- A Future Without Diabetes - a-future-without-diabetes-2.html A Future Without Diabetes Donate towards research today and your gift will be matched. Donate ...

  1. Create Your Plate

    Medline Plus

    Full Text Available ... Planning Meals > Create Your Plate Share: Print Page Text Size: A A A Listen En Español Create ... Type 2 Education Series Hear audio clips and full recordings of past Q&A events at your ...

  2. Create Your Plate

    Medline Plus

    Full Text Available ... 1 Type 2 About Us Online Community Meal Planning Sign In Search: Search More Sites Search ≡ Are ... Fitness Home Food MyFoodAdvisor Recipes Association Cookbook Recipes Planning Meals Diabetes Meal Plans Create Your Plate Gluten ...

  3. Create Your Plate

    Medline Plus

    Full Text Available ... tax-deductible gift today can fund critical diabetes research and support vital diabetes education services that improve the ... effective way to manage your blood glucose levels and lose weight. With this method, you fill your plate with more non-starchy ...

  4. Microchannel plate photodetectors

    International Nuclear Information System (INIS)

    Majka, R.

    1977-01-01

    A review is given the status of development work on photodetectors using microchannel plates (MCP) as the electron gain element. Projections are made and opinions are presented on what might be available in the next few years. Several uses for these devices at ISABELLE are mentioned

  5. Parallel plate detectors

    International Nuclear Information System (INIS)

    Gardes, D.; Volkov, P.

    1981-01-01

    A 5x3cm 2 (timing only) and a 15x5cm 2 (timing and position) parallel plate avalanche counters (PPAC) are considered. The theory of operation and timing resolution is given. The measurement set-up and the curves of experimental results illustrate the possibilities of the two counters [fr

  6. Flat plate collector. Solarflachkollektor

    Energy Technology Data Exchange (ETDEWEB)

    Raab, N

    1979-03-29

    The invention refers to a flat solar collector with an absorber plate, which is arranged on a support and is covered by a transparent window, between which and the plate there is an air space. The previously known structures of this type had the disadvantage that the thermal expansion of the enclosed air caused considerable difficulties. The purpose of the invention is therefore to create a collector, which can be used on the modular system, retains its properties and is safe in spite of the great temperature variations. According to the invention this problem is solved by providing a compensating space in the collector, which is separated by a diaphragm from the airspace between the plate and the covering window. The airspace therefore remains sealed against the atmosphere, so that no dirt, corrosion of the inside and no condensation can reduce the efficiency of the collector. A rise in pressure due to an increase in temperature is immediately reduced by expansion of the diaphragm, which enters the compensation space. In order to increase the pressure in the airspace above the plate for increases in temperature, the compensation space is connected to the atmosphere. The diaphragm can be mirrored on the side towards the absorber, which makes the diaphragm into an insulating element, as it reflects radiated heat from the absorber.

  7. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  8. Self-compacting fibre reinforced concrete applied in thin plates

    NARCIS (Netherlands)

    Grunewald, S.; Shionaga, R.; Walraven, J.C.

    2013-01-01

    Floor panels produced with traditionally vibrated concrete are relatively thick due to the need to reinforce concrete and consequently, heavy. Without the need to place rebars in panels and by applying self-compacting fibre reinforced concrete (SCFRC) the production process becomes more efficient.

  9. Inverse transient thermoelastic deformations in thin circular plates

    Indian Academy of Sciences (India)

    Bessel's functions with the help of the integral transform technique. Thermoelastic deformations are discussed with the help of temperature and are illustrated numer- ically. Keywords. Inverse transient; thermoelastic deformation. 1. Introduction. The inverse thermoelastic problem consists of determination of the temperature, ...

  10. Axisymmetric buckling analysis of laterally restrained thick annular plates using a hybrid numerical method

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, P. [Department of Mechanical Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir; Ouji, A. [Department of Civil Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Islamic Azad University, Larestan Branch, Larestan (Iran, Islamic Republic of)

    2008-11-15

    The buckling analysis of annular thick plates with lateral supports such as two-parameter elastic foundations or ring supports is investigated using an elasticity based hybrid numerical method. For this purpose, firstly, the displacement components are perturbed around the pre-buckling state, which is located using the elasticity theory. Then, by decomposing the plate into a set of sub-domain in the form of co-axial annular plates, the buckling equations are discretized through the radial direction using global interpolation functions in conjunction with the principle of virtual work. The resulting differential equations are solved using the differential quadrature method. The method has the capability of modeling the arbitrary boundary conditions either at the inner and outer edges of thin-to-thick plates and with different types of lateral restraints. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its accuracy and versatility for thin-to-thick plates.

  11. Simultaneous laser cutting and welding of metal foil to edge of a plate

    Science.gov (United States)

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  12. Multipactor saturation in parallel-plate waveguides

    International Nuclear Information System (INIS)

    Sorolla, E.; Mattes, M.

    2012-01-01

    The saturation stage of a multipactor discharge is considered of interest, since it can guide towards a criterion to assess the multipactor onset. The electron cloud under multipactor regime within a parallel-plate waveguide is modeled by a thin continuous distribution of charge and the equations of motion are calculated taking into account the space charge effects. The saturation is identified by the interaction of the electron cloud with its image charge. The stability of the electron population growth is analyzed and two mechanisms of saturation to explain the steady-state multipactor for voltages near above the threshold onset are identified. The impact energy in the collision against the metal plates decreases during the electron population growth due to the attraction of the electron sheet on the image through the initial plate. When this growth remains stable till the impact energy reaches the first cross-over point, the electron surface density tends to a constant value. When the stability is broken before reaching the first cross-over point the surface charge density oscillates chaotically bounded within a certain range. In this case, an expression to calculate the maximum electron surface charge density is found whose predictions agree with the simulations when the voltage is not too high.

  13. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.

  14. Effect of plate shapes in orifice plate type flowmeters

    International Nuclear Information System (INIS)

    Moeller, S.V.

    1984-01-01

    The study of unusual plate shapes in orifice plate type flowmeters is presented, with a view to providing data for the substitution of the plate with one centered circular orifice in those applications where its use is not possible. For this purpose, six pairs of plates with different forms, with and without chamfered edges, were made and tested in a closed water loop. Results show that, generally, the use of chamfers improves the results and, in the case of perforated and slotlike orificed plates, the narrow-ness of the fluid passage tends to make unnecessary its use. (Author) [pt

  15. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    Science.gov (United States)

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Plate removal following orthognathic surgery.

    Science.gov (United States)

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1997-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisaton of the damage, which...... as for the out-of-plane reaction force....

  18. Normal and abnormal growth plate

    International Nuclear Information System (INIS)

    Kumar, R.; Madewell, J.E.; Swischuk, L.E.

    1987-01-01

    Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities

  19. Magnetic characterisation of longitudinal thin film media

    International Nuclear Information System (INIS)

    Dova, P.

    1998-09-01

    Magnetic characterisation techniques, as applied to longitudinal thin film media, have been investigated. These included the study of the differentials of the remanence curves, the delta-M plot and the examination of the critical volumes. Several thin film structures, which are currently used or are being considered for future media applications, have been examined using these techniques. Most of the films were Co-alloys with the exception of a set of Barium ferrite films. Both monolayer and multilayer structures were studied. It was found that the study of activation volumes provides a better insight into the reversal mechanisms of magnetic media, especially in the case of complex structures such as multilayer films and films with bicrystal microstructure. Furthermore, an evaluation study of different methods of determining critical volumes showed that the method using time dependence measurements and the micromagnetic approach is the most appropriate. The magnetic characteristics of the thin film media under investigation were correlated with their microstructure and, where possible, with their noise performance. Magnetic force microscopy was also used for acquiring quasi-domain images in the ac-demagnetised state. It was found that in all Co-alloy films the dominant intergranular coupling is magnetising in nature, the level of which is governed by the Cr content in the magnetic layer. In the case of laminated media it was found that when non-magnetic spacers are used, the nature of the interlayer coupling depends on the spacer thickness. In double layer structures with no spacer, the top layer replicates the crystallographic texture of the bottom layer, and the overall film properties are a combination of the two layers. In bicrystal films the coupling is determined by the Cr segregation in the grain boundaries. Furthermore, the presence of stacking faults in bicrystal films deteriorates their thermal stability, but can be prevented by improving the epitaxial

  20. Study of uranium plating measurement

    International Nuclear Information System (INIS)

    Lin Jufang; Wen Zhongwei; Wang Mei; Wang Dalun; Liu Rong; Jiang Li; Lu Xinxin

    2007-06-01

    In neutron physics experiments, the measurement for plate-thickness of uranium can directly affect uncertainties of experiment results. To measure the plate-thickness of transform target (enriched uranium plating and depleted uranium plating), the back to back ionization chamber, small solid angle device and Au-Si surface barrier semi-conductor, were used in the experiment study. Also, the uncertainties in the experiment were analyzed. Because the inhomo-geneous of uranium lay of plate can quantitively affect the result, the homogeneity of uranium lay is checked, the experiment result reflects the homogeneity of uranium lay is good. (authors)

  1. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  2. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  3. [Conventional plate osteosynthesis].

    Science.gov (United States)

    Klaue, K

    2010-02-01

    Consolidation of bone is an essential clinical problem when treating fractures, fixing osteotomies and fusing joints. In most cases, the means of fixation are plates and screws. The goal is functional postoperative therapy by moving the adjacent joints and thus avoiding the deleterious disadvantages of long-lasting articular immobilization. Pre-operative planning, surgical approach, a good understanding of the precise mechanics of the structure and the biological answer for the various tissues are prerequisites of successful osteosynthesis. The choice of implants and the application of their versatility, as well as their adaptation to individual cases are the key to good results.

  4. Plate Full of Color

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Plate Full of Color teaches the value of eating a variety of colorful and healthy foods.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  5. 'Gigantic' increase of AFMR frequencies induced by nonmagnetic impurity ions in orthoferrites RFe1-xAlxO3 (R=Gd,Tb)

    International Nuclear Information System (INIS)

    Mukhin, A.A.; Parsegov, I.Yu.

    1996-01-01

    We observed a 'gigantic' increase (up to three times) of the AFMR frequencies ν 1,2 with decreasing temperature in GdFe 0.9 Al 0.1 O 3 and TbFe 0.925 Al 0.075 O 3 in contrast to pure GdFeO 3 and TbFeO 3 . The effects observed are explained by the appearance of an additional exchange field H mv ∼20 -36 kOe on rare-earth ions due to decompensation of the surrounding antiferromagnetically ordered Fe ions near nonmagnetic impurity ions. (orig.)

  6. Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate

    International Nuclear Information System (INIS)

    Ye Min; Lu Jing; Zhang Wei; Ding Qian

    2005-01-01

    The present investigation deals with nonlinear dynamic behavior of a parametrically excited simply supported rectangular symmetric cross-ply laminated composite thin plate for the first time. The governing equation of motion for rectangular symmetric cross-ply laminated composite thin plate is derived by using von Karman equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. The Galerkin approach is used to obtain a two-degree-of-freedom nonlinear system under parametric excitation. The method of multiple scales is utilized to transform the second-order non-autonomous differential equations to the first-order averaged equations. Using numerical method, the averaged equations are analyzed to obtain the steady state bifurcation responses. The analysis of stability for steady state bifurcation responses in laminated composite thin plate is also given. Under certain conditions laminated composite thin plate may have two or multiple steady state bifurcation solutions. Jumping phenomenon occurs in the steady state bifurcation solutions. The chaotic motions of rectangular symmetric cross-ply laminated composite thin plate are also found by using numerical simulation. The results obtained here demonstrate that the periodic, quasi-periodic and chaotic motions coexist for a parametrically excited fore-edge simply supported rectangular symmetric cross-ply laminated composite thin plate under certain conditions

  7. Postbuckling Analysis Of A Rectangular Plate Loaded In Compression

    Directory of Open Access Journals (Sweden)

    Havran Jozef

    2015-12-01

    Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.

  8. Modeling and simulation of thermally actuated bilayer plates

    Science.gov (United States)

    Bartels, Sören; Bonito, Andrea; Muliana, Anastasia H.; Nochetto, Ricardo H.

    2018-02-01

    We present a mathematical model of polymer bilayers that undergo large bending deformations when actuated by non-mechanical stimuli such as thermal effects. The simple model captures a large class of nonlinear bending effects and can be discretized with standard plate elements. We devise a fully practical iterative scheme and apply it to the simulation of folding of several practically useful compliant structures comprising of thin elastic layers.

  9. Investigating the Optimum Efficiency of Acoustoelectric Conversion Plate Devices

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2014-04-01

    Full Text Available This study aims to develop the acoustoelectric conversion plate in terms of electromagnetic induction law to convert sound energy to electricity, where the developed apparatus is made of three parts, the thin film coil, the spring, and the high-intensity magnetic framework. In process, the thin film coil receives the injecting sound vibration in connection with the spring to cause the reciprocating motion between the coil and the high-intensity magnet, which yields the electromotive force (EMF. In this study, a pearl plate of length 95 mm, width 95 mm, and thickness 1.5 mm adhered with a PET film of thickness 0.08mm is built as the substrate plate due to it has good properties of light and elasticity. In connection with the substrate plate and the electric coil is the thin film coil. Experiments used the speaker with output frequencies of 30~156 Hz and sound power of 0.5 W (sound intensity 0.32 W/m2, sound pressure level 115 dB as the sound source. The sound energy is captured by the acoustoelectric conversion plate for working efficiency and optimization parameters analysis. The studied parameters content of diameter, turns, and width of electric coil as well as distance between high intensity magnet and coil. The results show that diameter 0.11 mm, turns 220, and width 3 mm of the electric coil, in connection with steel spring of diameter 0.2 mm while input sound is 30 Hz, receives the average output voltage of 0.57 V, the average output current of 5.46 mA, the average output power of 3.13 mW, and the sound electric conversion efficiency of 0.63%. This innovation device could be used in highway, near waterfalls, and some high noise factories to capture energy for immediately charging cell-phone to save human life.

  10. Finite thickness effect of a zone plate on focusing hard x-rays

    International Nuclear Information System (INIS)

    Yun, W.B.; Chrzas, J.; Viccaro, P.J.

    1992-01-01

    Spatial resolution and focusing efficiency are two important properties of a zone plate in x-ray focusing applications. A general expression of the zone plate equation describing its zone registration is derived from the interference of spherical waves emited from two mutually coherent point sources. An analytical expression of the focusing efficiency in terms of the zone plate thickness and x-ray refractive indices of the zones is also derived. Validity condition for using this expression is considered. Thickness required for obtaining adequate focusing efficiency is calculated as a function of x-ray energy for several representative materials. The spatial resolution of a finite thickness zone plate is worse than that of an infinetly thin zone plate. which is approximately equal to the smallest zone width of the zone plate. The effect of the finite thickness on the spatial resolution is considered

  11. Plating on difficult-to-plate metals: what's new

    International Nuclear Information System (INIS)

    Wiesner, H.J.

    1980-01-01

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required

  12. Effect of performance of Zr-Y alloy target on thin film deposition technology

    International Nuclear Information System (INIS)

    Pan Qianfu; Liu Chaohong; Jiang Mingzhong; Yin Changgeng

    2011-01-01

    Yttria-stabilized zirconia (YSZ) films are synthesized on corrosion resistant plates by pulsed bias arc ion plating. The arc starting performance and the stability of thin film deposition is explored by improving the uniformity and compactibility of Zr-Y alloy target. The property of Zr-Y alloy target and depositional thin films were measured with the optical microscope, scanning electron microscope, X-ray diffractometer. The result shows that the target with hot rolling and annealing has a good arc starting performance and stability of thin film deposition, and the depositional thin films made of Yttria and amorphous zirconia are homogeneous and compact. (authors)

  13. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  14. Add-on unidirectional elastic metamaterial plate cloak

    Science.gov (United States)

    Lee, Min Kyung; Kim, Yoon Young

    2016-02-01

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.

  15. Magneto-elastic dynamics and bifurcation of rotating annular plate*

    International Nuclear Information System (INIS)

    Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang

    2017-01-01

    In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)

  16. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  17. Manufacturing of a HCLL cooling plate mock up

    International Nuclear Information System (INIS)

    Rigal, E.; Dinechin, G. de; Rampal, G.; Laffont, G.; Cachon, L.

    2007-01-01

    The European DEMO blankets and associated Test Blanket Modules (TBM) are made of a set of components cooled by flowing helium at 80bar pressure. Hot Isostatic Pressing (HIP) is one of the very few processes that allow manufacturing such components exhibiting complex cooling channels. In HIP technology, the parts used to manufacture components with embedded channels are usually machined plates, blocks and tubes. Achievable geometries are limited in shape because it is not always possible to figure the channels by bent tubes. This occurs for example when channels present sharp turns, when the cross section of the channels is rectangular or when the rib between channels is so small that very thin tubes would be required. In these cases, bending is unpractical. The breeder unit cooling plates of the Helium Cooled Lithium Lead (HCLL) blanket have eight 4 x 4.5 mm parallel channels that run following a double U scheme. Turns are sharp and the wall thickness is small (1mm), so the manufacturing process described above cannot be used. An alternative process has been developed which has many advantages. It consists in machining grooves in a base plate, then closing the top of the grooves using thin welded strips, and finally adding a plate by HIP. There is then no need for the use of tubes with associated bending and deformation issues. The final component contains welds, but it must be stressed out that these potentially brittle zones do not connect the channels to the external surface because they are covered by the HIPed plate. Furthermore, the welds are homogenised during the HIP operation and further heat treatments. This paper describes the design of a simplified cooling plate mock up and its fabrication using this so-called weld+HIP process. The thermal fatigue testing of this mock up is presented somewhere else in this conference. (orig.)

  18. Plate Tearing by a Cone

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    The present paper is concerned with steady-state plate tearing by a cone. This is a scenario where a cone is forced through a ductile metal plate with a constant lateral tip penetration in a motion in the plane of the plate. The considered process could be an idealisation of the damage, which...... as for the out-of-plane reaction force. (C) 1998 Elsevier Science Ltd. All rights reserved....

  19. Bipolar Plates for PEM Systems

    OpenAIRE

    Lædre, Sigrid

    2016-01-01

    Summary of thesis: The Bipolar Plate (BPP) is an important component in both Proton Exchange Membrane Fuel Cells (PEMFCs) and Proton Exchange Membrane Water Electrolyzers (PEMWEs). Bipolar plate material and processing constitutes for a large fraction of the cost and weight of a PEM cell stack. The main tasks for the bipolar plates in both systems are to separate single cell in a stack, conduct current between single cells and remove heat from active areas. In addition, the BPPs distribu...

  20. Non-magnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, M.A.; Stone, P.R.; Sharp, I.D.; Haller, E.E.; Dubon, O.D.; Beeman, J.W.; Yu, K.M.

    2008-02-05

    The electronic and magnetic effects of intentional compensation with non-magnetic donors are investigated in the ferromagnetic semiconductors Ga1-xMnxAs and Ga1-xMnxP synthesized using ion implantation and pulsed-laser melting (II-PLM). It is demonstrated that compensation with non-magnetic donors and MnI have similarqualitative effects on materials properties. With compensation TC decreases, resistivity increases, and stronger magnetoresistance and anomalous Hall effect attributed to skew scattering are observed. Ga1-xMnxAs can be controllably compensated with Te through a metal-insulator transition through which the magnetic and electrical properties vary continuously. The resistivity of insulating Ga1-xMnxAs:Te can be described by thermal activation to the mobility edge and simply-activated hopping transport. Ga1-xMnxP doped with S is insulating at all compositions but shows decreasing TC with compensation. The existence of a ferromagnetic insulating state in Ga1-xMnxAs:Te and Ga1-xMnxP:S having TCs of the same order as the uncompensated materials demonstrates that localized holes are effective at mediating ferromagnetism in ferromagnetic semiconductors through the percolation of ferromagnetic 'puddles' which at low temperatures.

  1. Magnetic vs. non-magnetic colloids - A comparative adsorption study to quantify the effect of dye-induced aggregation on the binding affinity of an organic dye.

    Science.gov (United States)

    Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud

    2016-11-01

    Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Transport properties of β-Ga2O3 nanoparticles embedded in Nb thin films

    Directory of Open Access Journals (Sweden)

    L.S. Vaidhyanathan

    2015-01-01

    Full Text Available The origin of ferromagnetism in nanoparticles of nonmagnetic oxides is an interesting area of research. In the present work, transport properties of niobium thin films, with β-Ga2O3 nanoparticles embedded within them, are presented. Nanoparticles of β-Ga2O3 embedded in a Nb matrix were prepared at room temperature by radio frequency co-sputtering technique on Si (100 and glass substrates held at room temperature. The thin films deposited on Si substrates were subjected to Ar annealing at a temperature range of 600-650 C for 1 hour. Films were characterized by X-ray diffraction (XRD, Micro-Raman and elemental identification was performed with an Energy Dispersive X-ray Spectroscopy (EDS. Transport measurements were performed down to liquid helium temperatures by four-probe contact technique, showed characteristics analogous to those observed in the context of a Kondo system. A comparison of the experimental data with the theoretical formalism of Kondo and Hamann is presented. It is suggested that this behavior arises from the existence of magnetic moments associated with the oxygen vacancy defects in the nanoparticles of the nonmagnetic oxide Ga2O3.

  3. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  4. Reviewing metallic PEMFC bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Turner, J.A. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-08-15

    A bipolar plate is one of the most important components in a polymer exchange membrane fuel cell (PEMFC) stack and has multiple functions. Metallic bipolar plate candidates have advantages over composite rivals in excellent electrical and thermal conductivity, good mechanical strength, high chemical stability, very wide alloy choices, low cost and, most importantly, existing pathways for high-volume, high-speed mass production. The challenges with metallic bipolar plates are the higher contact resistance and possible corrosion products, which may contaminate the membrane electrode assembly. This review evaluates the candidate metallic and coating materials for bipolar plates and gives the perspective of the research trends. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available The present study is concerned with the modeling of electrically charged particles in a model plate-plate and a single wire-plate electrostatic precipitator (ESP. The particle concentration distributions for both a plate-plate and a wire-plate ESP are calculated using a modified drift flux model. Numerical investigations are performed using the modified drift flux model for particle number concentration, in addition to the RNG k - ε model for the mean turbulent flow field and the Poisson equation for the electric field. The proposed model and the outlined methodology for coupling the flow field, electric field, charging kinetics and particle concentration is applied to two model precipitators that are truly representative of a wide class of commercialized ESPs. The present investigation is quite different from the earlier studies as it does not make assumptions like a homogeneous electric field or an infinite turbulent diffusivity. The electric field calculated is a strong function of position and controls the migration velocity of particles. Hence, the proposed model can be implemented in a flow solver to obtain a full-fledged solution for any kind of ESP with no limitations on the particle number concentration, as encountered in a Lagrangian approach. The effect of turbulent diffusivity on particle number concentration in a plate-plate ESP is investigated in detail and the results obtained are compared with available experimental data. Similarly, the effect of particle size/diameter and applied electric potential on the accumulative collection performance in the case of a wire-plate ESP is studied and the results obtained are compared with available numerical data. The numerical results obtained using the modified drift flux model for both the plate-plate and wire-plate ESP are in close agreement with available experimental and numerical data.

  6. Laterally Loaded Nail-Plates

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Rathkjen, Arne

    Load-displacement curves from about 200 short-term and laterally loaded nail-plate joints are analysed. The nail-plates are from Gang-Nail Systems, type GNA 20 S. The test specimens and the measuring systems are described. The tests are divided into 32 different series. The influence of the number...

  7. MyPlate Food Guide

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español MyPlate Food Guide KidsHealth / For Teens / MyPlate Food Guide What's ... and other sugary drinks. Avoid large portions . Five Food Groups Different food groups have different nutrients and ...

  8. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  9. Fundamental processes in ion plating

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1980-01-01

    Ion plating is a generic term applied to film deposition processes in which the substrate surface and/or the depositing film is subjected to a flux of high energy particles sufficient to cause changes in the interfacial region of film properties compared to a nonbombarded deposition. Ion plating is being accepted as an alternative coating technique to sputter deposition, vacuum evaporation and electroplating. In order to intelligently choose between the various deposition techniques, the fundamental mechanisms, relating to ion plating, must be understood. This paper reviews the effects of low energy ion bombardment on surfaces, interface formation and film development as they apply to ion plating and the implementation and applications of the ion plating process

  10. Model to Analyze Micro Circular Plate Subjected to Electrostatic Force

    Directory of Open Access Journals (Sweden)

    Cao Tian-Jie

    2013-06-01

    Full Text Available In this paper a distributed model with three possible static modes was presented to investigate the behavior of the plate subjected to electrostatic force and uniform hydrostatic pressure both before pull in and beyond pull in. The differential governing equation of the micro circular plate specifically used for numerical solution of the three modes, in which the singularity at the center of the micro plate did not occur, was presented based on the classical thin plate theory, Taylor's series expansion and Saint-Venant's principle. The numerical solution to the differential governing equation for the different mode was mainly attributed to solve for one unknown boundary condition and the applied voltage, which could be obtained by using a two-fold method of bisection based on the shooting method. The voltage ranges over which the three modes could exist and the points where transitions occurred between the modes were computed. Incorporating the above numerical solution to the applied voltage at the normal mode with some constrained optimization method, pull-in voltage and the corresponding pull-in position can automatically be obtained. In examples, the entire mechanical behavior of the circular plate over the operational voltage ranges was investigated and the effects of different parameters on pull-in voltage were studied. The obtained results were compared with the existing results and good agreement has been achieved.

  11. Gamma radiation inside closed volumes with thin irradiating walls

    International Nuclear Information System (INIS)

    Karpov, V.I.

    1978-01-01

    The dose rate of gamma radiation inside a parallelepiped with thin radiating walls was calculated. The calculation was based on determining the dose rate from a rectangular plate and subsequently summing the dose rates from all the parallelepiped walls. The dose rate from the rectangular plate was calculated by reducing it to an equivalent plate of infinite length and certain fixed width. When the radiators had constant surface density, the dose rate in the geometric centre of volumes having the form of a parallelepiped was shown to have the least value in the case when the parallelepiped degenerates to a cube

  12. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2009-01-01

    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  13. Characterization of thin films with synchrotron radiation in SPring-8

    International Nuclear Information System (INIS)

    Komiya, Satoshi

    2005-01-01

    Many studies about thin films by using synchrotron radiation in SPring-8 were reviewed. Structural analyses and assessment of thin films used for electronics, and also assessment of insulating films for the gate used in LSI were carried out. Film thickness, unevenness, and density of SiO 2 films in order of nanomer thickness were determined by interference fringes of x-ray reflection curves. The interface structure of (SiO 2 /Si) films was studied by x-ray crystal truncation rod scattering, and the correlation between leakage character depending on nitrogen concentration and interface structure was clarified on SiON film. The oxygen concentration in HfO films in nanometer thickness was determined by x-ray fluorescence analysis, and the interface reaction for HfO 2 /SiO 2 was clearly observed by electron spectroscopy. The structure of amorphous thin films with large dielectric constant was analyzed by x-ray absorption fine structure (XAFS) spectrum. Devices fabricated from multi-layer films showing giant magnetic resistance were developed for hard disk with a large memory. The character of giant magnetic resistance was governed by multi-layer thin film structure piled up by magnetic and nonmagnetic polycrystalline thin metals. For the multi-layer structure, the concentration distribution of constituent elements was determined to the direction of film thickness by x-ray reflection analysis and grazing incident x-ray fluorescence analysis. In the semiconductor laser source, Ga 1-x In x N, used for DVD, the local structure around In ions was studied by XAFS since constituent instability, especially overpopulation of In element, caused the deterioration of lifetime and light emission of the laser. The lattice constant of the light emission layer in InGaAs was measured by x-ray micro-beams. (author)

  14. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  15. Numerical modelling of thin-walled hypereutectic ductile cast iron parts

    DEFF Research Database (Denmark)

    Pedersen, Karl Martin; Hattel, Jesper Henri; Tiedje, Niels Skat

    2006-01-01

    Solidification of hypereutectic thin-walled ductile cast iron has been modelled in one dimension taking into account the precipitation of off-eutectic austenite dendrites during solidification. The simulations have been compared with casting experiments on plate geometries with plate thicknesses...

  16. The Golosyiv plate archive digitisation

    Science.gov (United States)

    Sergeeva, T. P.; Sergeev, A. V.; Pakuliak, L. K.; Yatsenko, A. I.

    2007-08-01

    The plate archive of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Golosyiv, Kyiv) includes about 85 000 plates which have been taken in various observational projects during 1950-2005. Among them are about 25 000 of direct northern sky area plates and more than 600 000 plates containing stellar, planetary and active solar formations spectra. Direct plates have a limiting magnitude of 14.0-16.0 mag. Since 2002 we have been organising the storage, safeguarding, cataloguing and digitization of the plate archive. The very initial task was to create the automated system for detection of astronomical objects and phenomena, search of optical counterparts in the directions of gamma-ray bursts, research of long period, flare and other variable stars, search and rediscovery of asteroids, comets and other Solar System bodies to improve the elements of their orbits, informational support of CCD observations and space projects, etc. To provide higher efficiency of this work we have prepared computer readable catalogues and database for 250 000 direct wide field plates. Now the catalogues have been adapted to Wide Field Plate Database (WFPDB) format and integrated into this world database. The next step will be adaptation of our catalogues, database and images to standards of the IVOA. Some magnitude and positional accuracy estimations for Golosyiv archive plates have been done. The photometric characteristics of the images of NGC 6913 cluster stars on two plates of the Golosyiv's double wide angle astrograph have been determined. Very good conformity of the photometric characteristics obtained with external accuracies of 0.13 and 0.15 mag. has been found. The investigation of positional accuracy have been made with A3± format fixed bed scanner (Microtek ScanMaker 9800XL TMA). It shows that the scanner has non-detectable systematic errors on the X-axis, and errors of ± 15 μm on the Y-axis. The final positional errors are about ± 2 μm (

  17. Indonesian Landforms and Plate Tectonics

    Directory of Open Access Journals (Sweden)

    Herman Th. Verstappen

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i3.103The horizontal configuration and vertical dimension of the landforms occurring in the tectonically unstable parts of Indonesia were resulted in the first place from plate tectonics. Most of them date from the Quaternary and endogenous forces are ongoing. Three major plates – the northward moving Indo-Australian Plate, the south-eastward moving SE-Asian Plate and the westward moving Pacific Plate - meet at a plate triple-junction situated in the south of New Guinea’s Bird’s Head. The narrow North-Moluccan plate is interposed between the Asia and Pacific. It tapers out northward in the Philippine Mobile Belt and is gradually disappearing. The greatest relief amplitudes occur near the plate boundaries: deep ocean trenches are associated with subduction zones and mountain ranges with collision belts. The landforms of the more stable areas of the plates date back to a more remote past and, where emerged, have a more subdued relief that is in the first place related to the resistance of the rocks to humid tropical weathering Rising mountain ranges and emerging island arcs are subjected to rapid humid-tropical river erosions and mass movements. The erosion products accumulate in adjacent sedimentary basins where their increasing weight causes subsidence by gravity and isostatic compensations. Living and raised coral reefs, volcanoes, and fault scarps are important geomorphic indicators of active plate tectonics. Compartmental faults may strongly affect island arcs stretching perpendicular to the plate movement. This is the case on Java. Transcurrent faults and related pull-apart basins are a leading factor where plates meet at an angle, such as on Sumatra. The most complicated situation exists near the triple-junction and in the Moluccas. Modern research methods, such as GPS measurements of plate movements and absolute dating of volcanic outbursts and raised coral reefs are important tools. The mega-landforms resulting

  18. Simulated Thin-Film Growth and Imaging

    Science.gov (United States)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  19. DETERMINATION OF CRITICAL ROTATIONAL SPEED OF CIRCULAR SAWS FROM NATURAL FREQUENCIES OF ANNULAR PLATE WITH ANALOGOUS DIMENSIONS

    Directory of Open Access Journals (Sweden)

    Ante Skoblar

    2016-03-01

    Full Text Available It is suitable to reduce thickness of circular saw when trying to enhance usability of wood raw material, but reducing thickness also causes reduction of permissible rotational speed which reduces sawing speed. If one increase circular saw rotational speed over permissible one the quality of machined surfaces will reduce because of enhanced vibrations. Permissible rotational speed can be calculated from critical rotational speed which can be defined from natural frequencies of the saw. In this article critical rotational speeds of standard clamped saws (with flat disk surface and without slots are calculated by using finite element method and classical theory of thin plates on annular plates. Mode shapes and natural frequencies of annular plates are determined by using Bessel functions and by using polynomial functions. Obtained results suggest that standard clamped circular saws without slots and with relatively small teeth can be determined from classical theory of thin plates for annular plates with accuracy depending on clamping ratio.

  20. Low-complexity computation of plate eigenmodes with Vekua approximations and the method of particular solutions

    Science.gov (United States)

    Chardon, Gilles; Daudet, Laurent

    2013-11-01

    This paper extends the method of particular solutions (MPS) to the computation of eigenfrequencies and eigenmodes of thin plates, in the framework of the Kirchhoff-Love plate theory. Specific approximation schemes are developed, with plane waves (MPS-PW) or Fourier-Bessel functions (MPS-FB). This framework also requires a suitable formulation of the boundary conditions. Numerical tests, on two plates with various boundary conditions, demonstrate that the proposed approach provides competitive results with standard numerical schemes such as the finite element method, at reduced complexity, and with large flexibility in the implementation choices.