WorldWideScience

Sample records for nonmagnetic aso43 oxy

  1. Transition from Endothermic to Exothermic Dissolution of Hydroxyapatite Ca5(PO43OH–Johnbaumite Ca5(AsO43OH Solid Solution Series at Temperatures Ranging from 5 to 65 °C

    Directory of Open Access Journals (Sweden)

    Bartosz Puzio

    2018-06-01

    Full Text Available Five crystalline members of the hydroxyapatite (HAP; Ca5(PO43OH–johnbaumite (JBM; Ca5(AsO43OH series were crystallized at alkaline pH from aqueous solutions and used in dissolution experiments at 5, 25, 45, and 65 °C. Equilibrium was established within three months. Dissolution was slightly incongruent, particularly at the high-P end of the series. For the first time, the Gibbs free energy of formation ΔGf0, enthalpy of formation ΔHf0, entropy of formation Sf0, and specific heat of formation Copf were determined for HAP–JBM solid solution series. Based on the dissolution reaction, Ca5(AsO4m(PO43−mOH = 5Ca2+(aq + mAsO43−(aq + (3 − mPO43−(aq + OH−(aq, their solubility product Ksp,298.15 was determined. Substitution of arsenic (As for phosphorus (P in the structure of apatite resulted in a linear increase in the value of Ksp: from HAP logKsp,298.15 = −57.90 ± 1.57 to JBM logKsp,298.15 = −39.22 ± 0.56. The temperature dependence of dissolution in this solid solution series is very specific; in the temperature range of 5 °C to 65 °C, the enthalpy of dissolution ΔHr varied around 0. For HAP, the dissolution reaction at 5 °C and 25 °C was endothermic, which transitioned at around 40 °C and became exothermic at 45 °C and 65 °C.

  2. Pinning in nonmagnetic borocarbides

    International Nuclear Information System (INIS)

    Zholobenko, A.N.; Mikitik, G.P.; Fil, V.D.; Kim, J.D.; Lee, S.I.

    2005-01-01

    The field dependences of the Labush parameter in nonmagnetic borocarbides are measured by the method which does not require the free flux flow regime. The anticipated critical current densities are estimated. These values are by two orders of magnitude higher than those measured 'directly' in transport (magnetic) experiments. The giant peak-effect in the field dependences of the Labush parameter is revealed in the Y-based borocarbides. Its behavior is well approximated by the collective pinning theory

  3. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    actuator drive is the only form-fit continuous drive solution currently available for the development of high performance nonmagnetic motors. In this research focus will be on the non magnetic compact high efficiency driver for the piezo actuators and on employing energy recovery from the capacitive...

  4. Nonmagnetic impurities in magnetic superconductors

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1989-01-01

    The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented

  5. Minimizing the scattering of a nonmagnetic cloak

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    Nonmagnetic cloak offers a feasible way to achieve invisibility at optical frequencies using materials with only electric responses. In this letter, we suggest an approximation of the ideal nonmagnetic cloak and quantitatively study its electromagnetic characteristics using a full-wave scattering...

  6. Rigorous analysis of non-magnetic cloaks

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    Nonmagnetic cloak offers a feasible way to achieve invisibility at optical frequencies using materials with only electric responses. In this letter, we suggest an approximation of the ideal nonmagnetic cloak and quantitatively study its electromagnetic characteristics using a full-wave scattering...... to the surrounding material at the outer boundary. Our analysis also provides the flexibility of reducing the scattering in an arbitrary direction....

  7. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  8. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  9. UXC55 Non-Magnetic Robot

    CERN Document Server

    Najjar, Tony

    2017-01-01

    As part of the collaboration between CMS and the Lebanese American University, we are looking into building a non-magnetic inspection rover capable of roaming around UXC55 and specifically under the detector. The robot should be specifically tailored and engineered to cope with the strong magnetic field in the cavern (300 G on average with peaks up to 1500 G) as well as other constraints such as flammability and geometry. Moreover, we are also taking part in the development of the instrumentation and wireless communication of the rover. The biggest challenge in setting up a non-magnetic rover lies in the actuation mechanism, in other words, getting it to move; motors are rotary actuators that rely on the concept of a rotor “trying to catch up” to a rotating magnetic field. We quickly realize the complication with using this popular technology; the strong field created by the CMS magnet greatly interferes with the motor, rendering it utterly stalled. Our approach, on the other hand, consists of using compl...

  10. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...... provide additional options for improvement of process economics are however likewise investigated. Of particular interest is the change of the combustion process induced by the exchange of carbon dioxide and water vapor for nitrogen as diluent. This paper reviews the published knowledge on the oxy......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  11. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Gagliano, Michael; Seltzer, Andrew; Agarwal, Hans; Robertson, Archie; Wang, Lun

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO2 level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to two year

  12. Oxy-Combustion Boiler Material Development

    Energy Technology Data Exchange (ETDEWEB)

    Michael Gagliano; Andrew Seltzer; Hans Agarwal; Archie Robertson; Lun Wang

    2012-01-31

    Under U.S. Department of Energy Cooperative Agreement No. DE-NT0005262 Foster Wheeler North America Corp conducted a laboratory test program to determine the effect of oxy-combustion on boiler tube corrosion. In this program, CFD modeling was used to predict the gas compositions that will exist throughout and along the walls of air-fired and oxy-fired boilers operating with low to high sulfur coals. Test coupons of boiler tube materials were coated with deposits representative of those coals and exposed to the CFD predicted flue gases for up to 1000 hours. The tests were conducted in electric tube furnaces using oxy-combustion and air-fired flue gases synthesized from pressurized cylinders. Following exposure, the test coupons were evaluated to determine the total metal wastage experienced under air and oxy-combustions conditions and materials recommendations were made. Similar to air-fired operation, oxy-combustion corrosion rates were found to vary with the boiler material, test temperature, deposit composition, and gas composition. Despite this, comparison of air-fired and oxy-fired corrosion rates showed that oxy-firing rates were, for the most part, similar to, if not lower than those of air-firing; this finding applied to the seven furnace waterwall materials (wrought and weld overlay) and the ten superheater/reheater materials (wrought and weld overlay) that were tested. The results of the laboratory oxy-combustion tests, which are based on a maximum bulk flue gas SO{sub 2} level of 3200 ppmv (wet) / 4050 ppmv (dry), suggest that, from a corrosion standpoint, the materials used in conventional subcritical and supercritical, air-fired boilers should also be suitable for oxy-combustion retrofits. Although the laboratory test results are encouraging, they are only the first step of a material evaluation process and it is recommended that follow-on corrosion tests be conducted in coal-fired boilers operating under oxy-combustion to provide longer term (one to

  13. Effects of nonmagnetic interparticle forces on magnetorheological fluids

    International Nuclear Information System (INIS)

    Klingenberg, D J; Olk, C H; Golden, M A; Ulicny, J C

    2010-01-01

    Effects of nonmagnetic interparticle forces on the on- and off-state behavior of magnetorheological fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.

  14. Effects of nonmagnetic interparticle forces on magnetorheological fluids

    International Nuclear Information System (INIS)

    Klingenberg, D J; Olk, C K; Golden, M A; Ulicny, J C

    2009-01-01

    Effects of nonmagnetic interparticle forces on the on- and off-state behavior of MR fluids are investigated experimentally and with particle-level simulations. Suspensions of iron particles in an aliphatic oil are modified by surface-active species. The modifications significantly alter the off-state properties, but have little impact on the field-induced stresses. Simulations show similar behavior. Off-state rheological properties are strongly influenced by van der Waals forces and modifications of the short-range repulsive forces. Field-induced stresses are less sensitive to the nonmagnetic forces.

  15. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  16. Numerical analysis of microstructure formation of magnetic particles and nonmagnetic particles in MR fluids

    International Nuclear Information System (INIS)

    Ido, Y; Yamaguchi, T; Inagaki, T

    2009-01-01

    Microstructure formation of magnetic particles and nonmagnetic particles in MR fluids is investigated using the particle method simulation. Nonmagnetic sphere particles are rearranged in the field direction due to the chain-like cluster formation of magnetic particles. In the contrast, the nonmagnetic spherocylinder particles are not sufficiently rearranged in the field direction by using the cluster formation of sphere magnetic particles.

  17. Nonmagnetic impurity in the spin-gap state

    International Nuclear Information System (INIS)

    Nagaosa, N.; Ng, T.

    1995-01-01

    The effects of nonmagnetic strong scatterers (unitary limit) on magnetic and transport properties are studied for resonating-valence-bond states in both the slave-boson and slave-fermion mean-field theories with the gap for the triplet excitations. In the d-wave pairing state of the slave-boson mean-field theory in two dimensions, there is no true gap for spinons, but the Anderson localization occurs, which leads to the local moment when the repulsive interaction is taken into account. In the slave-fermion mean-field theory, local moments are found bound to nonmagnetic impurities as a result of (staggered) gauge interaction. However, in both theories, localization of spinon does not appear in the resistivity, which shows the classical value for the holon

  18. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  19. Oxy-fuel combustion of pulverized fuels

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  20. Influence of disorder on superconductivity in non-magnetic rare ...

    Indian Academy of Sciences (India)

    Influence of disorder on superconductivity in non-magnetic rare-earth nickel borocarbides. G FUCHS1,∗. , K-H M ¨ULLER1, J FREUDENBERGER1, K NENKOV1,. S-L DRECHSLER1, S V SHULGA1, D LIPP2, A GLADUN2,. T CICHOREK3 and P GEGENWART3. 1Institut für Festkörper- und Werkstofforschung, D-01171 ...

  1. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  2. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  3. Chemistry and radiation in oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2011-01-01

    In order to investigate the role of combustion chemistry and radiation heat transfer in oxy-fuel combustion modeling, a computational fluid dynamics (CFD) modeling study has been performed for two different oxy-fuel furnaces. One is a lab-scale 0.8MW oxy-natural gas flame furnace whose detailed in....... Among the key issues in combustion modeling, e.g., mixing, radiation and chemistry, this paper derives useful guidelines on radiation and chemistry implementation for reliable CFD analyses of oxy-fuel combustion, particularly for industrial applications....

  4. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  5. dermaOXY skin assay: effect and evidence

    DEFF Research Database (Denmark)

    Menov, Lasse; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    of the instrument set DermaLab®Combo, which is used for the physical characterization of skin status after treatment. The report consists of four main parts, dedicated to 1. the properties of human skin 2. the anti-aging methods applied by the dermaOXY treatment 3. the analytical methods applied by derma......This text is a videnkupon report supported by the Danish Innovation Fonds and conducted by L.M. and B.K. for dermaOXY (by MedicTinedic ApS, Varde, Denmark). It involves two dermaOXY products: dermaOXY HYALURON SERUM and dermaOXY SYN SERUM. These are applied to the facial skin in combination....... This knowledge is important for assessing the dermaOXY approach to slow down (or better yet inhibit) the phenotypical signs of aging. Professor Beate Klösgen and B.Sc. Lasse Menov performed the study and wrote this report. Lars Melgaard, COO of dermaOXY, provided the information on the dermaOXY approach. Doris...

  6. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  7. Computation of transient 3-D eddy current in nonmagnetic conductor

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1978-01-01

    A numerical procedure was developed to solve transient three-dimensional (3-D) eddy current problems for nonmagnetic conductor. Integral equation formulation in terms of vector potential is used to simplify the matching of boundary conditions. The resulting equations and their numerical approximation were shown to be singular and to require special handling. Several types of symmetries were introduced. They not only reduce the number of algebraic equations to be solved, but also modify the nature of the equations and render them nonsingular. Temporal behavior was obtained with the Runge-Kutta method. The program is tested in several examples of eddy currents for its spatial and temporal profiles, shielding, boundary surface effects, and application of various symmetry options

  8. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  9. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  10. Interaction of the electromagnetic waves and non-magnetized plasmas

    International Nuclear Information System (INIS)

    Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong

    2002-01-01

    The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%

  11. A modified Katsumata probe - ion sensitive probe for measurement in non-magnetized plasmas

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Hubička, Zdeněk; Adámek, Petr; Olejníček, Jiří; Kment, Štěpán; Adámek, Jiří; Stöckel, Jan

    2015-01-01

    Roč. 86, č. 7 (2015), "073510-1"-"073510-7" ISSN 0034-6748 R&D Projects: GA MŠk LH12043 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : Katsumata probe * non-magnetized plasma * magnetron * ion temperature * non-magnetized plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.336, year: 2015

  12. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  13. Oxy-fuel combustion on circulating fluidized bed. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J. [Canmet, Natural Resources Canada (Canada); Hack, H. [Foster Wheeler North America Corporation (United States)

    2011-07-01

    This paper explores the developments and field tests carried out with oxy-fuel fluidized bed combustion. This method has the advantage over the other options of emitting a pure stream of CO2 which thus does not need to be concentrated to be liquefied, transported and stored. In addition, pilot scale tests have shown that oxy-fired circulating fluidized bed combustion (CFBC) results in low emission and fuel flexibility. This paper highlighted that oxy-fired CFBC might be a good option for CCS but tests performed so far have been on a small scale. To confirm the promising results of pilot tests, demonstration projects are underway and are presented herein.

  14. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  15. Ferromagnetic clusters induced by a nonmagnetic random disorder in diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Dinh-Hoi [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Physics Department, Hue University’s College of Education, 34 Le Loi, Hue (Viet Nam); Phan, Van-Nham, E-mail: phanvannham@dtu.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2016-12-15

    In this work, we analyze the nonmagnetic random disorder leading to a formation of ferromagnetic clusters in diluted magnetic semiconductors. The nonmagnetic random disorder arises from randomness in the host lattice. Including the disorder to the Kondo lattice model with random distribution of magnetic dopants, the ferromagnetic–paramagnetic transition in the system is investigated in the framework of dynamical mean-field theory. At a certain low temperature one finds a fraction of ferromagnetic sites transiting to the paramagnetic state. Enlarging the nonmagnetic random disorder strength, the paramagnetic regimes expand resulting in the formation of the ferromagnetic clusters.

  16. Separation of magnetic from non-magnetic information in the Bitter pattern method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2001-01-01

    The paper deals with the problem of separating magnetic and non-magnetic contributions to the image contrast in the Bitter pattern method. With the help of the digital image difference procedure, it is demonstrated for the first time for the Bitter method that the separation is easy to achieve for relatively soft magnetic specimens, when an external field can be applied to simply produce the non-magnetic reference image of the specimen area under study. It is also shown that obtaining satisfactory results is principally impossible when removing the colloid from the specimen surface is used for the purpose of recording the non-magnetic image

  17. Large, Tunable Magnetoresistance in Nonmagnetic III-V Nanowires.

    Science.gov (United States)

    Li, Sichao; Luo, Wei; Gu, Jiangjiang; Cheng, Xiang; Ye, Peide D; Wu, Yanqing

    2015-12-09

    Magnetoresistance, the modulation of resistance by magnetic fields, has been adopted and continues to evolve in many device applications including hard-disk, memory, and sensors. Magnetoresistance in nonmagnetic semiconductors has recently raised much attention and shows great potential due to its large magnitude that is comparable or even larger than magnetic materials. However, most of the previous work focus on two terminal devices with large dimensions, typically of micrometer scales, which severely limit their performance potential and more importantly, scalability in commercial applications. Here, we investigate magnetoresistance in the impact ionization region in InGaAs nanowires with 20 nm diameter and 40 nm gate length. The deeply scaled dimensions of these nanowires enable high sensibility with less power consumption. Moreover, in these three terminal devices, the magnitude of magnetoresistance can be tuned by the transverse electric field controlled by gate voltage. Large magnetoresistance between 100% at room temperature and 2000% at 4.3 K can be achieved at 2.5 T. These nanoscale devices with large magnetoresistance offer excellent opportunity for future high-density large-scale magneto-electric devices using top-down fabrication approaches, which are compatible with commercial silicon platform.

  18. Numerical simulations of a large scale oxy-coal burner

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Taeyoung [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Park, Sanghyun; Ryu, Changkook [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Yang, Won [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group

    2013-07-01

    Oxy-coal combustion is one of promising carbon dioxide capture and storage (CCS) technologies that uses oxygen and recirculated CO{sub 2} as an oxidizer instead of air. Due to difference in physical properties between CO{sub 2} and N{sub 2}, the oxy-coal combustion requires development of burner and boiler based on fundamental understanding of the flame shape, temperature, radiation and heat flux. For design of a new oxy-coal combustion system, computational fluid dynamics (CFD) is an essential tool to evaluate detailed combustion characteristics and supplement experimental results. In this study, CFD analysis was performed to understand the combustion characteristics inside a tangential vane swirl type 30 MW coal burner for air-mode and oxy-mode operations. In oxy-mode operations, various compositions of primary and secondary oxidizers were assessed which depended on the recirculation ratio of flue gas. For the simulations, devolatilization of coal and char burnout by O{sub 2}, CO{sub 2} and H{sub 2}O were predicted with a Lagrangian particle tracking method considering size distribution of pulverized coal and turbulent dispersion. The radiative heat transfer was solved by employing the discrete ordinate method with the weighted sum of gray gases model (WSGGM) optimized for oxy-coal combustion. In the simulation results for oxy-model operation, the reduced swirl strength of secondary oxidizer increased the flame length due to lower specific volume of CO{sub 2} than N{sub 2}. The flame length was also sensitive to the flow rate of primary oxidizer. The oxidizer without N{sub 2} that reduces thermal NO{sub x} formation makes the NO{sub x} lower in oxy-mode than air-mode. The predicted results showed similar trends with measured temperature profiles for various oxidizer compositions. Further numerical investigations are required to improve the burner design combined with more detailed experimental results.

  19. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    Science.gov (United States)

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  20. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    International Nuclear Information System (INIS)

    Svintradze, David V.; Peterson, Darrell L.; Collazo-Santiago, Evys A.; Lewis, Janina P.; Wright, H. Tonie

    2013-01-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each

  1. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Svintradze, David V. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Peterson, Darrell L. [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Collazo-Santiago, Evys A.; Lewis, Janina P. [Virginia Commonwealth University, Richmond, VA 23298-0566 (United States); Wright, H. Tonie, E-mail: xrdproc@vcu.edu [Virginia Commonwealth University, Richmond, VA 23219-1540 (United States); Virginia Commonwealth University, Richmond, VA 23298-0614 (United States); Virginia Commonwealth University, Richmond, VA 23298-0566 (United States)

    2013-10-01

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

  2. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    Science.gov (United States)

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  3. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2010-01-01

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO 2 ) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO 2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO 2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO 2 sequestration when compared to air-fired power plant.

  4. Steam-moderated oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Adyar, Chennai 600 036 (India)

    2010-10-15

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO{sub 2}) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO{sub 2} and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO{sub 2} sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of {proportional_to}8% for CO{sub 2} sequestration when compared to air-fired power plant. (author)

  5. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy......-Fuel Combustion” as a mean of CO2 abatement in large scale energy conversion. Entrained Flow Reactor (EFR) experiments have been conducted in O2/N2 and O2/CO2 mixtures in the temperature interval 1173 K – 1673 K using inlet O2 concentrations between 5 – 28 vol. %. Bituminous coal has been used as fuel in all....... % it was found that char conversion rate was lowered in O2/CO2 compared to O2/N2. This is caused by the lower diffusion coefficient of O2 in CO2 (~ 22 %) that limits the reaction rate in zone III compared to combustion in O2/N2. Using char sampled in the EFR experiments ThermoGravimetric Analyzer (TGA...

  6. A review of oxy-fuel combustion in fluidized bed reactors

    CSIR Research Space (South Africa)

    Mathekga, HI

    2016-06-01

    Full Text Available Presently, there is no detailed review that summarizes the current knowledge status on oxy-fuel combustion in fluidized bed combustors. This paper reviewed the existing literature in heat transfer, char combustion and pollutant emissions oxy...

  7. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  8. Biomass co-firing under oxy-fuel conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2014-01-01

    This paper presents an experimental and numerical study on co-firing olive waste (0, 10%, 20% on mass basis) with two coals in an entrained flow reactor under three oxy-fuel conditions (21%O2/79%CO2, 30%O2/70%CO2 and 35%O2/65%CO2) and air–fuel condition. Co-firing biomass with coal was found...... to have favourable synergy effects in all the cases: it significantly improves the burnout and remarkably lowers NOx emissions. The reduced peak temperatures during co-firing can also help to mitigate deposition formation in real furnaces. Co-firing CO2-neutral biomass with coals under oxy-fuel conditions...... the model can be used to aid in design and optimization of large-scale biomass co-firing under oxy-fuel conditions....

  9. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  10. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    Science.gov (United States)

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  11. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  12. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle

    International Nuclear Information System (INIS)

    Li Yi; Xu Ben; Li Qiu-Lin; Liu Wei; Hu Shen-Yang; Li Yu-Lan

    2015-01-01

    The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau—Lifshitz—Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening. (paper)

  13. Performance evaluation of South African coals under oxy-fuel

    CSIR Research Space (South Africa)

    Mathekga, I

    2016-07-01

    Full Text Available (sub2)), and oxy (30% O(sub2)/70% CO(sub2))—were studied. A total of 18 tests were conducted in a bubbling fluidized bed reactor at 850 and 925 °C. The results obtained showed that the highest carbon burnout was obtained at 30% O2/CO(sub2), followed...

  14. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  15. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  16. Europe Says OXI : "Online Camaraderie" and the European Crisis

    NARCIS (Netherlands)

    Alinejad, D.

    2016-01-01

    This paper presents a small-scale case study of the Facebook page, Europe Says OXI, and a group of political activists spread across European cities who are affiliated with the page. It focuses on how digital communications practices play a role in social movement participation, and follows these

  17. Optimization of Pressurized Oxy-Combustion with Flameless Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Malavasi, Massimo [Itea SpA, Gallarate, VA (Italy); Landegger, Gregory [ThermoEnergy Corporation, Worcester, MA (United States)

    2014-06-30

    Pressurized OxyECombustion is one of the most promising technologies for utility-scale power generation plants. Benefits include the ability to burn low rank coal and capture CO2. By increasing the flue gas pressure during this process, greater efficiencies are derived from increased quantity and quality of thermal energy recovery. UPA with modeling support from MIT and testing and data verification by Georgia Tech’s Research Center designed and built a 100 kW system capable of demonstrating pressurized oxyEcombustion using a flameless combustor. Wyoming PRB coal was run at 15 and 32 bar. Additional tests were not completed but sampled data demonstrated the viability of the technology over a broader range of operating pressures, Modeling results illustrated a flat efficiency curve over 20 bar, with optimum efficiency achieved at 29 bar. This resulted in a 33% (HHV) efficiency, a 5 points increase in efficiency versus atmospheric oxy-combustion, and a competitive cost of electricity plus greater CO2 avoidance costs then prior study’s presented. UPA’s operation of the bench-scale system provided evidence that key performance targets were achieved: flue gas sampled at the combustor outlet had non-detectable residual fly ashes, and low levels of SO3 and heavy-metal. These results correspond to prior pressurized oxy-combustion testing completed by IteaEEnel.

  18. Ammonia chemistry in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Glarborg, Peter

    2009-01-01

    The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated detai...

  19. Techno-Economic Analysis of a 600 MW Oxy-Enrich Pulverized Coal-Fired Boiler

    Directory of Open Access Journals (Sweden)

    Ming Lei

    2018-03-01

    Full Text Available Oxy-fuel combustion is one of the most promising methods for CO2 capture and storage (CCS but the operating costs—mainly due to the need for oxygen production—usually lead to an obvious decrease in power generation efficiency. An “oxy-enrich combustion” process was proposed in this study to improve the efficiency of the oxy-fuel combustion process. The oxidizer for oxy-enrich combustion was composed of pure oxygen, air and recycled flue gas. Thus, the CO2 concentration in the flue gas decreased to 30–40%. The PSA (pressure swing adsorption, which has been widely used for CO2 removal from the shifting gases of ammonia synthesis in China, was applied to capture CO2 during oxy-enrich combustion. The technological economics of oxy-enrich combustion with PSA was calculated and compared to that of oxy-fuel combustion. The results indicated that, compared with oxy-fuel combustion: (1 the oxy-enrich combustion has fewer capital and operating costs for the ASU (air separation unit and the recycle fan; (2 there were fewer changes in the components of the flue gas in a furnace for oxy-enrich combustion between dry and wet flue gas circulation; and (3 as the volume ratio of air and oxygen was 2 or 3, the economics of oxy-enrich combustion with PSA were more advantageous.

  20. Oxy-gasoline torch. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    Under the deactivation and decommissioning (D and D) Implementation Plan of the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP), non-recyclable process components and debris that are removed from buildings undergoing D and D are disposed of in an on-site disposal facility (OSDF). Critical to the design and operation of the FEMP's OSDF are provisions to protect against subsidence of the OSDF's cap. Subsidence of the cap could occur if void spaces within the OSDF were to collapse under the overburden of debris and the OSDF cap. Subsidence may create significant depressions in the OSDF's cap in which rainwater could collect and eventually seep into the OSDF. To minimize voids in the FEMP's OSDF, large metallic components are cut into smaller segments that can be arranged more compactly when placed in the OSDF. Component segmentation using an oxy-acetylene cutting torch was the baseline approach used by the FEMP's D and D contractor on Plant 1, Babcock and Wilcox (B and W) Services, Inc., for the dismantlement and size-reduction of large metal components. Although this technology has performed satisfactorily, improvements are sought in the areas of productivity, airborne contamination, safety, and cost. This demonstration investigated the feasibility of using an oxy-gasoline torch as an alternative to the baseline oxy-acetylene torch for segmenting D and D components. This report provides a comparative analysis of the cost and performance of the baseline oxy-acetylene torch currently used by B and W Services, Inc., and the innovative oxy-gasoline torch

  1. Comparison of non-magnetic and magnetic beads in bead-based assays

    NARCIS (Netherlands)

    Hansenová Maňásková, S.; van Belkum, A.; Endtz, H.P.; Bikker, F.J.; Veerman, E.C.I.; van Wamel, W.J.B.

    2016-01-01

    Multiplex bead-based flow cytometry is an attractive way for simultaneous, rapid and cost-effective analysis of multiple analytes in a single sample. Previously, we developed various bead-based assays using non-magnetic beads coated with Staphylococcus aureus and Streptococcus pneumoniae antigens

  2. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik

    This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...... technique was an invaluable tool in the discussion of data obtained by gas analysis, and it allowed for estimation of combustion times in O2/CO2 where the high CO2 concentration prevents the use of the carbon mass balance for that purpose. During the project the data have been presented at a conference......, formed the basis of a publication and it is part of two PhD dissertations. The name of the conference the journal and the dissertations are listed below. - Joint Meeting of the Scandinavian-Nordic and French Sections of the Combustion Institute, Combustion of Char Particles under Oxy-Fuel Conditions...

  3. Investigation of a high pressure oxy-coal process

    Energy Technology Data Exchange (ETDEWEB)

    Renz, U. [RWTH Aachen Univ. (Germany). Inst. of Heat and Mass Transfer

    2013-07-01

    A study was conducted to investigate the feasibility of an oxy-coal process, which is pressurized to a combustion pressure of 80 bar. At that pressure the water-vapor can be separated economically from the CO{sub 2}/H{sub 2}O flue gases, either by nucleate condensation or by condensation on cooled surfaces in condenser heat exchangers at a temperature of about 300 C. The heat of condensation can be recaptured to preheat the boiler feed water. So the number of economizers is drastically reduced compared to a conventional steam cycle. Another interesting feature of the high pressure oxy-coal process is the fact, that low rank coal with high moisture content can be fired. Such a process at a pressure of about 80 bar is currently investigated by Babcock, USA, as the ThermoEnergy Integrated Power System (TIPS) and will be analyzed in the present paper. A known disadvantage of the oxy-coal processes is the large recirculating flue gas stream to control the combustion temperature, and which need large pipes and heavy recirculation fans. This disadvantage could be avoided if instead of flue gas a part of the condensed water from the condenser heat exchangers is recirculated. Within the present study both types of processes have been simulated and for an electric power output of about 220 MW. Furthermore, results of CFD simulations of a pressurized 250 MW combustor with a single swirl burner and flue gas recirculation will be presented.

  4. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    International Nuclear Information System (INIS)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian; Lu Chunhua; Xu Zhongzi

    2008-01-01

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  5. VIE-FG-FFT for Analyzing EM Scattering from Inhomogeneous Nonmagnetic Dielectric Objects

    Directory of Open Access Journals (Sweden)

    Shu-Wen Chen

    2014-01-01

    Full Text Available A new realization of the volume integral equation (VIE in combination with the fast Fourier transform (FFT is established by fitting Green’s function (FG onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.

  6. Spin-dependent tunneling transport into CrO2 nanorod devices with nonmagnetic contacts.

    Science.gov (United States)

    Song, Yipu; Schmitt, Andrew L; Jin, Song

    2008-08-01

    Single-crystal nanorods of half-metallic chromium dioxide (CrO2) were synthesized and structurally characterized. Spin-dependent electrical transport was investigated in individual CrO2 nanorod devices contacted with nonmagnetic metallic electrodes. Negative magnetoresistance (MR) was observed at low temperatures due to the spin-dependent direct tunneling through the contact barrier and the high spin polarization in the half-metallic nanorods. The magnitude of this negative magnetoresistance decreases with increasing bias voltage and temperature due to spin-independent inelastic hopping through the barrier, and a small positive magnetoresistance was found at room temperature. It is believed that the contact barrier and the surface state of the nanorods have great influence on the spin-dependent transport limiting the magnitude of MR effect in this first attempt at spin filter devices of CrO2 nanorods with nonmagnetic contacts.

  7. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  8. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  9. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    Science.gov (United States)

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  10. ANALYSIS OF NONMAGNETIC METAL INDUCTION HEATING PROCESSES BY FLAT-TYPE CIRCULAR SOLENOIDAL FIELD

    Directory of Open Access Journals (Sweden)

    Yu. Batygin

    2016-12-01

    Full Text Available The article analyzes the electromagnetic processes in the system of induction heating with estimating the main characteristics of heating the non-magnetic sheet metal. The analytical expressions for numerical estimates of the induced current in terms of the phase of the excitation signal are presented. The dependence for the heating temperature of the considered circular sheet metal area for the time corresponding to the interval phase has been determined.

  11. Antiferroic electronic structure in the nonmagnetic superconducting state of the iron-based superconductors.

    Science.gov (United States)

    Shimojima, Takahiro; Malaeb, Walid; Nakamura, Asuka; Kondo, Takeshi; Kihou, Kunihiro; Lee, Chul-Ho; Iyo, Akira; Eisaki, Hiroshi; Ishida, Shigeyuki; Nakajima, Masamichi; Uchida, Shin-Ichi; Ohgushi, Kenya; Ishizaka, Kyoko; Shin, Shik

    2017-08-01

    A major problem in the field of high-transition temperature ( T c ) superconductivity is the identification of the electronic instabilities near superconductivity. It is known that the iron-based superconductors exhibit antiferromagnetic order, which competes with the superconductivity. However, in the nonmagnetic state, there are many aspects of the electronic instabilities that remain unclarified, as represented by the orbital instability and several in-plane anisotropic physical properties. We report a new aspect of the electronic state of the optimally doped iron-based superconductors by using high-energy resolution angle-resolved photoemission spectroscopy. We find spectral evidence for the folded electronic structure suggestive of an antiferroic electronic instability, coexisting with the superconductivity in the nonmagnetic state of Ba 1- x K x Fe 2 As 2 . We further establish a phase diagram showing that the antiferroic electronic structure persists in a large portion of the nonmagnetic phase covering the superconducting dome. These results motivate consideration of a key unknown electronic instability, which is necessary for the achievement of high- T c superconductivity in the iron-based superconductors.

  12. Valley and spin resonant tunneling current in ferromagnetic/nonmagnetic/ferromagnetic silicene junction

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2016-02-01

    Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.

  13. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  14. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    Science.gov (United States)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  15. Combustion instabilities in sudden expansion oxy-fuel flames

    Energy Technology Data Exchange (ETDEWEB)

    Ditaranto, Mario; Hals, Joergen [Department of Energy Processes, SINTEF Energy Research, 7465 Trondheim (Norway)

    2006-08-15

    An experimental study on combustion instability is presented with focus on oxy-fuel type combustion. Oxidants composed of CO{sub 2}/O{sub 2} and methane are the reactants flowing through a premixer-combustor system. The reaction starts downstream a symmetric sudden expansion and is at the origin of different instability patterns depending on oxygen concentration and Reynolds number. The analysis has been conducted through measurement of pressure, CH* chemiluminescence, and velocity. As far as stability is concerned, oxy-fuel combustion with oxygen concentration similar to that found in air combustion cannot be sustained, but requires at least 30% oxygen to perform in a comparable manner. Under these conditions and for the sudden expansion configuration used in this study, the instability is at low frequency and low amplitude, controlled by the flame length inside the combustion chamber. Above a threshold concentration in oxygen dependent on equivalence ratio, the flame becomes organized and concentrated in the near field. Strong thermoacoustic instability is then triggered at characteristic acoustic modes of the system. Different modes can be triggered depending on the ratio of flame speed to inlet velocity, but for all types of instability encountered, the heat release and pressure fluctuations are linked by a variation in mass-flow rate. An acoustic model of the system coupled with a time-lag-based flame model made it possible to elucidate the acoustic mode selection in the system as a function of laminar flame speed and Reynolds number. The overall work brings elements of reflection concerning the potential risk of strong pressure oscillations in future gas turbine combustors for oxy-fuel gas cycles. (author)

  16. Structural aspects of coaxial oxy-fuel flames

    Science.gov (United States)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  17. Oxy-coal combustion in an entrained flow reactor: Application of specific char and volatile combustion and radiation models for oxy-firing conditions

    DEFF Research Database (Denmark)

    Álvarez, L.; Yin, Chungen; Riaza, J.

    2013-01-01

    The deployment of oxy-fuel combustion in utility boilers is one of the major options for CO2 capture. However, combustion under oxy-firing conditions differs from conventional air-firing combustion, e.g., in the aspect of radiative heat transfer, coal conversion and pollutants formation....... In this work, a numerical study on pulverised coal combustion was conducted to verify the applicability and accuracy of several sub-models refined for oxy-fuel conditions, e.g., gaseous radiative property model, gas-phase combustion mechanism and heterogeneous char reaction model. The sub-models were...... implemented in CFD (Computational Fluid Dynamics) simulations of combustion of three coals under air-firing and various oxy-firing (21-35% vol O2 in O2/CO2 mixture) conditions in an EFR (entrained flow reactor). The predicted coal burnouts and gaseous emissions were compared against experimental results...

  18. Representations of OxyContin in North American Newspapers and Medical Journals

    Directory of Open Access Journals (Sweden)

    Emma Whelan

    2011-01-01

    Full Text Available Following the approval of OxyContin (Purdue Pharma, Canada for medical use, the media began to report the use of OxyContin as a street drug, representing the phenomenon as a social problem. Meanwhile, the pain medicine community has criticized the inaccurate and one-sided media coverage of the OxyContin problem. The authors of this study aimed to contribute to an understanding of both sides of this controversy by analyzing the coverage of OxyContin in newspapers and medical journals. The analyses revealed inconsistent messages about the drug from physicians in the news media and in medical journals, which has likely contributed to the drug’s perception as a social problem. The authors suggest ways to address the lack of medical consensus surrounding OxyContin. The results of this study may help resolve the concerns and conflicts surrounding this drug and other opioids.

  19. [Radiographic findings in 4 cows with traumatic reticuloperitonitis caused by a nonmagnetic copper wire].

    Science.gov (United States)

    Braun, U; Gansohr, B; Flückiger, M

    2003-04-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum; however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered.

  20. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  1. Investigations on oxy-fuel combustion in glass melting furnaces; Untersuchungen zur Oxy-Fuel-Feuerung in Glasschmelzwannen

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, Joerg; Giese, Anne [Gaswaerme-Institut e.V., Essen (Germany)

    2011-12-15

    Glass melting requires process temperatures of more than 1600 C which are usually achieved using intensive air preheating and near-stoichiometric combustion. This often leads to high nitrous oxide emissions (NO{sub x}). Oxy-fuel technology offers an interesting alternative since high combustion temperatures can be achieved using pure oxygen as oxidizer while obtaining low NO{sub x} emissions. In the course of the AiF research project ''O2-Glaswanne'' (IGF-Nr.: 15987 N), Gaswaerme- Institut e.V. Essen investigates this combustion process by experimental and numerical means in order to determine potential optimization approaches for glass melting furnaces.

  2. Specific heat jump at T/sub c/ of proximity effect sandwiches containing nonmagnetic localized states

    International Nuclear Information System (INIS)

    Maneeratankul, S.; Tang, I.M.

    1987-01-01

    The decrease in the transition temperature and the jump in the specific heat at T/sub c/ of proximity effect sandwiches containing nonmagnetic Anderson impurities in the normal layer are studied. The effects of the resonant scattering by the impurities are treated in the same manner as that used by Kaiser in his study of the effects of resonant scattering on the properties of bulk superconductors. Numerical calculations of the decrease in T/sub c/ and the jump in the specific heat at T/sub c/ as a function of the thickness of the normal layer are presented

  3. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    International Nuclear Information System (INIS)

    Miah, M. Idrish; Kityk, I.V.; Gray, E. MacA.

    2007-01-01

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage

  4. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  5. Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au; Kityk, I.V. [Institute of Physics, J. Dlugosz University Czestochowa, PL-42201 Czestochowa (Poland); Gray, E. MacA. [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2007-10-15

    The longitudinal current in Si-doped gallium arsenide was spin-polarized using circularly polarized light. The spin current was detected by the extraordinary Hall effect. An enhancement of Hall conductivity with increasing moderately Si-doping was found, indicating that the introduction of dopants increases the electronic spin polarization. This finding may provide an opportunity for controlling and manipulating nonmagnetic semiconductors via electron spin for operating device applications. Band energy calculations using pseudopotentials confirm the influence of Si content and electron-phonon interaction on the behaviour of the spin current and hence on the spin-dependent Hall voltage.

  6. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2008-01-01

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs

  7. Electrical detection of spin current and spin relaxation in nonmagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-09-21

    We report an electrical method for the detection of spin current and spin relaxation in nonmagnetic semiconductors. Optically polarized spins are dragged by an electric field in GaAs. We use the anomalous Hall effect for the detection of spin current and spin relaxation. It is found that the effect depends on the electric field and doping density as well as on temperature, but not on the excitation power. A calculation for the effect is performed using the measured spin polarization by a pump-probe experiment. The results are also discussed in comparison with a quantitative evaluation of the spin lifetimes of the photogenerated electrons under drift in GaAs.

  8. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    International Nuclear Information System (INIS)

    Lee, J H; Nam, Y J; Park, M K; Yamane, R

    2009-01-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  9. Induction heating of rotating nonmagnetic billet in magnetic field produced by high-parameter permanent magnets

    Directory of Open Access Journals (Sweden)

    Ivo Doležel

    2014-04-01

    Full Text Available An advanced way of induction heating of nonmagnetic billets is discussed and modeled. The billet rotates in a stationary magnetic field produced by unmoving high-parameter permanent magnets fixed on magnetic circuit of an appropriate shape. The mathematical model of the problem consisting of two coupled partial differential equations is solved numerically, in the monolithic formulation. Computations are carried out using our own code Agros2D based on a fully adaptive higher-order finite element method. The most important results are verified experimentally on our own laboratory device.

  10. Pressurized oxy-coal combustion: Ideally flexible to uncertainties

    International Nuclear Information System (INIS)

    Zebian, Hussam; Mitsos, Alexander

    2013-01-01

    Simultaneous multi-variable gradient-based optimization with multi-start is performed on a 300 MWe wet-recycling pressurized oxy-coal combustion process with carbon capture and sequestration, subject to uncertainty in fuel, ambient conditions, and other input specifications. Two forms of flue gas thermal recovery are studied, a surface heat exchanger and a direct contact separation column. Optimization enables ideal flexibility in the processes: when changing the coal utilized, the performance is not compromised compared to the optimum performance of a process specifically designed for that coal. Similarly, the processes are immune to other uncertainties like ambient conditions, air flow, slurry water flow, atomizer stream flow and the oxidizer stream oxygen purity. Consequently, stochastic programming is shown to be unnecessary. Close to optimum design, the processes are also shown to be insensitive towards design variables such as the areas of the feedwater heaters. Recently proposed thermodynamic criteria are used as embedded design specifications in the optimization process, rendering it faster and more robust. - Highlights: • Proposed formulation to assess the flexibility of power generation processes facing uncertainties. • Obtained ideal flexibility of pressurized oxy-coal combustion with respect to coal type. • Performance of processes under uncertainty match performance of optimal processes for specific set of inputs. • Stochastic programming is not required and instead hierarchic optimization is utilized

  11. The Redox-Sensitive Transcriptional Activator OxyR Regulates the Peroxide Response Regulon in the Obligate Anaerobe Bacteroides fragilis

    Science.gov (United States)

    Rocha, Edson R.; Owens, Gary; Smith, C. Jeffrey

    2000-01-01

    The peroxide response-inducible genes ahpCF, dps, and katB in the obligate anaerobe Bacteroides fragilis are controlled by the redox-sensitive transcriptional activator OxyR. This is the first functional oxidative stress regulator identified and characterized in anaerobic bacteria. oxyR and dps were found to be divergently transcribed, with an overlap in their respective promoter regulatory regions. B. fragilis OxyR and Dps proteins showed high identity to homologues from a closely related anaerobe, Porphyromonas gingivalis. Northern blot analysis revealed that oxyR was expressed as a monocistronic 1-kb mRNA and that dps mRNA was approximately 500 bases in length. dps mRNA was induced over 500-fold by oxidative stress in the parent strain and was constitutively induced in the peroxide-resistant mutant IB263. The constitutive peroxide response in strain IB263 was shown to have resulted from a missense mutation at codon 202 (GAT to GGT) of the oxyR gene [oxyR(Con)] with a predicted D202G substitution in the OxyR protein. Transcriptional fusion analysis revealed that deletion of oxyR abolished the induction of ahpC and katB following treatment with hydrogen peroxide or oxygen exposure. However, dps expression was induced approximately fourfold by oxygen exposure in ΔoxyR strains but not by hydrogen peroxide. This indicates that dps expression is also under the control of an oxygen-dependent OxyR-independent mechanism. Complementation of ΔoxyR mutant strains with wild-type oxyR and oxyR(Con) restored the inducible peroxide response and the constitutive response of the ahpCF, katB, and dps genes, respectively. However, overexpression of OxyR abolished the catalase activity but not katB expression, suggesting that higher levels of intracellular OxyR may be involved in other physiological processes. Analysis of oxyR expression in the parents and in ΔoxyR and overexpressing oxyR strains by Northern blotting and oxyR′::xylB fusions revealed that B. fragilis OxyR does

  12. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    Science.gov (United States)

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  13. Muon spin relaxation and nonmagnetic Kondo state in PrInAg2

    International Nuclear Information System (INIS)

    MacLaughlin, D. E.; Heffner, R. H.; Nieuwenhuys, G. J.; Canfield, P. C.; Amato, A.; Baines, C.; Schenck, A.; Luke, G. M.; Fudamoto, Y.; Uemura, Y. J.

    2000-01-01

    Muon spin relaxation experiments have been carried out in the Kondo compound PrInAg 2 . The zero-field muon relaxation rate is found to be independent of temperature between 0.1 and 10 K, which rules out a magnetic origin (spin freezing or a conventional Kondo effect) for the previously observed specific-heat anomaly at ∼0.5 K. At low temperatures the muon relaxation can be quantitatively understood in terms of the muon's interaction with nuclear magnetism, including hyperfine enhancement of the 141 Pr nuclear moment at low temperatures. This argues against a Pr 3+ ground-state electronic magnetic moment, and is strong evidence for the doublet Γ 3 crystalline-electric-field-split ground state required for a nonmagnetic route to heavy-electron behavior. The data imply the existence of an exchange interaction between neighboring Pr 3+ ions of the order of 0.2 K in temperature units, which should be taken into account in a complete theory of a nonmagnetic Kondo effect in PrInAg 2 . (c) 2000 The American Physical Society

  14. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  15. Theoretical study of ferromagnetic resonance in exchange - coupled magnetic / nonmagnetic / magnetic multilayer structure

    International Nuclear Information System (INIS)

    Oezdogan, K.; Oezdemir, M.; Yalcin, O.; Aktas, B.

    2002-01-01

    The dispersion relation on ferromagnetic films was calculation by using torque equation of motion with a damping term. The total energy including zeeman, demagnetizing and anisotropy energy terms was used to get ferromagnetic resonance frequency for both uniform and higher order spin wave modes. In antiferromagnetic films, the torque equation of motion for each sub-lattice were written to derive an expression for the dispersion relation. The magnetic trilayer system under investigation consist of two ferromagnetic layers separated by a nonmagnetic layer. The dispersion relation of magnetic/nonmagnetic/magnetic three layers is calculated by using Landau-Lifshitz dynamic equation of motion for the magnetization with interlayer exchange energy. As for the exchange-coupled resonance of ferromagnetic resonance (FMR), the theoretical study has been calculated for both symmetrical and asymmetrical structures. In this systems, the exchange-coupling parameter A 12 between neighboring layers was used to get resonance fields as a function of the angle between the magnetization vectors of each magnetic layers

  16. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  17. Magnetism at the Interface of Magnetic Oxide and Nonmagnetic Semiconductor Quantum Dots.

    Science.gov (United States)

    Saha, Avijit; Viswanatha, Ranjani

    2017-03-28

    Engineering interfaces specifically in quantum dot (QD) heterostructures provide several prospects for developing multifunctional building block materials. Precise control over internal structure by chemical synthesis offers a combination of different properties in QDs and allows us to study their fundamental properties, depending on their structure. Herein, we studied the interface of magnetic/nonmagnetic Fe 3 O 4 /CdS QD heterostructures. In this work, we demonstrate the decrease in the size of the magnetic core due to annealing at high temperature by the decrease in saturation magnetization and blocking temperature. Furthermore, surprisingly, in a prominently optically active and magnetically inactive material such as CdS, we observe the presence of substantial exchange bias in spite of the nonmagnetic nature of CdS QDs. The presence of exchange bias was proven by the increase in magnetic anisotropy as well as the presence of exchange bias field (H E ) during the field-cooled magnetic measurements. This exchange coupling was eventually traced to the in situ formation of a thin antiferromagnetic FeS layer at the interface. This is verified by the study of Fe local structure using X-ray absorption fine structure spectroscopy, demonstrating the importance of interface engineering in QDs.

  18. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants.

    Science.gov (United States)

    Pinchetti, Valerio; Di, Qiumei; Lorenzon, Monica; Camellini, Andrea; Fasoli, Mauro; Zavelani-Rossi, Margherita; Meinardi, Francesco; Zhang, Jiatao; Crooker, Scott A; Brovelli, Sergio

    2018-02-01

    Electronic doping of colloidal semiconductor nanostructures holds promise for future device concepts in optoelectronic and spin-based technologies. Ag + is an emerging electronic dopant in III-V and II-VI nanostructures, introducing intragap electronic states optically coupled to the host conduction band. With its full 4d shell Ag + is nonmagnetic, and the dopant-related luminescence is ascribed to decay of the conduction-band electron following transfer of the photoexcited hole to Ag + . This optical activation process and the associated modification of the electronic configuration of Ag + remain unclear. Here, we trace a comprehensive picture of the excitonic process in Ag-doped CdSe nanocrystals and demonstrate that, in contrast to expectations, capture of the photohole leads to conversion of Ag + to paramagnetic Ag 2+ . The process of exciton recombination is thus inextricably tied to photoinduced magnetism. Accordingly, we observe strong optically activated magnetism and diluted magnetic semiconductor behaviour, demonstrating that optically switchable magnetic nanomaterials can be obtained by exploiting excitonic processes involving nonmagnetic impurities.

  19. Demonstration project: Oxy-fuel combustion at Callide-A plant

    Energy Technology Data Exchange (ETDEWEB)

    Makino, Keiji; Misawa, Nobuhiro; Kiga, Takashi; Spero, Chris

    2007-07-01

    Oxy-fuel combustion is expected to be one of the promising systems on CO2 recovery from pulverized-coal power plant, and enable the CO2 to be captured in a more cost-effective manner compared to other CO2 recover process. An Australia-Japan consortium was established in 2004 specifically for the purpose of conducting a feasibility study on the application of oxy-fuel combustion to an existing pulverized-coal power plant that is Callide-A power plant No.4 unit at 30MWe owned by CS Energy in Australia. One of the important components in this study has been the recent comparative testing of three Australian coals under both oxy-fuel and air combustion conditions using the IHI combustion test facilities. The tests have yielded a number of important outcomes including a good comparison of normal air with oxy-fuel combustion, significant reduction in NOx mass emission rates under oxy-fuel combustion. On the basis of the feasibility study, the project under Australia-Japan consortium is now under way for applying oxy-fuel combustion to an existing plant by way of demonstration. In this project, a demonstration plant of oxy-fuel combustion will be completed by the end of 2008. This project aims at recovering CO2 from an actual power plant for storage. (auth)

  20. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.F. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Gamino, M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Andrade, A.M.H. de [Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Vázquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Correa, M.A. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@fisica.ufrn.br [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  1. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  2. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  3. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic...... nitrogen concentrations between 2 and 10 at. %. A simple atomic valence model is found to describe both the measured atomic concentrations and published material compositions for silicon oxy-nitride produced by PECVD. A relation between the Si–N bond concentration and the refractive index is found......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  4. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    Data.gov (United States)

    U.S. Environmental Protection Agency — Pulverized bituminous coal was burned in a 10W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28,...

  5. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  6. Corrosion behavior of beryllium copper and other nonmagnetic alloys in simulated drilling environments

    International Nuclear Information System (INIS)

    Cribb, W.R.; Booker, J.; Kane, R.D.; Turn, J.C.

    1984-01-01

    Beryllium copper (BeCu) alloys are known to exhibit high strength and good electrical conductivity. Other attractive properties, low magnetic susceptibility and resistance to galling, make these alloys strong contenders for use as drill collars and instrument housings in drilling equipment. Environmental cracking and corrosion tests were conducted in autoclaves at 66, 121 and 149 C (150, 250 and 300 F) in environments as severe as 10% H 2 S, 20% CO 2 balance N 2 . The results indicate Brush Alloy 25 adequately resists environmental cracking for these conditions, whereas certain nonmagnetic stainless steel cracked. Brush Alloy 25 exhibits acceptable corrosion rates at or below temperatures of 149 C (300 F) in environments with up to 1% H 2 S. Acceptable rates were also observed for environments containing up to 10% H 2 S at 66 C (150 F). The alloy showed this similar acceptable behavior in billet or tube form regardless of the aging treatment

  7. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    Science.gov (United States)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  8. Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.

    2006-01-01

    Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors

  9. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A

    2005-01-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases

  10. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071, Salamanca (Spain)

    2005-11-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases.

  11. Thermopower in double planar tunnel junctions with ferromagnetic barriers and nonmagnetic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wilczyński, M., E-mail: wilczyns@if.pw.edu.pl

    2017-01-01

    The Seebeck effect is investigated in double planar tunnel junctions consisting of nonmagnetic electrodes and the central layer separated by ferromagnetic barriers. Calculations are performed in the linear response theory using the free-electron model. The thermopower is analyzed as a function of the thickness of the central layer, temperature of the junctions and the relative orientation of magnetic moments of the barriers. It has been found that the thermopower can be significantly enhanced in the junction with special central layer thickness due to electron tunneling by resonant states. The thickness of the central layer for which the thermopower is enhanced depends not only on the temperature of the junction but also on the orientation of magnetic moments in the barriers. - Highlights: • Thermopower in the double planar junctions with magnetic barriers is analyzed. • Thermopower can be enhanced due to the resonant tunneling. • Thermopower depends on the magnetic configuration of the junction.

  12. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  14. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  15. The mathematical description of the electrosynthesis of composites of oxy-hydroxycompounds cobalt with polypyrrole overooxidazed

    Directory of Open Access Journals (Sweden)

    V. V. Tkach

    2016-03-01

    Full Text Available The electrosynthesis of pereoxidized polypyrrole composite with oxy-hydroxy compounds cobalt in a strongly acidic environment has been described mathematically, using linear stability theory and bifurcation analysis. The conditions of stability of stationary states and self-oscillatory and monotonic instability have been described also. The system behavior was compared with behavior of other systems with pereoxidation, electropolymerization of heterocyclic compounds and electrosynthesis of the oxy-hydroxy compounds cobalt.

  16. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  17. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  18. Physical and mechanical properties of high manganese non-magnetic steel and its application to various products for commercial use

    International Nuclear Information System (INIS)

    Sasaki, Terufumi; Watanabe, Kenji; Nohara, Kiyohiko; Ono, Yutaka; Kondo, Nobuyuki; Sato, Shuzo.

    1982-01-01

    In order to develop new high manganese non-magnetic steels that can be employed to extensive applications ranging from cryogenic to elevated temperature uses, the effects of C and Mn on their magnetic permeability, thermal expansion coefficient and mechanical properties are investigated. It is found that the relation between thermal expansion coefficient, β, and both C and Mn contents can be expressed by the following linear regression equation: β( x 10 -6 / 0 C) = 17.66 + 3.82 C (%) - 0.22 Mn (%). Good mechanical properties are exhibited in the wide range of Mn contents between 18 % and 30 % at room temperature, while there is a tendency that this optimum range of Mn content is narrowed at cryogenic temperature. Then, H-shapes, round bars and deformed bars are manufactured at the workshops using 5t vacuum melted ingots, aiming to establish the conditions for practical processes for final products and to study such various characteristics of the products as their physical and mechanical properties, machinability and weldability. As a result, it is shown that all of those products have excellent properties as non-magnetic steels. In addition, the manufacturing of non-magnetic pinch rolls attached to the electro-magnetic stirring equipment on the continuous casting machine is described in detail as one of the practical applications of the high Mn non-magnetic steels. (author)

  19. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  20. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    Science.gov (United States)

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  1. 40 CFR 721.7780 - Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Poly[oxy(methyl-1,2-ethane-diyl)], α,αâ²-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[Ï-(oxi-rany-me-thoxy)-. 721.7780 Section 721.7780... Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-. (a...

  2. Radium behaviour during ferric oxi-hydroxides crystallization

    International Nuclear Information System (INIS)

    Bassot, S.; Stammose, D.; Benitah, S.

    2004-01-01

    In uranium mill tailings, oxides and oxi-hydroxides are responsible of about 70% of the radium immobilization, half being associated to amorphous forms (mainly hydrous ferric oxides and hydrous manganese oxides). With time, crystallization of these amorphous forms can occur, inducing a redistribution of radium between solid and solution. If the amount of mobile radium increases, the impact of these tailings on the environment may become significant. The aim of this study is to determine the amount of radium released in solution during the crystallization process of hydrous ferric oxide (HFO). The transformation of Ra-HFO co-precipitate in crystallized forms (goethite, hematite, is studied by ageing at 40 deg C for different solution compositions. Both solids and solutions are sampled for different times and analysed. The solid evolution is followed by specific area measurements (about 250 m2/g for HFO and about 10-20 m 2 /g for crystallized form) and by determination of the amorphous fraction according to a selective extraction procedure. The solutions were analysed for 226 radium activity, iron concentration and pH. In order to discriminate the part of radium included in the solid and the part of radium fixed on the solid surface, radium sorption onto HFO and crystallized forms is studied as a function of pH. The modelling of the sorption curves with JCHESS 2.0 code allow to point out the mechanisms responsible of the 226-radium distribution between solid and solution during the crystallization process of HFO. (author)

  3. Biphasic oxidation of oxy-hemoglobin in bloodstains.

    Directory of Open Access Journals (Sweden)

    Rolf H Bremmer

    Full Text Available BACKGROUND: In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2 to met-hemoglobin (met-Hb and hemichrome (HC. The fractions of HbO(2, met-Hb and HC in a bloodstain can be used for age determination of bloodstains. In this study, we further analyze the conversion of HbO(2 to met-Hb and HC, and determine the effect of temperature and humidity on the conversion rates. METHODOLOGY: The fractions of HbO(2, met-Hb and HC in a bloodstain, as determined by quantitative analysis of optical reflectance spectra (450-800 nm, were measured as function of age, temperature and humidity. Additionally, Optical Coherence Tomography around 1300 nm was used to confirm quantitative spectral analysis approach. CONCLUSIONS: The oxidation rate of HbO(2 in bloodstains is biphasic. At first, the oxidation of HbO(2 is rapid, but slows down after a few hours. These oxidation rates are strongly temperature dependent. However, the oxidation of HbO(2 seems to be independent of humidity, whereas the transition of met-Hb into HC strongly depends on humidity. Knowledge of these decay rates is indispensable for translating laboratory results into forensic practice, and to enable bloodstain age determination on the crime scene.

  4. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  5. Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

    International Nuclear Information System (INIS)

    Hu, Yukun; Li, Hailong; Yan, Jinyue

    2014-01-01

    Highlights: • Air-coal and oxy-coal combustion in an industrial scale PF boiler were simulated in ANSYS FLUENT. • The O 2 concentration of 33 vol% in the oxy-coal combustion case matches the air-coal combustion case most closely. • The moisture in the flue gas has little impact on flame temperature, but positive impact on surface incident radiation. - Abstract: Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O 2 concentration ([O 2 ] effective ) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O 2 ] effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O 2 ] effective , to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  6. Representations of OxyContin in North American newspapers and medical journals

    Science.gov (United States)

    Whelan, Emma; Asbridge, Mark; Haydt, Susan

    2011-01-01

    BACKGROUND: There are public concerns regarding OxyContin (Purdue Pharma, Canada) and charges within the pain medicine community that media coverage of the drug has been biased. OBJECTIVE: To analyze and compare representations of OxyContin in medical journals and North American newspapers in an attempt to shed light on how each contributes to the ‘social problem’ associated with OxyContin. METHODS: Using searches of newspaper and medical literature databases, two samples were drawn: 924 stories published between 1995 and 2005 in 27 North American newspapers, and 197 articles published between 1995 and 2007 in 33 medical journals in the fields of addiction/substance abuse, pain/anesthesiology and general/internal medicine. The foci, themes, perspectives represented and evaluations of OxyContin presented in these texts were analyzed statistically. RESULTS: Newspaper coverage of OxyContin emphasized negative evaluations of the drug, focusing on abuse, addiction, crime and death rather than the use of OxyContin for the legitimate treatment of pain. Newspaper stories most often conveyed the perspectives of law enforcement and courts, and much less often represented the perspectives of physicians. However, analysis of physician perspectives represented in newspaper stories and in medical journals revealed a high degree of inconsistency, especially across the fields of pain medicine and addiction medicine. CONCLUSION: The prevalence of negative representations of OxyContin is often blamed on biased media coverage and an ignorant public. However, the proliferation of inconsistent messages regarding the drug from physicians plays a role in the drug’s persistent status as a social problem. PMID:22059195

  7. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Katelyn D. Bothwell

    2016-01-01

    Full Text Available Vascular disrupting agents (VDAs represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC. Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg resulted in a significant (p < 0.01 tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05 in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.

  8. Comparison of char structural characteristics and reactivity during conventional air and oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowei; Xu, Minghou; Yao, Hong; Gu, Ying; Si, Junping; Xiong, Chao [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The capture and sequestration of CO{sub 2} generated from large- scale stationary power plants is considered to be one of the leading technologies that could potentially have a significant impact on reducing greenhouse emissions. Among these emerging technologies, the oxy-fuel combustion is a near-zero emission technology that can be adapted to both new and existing pulverized coal-fired power stations. The goal of this work is to make a comparative study on char structural characteristics (including char yield, swelling ratio, BET surface area, pore distribution, morphology) and reactivity during conventional air and oxy-fuel combustion. Specific experimental designs include two series. One is carried out in pure N{sub 2} and CO{sub 2} (pyrolysis experiments), and another is prepared in N{sub 2} + 5%O{sub 2} and CO{sub 2} + 5%O{sub 2}. Coal samples included raw coal, low density fraction coal and medium density fraction coal in all experiments. The present study is a further effort to extend our knowledge about physical and chemical structural characteristics and reactivity of char in the presence of high concentration CO{sub 2}. Combustion and pyrolysis of a density fractionated China coal at drop tube furnace yielded the following conclusions. Compared to oxy-chars obtained under pure CO{sub 2} atmosphere, the swelling ratios of char obtained in pure N{sub 2} atmosphere are higher. When adding 5%O{sub 2}, experimental results are completely different with those of the pyrolysis experiment. In comparison with the oxy-chars obtained under CO{sub 2} + 5%O{sub 2} atmosphere, the swelling ratios of the char obtained in N{sub 2} + 5%O{sub 2} atmosphere are lower. In the pyrolysis experiment, the BET surfaces Area of the oxy-chars are about 10-20 times as much as chars. When adding 5%O{sub 2}, the BET surfaces Area of the oxy-chars are about two to four times as much as chars. During pyrolysis experiment, the total pore volumes of the oxy-chars obtained under pure CO

  9. Measurement of the neutrino component of an antineutrino beam observed by a nonmagnetized detector

    International Nuclear Information System (INIS)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Fleming, B. T.; Linden, S. K.; Spitz, J.; Brice, S. J.; Brown, B. C.; Ford, R.; Garcia, F. G.; Kobilarcik, T.; Marsh, W.; Moore, C. D.; Polly, C. C.; Russell, A. D.; Stefanski, R. J.; Zeller, G. P.; Bugel, L.; Conrad, J. M.; Karagiorgi, G.; Nguyen, V.

    2011-01-01

    Two methods are employed to measure the neutrino flux of the antineutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high-purity ν μ -induced charged-current single π + (CC1π + ) sample while the second exploits the difference between the angular distributions of muons created in ν μ and ν μ charged-current quasielastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the predominately antineutrino beam is overestimated--the CC1π + analysis indicates the predicted ν μ flux should be scaled by 0.76±0.11, while the CCQE angular fit yields 0.65±0.23. The energy spectrum of the flux prediction is checked by repeating the analyses in bins of reconstructed neutrino energy, and the results show that the spectral shape is well-modeled. These analyses are a demonstration of techniques for measuring the neutrino contamination of antineutrino beams observed by future nonmagnetized detectors.

  10. New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites

    International Nuclear Information System (INIS)

    Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B

    2004-01-01

    New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration

  11. Electromagnetic Screening and Skin-Current Distribution with Magnetic and Non-Magnetic Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, E [Dept. of Plasma Physics, Royal Institute of Technology, Stockholm (SE)

    1974-12-15

    In many applications it is permissible to assume that eddy currents are essentially confined to the skin of the conductor. However, the perfect-conductor approach, commonly employed for skin-current estimates, requires that also mud << L{sub t}, where mu is the relative permeability of the conductor, d its skin depth, and L{sub t} a characteristic length along its surface. The need for this restriction does not seem to be sufficiently well known. In this note simple formulae giving quantitative estimates - valid for arbitrary mud/L - for far-field skin-currents, eddy current losses and screening efficiency are derived for several simple configurations. Boundary conditions that should allow calculations for more complicated configurations are also presented. The parameter mud is important also for non-magnetic materials. Thus, the equivalence of a thin real screen (thickness D) and an infinitely thin screen with the same rhoomegaD will be improved if - in addition - mud is the same for both

  12. Induced magnetization spiral in a nonmagnetic metal sandwiched between two ferromagnets

    CERN Document Server

    Mathon, J; Villeret, M; Muniz, R B; Edwards, D M

    2000-01-01

    Calculation of the magnetic moment induced in a non-magnetic metal, sandwiched between two ferromagnets with magnetizations at an arbitrary angle, is reported. It is found that the induced magnetization rotates along a complex three-dimensional spiral and can undergo many complete 360 deg. rotations. A simple free-electron model is used to derive an analytic formula for the twist angle phi inside the spacer. This demonstrates that, contrary to the behavior of magnetization inside a domain wall in a ferromagnet, phi varies non-uniformly inside the spacer and exhibits plateaus of almost constant rotation separated by regions of sharp rotations by large angles. The calculation is extended to the case of a realistic Co/Cu/Co(0 0 1) trilayer described by s, p, d tight-binding bands fitted to an ab initio band structure. An analytic formula for the components of the induced moment (and hence, for phi) is derived using the stationary phase approximation. Its validity is tested against a fully numerical calculation u...

  13. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  14. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides

    International Nuclear Information System (INIS)

    Singh, S. C.; Gopal, R.; Kotnala, R. K.

    2015-01-01

    Intrinsic Room Temperature Ferromagnetism (RTF) has been observed in undoped/uncapped zinc oxide and titanium dioxide spherical nanoparticles (NPs) obtained by a purely green approach of liquid phase pulsed laser ablation of corresponding metal targets in pure water. Saturation magnetization values observed for zinc oxide (average size, 9 ± 1.2 nm) and titanium dioxide (average size, 4.4 ± 0.3 nm) NPs are 62.37 and 42.17 memu/g, respectively, which are several orders of magnitude larger than those of previous reports. In contrast to the previous works, no postprocessing treatments or surface modification is required to induce ferromagnetism in the case of present communication. The most important result, related to the field of intrinsic ferromagnetism in nonmagnetic materials, is the observation of size dependent ferromagnetism. Degree of ferromagnetism in titanium dioxide increases with the increase in particle size, while it is reverse for zinc oxide. Surface and volume defects play significant roles for the origin of RTF in zinc oxide and titanium dioxide NPs, respectively. Single ionized oxygen and neutral zinc vacancies in zinc oxide and oxygen and neutral/ionized titanium vacancies in titanium dioxide are considered as predominant defect centres responsible for observed ferromagnetism. It is expected that origin of ferromagnetism is a consequence of exchange interactions between localized electron spin moments resulting from point defects

  15. The OxyContin crisis: problematisation and responsibilisation strategies in addiction, pain, and general medicine journals.

    Science.gov (United States)

    Whelan, Emma; Asbridge, Mark

    2013-09-01

    OxyContin(®) (Purdue Pharma, L.P., Stamford, CT) is now widely regarded as a drug of abuse fueling a larger opioid health crisis. While coverage in the North American press about OxyContin overwhelmingly focused upon the problems of related crime and addiction/misuse and the perspectives of law enforcement officials and police, coverage in those fields of medicine most intimately concerned with OxyContin-pain medicine and addiction medicine-was more nuanced. In this article, we draw upon the constructivist social problems tradition and Hunt's theory of moral regulation in a qualitative analysis of 24 medical journal articles. We compare and contrast pain medicine and addiction medicine representations of the OxyContin problem, the agents responsible for it, and proposed solutions. While there are some significant differences, particularly concerning the nature of the problem and the agents responsible for it, both pain medicine and addiction medicine authors 'take responsibility' in ways that attempt to mitigate the potential appropriation of the issue by law enforcement and regulatory agencies. The responses of pain medicine and addiction medicine journal articles represent strategic moves to recapture lost credibility, to retain client populations and tools necessary to their jobs, and to claim a seat at the table in responding to the OxyContin crisis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  17. Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China

    International Nuclear Information System (INIS)

    Tang, YuTing; Ma, XiaoQian; Lai, ZhiYi; Chen, Yong

    2013-01-01

    The entire life cycle of a municipal solid waste (MSW) oxy-fuel incineration power plant was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impacts. The functional unit was 1000 kg (1 t) MSW. During the life cycle, the saving standard coal by electricity generation was more than diesel consumption, and the effect of soot and ashes was the greatest among all calculated categorization impacts. The total weighted resource consumption and total weighted environment potential of MSW oxy-fuel incineration were −0.37 mPR 90 (milli person equivalent) and −0.27 PET 2010 (person equivalent), better than MSW incineration with CO 2 capture via monoethanolamine (MEA) absorption. The sensitivity analysis showed that the electric power consumption of air separation unit (ASU) was the primary influencing parameter, and the influence of electric power consumption of CO 2 compressor was secondary, while transport distance had small influence. Overall, MSW oxy-fuel incineration technology has certain development potential with the increment of MSW power supply efficiency and development of ASU in the future. - Highlights: • Life cycle assessment of a MSW oxy-fuel incineration power plant is novel. • The MSW oxy-fuel incineration was better than the MSW incineration with MEA. • Among calculated impacts, the effect of soot and ashes was the greatest. • The electric power consumption of ASU was the primary influencing parameter

  18. A Reduced Order Model for the Design of Oxy-Coal Combustion Systems

    Directory of Open Access Journals (Sweden)

    Steven L. Rowan

    2015-01-01

    Full Text Available Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG consisting of mainly carbon dioxide (CO2. As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and time investment. As a remedy, a reduced order model (ROM for oxy-coal combustion has been developed to supplement the CFD simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably to full CFD simulation results.

  19. Evaluation of gas radiation models in CFD modeling of oxy-combustion

    International Nuclear Information System (INIS)

    Rajhi, M.A.; Ben-Mansour, R.; Habib, M.A.; Nemitallah, M.A.; Andersson, K.

    2014-01-01

    Highlights: • CFD modeling of a typical industrial water tube boiler is conducted. • Different combustion processes were considered including air and oxy-fuel combustion. • SGG, EWBM, Leckner, Perry and WSGG radiation models were considered in the study. • EWBM is the most accurate model and it’s considered to be the benchmark model. • Characteristics of oxy-fuel combustion are compared to those of air–fuel combustion. - Abstract: Proper determination of the radiation energy is very important for proper predictions of the combustion characteristics inside combustion devices using CFD modeling. For this purpose, different gas radiation models were developed and applied in the present work. These radiation models vary in their accuracy and complexity according to the application. In this work, a CFD model for a typical industrial water tube boiler was developed, considering three different combustion environments. The combustion environments are air–fuel combustion (21% O 2 and 79% N 2 ), oxy-fuel combustion (21% O 2 and 79% CO 2 ) and oxy-fuel combustion (27% O 2 and 73% CO 2 ). Simple grey gas (SGG), exponential wide band model (EWBM), Leckner, Perry and weighted sum of grey gases (WSGG) radiation models were examined and their influences on the combustion characteristics were evaluated. Among those radiation models, the EWBM was found to provide close results to the experimental data for the present boiler combustion application. The oxy-fuel combustion characteristics were analyzed and compared with those of air–fuel combustion

  20. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  1. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  2. Real-space distribution of the Hall current densities and their spin polarization in nonmagnetic zine-blende semiconductors

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel; Drchal, Václav

    2012-01-01

    Roč. 86, č. 19 (2012), "195204-1"-"195204-8" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : nonmagnetic semiconductors * spin Hall currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  3. Dynamic simulation in the process of pressurized denitration based on oxy-fuel combustion

    Science.gov (United States)

    Huang, Qiang; Zhou, Dong

    2018-02-01

    Oxy-fuel combustion is considered as one of the most promising technologies for capturing CO2 from coal-fired power plants. It will greatly reduce the cost of gas purification if we remove NOx in the process of compression, which is the characteristic of oxy-combustion. In this paper, simulation of denitration process of oxy-fuel combustion flue gas was realized by the Aspen Plus software, systematically analyzed the effect of temperature, pressure, initial concentration of O2 and NO in the denitration process. Results show that the increasing of pressure, initial concentration of O2, initial concentration of NO and the decrease of temperature are all beneficial to the denitration process.

  4. Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions

    DEFF Research Database (Denmark)

    Andersen, Jimmy; Rasmussen, Christian Lund; Giselsson, Trine

    2009-01-01

    Two global multistep schemes, the two-step mechanism of Westbrook and Dryer (WD) and the four-step mechanism of Jones and Lindstedt (JL), have been refined for oxy-fuel conditions. Reference calculations were conducted with a detailed chemical kinetic mechanism, validated for oxy-fuel combustion...... conditions. In the modification approach, the initiating reactions involving hydrocarbon and oxygen were retained, while modifying the H-2-CO-CO2 reactions in order to improve prediction of major species concentrations. The main attention has been to capture the trend and level of CO predicted...... by the detailed mechanism as well as the correct equilibrium concentration. A CFD analysis of a propane oxy-fuel flame has been performed using both the original and modified mechanisms. Compared to the original schemes, the modified WD mechanism improved the prediction of the temperature field and of CO...

  5. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    Simpson, Adam P.; Simon, A.J.

    2007-01-01

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO 2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO 2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO 2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  6. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg

    2011-01-01

    , heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, stoichiometry, and inlet NO level. In general, the model provides a satisfactory description of NO formation in air and oxy-fuel combustion of coal, but under some conditions, it underestimates the impact on NO of replacing N2 with CO2. According to the model, differences in the NO yield between the oxy...

  7. Two-dimensional Monte Carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic fields

    International Nuclear Information System (INIS)

    Peng Xiaoling; Min Yong; Ma Tianyu; Luo Wei; Yan Mi

    2009-01-01

    The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced

  8. 40 CFR 721.9900 - Urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α- (2-aminomethylethyl)-μ-(2-amino...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Urea, condensate with poly[oxy(methyl... Substances § 721.9900 Urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α- (2-aminomethylethyl)-μ-(2.... (1) The chemical substance urea, condensate with poly[oxy(methyl-1,2-ethanediyl)]-α-(2...

  9. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  10. Application of a modified OxiTop® respirometer for laboratory composting studies

    OpenAIRE

    Malińska Krystyna

    2016-01-01

    This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the m...

  11. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  12. Demystifying "oxi" cocaine: Chemical profiling analysis of a "new Brazilian drug" from Acre State.

    Science.gov (United States)

    da Silva Junior, Ronaldo C; Gomes, Cezar S; Goulart Júnior, Saulo S; Almeida, Fernanda V; Grobério, Tatiane S; Braga, Jez W B; Zacca, Jorge J; Vieira, Maurício L; Botelho, Elvio D; Maldaner, Adriano O

    2012-09-10

    Recent information from various sources suggests that a new illicit drug, called "oxi", is being spread across Brazil. It would be used in the smoked form and it would look like to crack cocaine: usually small yellowish or light brown stones. As fully released in the media, "oxi" would differ from crack cocaine in the sense that crack would contain carbonate or bicarbonate salts whereas "oxi" would include the addition of calcium oxide and kerosene (or gasoline). In this context, this work presents a chemical profiling comparative study between "oxi" street samples seized by the Civil Police of the State of Acre (CP/AC) and samples associated with both international and interstate drug trafficking seized by the Brazilian Federal Police in Acre (FP/AC). The outcome of this work assisted Brazilian authorities to stop inaccurate and alarmist releases on this issue. It may be of good use by the forensic community in order to better understand matters in their efforts to guide local law enforcement agencies in case such claims reach the international illicit market. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model

    International Nuclear Information System (INIS)

    Kangwanpongpan, Tanin; Corrêa da Silva, Rodrigo; Krautz, Hans Joachim

    2012-01-01

    Oxy-fuel combustion is considered as one of promising options for carbon dioxide capture in future coal power plants. Currently models available in CFD codes fail to predict accurately the radiative heat transfer in oxy-fuel cases due to higher pressure of carbon dioxide and water vapor. This paper concerns numerical investigation applying three band formulations aiming an accurate prediction of radiative properties. The radiative heat transfer is calculated by discrete ordinate method coupled with a weighted sum of gray gases model. The first case relates to the domain-based approach using air-fired parameters. In the last two cases, the optimized parameters of 3 and 4 gray gases fitted to oxy-fired conditions are implemented through a non-gray gases approach. Results applying these set of parameters are evaluated through a comparison with experimental data. Discrepancies between the predicted and measured velocity and O 2 concentration are found mainly close to the burner due to shortcomings of the turbulence model and inaccurate thermochemical closure. The gas flame temperatures are better predicted by the optimized parameters for oxy-fuel conditions, which are considerably lower than the values calculated by the air-fired parameters. Similar trends are observed when the radiative heat fluxes at the lateral wall are compared.

  14. Development of Cost Effective Oxy-Combustion Retrofitting for Coal-Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hamid Farzan

    2010-12-31

    The overall objective of this project is to further develop the oxy-combustion technology for commercial retrofit in existing wall-fired and Cyclone boilers by 2012. To meet this goal, a research project was conducted that included pilot-scale testing and a full-scale engineering and economic analysis.

  15. Nongray-gas Effects in Modeling of Large-scale Oxy-fuel Combustion Processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    , in which a recently refined weighted-sum-of-gray-gases model (WSGGM) applicable to oxy-fuel conditions is used to perform non-gray and gray calculations, respectively, and a widely used air-fuel WSGGM is also employed for gray calculation. This makes the only difference among the different computational...

  16. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  17. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Iris Camehl

    2011-05-01

    Full Text Available Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1 gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H₂O₂ and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1. A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H₂O₂ formation is even reduced by the fungus. Importantly, phospholipase D (PLDα1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.

  18. Evidence for dynamic behavior of O2 in oxy-heme model compounds

    International Nuclear Information System (INIS)

    Montiel-Montoya, R.; Bill, E.; Trautwein, A.X.; Winkler, H.

    1986-01-01

    The authors have performed Moessbauer studies on several oxy-heme model compounds, and for two of them they have also derived the three dimensional structure from X-ray studies. The X-ray structure analysis of these model compounds provides the information that O 2 occupies three different sites in one and only two sites in the other. (Auth.)

  19. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  20. Major and trace elements in coal bottom ash at different oxy coal combustion conditions

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-09-01

    Full Text Available This paper presents a detailed study on the effect of temperature on the concentration of 27 major and trace elements in bottom ash generated from oxy fuel-combustion. The major elements are Na, Mg, Al, K, Ca and Fe and the minor and trace elements...

  1. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  2. Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types

    CSIR Research Space (South Africa)

    Oboirien, BO

    2016-09-01

    Full Text Available In this study, the enrichment of trace elements in two coals under air and oxy-combustion conditions was studied. Twenty-one trace elements were evaluated. The two coal samples had a different concentration for the 21 trace elements, which was due...

  3. A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dale Tree; Andrew Mackrory; Thomas Fletcher

    2008-12-31

    A premixed, staged, down-fired, pulverized coal reactor and a flat flame burner were used to study the evolution of nitrogen in coal contrasting differences in air and oxy-combustion. In the premixed reactor, the oxidizer was staged to produce a fuel rich zone followed by a burnout zone. The initial nominal fuel rich zone stoichiometric ratio (S.R.) of 0.85 selected produced higher NO reductions in the fuel rich region under oxy-combustion conditions. Air was found to be capable of similar NO reductions when the fuel rich zone was at a much lower S.R. of 0.65. At a S.R. of 0.85, oxy-combustion was measured to have higher CO, unburned hydrocarbons, HCN and NH{sub 3} in the fuel rich region than air at the same S.R. There was no measured difference in the initial formation of NO. The data suggest devolatilization and initial NO formation is similar for the two oxidizers when flame temperatures are the same, but the higher CO{sub 2} leads to higher concentrations of CO and nitrogen reducing intermediates at a given equivalence ratio which increases the ability of the gas phase to reduce NO. These results are supported by flat flame burner experiments which show devolatilization of nitrogen from the coal and char to be similar for air and oxy-flame conditions at a given temperature. A model of premixed combustion containing devolatilization, char oxidation and detailed kinetics captures most of the trends seen in the data. The model suggests CO is high in oxy-combustion because of dissociation of CO{sub 2}. The model also predicts a fraction (up to 20%, dependent on S.R.) of NO in air combustion can be formed via thermal processes with the source being nitrogen from the air while in oxy-combustion equilibrium drives a reduction in NO of similar magnitude. The data confirm oxy-combustion is a superior oxidizer to air for NO control because NO reduction can be achieved at higher S.R. producing better char burnout in addition to NO from recirculated flue gas being reduced

  4. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  5. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley [Univ. of Utah, Salt Lake City, UT (United States); Davis, Kevin [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shim [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Eddings, Eric [Univ. of Utah, Salt Lake City, UT (United States); Paschedag, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cox, William [Brigham Young Univ., Provo, UT (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2013-09-30

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4

  6. MSW oxy-enriched incineration technology applied in China: combustion temperature, flue gas loss and economic considerations.

    Science.gov (United States)

    Fu, Zhe; Zhang, Shihong; Li, Xiangpeng; Shao, Jingai; Wang, Ke; Chen, Hanping

    2015-04-01

    To investigate the application prospect of MSW oxy-enriched incineration technology in China, the technical and economical analyses of a municipal solid waste (MSW) grate furnace with oxy-fuel incineration technology in comparison to co-incineration with coal are performed. The rated capacity of the grate furnace is 350 tonnes MSW per day. When raw MSW is burned, the amount of pure oxygen injected should be about 14.5 wt.% under 25% O2 oxy-fuel combustion conditions with the mode of oxygen supply determined by the actual situation. According to the isothermal combustion temperature (Ta), the combustion effect of 25% O2 oxy-enriched incineration (α = 1.43) is identical with that of MSW co-incineration with 20% mass ratio of coal (α = 1.91). However, the former is better than the latter in terms of plant cost, flue gas loss, and environmental impact. Despite the lower costs of MSW co-incineration with mass ratio of 5% and 10% coal (α = 1.91), 25% O2 oxy-enriched incineration (α = 1.43) is far more advantageous in combustion and pollutant control. Conventional combustion flue gas loss (q2) for co-incineration with 0% coal, 20% coal, 10% coal, 5% coal are around 17%, 13%, 14% and 15%, respectively, while that under the condition of 25% O2 oxy-enriched combustion is approximately 12% (α = 1.43). Clearly, q2 of oxy-enriched incineration is less than other methods under the same combustion conditions. High moisture content presents challenges for MSW incineration, therefore it is necessary to dry MSW prior to incineration, and making oxy-enriched incineration technology achieves higher combustion temperature and lower flue gas loss. In conclusion, based on technical and economical analysis, MSW oxy-enriched incineration retains obvious advantages and demonstrates great future prospects for MSW incineration in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.

    Science.gov (United States)

    Hou, Huagang; Khan, Nadeem; Gohain, Sangeeta; Kuppusamy, M Lakshmi; Kuppusamy, Periannan

    2018-03-16

    Tissue oxygenation is a critical parameter in various pathophysiological situations including cardiovascular disease and cancer. Hypoxia can significantly influence the prognosis of solid malignancies and the efficacy of their treatment by radiation or chemotherapy. Electron paramagnetic resonance (EPR) oximetry is a reliable method for repeatedly assessing and monitoring oxygen levels in tissues. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) has been developed as a probe for biological EPR oximetry, especially for clinical use. However, clinical applicability of LiNc-BuO crystals is hampered by potential limitations associated with biocompatibility, biodegradation, or migration of individual bare crystals in tissue. To overcome these limitations, we have embedded LiNc-BuO crystals in polydimethylsiloxane (PDMS), an oxygen-permeable biocompatible polymer and developed an implantable/retrievable form of chip, called OxyChip. The chip was optimized for maximum spin density (40% w/w of LiNc-BuO in PDMS) and fabricated in a form suitable for implantation using an 18-G syringe needle. In vitro evaluation of the OxyChip showed that it is robust and highly oxygen sensitive. The dependence of its EPR linewidth to oxygen was linear and highly reproducible. In vivo efficacy of the OxyChip was evaluated by implanting it in rat femoris muscle and following its response to tissue oxygenation for up to 12 months. The results revealed preservation of the integrity (size and shape) and calibration (oxygen sensitivity) of the OxyChip throughout the implantation period. Further, no inflammatory or adverse reaction around the implantation area was observed thereby establishing its biocompatibility and safety. Overall, the results demonstrated that the newly-fabricated high-sensitive OxyChip is capable of providing long-term measurements of oxygen concentration in a reliable and repeated manner under clinical conditions.

  8. Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns

    International Nuclear Information System (INIS)

    Granados, D.A.; Chejne, F.; Mejía, J.M.

    2015-01-01

    Highlights: • A one-dimensional model for oxy-fuel combustion in a rotary kiln was developed. • Flue gas recirculation becomes an important parameter for controlling the process. • Combustion process decreases the flame length making it more dense. • Increases of 12% in raw material with 40% of FGR and conversion of 98% was obtained. - Abstract: The effect of Flue Gas Recirculation (FGR) on the decarbonation process during oxy-fuel combustion in a lime (and cement) rotary kiln is analyzed using an unsteady one-dimensional Eulerian–Lagrangian mathematical model. The model considers gas and limestone as continuous phases and the coal particles as the discrete phase. The model predicts limestone decarbonation, temperature and species distribution of gas and solid phases along the kiln. Simulation results of an air-combustion case are successfully validated with reported experimental data. This model is used to study and to compare the conventional air combustion process with oxy-fuel combustion with FGR ratios between 30% and 80% as controller parameter in this process. Changes in decarbonation process due to energy fluxes by convection and radiation with different FGRs were simulated and analyzed. Simulation results indicate a temperature increase of 20% in the gas and solid phases and a higher decarbonation rate of 40% in relation to the air-combustion case, for a given constant fuel consumption rate. However, for a given temperature, the increase of the CO_2 partial pressure in the oxy-fuel case promotes a reduction of the decarbonation rate. Therefore, there is a compromise between FGR and decarbonation rate, which is analyzed in the present study. Simulation results of the decarbonation step in low FGR cases, compared to air-combustion case, shows that conversion takes place in shorter distances in the kiln, suggesting that the production rate can be increased for existing kilns in oxy-fuel kilns or, equivalently, shorter kilns can be designed for an

  9. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions

    International Nuclear Information System (INIS)

    Córdoba, Patricia; Maroto-Valer, M.; Delgado, Miguel Angel; Diego, Ruth; Font, Oriol; Querol, Xavier

    2016-01-01

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO 2 -rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO 2 -rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg 2+ (68%) and it is the prevalent form in the CO 2 -rich exhaust flue gas (99%) with lower proportions of Hg 0 (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg 0 is more prone to be retained (95%) while Hg 2+ shows a negative efficiency capture for the whole installation. The negative Hg 2+ capture efficiencies are due to the continuous CO 2 -rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44 mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO 2 -rich flue gas. Especial attention must be paid to the role of the CO 2 -rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). - Highlights: • The fate of gaseous Hg has been evaluated under oxy-fuel combustion. • The Hg oxidation process is enhanced in CO 2 -rich flue gas recirculation. • Hg 2+ is the prevalent gas species in the CO 2 -rich exhaust flue gas. • Hg 2+ (g) shows a negative efficiency capture for the whole installation. • Especial attention must be paid to the Hg enrichment in Fly Ashes.

  10. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  11. Radiographic findings in 4 cows with traumatic reticuloperitonitis due to a non-magnetic foreign body composed of copper

    International Nuclear Information System (INIS)

    Braun, U.; Gansohr, B.; Flückiger, M.

    2003-01-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered

  12. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  13. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  14. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.

    2006-01-01

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed

  15. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

    2006-05-15

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed.

  16. Investigation of technology for manufacturing the non-magnetic temperature-sensitive composite materials and their properties

    International Nuclear Information System (INIS)

    Kobelev, A.G.; Kolesnikov, F.V.; Gul'bin, V.N.; Nikitin, I.S.

    2004-01-01

    Investigation results are presented on structure and properties of nonmagnetic thermobimetals on the basis of beryllium bronze which is used both as active and passive layers. The second layer of thermosensitive element consists of stainless steel 12Kh18N10T, titanium base alloy VT1-0 and aluminum base alloy AD1. The manufacturing of the layered composite materials includes explosion welding, plastic deformation and heat treatment. It is established that strain hardening of the thermobimetals results in an increase of yield strength, microstresses, hardness and specific resistance [ru

  17. Creating a context for excellence and innovation: comparing chief nurse executive leadership practices in magnet and non-magnet hospitals.

    Science.gov (United States)

    Porter-O'grady, Tim

    2009-01-01

    Chief nurse executives create a context for leadership, innovation, and practice in hospitals. It is valuable to get a sense of nurse executives' perceptions regarding their leadership practices and how they value them. Furthermore, it is of interest to see if there is significant differentiation in these perceptions between chief nurse executives in Magnet hospitals and those in non-Magnet hospitals. This article discusses a study of the leadership practices of these 2 groups of nurse executive's leadership practices and reports the results. Concluding is a brief discussion regarding impact and importance of the nurse executive related to excellence and innovation.

  18. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmap for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features

  19. Oxygen Transport Membrane Reactors for Oxy-Fuel Combustion and Carbon Capture Purposes

    Science.gov (United States)

    Falkenstein-Smith, Ryan L.

    This thesis investigates oxygen transport membrane reactors (OTMs) for the application of oxy-fuel combustion. This is done by evaluating the material properties and oxygen permeability of different OTM compositions subjected to a variety of operating conditions. The scope of this work consists of three components: (1) evaluate the oxygen permeation capabilities of perovskite-type materials for the application of oxy-fuel combustion; (2) determine the effects of dual-phase membrane compositions on the oxygen permeation performance and membrane characteristics; and (3) develop a new method for estimating the oxygen permeation performance of OTMs utilized for the application of oxy-fuel combustion. SrSc0.1Co0.9O3-delta (SSC) is selected as the primary perovskite-type material used in this research due to its reported high ionic and electronic conductive properties and chemical stability. SSC's oxygen ion diffusivity is investigated using a conductivity relaxation technique and thermogravimetric analysis. Material properties such as chemical structure, morphology, and ionic and electronic conductivity are examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and conductivity testing using a four-probe method, respectively. Oxygen permeation tests study the oxygen permeability OTMs under modified membrane temperatures, sweeping gas flow rates, sweeping gas compositions, membrane configurations, and membrane compositions. When utilizing a pure CO2 sweeping gas, the membrane composition was modified with the addition of Sm0.2Ce0.8O1.9-delta (SDC) at varying wt.% to improve the membranes mechanical stability. A newly developed method to evaluate the oxygen permeation performance of OTMs is also presented by fitting OTM's oxygen permeability to the methane fraction in the sweeping gas composition. The fitted data is used to estimate the overall performance and size of OTMs utilized for the application of oxy-fuel combustion. The findings from this

  20. Predictions of the impurities in the CO2 stream of an oxy-coal combustion plant

    International Nuclear Information System (INIS)

    Liu, Hao; Shao, Yingjuan

    2010-01-01

    Whilst all three main carbon capture technologies (post-combustion, pre-combustion and oxy-fuel combustion) can produce a CO 2 dominant stream, other impurities are expected to be present in the CO 2 stream. The impurities in the CO 2 stream can adversely affect other processes of the carbon capture and storage (CCS) chain including the purification, compression, transportation and storage of the CO 2 stream. Both the nature and the concentrations of potential impurities expected to be present in the CO 2 stream of a CCS-integrated power plant depend on not only the type of the power plant but also the carbon capture method used. The present paper focuses on the predictions of impurities expected to be present in the CO 2 stream of an oxy-coal combustion plant. The main gaseous impurities of the CO 2 stream of oxy-coal combustion are N 2 /Ar, O 2 and H 2 O. Even the air ingress to the boiler and its auxiliaries is small enough to be neglected, the N 2 /Ar concentration of the CO 2 stream can vary between ca. 1% and 6%, mainly depending on the O 2 purity of the air separation unit, and the O 2 concentration can vary between ca. 3% and 5%, mainly depending on the combustion stoichiometry of the boiler. The H 2 O concentration of the CO 2 stream can vary from ca. 10% to over 40%, mainly depending on the fuel moisture and the partitioning of recycling flue gas (RFG) between wet-RFG and dry-RFG. NO x and SO 2 are the two main polluting impurities of the CO 2 stream of an oxy-coal combustion plant and their concentrations are expected to be well above those found in the flue gas of an air-coal combustion plant. The concentration of NO x in the flue gas of an oxy-coal combustion plant can be up to ca. two times to that of an equivalent air-coal combustion plant. The amount of NO x emitted by the oxy-coal combustion plant, however, is expected to be much smaller than that of the air-coal combustion plant. The reductions of the recirculated NO x within the combustion

  1. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bradley Adams; Andrew Fry; Constance Senior; Hong Shim; Huafeng Wang; Jost Wendt; Christopher Shaddix

    2009-06-30

    This report summarizes Year 1 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Through the course of Year 1 activities, great progress was made toward understanding the issues associated with oxy-combustion retrofit of coal-fired boilers. All four Year 1 milestones and objectives have been, or will be, completed on schedule and within budget. Progress in the four milestone areas may be summarized as follows: • University of Utah has performed size segregated ash composition measurements in the Oxy-Fuel Combustor (OFC). These experiments indicate that oxy-combustion retrofit may impact ash aerosol mineral matter composition. Both flame temperature and flue gas composition have been observed to influence the concentration of calcium, magnesium and iron in the fine particulate. This could in turn impact boiler fouling and slagging. • Sandia National Labs has shown that char oxidation rate is dependent on particle size (for sizes between 60 and 100 microns) by performing fundamental simulations of reacting char particles. These predictions will be verified by making time-resolved optical measurements of char particle temperature, velocity and size in bench-scale experiments before the end of Year 1. • REI and Siemens have completed the design of an oxy-research burner that will be mounted on University of Utah’s pilot-scale furnace, the L1500. This burner will accommodate a wide range of O2, FGR and mixing strategies under conditions relevant for utility boiler operation. Through CFD modeling of the different burner designs, it was determined that the key factor influencing flame stabilization location is particle heat-up rate. The new oxy-research burner and associated equipment is scheduled for delivery before the end of Year 1. • REI has completed a literature survey of slagging and

  2. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  3. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  4. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  5. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick; Apo, Daniel J.; Hunt, Anton; Ghoniem, Ahmed F.

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating

  6. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei; Zhang, Huoming; Wang, Hai; Xia, Yiji

    2014-01-01

    -throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential

  7. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin; Li, Zhikao; Nourdine, Mohamed; Shahid, Salman; Takanabe, Kazuhiro

    2014-01-01

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH

  8. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    Energy Technology Data Exchange (ETDEWEB)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by

  9. Monitoring of internet forums to evaluate reactions to the introduction of reformulated OxyContin to deter abuse.

    Science.gov (United States)

    McNaughton, Emily C; Coplan, Paul M; Black, Ryan A; Weber, Sarah E; Chilcoat, Howard D; Butler, Stephen F

    2014-05-02

    Reformulating opioid analgesics to deter abuse is one approach toward improving their benefit-risk balance. To assess sentiment and attempts to defeat these products among difficult-to-reach populations of prescription drug abusers, evaluation of posts on Internet forums regarding reformulated products may be useful. A reformulated version of OxyContin (extended-release oxycodone) with physicochemical properties to deter abuse presented an opportunity to evaluate posts about the reformulation in online discussions. The objective of this study was to use messages on Internet forums to evaluate reactions to the introduction of reformulated OxyContin and to identify methods aimed to defeat the abuse-deterrent properties of the product. Posts collected from 7 forums between January 1, 2008 and September 30, 2013 were evaluated before and after the introduction of reformulated OxyContin on August 9, 2010. A quantitative evaluation of discussion levels across the study period and a qualitative coding of post content for OxyContin and 2 comparators for the 26 month period before and after OxyContin reformulation were conducted. Product endorsement was estimated for each product before and after reformulation as the ratio of endorsing-to-discouraging posts (ERo). Post-to-preintroduction period changes in ERos (ie, ratio of ERos) for each product were also calculated. Additionally, post content related to recipes for defeating reformulated OxyContin were evaluated from August 9, 2010 through September 2013. Over the study period, 45,936 posts related to OxyContin, 18,685 to Vicodin (hydrocodone), and 23,863 to Dilaudid (hydromorphone) were identified. The proportion of OxyContin-related posts fluctuated between 6.35 and 8.25 posts per 1000 posts before the reformulation, increased to 10.76 in Q3 2010 when reformulated OxyContin was introduced, and decreased from 9.14 in Q4 2010 to 3.46 in Q3 2013 in the period following the reformulation. The sentiment profile for Oxy

  10. The desorption of Phosphorous (32 P) fixed on iron and aluminum oxy-hydroxide surfaces by the soil microbial biomass

    International Nuclear Information System (INIS)

    Araujo, Lilian Maria Cesar de.

    1995-02-01

    This work determines whether the soil microbial biomass, with an ample supply of available C, can utilize P adsorber in the surfaces of oxy-hydroxides of Fe or Al of soil-P deficient soils. To simulate the surfaces of the natural Fe and Al compounds, synthetic oxy-hydroxides of Fe and Al, impregnated in strips of filter paper, and containing P tagged with 32 P, were used. (author). 60 refs., 7 figs., 7 tabs

  11. OxyR of Haemophilus parasuis is a global transcriptional regulator important in oxidative stress resistance and growth.

    Science.gov (United States)

    Wen, Yongping; Wen, Yiping; Wen, Xintian; Cao, Sanjie; Huang, Xiaobo; Wu, Rui; Zhao, Qin; Liu, Mafeng; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Dai, Ke; Ding, Lingqiang; Liu, Sitong; Yang, Jian

    2018-02-15

    Haemophilus parasuis is an opportunistic pathogen and the causative agent of Glässer's disease in swine. This disease has high morbidity and mortality rates in swine populations, and is responsible for major economic losses worldwide. Survival of H. parasuis within the host requires mechanisms for coping with oxidative stress conditions. In many bacteria, OxyR is known to mediate protection against oxidative stress; however, little is known about the role of OxyR in H. parasuis. In the current study, an oxyR mutant strain was constructed in H. parasuis strain SC1401 and designated H. parasuis SC1401∆oxyR. The oxyR mutant strain had a slower growth rate and impaired biofilm formation compared to the wild type strain. Complementation restored the growth-associated phenotypes to wild type levels. Oxidative stress susceptibility testing, using a range of concentrations of H 2 O 2 , indicated that H. parasuis SC1401∆oxyR was more sensitive to oxidative stress than the wild type strain. RNA sequencing transcriptome analysis comparing H. parasuis SC1401 with H. parasuis SC1401∆oxyR identified 466 differentially expressed genes. These genes were involved in a wide range of biological processes, including: oxidative stress, transcriptional regulation, and DNA replication, recombination, and repair. These findings provide a foundation for future research to examine the role of OxyR as a global transcriptional regulator and to better define its role in oxidative stress resistance in H. parasuis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    Science.gov (United States)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  13. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  14. Effect of oxy-fuel combustion with steam addition on coal ignition and burnout in an entrained flow reactor

    International Nuclear Information System (INIS)

    Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F.

    2011-01-01

    The ignition temperature and burnout of a semi-anthracite and a high-volatile bituminous coal were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under oxy-fuel atmospheres (21%O 2 -79%CO 2 , 30%O 2 -70% O 2 and 35%O 2 -65%CO 2 ) were compared with those attained in air. The replacement of CO 2 by 5, 10 and 20% of steam in the oxy-fuel combustion atmospheres was also evaluated in order to study the wet recirculation of flue gas. For the 21%O 2 -79%CO 2 atmosphere, the results indicated that the ignition temperature was higher and the coal burnout was lower than in air. However, when the O 2 concentration was increased to 30 and 35% in the oxy-fuel combustion atmosphere, the ignition temperature was lower and coal burnout was improved in comparison with air conditions. On the other hand, an increase in ignition temperature and a worsening of the coal burnout was observed when steam was added to the oxy-fuel combustion atmospheres though no relevant differences between the different steam concentrations were detected. -- Highlights: → The ignition temperature and the burnout of two thermal coals under oxy-fuel combustion conditions were determined. → The effect of the wet recirculation of flue gas on combustion behaviour was evaluated. → Addition of steam caused a worsening of the ignition temperature and coal burnout.

  15. Simultaneous carbonation and sulfation of CaO in Oxy-Fuel CFB combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [School of Energy and Power Engineering, North China Electric Power University, Baoding City, Hebei Province (China); Jia, L.; Tan, Y. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario, K1A 1M1 (Canada)

    2011-10-15

    For anthracites and petroleum cokes, the typical combustion temperature in a circulating fluidized bed (CFB) is > 900 C. At CO{sub 2} concentrations of 80-85 % (typical of oxy-fuel CFBC conditions), limestone still calcines. When the ash which includes unreacted CaO cools to the calcination temperature, carbonation of fly ash deposited on cool surfaces may occur. At the same time, indirect and direct sulfation of limestone also will occur, possibly leading to more deposition. In this study, CaO was carbonated and sulfated simultaneously in a thermogravimetric analyzer (TGA) under conditions expected in an oxy-fuel CFBC. It was found that temperature, and concentrations of CO{sub 2}, SO{sub 2}, and especially H{sub 2}O are important factors in determining the carbonation/sulfation reactions of CaO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2015-01-01

    period (simultaneous treatment) or at 1 or 4 h prior to starting the heating (sequential treatments). Response was the percentage of mice showing local tumour control at 90 days or skin moist desquamation between days 11-23. From the radiation dose response curves the dose producing tumour control (TCD......(50)) or moist desquamation (MDD50) in 50% of mice was calculated. RESULTS: The TCD(50) and MDD50 values for radiation alone were 54 Gy and 29 Gy, respectively. Simultaneously heating the tissues enhanced radiation response, the respective TCD(50) and MDD50 values being significantly (chi-square test......, p sequential treatment in both tissues. OXi4503 enhanced the radiation response of tumour and skin. Combined with radiation and heat, the only effect was in tumours where OXi4503 prevented the decrease in sensitisation...

  17. Basic study on the generation of RF plasmas in premixed oxy-combustion with methane

    International Nuclear Information System (INIS)

    Osaka, Yugo; Razzak, M.A.; Kobayashi, Noriyuki; Ohno, Noriyasu; Takamura, Shuichi; Uesugi, Yoshihiko

    2010-01-01

    Oxy-combustion generates a high temperature field (above 3000 K), which is applied to next generation power plants and high temperature industrial technologies because of N 2 free processes. However, the combustion temperature is so high that the furnace wall may be fatally damaged. In addition, it is very difficult to control the heat flux and chemical species' concentrations because of rapid chemical reactions. We have developed a new method for controlling the flame by electromagnetic force on this field. In this paper, we experimentally investigated the power coupling between the premixed oxy-combustion with methane and radio frequency (RF) power through the induction coil. By optimizing the power coupling, we observed that the flame can absorb RF power up to 1.5 kW. Spectroscopic measurements also showed an increase in the emission intensity from OH radicals in the flame, indicating improved combustibility. (author)

  18. Study of Reaction of Curium Oxy-Compound Formation in Molten Chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, A.G.; Mayorshin, A.A.; Bychkov, A.V. [Dimitrovgrad-10, Ulyanovsk region, 433510 (Russian Federation)

    2008-07-01

    The method of potentiometric titration using oxygen sensors with solid electrolyte membrane was applied for the study of the interaction of curium cations with oxygen anions in the molten alkali metal chlorides in the temperature range of 450-850 C degrees depending on oxy-acidity of the environment. Assumptions were made concerning ion and phase composition of the obtained high-temperature compounds and chemical reactions taking place in the melts. This scheme assumes that as the basicity of the melt increases, initially the formation of soluble curium oxychlorides takes place in the melt (presumably CmO{sup -}) that is followed by formation of solid CmOCl and finally sesquioxide Cm{sub 2}O{sub 3}. Basic thermodynamic values were calculated for the resultant curium oxy-compounds.

  19. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions.

    Science.gov (United States)

    Córdoba, Patricia; Maroto-Valer, M; Delgado, Miguel Angel; Diego, Ruth; Font, Oriol; Querol, Xavier

    2016-02-01

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO2-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO2-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg(2+) (68%) and it is the prevalent form in the CO2-rich exhaust flue gas (99%) with lower proportions of Hg(0) (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg(0) is more prone to be retained (95%) while Hg(2+) shows a negative efficiency capture for the whole installation. The negative Hg(2+) capture efficiencies are due to the continuous CO2-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO2-rich flue gas. Especial attention must be paid to the role of the CO2-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Crystallization and diffraction patterns of the oxy and cyano forms of the Lucina pectinata haemoglobins complex

    International Nuclear Information System (INIS)

    Ruiz-Martínez, Carlos R.; Nieves-Marrero, Carlos A.; Estremera-Andújar, Rafael A.; Gavira, José A.; González-Ramírez, Luis A.; López-Garriga, Juan; García-Ruiz, Juan M.

    2008-01-01

    The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. The native oxygen-carrier haemoglobins complex (HbII–III) is composed of haemoglobin II (HbII) and haemoglobin III (HbIII), which are found in the ctenidia tissue of the bivalve mollusc Lucina pectinata. This protein complex was isolated and purified from its natural source and crystallized using the vapour-diffusion and capillary counter-diffusion methods. Oxy and cyano derivatives of the complex crystallized using several conditions, but the best crystals in terms of quality and size were obtained from sodium formate pH 5 using the counter-diffusion method in a single capillary. Crystals of the oxy and cyano complexes, which showed a ruby-red colour and nonsingular prismatic shapes, scattered X-rays to resolution limits of 2.15 and 2.20 Å, respectively, using a 0.886 Å synchrotron-radiation source. The crystals belonged to the tetragonal system, space group P4 2 2 1 2, with unit-cell parameters a = b = 74.07, c = 152.07 and a = b = 73.83, c = 152.49 Å for the oxy and cyano complexes, respectively. The asymmetric unit of both crystals is composed of a single copy of the heterodimer, with Matthew coefficients (V M ) of 3.08 and 3.06 Å 3 Da −1 for the oxy and cyano complexes, respectively, which correspond to a solvent content of approximately 60.0% by volume

  1. Determination of polycyclic aromatic hydrocarbons and their oxy-, nitro-, and hydroxy-oxidation products

    International Nuclear Information System (INIS)

    Cochran, R.E.; Dongari, N.; Jeong, H.; Beránek, J.; Haddadi, S.; Shipp, J.; Kubátová, A.

    2012-01-01

    Highlights: ► We describe a method for determining PAHs and their oxidation products. ► Solid-phase extraction was used to fractionate PAHs and their oxidation products. ► Gas chromatography–mass spectrometry methods were optimized. ► The developed method was applied to two particulate matter (PM) samples. - Abstract: A sensitive method has been developed for the trace analysis of PAHs and their oxidation products (i.e., nitro-, oxy-, and hydroxy-PAHs) in air particulate matter (PM). Following PM extraction, PAHs, nitro-, oxy-, and hydroxy-PAHs were fractionated using solid phase extraction (SPE) based on their polarities. Gas chromatography–mass spectrometry (GC–MS) conditions were optimized, addressing injection (i.e., splitless time), negative-ion chemical ionization (NICI) parameters, i.e., source temperature and methane flow rate, and MS scanning conditions. Each class of PAH oxidation products was then analyzed using the sample preparation and appropriate ionization conditions (e.g., nitro-PAHs exhibited the greatest sensitivity when analyzed with NICI–MS while hydroxy-PAHs required chemical derivatization prior to GC–MS analysis). The analyses were performed in selected-ion-total-ion (SITI) mode, combining the increased sensitivity of selected-ion monitoring (SIM) with the identification advantages of total-ion current (TIC). The instrumental LODs determined were 6–34 pg for PAHs, 5–36 pg for oxy-PAHs, and 1–21 pg for derivatized hydroxy-PAHs using electron ionization (GC-EI-MS). NICI–MS was found to be a useful tool for confirming the tentative identification of oxy-PAHs. For nitro-PAHs, LODs were 1–10 pg using negative-ion chemical ionization (GC-NICI-MS). The developed method was successfully applied to two types of real-world PM samples, diesel exhaust standard reference material (SRM 2975) and wood smoke PM.

  2. Crystal structures of 4-meth-oxy-N-(4-methyl-phenyl)benzene-sulfonamide and N-(4-fluoro-phenyl)-4-meth-oxy-benzene-sulfonamide.

    Science.gov (United States)

    Rodrigues, Vinola Z; Preema, C P; Naveen, S; Lokanath, N K; Suchetan, P A

    2015-11-01

    Crystal structures of two N-(ar-yl)aryl-sulfonamides, namely, 4-meth-oxy-N-(4-methyl-phen-yl)benzene-sulfonamide, C14H15NO3S, (I), and N-(4-fluoro-phen-yl)-4-meth-oxy-benzene-sulfonamide, C13H12FNO3S, (II), were determined and analyzed. In (I), the benzene-sulfonamide ring is disordered over two orientations, in a 0.516 (7):0.484 (7) ratio, which are inclined to each other at 28.0 (1)°. In (I), the major component of the sulfonyl benzene ring and the aniline ring form a dihedral angle of 63.36 (19)°, while in (II), the planes of the two benzene rings form a dihedral angle of 44.26 (13)°. In the crystal structure of (I), N-H⋯O hydrogen bonds form infinite C(4) chains extended in [010], and inter-molecular C-H⋯πar-yl inter-actions link these chains into layers parallel to the ab plane. The crystal structure of (II) features N-H⋯O hydrogen bonds forming infinite one dimensional C(4) chains along [001]. Further, a pair of C-H⋯O inter-molecular inter-actions consolidate the crystal packing of (II) into a three-dimensional supra-molecular architecture.

  3. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  4. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enhancement of nondestructive evaluation techniques for magnetic and nonmagnetic structural components (Final report for doctoral fellowship)

    International Nuclear Information System (INIS)

    Chen, Zhenmao

    2000-03-01

    In this report, research works performed in the Structural Safety Engineering Group of OEC/JNC are summarized as the final report of the doctoral fellowship. The main objective of this study is for the enhancement of the nondestructive evaluation techniques for structural components of both magnetic and nonmagnetic material. Studies in three topics have been carried out aiming at the quantitative evaluation of crack with the eddy current testing and the validation of a natural magnetic field based NDE method for detecting mechanical damages in a paramagnetic material. In the first part of the study, an approach to the reconstruction of the natural crack was proposed and implemented with an idealized crack model for its validation. In the second part, the correlation of the natural magnetization and the mechanical damages in the SUS304 stainless steel was investigated by using an experimental approach. In part 3, an inverse method of the measured magnetic fields is proposed for the reconstruction of magnetic charges in the inspected material by using an optimization method and wavelet. As the first work, an approach to the reconstruction of an idealized natural crack of non-vanishing conductivity is proposed with use of signals of eddy current testing. Two numerical models are introduced at first for modeling the natural crack in order to represented it with a set of crack parameters. A method for the rapid prediction of the eddy current testing signals coming from these idealized cracks is given then by extending a knowledge based fast forward solver to the case of a non-vanishing conductivity. Based on this fast forward solver, the inverse algorithm of conjugate gradient method is updated to identify the crack parameters. Several examples are presented finally as a validation of the proposed strategy. The results show that both the two numerical models can give reasonable reconstruction results for signal of low noise. The model concerning the touch of crack

  6. Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks

    Directory of Open Access Journals (Sweden)

    A. F. Kravets

    2017-05-01

    Full Text Available In this work we focus on magnetic relaxation in Mn80Ir20(12 nm/Cu(6 nm/Py(dF antiferromagnet/Cu/ferromagnet (AFM/Cu/FM multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of the free and localized spins in the AFM layer. The results obtained could be used for tailoring the dissipative properties of spintronic devices incorporating antiferromagnetic layers.

  7. The interface of the ferromagnetic metal CoS2 and the nonmagnetic semiconductor FeS2

    KAUST Repository

    Nazir, S.

    2010-11-05

    The electronic and magnetic properties of the cubic pyriteCoS2/FeS2interface are studied using the all-electron full-potential linearized augmented plane wave method. We find that this contact between a ferromagneticmetal and a nonmagnetic semiconductor shows a metallic character. The CoS2 stays close to half-metallicity at the interface, while the FeS2 becomes metallic. The magnetic moment of the Co atoms at the interface slightly decreases as compared to the bulk value and a small moment is induced on the Fe atoms. Furthermore, at the interfaceferromagnetic ordering is found to be energetically favorable as compared to antiferromagnetic ordering.

  8. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  9. Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers

    Science.gov (United States)

    Jabar, A.; Masrour, R.

    2017-12-01

    In this paper, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and magnetic layer effects on the bilayer transitions of a spin-5/2 Blume-Capel model formed by two magnetic blocs separated by a non-magnetic spacer of finite thickness. The thermalization process of magnetization for systems sizes has been given. We have shown that the magnetic order in the two magnetic blocs depend on the thickness of the magnetic layer. In the total magnetization profiles, the susceptibility peaks correspond to the reduced critical temperature. This critical temperature is displaced towards higher temperatures when increasing the number of magnetic layers. In addition, we have discussed and interpreted the behaviors of the magnetic hysteresis loops.

  10. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Córdoba, Patricia, E-mail: pc247@hw.ac.uk [Centre for Innovation on Carbon Capture and Storage (CICCS), Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, EH14 4AS (United Kingdom); Maroto-Valer, M. [Centre for Innovation on Carbon Capture and Storage (CICCS), Institute of Mechanical, Process and Energy Engineering (IMPEE), Heriot-Watt University, EH14 4AS (United Kingdom); Delgado, Miguel Angel; Diego, Ruth [Fundacion Ciudad de la Energia (CIUDEN), Avenida Segunda, No 2 (Compostilla), 24004 Ponferrada, León (Spain); Font, Oriol; Querol, Xavier [Institute of Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona 18-26, E-08034 Barcelona (Spain)

    2016-02-15

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO{sub 2}-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO{sub 2}-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg{sup 2+} (68%) and it is the prevalent form in the CO{sub 2}-rich exhaust flue gas (99%) with lower proportions of Hg{sup 0} (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg{sup 0} is more prone to be retained (95%) while Hg{sup 2+} shows a negative efficiency capture for the whole installation. The negative Hg{sup 2+} capture efficiencies are due to the continuous CO{sub 2}-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44 mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO{sub 2}-rich flue gas. Especial attention must be paid to the role of the CO{sub 2}-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). - Highlights: • The fate of gaseous Hg has been evaluated under oxy-fuel combustion. • The Hg oxidation process is enhanced in CO{sub 2}-rich flue gas recirculation. • Hg{sup 2+} is the prevalent gas species in the CO{sub 2}-rich exhaust flue gas. • Hg{sup 2+}{sub (g)} shows a negative efficiency capture for the whole installation. • Especial attention must be paid to the Hg enrichment in Fly Ashes.

  11. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  12. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation.

    Science.gov (United States)

    Vinckx, Tiffany; Wei, Qing; Matthijs, Sandra; Noben, Jean-Paul; Daniels, Ruth; Cornelis, Pierre

    2011-06-01

    In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.

  13. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    International Nuclear Information System (INIS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N.R.; Jorge, G.A.; Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S.; Vildosola, V.; García, D.J.

    2016-01-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn 5 (M=Co, Rh) and for the non-magnetic YMIn 5 and LaMIn 5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn 5 is an excellent approximation to the one of GdCoIn 5 in the full temperature range, for GdRhIn 5 we find a better agreement with LaCoIn 5 , in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn 5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  14. Lattice specific heat for the RMIn{sub 5} (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Facio, Jorge I., E-mail: jorge.facio@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Betancourth, D.; Cejas Bolecek, N.R. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Jorge, G.A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Vildosola, V. [Centro Atómico Constituyentes, CNEA, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); García, D.J. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn{sub 5} (M=Co, Rh) and for the non-magnetic YMIn{sub 5} and LaMIn{sub 5} (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn{sub 5} is an excellent approximation to the one of GdCoIn{sub 5} in the full temperature range, for GdRhIn{sub 5} we find a better agreement with LaCoIn{sub 5}, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn{sub 5} (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  15. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  16. Process analysis of an oxygen lean oxy-fuel power plant with co-production of synthesis gas

    International Nuclear Information System (INIS)

    Normann, Fredrik; Thunman, Henrik; Johnsson, Filip

    2009-01-01

    This paper investigates new possibilities and synergy effects for an oxy-fuel fired polygeneration scheme (transportation fuel and electricity) with carbon capture and co-firing of biomass. The proposed process has the potential to make the oxy-fuel process more effective through a sub-stoichiometric combustion in-between normal combustion and gasification, which lowers the need for oxygen within the process. The sub-stoichiometric combustion yields production of synthesis gas, which is utilised in an integrated synthesis to dimethyl ether (DME). The process is kept CO 2 neutral through co-combustion of biomass in the process. The proposed scheme is simulated with a computer model with a previous study of an oxy-fuel power plant as a reference process. The degree of sub-stoichiometric combustion, or amount of synthesis gas produced, is optimised with respect to the overall efficiency. The maximal efficiency was found at a stoichiometric ratio just below 0.6 with the efficiency for the electricity producing oxy-fuel process of 0.35 and a DME process efficiency of 0.63. It can be concluded that the proposed oxygen lean combustion process constitutes a way to improve the oxy-fuel carbon capture processes with an efficient production of DME in a polygeneration process

  17. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David

    2013-09-30

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis

  18. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kenison, LaVesta [URS, Pittsburgh, PA (United States); Flanigan, Thomas [URS, Pittsburgh, PA (United States); Hagerty, Gregg [URS, Pittsburgh, PA (United States); Gorrie, James [Air Liquide, Kennesaw, GA (United States); Leclerc, Mathieu [Air Liquide, Kennesaw, GA (United States); Lockwood, Frederick [Air Liquide, Kennesaw, GA (United States); Falla, Lyle [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Macinnis, Jim [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Fedak, Mathew [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Yakle, Jeff [Babcock & Wilcox and Burns McDonnell, Kansas City, MO (United States); Williford, Mark [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States); Wood, Paul [Futuregen Industrial Alliance, Inc., Morgan County, IL (United States)

    2016-04-01

    The primary objectives of the FutureGen 2.0 CO2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO2 capture in steady-state operations. The project was to be fully integrated in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will

  19. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  20. Mercury speciation in air-coal and oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Duan, Yufeng; Mao, Yongqiu [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    To study the effect of air-coal and oxy-coal combustion on mercury emission, Xuzhou bituminous coal was burnt in a 6 kWth fluidized bed at 800 and 850 C in four atmospheres: air, 21%O{sub 2}/79%CO{sub 2}, 30%O{sub 2}/70%CO{sub 2}, 40%O{sub 2}/60%CO{sub 2} analysed with an online flue gas analyzer. Ontario Hydro method (OHM) was employed to measure mercury speciation in flue gas. The result indicated that more elemental mercury and oxidized mercury are released when burned in O{sub 2}/CO{sub 2} atmosphere than in air at 800 C, while the situation is just opposite, when coal was burnt at 850 C, less Hg{sup 0} and Hg{sup 2+} in O{sub 2}/CO{sub 2} atmosphere than in air. The concentration of Hg{sup 0} rises as temperature increases both in the conditions of the air combustion and oxy-coal combustion, but the concentration of Hg{sup 2+} increases with the increase of temperature only in the condition of air combustion and decreases in the oxy-coal combustion. With the increase of the oxygen concentration which is in the range of 21-40%, the concentrations of Hg{sup 0} and Hg{sup 2+} decrease first and then increase. When excess air coefficient increases, the oxygen content is higher and the vaporization rate of Hg{sup 0} and Hg{sup 2+} decrease.

  1. The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site

    International Nuclear Information System (INIS)

    Masaka, J.; Muunganirwa, M.

    2007-01-01

    A study was carried out at a sanitary waste disposal site for Kutsaga Tobacco Research Station, Zimbabwe, which uses large amounts of copper oxy chloride for sterilization of recycled float trays in flooded bench tobacco seedling production systems. Soil samples randomly collected from six stream bank zones (bands up the valley slope) varying in their distance ranges from the centre of both the wastewater-free and wastewater-affected paths [0-5 m (B1); 6-10 m (B2); 11-15 m (B3); 16-20 m (B4); 21-25 m (B5) and 26-30 m (B6)] in two sample depths (0-15; 15-30 cm) were analysed for metal copper, organic matter contents, and soil pH and subjected to agarized incubation for microbial counts. Results suggest that the repeated disposals of copper oxy chloride waste from tobacco float tray sanitation sinks into a creek amplify metal copper loads in the soil by 500 fold. The greatest concentrations of copper in both the topsoil and upper subsoil were recorded in the B3, B4 and B5 stream bank zones of the wastewater path. The concentration of copper was significantly lower in the middle of the waste-affected creek than that in the stream bank zones. This trend in the copper concentration coincided with the lowest acidity of the soil. Overloading the soil with copper, surprisingly, enhances the content of soil organic matter. The repeated release of copper oxy chloride waste into a stream causes an accelerated build-up of metal copper and soil acidity in the stream bank on-site while contamination is translocated to either underground water reserve or surface stream water flow in the middle of the wastewater path

  2. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  3. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Bradley R. [Univ. of Utah, Salt Lake City, UT (United States); Fry, Andrew R. [Univ. of Utah, Salt Lake City, UT (United States); Senior, Constance L. [Univ. of Utah, Salt Lake City, UT (United States); Shim, Hong Shig [Univ. of Utah, Salt Lake City, UT (United States); Otten, Brydger Van [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Shaddix, Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tree, Dale [Brigham Young Univ., Provo, UT (United States)

    2010-06-01

    This report summarizes Year 2 results of a research program designed to use multi-scale experimental studies and fundamental theoretical models to characterize and predict the impacts of retrofit of existing coal-fired utility boilers for oxy-combustion. Year 2 focused extensively on obtaining experimental data from the bench-scale, lab-scale and pilot-scale reactors. These data will be used to refine and validate submodels to be implemented in CFD simulations of full-scale boiler retrofits. Program tasks are on schedule for Year 3 completion. Both Year 2 milestones were completed on schedule and within budget.

  4. (R,S)-3-Carb­oxy-2-(isoquinolinium-2-yl)propanoate monohydrate

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-01-01

    The title compound, C13H11NO4·H2O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino­line group and a deprotonated carboxyl group. In the crystal, mol­ecules are connected via short O—H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti­omers along [001]. These chains are additionally connected by hydrogen bonding between water mol­ecules and the deprotonated carb­oxy groups of neighbouring mol­ecules. PMID:21579503

  5. (R,S)-3-Carb-oxy-2-(isoquinolinium-2-yl)propanoate monohydrate.

    Science.gov (United States)

    Stilinović, Vladimir; Frkanec, Leo; Kaitner, Branko

    2010-05-22

    The title compound, C(13)H(11)NO(4)·H(2)O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino-line group and a deprotonated carboxyl group. In the crystal, mol-ecules are connected via short O-H⋯O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti-omers along [001]. These chains are additionally connected by hydrogen bonding between water mol-ecules and the deprotonated carb-oxy groups of neighbouring mol-ecules.

  6. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  7. Structural and electrical characterisation of SrCe1-xYxOxi

    DEFF Research Database (Denmark)

    Phillips, R.J.; Bonanos, N.; Poulsen, F.W.

    1999-01-01

    The acceptor-doped perovskite proton conductor SrCe1-xYxOxi (x = 0.025 to 0.20, xi = 3 - x/2) has been prepared and characterised using X-ray diffraction and AC impedance spectroscopy, and the effect of the yttrium dopant concentration on structure and electrical properties has been investigated. X......-ray diffraction studies show a decrease in lattice volume with increasing yttrium content. Electrical conductivity studies have been made as a function of oxygen partial pressure, and at a partial pressure of water vapour of 0.007 atm. The total conductivity has been separated into different components by fitting...

  8. Synthesis of micro- and nanodiamonds by the method of oxy- acetylene combustion flame

    International Nuclear Information System (INIS)

    Sabitov, S; Medyanova, B; Partizan, G; Koshanova, A; Mansurova, M; Lesbayev, B; Mansurov, B; Merkibayev, Ye

    2016-01-01

    This work presents the results of experiments on synthesis of micro- and nanodiamonds by the method of oxy-acetylene torch on the surface of pre-deposited copper thin films. The influence of the thickness of the buffer copper film and the concentration ratio of oxygen and acetylene on the structure formation of the deposited samples was investigated during performed experiments. Studies by Raman scattering and scanning electron microscopy showed that the synthesis of micro- and nano-diamonds occurs under certain experimental conditions. (paper)

  9. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2014-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: •Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. •Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  10. Influence of carbonation under oxy-fuel combustion flue gas on the leachability of heavy metals in MSWI fly ash.

    Science.gov (United States)

    Ni, Peng; Xiong, Zhuo; Tian, Chong; Li, Hailong; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang

    2017-09-01

    Due to the high cost of pure CO 2 , carbonation of MSWI fly ash has not been fully developed. It is essential to select a kind of reaction gas with rich CO 2 instead of pure CO 2 . The CO 2 uptake and leaching toxicity of heavy metals in three typical types of municipal solid waste incinerator (MSWI) fly ash were investigated with simulated oxy-fuel combustion flue gas under different reaction temperatures, which was compared with both pure CO 2 and simulated air combustion flue gas. The CO 2 uptake under simulated oxy-fuel combustion flue gas were similar to that of pure CO 2 . The leaching concentration of heavy metals in all MSWI fly ash samples, especially in ash from Changzhou, China (CZ), decreased after carbonation. Specifically, the leached Pb concentration of the CZ MSWI fly ash decreased 92% under oxy-fuel combustion flue gas, 95% under pure CO 2 atmosphere and 84% under the air combustion flue gas. After carbonation, the leaching concentration of Pb was below the Chinese legal limit. The leaching concentration of Zn from CZ sample decreased 69% under oxy-fuel combustion flue gas, which of Cu, As, Cr and Hg decreased 25%, 33%, 11% and 21%, respectively. In the other two samples of Xuzhou, China (XZ) and Wuhan, China (WH), the leaching characteristics of heavy metals were similar to the CZ sample. The speciation of heavy metals was largely changed from the exchangeable to carbonated fraction because of the carbonation reaction under simulated oxy-fuel combustion flue gas. After carbonation reaction, most of heavy metals bound in carbonates became more stable and leached less. Therefore, oxy-fuel combustion flue gas could be a low-cost source for carbonation of MSWI fly ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Prediction of air-fuel and oxy-fuel combustion through a generic gas radiation property model

    International Nuclear Information System (INIS)

    Yin, Chungen

    2017-01-01

    Highlights: • A gas radiation model for general combustion CFD presented, programmed & verified. • Its general applicability/practical accuracy demonstrated in air-fuel and oxy-fuel. • Useful guidelines for air-fuel and oxy-fuel combustion CFD suggested. • Important to include the impact of CO in gas radiation for oxy-fuel combustion CFD. - Abstract: Thermal radiation plays an important role in heat transfer in combustion furnaces. The weighted-sum-of-gray-gases model (WSGGM), representing a good compromise between computational efficiency and accuracy, is commonly used in computational fluid dynamics (CFD) modeling of combustion processes for evaluating gaseous radiative properties. However, the WSGGMs still have some limitations in practical use, e.g., unable to naturally accommodate different combustion environments, difficult to accurately address the variations in species concentrations in a flame, and inconvenient to account for the impacts of participating species other than H_2O and CO_2. As a result, WSGGMs with different coefficients have been published for specific applications. In this paper, a reliable generic model for gaseous radiation property calculation, which is a computationally efficient exponential wide band model (E-EWBM) applicable to combustion CFD and able to naturally solve all the practical limitations of the WSGGMs, is presented, programmed and verified. The model is then implemented to CFD simulation of a 300 kW air-fuel and a 0.8 MW oxy-fuel combustion furnace, respectively, to demonstrate its computational applicability to general combustion CFD and its capability in producing reliable CFD results for different combustion environments. It is found that the usefulness of the WSGGMs in oxy-fuel combustion CFD is compromised if the important impacts of high levels of CO under oxy-fuel combustion cannot be accounted for. The E-EWBM that appropriately takes the impacts of H_2O, CO_2, CO and CH_4 into account is a good replacement

  12. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Singh, Sudhir; Dwivedi, Susheel Kumar; Singh, Vijay Shankar; Tripathi, Anil Kumar

    2016-10-01

    OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.

  13. Magnetic susceptibility of Dirac fermions, Bi-Sb alloys, interacting Bloch fermions, dilute nonmagnetic alloys, and Kondo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Buot, Felix A., E-mail: fbuot@gmu.edu [Computational Materials Science Center, George Mason University, Fairfax, VA 22030 (United States); TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines); C& LB Research Institute, Carmen, Cebu 6005 (Philippines); Otadoy, Roland E.S.; Rivero, Karla B. [TCSE Center, Spintronics Group, Physics Department, University of San Carlos, Talamban, Cebu 6000 (Philippines)

    2017-03-01

    Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.

  14. Nonmagnetic concrete. Guide for the superconductive magnetically levitated train system (Maglev); Hijisei concrete. Chodendo jiki fujoshiki tetsudoyo guide way

    Energy Technology Data Exchange (ETDEWEB)

    Tottori, S; Sato, T [Railway Technical Research Institute, Tokyo (Japan)

    1994-07-01

    Non-magnetization is applied to concrete structures with which magnetic environment is a problem, such as a guideway for superconductive magnetically levitated train system (Maglev) and geomagnetism observation facilities. As an example, this paper introduces the conception and the design methods of guideways for Maglev. If reinforcing bars or tensing materials of common steel are placed close to a vehicle, inductive current is generated in the steel due to moving magnetic field, causing a problem to form part of driving resistance. The inductive current includes loop current and eddy current. The former current may be prevented if the contact resistance in steels with each other is about one ohm or more, but the latter current has no other means but to minimize it as long as the material is electrically conductive. Conceivable measures may include the use as reinforcing bars of non magnetic high Mn-steel with electric specific resistance of 4 to 5 times as large as that for common steel reinforcing bars, and the use of continuous reinforcing fibers such as aramid. The latter material requires strength design especially importantly, but has obtained good result when it was constructed at the experimental linear motor train guideway at Miyazaki, Japan. 5 refs., 6 figs.

  15. Comparison of the enrollment percentages of magnet and non-magnet schools in a large urban school district.

    Directory of Open Access Journals (Sweden)

    Emily Arcia

    2006-12-01

    Full Text Available Are magnet schools in a position to meet diversity ideals? As districts are declared unitary and released from court ordered desegregation, many are framing their commitments to fairness and equity in terms of diversity˜i.e., comparable rates of participation and comparable educational outcomes in all segments the student population. In this study, the enrollment statistics for magnet and contiguous non-magnet public schools in Miami-Dade County Public Schools, a large, urban district that had been released from court ordered desegregation, were compared to each other and to district enrollment averages at two time points: the year the district was declared unitary and four years hence. Findings indicated that within four years of being declared unitary, the gains that the magnet schools had made with regards to Black/non-Black desegregation had eroded substantially. Also, in the four year span, magnet schools had not made significant strides in meeting the diversity ideals adopted by the district at being released from supervision by the court. These findings highlight the difficulty of attaining diversity in student enrollment characteristics when quotas are not used and suggest that recruitment and enrollment policies must be crafted with care if districts are to achieve diversity goals.

  16. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    International Nuclear Information System (INIS)

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  17. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  18. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe4As3

    International Nuclear Information System (INIS)

    Wu, Dapeng

    2015-01-01

    Highlights: • CaFe 3.64 Pt 0.36 As 3 and CaFe 3.64 Ga 0.36 As 3 were grown using Sn flux method. • The two magnetic transition temperatures of CaFe 4 As 3 remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe 4 As 3 . • The magnetic structure of CaFe 4 As 3 is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe 4 As 3 and investigated the structure and physical properties of CaFe 3.64 X 0.36 As 3 (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe 4 As 3 is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe 4 As 3

  19. Thermal analysis and kinetics of coal during oxy-fuel combustion

    Science.gov (United States)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  20. Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln

    International Nuclear Information System (INIS)

    Granados, David A.; Chejne, Farid; Mejía, Juan M.; Gómez, Carlos A.; Berrío, Ariel; Jurado, William J.

    2014-01-01

    The effect of Flue Gas Recirculation (FGR) during Oxy-Fuel Combustion in a Rotary Cement Kiln was analyzed by using a CFD model applied to coal combustion process. The CFD model is based on 3D-balance equations for mass, species, energy and momentum. Turbulence and radiation model coupled to a chemical kinetic mechanism for pyrolysis processes, gas–solid and gas–gas reactions was included to predicts species and flame temperature distribution, as well as convective and radiation energy fluxes. The model was used to study coal combustion with air and with oxygen for FGR between 30 and 85% as controller parameter for temperature in the process. Flame length effect and heat transfer by convection and radiation to the clinkering process for several recirculation ratios was studied. Theoretical studies predicted a located increase of energy flux and a reduction in flame length with respect to the traditional system which is based on air combustion. The impact of FGR on the oxy-fuel combustion process and different energy scenarios in cement kilns to increase energy efficiency and clinker production were studied and evaluated. Simulation results were in close agreement with experimental data, where the maximum deviation was 7%

  1. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  2. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  3. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  4. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  5. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    Energy Technology Data Exchange (ETDEWEB)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Technical University, Department of Chemistry, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Bulut, Mustafa, E-mail: mbulut@marmara.edu.tr [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadıkoy-Istanbul (Turkey)

    2015-12-15

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, {sup 1}H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn{sup 2+}, Mg{sup 2+}, In{sup +3}) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  7. Photophysical and photochemical properties of novel metallophthalocyanines bearing 7-oxy-3-(m-methoxyphenyl)coumarin groups

    International Nuclear Information System (INIS)

    Taştemel, Ayşegül; Karaca, Birsen Yılmaz; Durmuş, Mahmut; Bulut, Mustafa

    2015-01-01

    Tetra-peripherally and non-peripherally 7-oxy-3-(m-methoxyphenyl)coumarin-substituted zinc(II) (4a and 5a), indium(III)acetate (4b and 5b) and magnesium(II) (4c and 5c) phthalocyanines were synthesized for the first time. These phthalocyanines were characterized by elemental analysis, FT-IR, 1 H NMR, UV–vis spectroscopy and mass spectra. The novel phthalocyanines showed excellent solubility in general organic solvents, such as dichloromethane, chloroform, tetrahydrofuran (THF), N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). The photophysical and photochemical properties of these phthalocyanines were investigated in DMF. The effects of the central metal ions (Zn 2+ , Mg 2+ , In +3 ) and the position (peripheral or non-peripheral) of the substituents on the photophysical and photochemical parameters were reported for comparison. The singlet oxygen quantum yield values of novel phthalocyanines ranged from 0.29 to 0.82 in DMF. In this study, the fluorescence quenching behavior of the studied zinc(II) and magnesium(II) phthalocyanine complexes was also described by the addition of 1,4-benzoquinone. - Highlights: • 7-oxy-3-(m-methoxyphenyl)coumarin-substituted Zn, In(III)OAc and Mg phthalocyanines. • Investigation of their photophysical and photochemical properties in DMF. • The effects of metal types and position of the substituents on these properties.

  8. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; C. Pevida; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2008-09-15

    Oxy-fuel combustion is a GHG abatement technology in which coal is burned using a mixture of oxygen and recycled flue gas, to obtain a rich stream of CO{sub 2} ready for sequestration. An entrained flow reactor was used in this work to study the ignition and burnout of coals and blends with biomass under oxy-fuel conditions. Mixtures of CO{sub 2}/O{sub 2} of different concentrations were used and compared with air as reference. A worsening of the ignition temperature was detected in CO{sub 2}/O{sub 2} mixtures when the oxygen concentration was the same as that of the air. However, at an oxygen concentration of 30% or higher, an improvement in ignition was observed. The blending of biomass clearly improves the ignition properties of coal in air. The burnout of coals and blends with a mixture of 79%CO{sub 2}-21%O{sub 2} is lower than in air, but an improvement is achieved when the oxygen concentration is 30 or 35%. The results of this work indicate that coal burnout can be improved by blending biomass in CO{sub 2}/O{sub 2} mixtures. 26 refs., 7 figs., 1 tab.

  9. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  10. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  11. Influence of nonmagnetic disorder on specific heat and electrical resistivity in Kondo lattice system CePd{sub 1−x}Ge{sub x}In

    Energy Technology Data Exchange (ETDEWEB)

    Gnida, D., E-mail: d.gnida@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland); Dominyuk, N.; Zaremba, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv (Ukraine); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland)

    2015-02-15

    Highlights: • Interplay of Kondo and RKKY interactions in the presence of nonmagnetic disorder. • Suppression of the coherent Kondo state by nonmagnetic impurities. • Observation of quantum interference phenomena in Ce-based Kondo system. • Coexistence of incoherent Kondo effect and Altshuler-Aronov quantum correction. - Abstract: The alloy system CePd{sub 1−x}Ge{sub x}In with 0.1⩽x⩽0.4 was investigated by means of heat capacity and electrical resistivity measurements. Its low-temperature behavior has been found to be governed by the interplay of Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in the presence of atomic disorder in nonmagnetic atoms sublattice. The coherent Kondo state, observed for CePdIn, gradually vanishes with increasing the Ge-content. The incoherent Kondo state, which characterizes Ge-rich alloys, appears very sensitive to applied magnetic field. The observed systematic changes in the temperature- and field-dependent electrical transport in CePd{sub 1−x}Ge{sub x}In manifest the important role of quantum correction due to electron-electron interactions in weakly localized regime.

  12. Non-magnetic impurity effect on suppression of Tc and gap evolution in the two-gap superconductor Lu2Fe3Si5

    International Nuclear Information System (INIS)

    Nakajima, Y.; Hidaka, H.; Tamegai, T.

    2013-01-01

    Highlights: ► Non-magnetic impurities suppress T c and the amplitude of gaps in Lu 2 Fe 3 Si 5 . ► Critical scattering rate is higher than that expected in s ± -pairing scenario. ► The evolution of two distinct gaps dose not show merging the amplitude of gaps. -- Abstract: We report the suppression of T c and the evolution of amplitudes of the two gaps with the introduction of non-magnetic impurities in a two-gap superconductor Lu 2 Fe 3 Si 5 . While T c rapidly decreases by a small amount of substitution of Sc for Lu, the suppression of T c is more than ten times slower than that expected from the Abrikosov–Gor’kov equation describing the reduction of T c in a superconductor with sign reversal in the gap function. The evolution of two distinct gaps by the introduction of non-magnetic impurities does not show merging the amplitude of two gaps, which is strikingly different from the typical two-gap superconductor MgB 2

  13. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  14. Adsorption of Oxy-Anions in the Teaching Laboratory: An Experiment to Study a Fundamental Environmental Engineering Problem

    Science.gov (United States)

    D'Arcy, Mitch; Bullough, Florence; Moffat, Chris; Borgomeo, Edoardo; Teh, Micheal; Vilar, Ramon; Weiss, Dominik J.

    2014-01-01

    Synthesizing and testing bicomposite adsorbents for the removal of environmentally problematic oxy-anions is high on the agenda of research-led universities. Here we present a laboratory module successfully developed at Imperial College London that introduces the advanced undergraduate student in engineering (chemical, civil, earth) and science…

  15. Formation of mono- and multilayers of metal complexes of 4-(((10,12-pentacosadiynoyl)oxy)methyl)pyridine

    NARCIS (Netherlands)

    Werkman, P J; Wilms, H; Wieringa, R H; Schouten, A J

    1998-01-01

    The monolayer properties of the amphiphile, 4-(((10,12-pentacosadiynoyl)oxy)methyl)pyridine have been studied by measuring the surface pressure-area isotherms. The amphiphile forms stable monolayers at the air-water interface and protonation of the monolayers occurs at pH values of 3.00 or lower.

  16. Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations

    CSIR Research Space (South Africa)

    Oboirien, BO

    2014-03-01

    Full Text Available at the technical and economic viability of oxy-fuel technology for CO(sub2) capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a...

  17. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  18. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy-fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 3.752, year: 2016

  19. Comparative electron microscopy and image analysis of oxy- and deoxy-hemocyanin from the spiny lobster Panulirus interruptus

    NARCIS (Netherlands)

    Haas, Felix de; Breemen, Jan F.L. van; Boekema, Egbert J.; Keegstra, Wilko; Bruggen, Ernst F.J. van

    1993-01-01

    Structural differences between oxy-hemocyanin and deoxy-hemocyanin from the spiny lobster P. interruptus were studied by electron microscopy and image analysis of negatively stained preparations. Projections of the hexameric P. interruptus hemocyanin from electron microscopy were compared with

  20. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy- fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuel s Impact factor: 3.752, year: 2016

  1. Near-field local flame extinction of Oxy-Syngas non-premixed jet flames : a DNS study

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Oijen, van J.A.; Luo, Kai; Jiang, X.

    2014-01-01

    An investigation of the local flame extinction of H2/CO oxy-syngas and syngas-air nonpremixed jet flames was carried out using three-dimensional direct numerical simulations (DNS) with detailed chemistry by using flamelet generated manifold chemistry (FGM). The work has two main objectives: identify

  2. Agricultural Construction Volume II. Oxy-Gas and Other Cutting/Welding Processes. Woodworking, Metals, Finishing. Instructor's Guide.

    Science.gov (United States)

    Admire, Myron; Maricle, Gary

    This guide contains instructor's materials for teaching a secondary agricultural construction course consisting of instructional units on oxy-gas and other cutting and welding processes (10 lessons), woodworking (6 lessons), metals (10 lessons), and finishing (4 lessons). The materials for each unit include student objectives, a list of…

  3. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  4. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  5. OxyR-regulated catalase CatB promotes the virulence in rice via detoxifying hydrogen peroxide in Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yu, Chao; Wang, Nu; Wu, Maosen; Tian, Fang; Chen, Huamin; Yang, Fenghuan; Yuan, Xiaochen; Yang, Ching-Hong; He, Chenyang

    2016-11-08

    To facilitate infection, Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, needs to degrade hydrogen peroxide (H 2 O 2 ) generated by the host defense response via a mechanism that is mediated by the transcriptional regulator OxyR. The catalase (CAT) gene catB has previously been shown to belong to the OxyR regulon in Xoo. However, its expression patterns and function in H 2 O 2 detoxification and bacterial pathogenicity on rice remain to be elucidated. The catB gene encodes a putative catalase and is highly conserved in the sequenced strains of Xanthomonas spp. β-galactosidase analysis and electrophoretic mobility shift assays (EMSA) showed that OxyR positively regulated the transcription of catB by directly binding to its promoter region. The quantitative real-time PCR (qRT-PCR) assays revealed that the expression levels of catB and oxyR were significantly induced by H 2 O 2 . Deletion of catB or oxyR drastically impaired bacterial viability in the presence of extracellular H 2 O 2 and reduced CAT activity, demonstrating that CatB and OxyR contribute to H 2 O 2 detoxification in Xoo. In addition, ΔcatB and ΔoxyR displayed shorter bacterial blight lesions and reduced bacterial growth in rice compared to the wild-type stain, indicating that CatB and OxyR play essential roles in the virulence of Xoo. Transcription of catB is enhanced by OxyR in response to exogenous H 2 O 2 . CatB functions as an active catalase that is required for the full virulence of Xoo in rice.

  6. Characterization of ashes from a 100 kWth pilot-scale circulating fluidized bed with oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.H.; Wang, C.B.; Tan, Y.W.; Jia, L.F.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada)

    2011-09-15

    Oxy-fuel combustion experiments have been carried out on an oxygen-fired 100 kW(th) mini-circulating fluidized bed combustion (CFBC) facility. Coal and petroleum coke were used as fuel together with different limestones (and fixed Ca:S molar ratios) premixed with the fuel, for in situ SO{sub 2} capture. The bed ash (BA) and fly ash (FA) samples produced from this unit were collected and characterized to obtain physical and chemical properties of the ash samples. The characterization methods used included X-ray fluorescence (XRF), X-ray diffraction (XRD), char carbon and free lime analysis, thermogravimetric analysis (TGA), and surface analysis. The main purpose of this work is to characterize the CFBC ashes from oxy-fuel firing to obtain a better understanding of the combustion process, and to identify any significant differences from the ash generated by a conventional air-fired CFBC. The primary difference in the sulfur capture mechanism between atmospheric air-fired and oxy-fuel FBC, at typical FBC temperatures (similar to 850{sup o}C), is that, in the air-fired case the limestone sorbents calcine, whereas the partial pressure of CO{sub 2} in oxy-fuel FBC is high enough to prevent calcination, and hence the sulfation process should mimic that seen in pressurized FBC (PFBC). Here, the char carbon content in the fly ash was much higher than that in the bed ash, and was also high by comparison with ash obtained from conventional commercial air-firing CFBC units. In addition, measurements of the free lime content in the bed and fly ash showed that the unreacted Ca sorbent was present primarily as CaCO{sub 3}, indicating that sulfur capture in the oxy-fuel combustor occurred via direct sulfation.

  7. Impact of oxy-fuel combustion gases on mercury retention in activated carbons from a macroalgae waste: effect of water.

    Science.gov (United States)

    Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B

    2015-04-01

    The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  9. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    OpenAIRE

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia.METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a ra...

  10. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2016-02-24

    Alkynes have found widespread applications in synthetic chemistry, biology, and materials sciences. In recent years, methods based on electrophilic alkynylation with hypervalent iodine reagents have made acetylene synthesis more flexible and efficient, but they lead to the formation of one equivalent of an iodoarene as side-product. Herein, a more efficient strategy involving a copper-catalyzed oxy-alkynylation of diazo compounds with ethynylbenziodoxol(on)e (EBX) reagents is described, which proceeds with generation of nitrogen gas as the only waste. This reaction is remarkable for its broad scope in both EBX reagents and diazo compounds. In addition, vinyl diazo compounds gave enynes selectively as single geometric isomers. The functional groups introduced during the transformation served as easy handles to access useful building blocks for synthetic and medicinal chemistry.

  11. Oxy-fired boiler unit and method of operating the same

    Science.gov (United States)

    Lou, Xinsheng; Zhang, Jundong; Joshi, Abhinaya; McCombe, James A.; Levasseur, Armand A.

    2016-12-06

    An oxy-combustion boiler unit is disclosed which includes a furnace for combusting fuel and for emitting flue gas resulting from combustion. The furnace has first, second and third combustion zones, and an air separation unit for separating oxygen gas from air and providing a first portion of the separated oxygen to a first oxidant flow, a second portion to a second oxidant flow, and a third portion of the separated oxygen gas to the first, second, and third zones of the furnace. A controller can cause the separated oxygen gas to be distributed so that the first and second oxygen flows have a desired oxygen content, and so that the first, second, and third zones of the furnace receive a desired amount of oxygen based on a combustion zone stoichiometry control.

  12. 2,3-Diamino-pyridinium 6-carb-oxy-pyridine-2-carboxyl-ate.

    Science.gov (United States)

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-12-01

    The asymmetric unit of the title proton-transfer compound, C(5)H(8)N(3) (+)·C(7)H(4)NO(4) (-), consists of one mono-deprotonated pyridine-2,6-dicarb-oxy-lic acid as anion and one protonated 2,3-diamino-pyridine as cation. The crystal packing shows extensive O-H⋯O, N-H⋯O and N-H⋯N hydrogen bonds. Thre are also several π-π inter-actions between the anions and also between the cations [centriod-centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å].

  13. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  14. Technical and economic aspects of oxygen separation for oxy-fuel purposes

    Directory of Open Access Journals (Sweden)

    Chorowski Maciej

    2015-03-01

    Full Text Available Oxy combustion is the most promising technology for carbon dioxide, originated from thermal power plants, capture and storage. The oxygen in sufficient quantities can be separated from air in cryogenic installations. Even the state-of-art air separation units are characterized by high energy demands decreasing net efficiency of thermal power plant by at least 7%. This efficiency decrease can be mitigated by the use of waste nitrogen, e.g., as the medium for lignite drying. It is also possible to store energy in liquefied gases and recover it by liquid pressurization, warm-up to ambient temperature and expansion. Exergetic efficiency of the proposed energy accumulator may reach 85%.

  15. Crystal structure of 4-meth-oxy-N-(piperidine-1-carbono-thio-yl)benzamide.

    Science.gov (United States)

    Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook; Kassim, Mohammad B

    2017-10-01

    In the title compound, C 14 H 18 N 2 O 2 S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c -axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.

  16. Flame structure and NO generation in oxy-fuel combustion at high pressures

    International Nuclear Information System (INIS)

    Seepana, Sivaji; Jayanti, Sreenivas

    2009-01-01

    A numerical study of oxy-fuel combustion has been carried out in the pressure range of 0.1-3 MPa with methane as the fuel and carbondioxide-diluted oxygen with trace amount of nitrogen (termed here as c a ir) as the oxidant. The flame structure and NO generation rate have been calculated using the flamelet model with the detailed GRI 3.0 mechanism for two oxygen concentrations of 23.3% and 20% by weight in the oxidant at a strain rate of 40 s -1 (corresponding to a scalar dissipation rate of 1 s -1 ). It is observed that, for the reference case of 23.3 wt.% of oxygen, as the pressure increases, the peak temperature of the flame increases rapidly up to a pressure of 0.5 MPa, and more gradually at higher pressures. The concentrations of important intermediate radicals such as CH 3 , H and OH decrease considerably with increasing pressure while NO concentration follows the same trend as the temperature. Reducing the oxygen concentration to 20% by weight leads to an order of magnitude reduction in NO concentration. Also, for pressures greater than 0.3 MPa, the NO concentration decreases with increasing pressure in spite of the increasing peak flame temperatures. This can be attributed to the increasing domination of recombination reactions leading to less availability of the intermediate radicals H and OH which are necessary for the formation of NO by the thermal route. It is concluded that a stable, low NO x oxy-fuel flame can be obtained at high pressures at slightly increased dilution of oxygen

  17. Flame structure and NO generation in oxy-fuel combustion at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Seepana, Sivaji; Jayanti, Sreenivas [Department of Chemical Engineering, IIT Madras, Chennai 600 036 (India)

    2009-04-15

    A numerical study of oxy-fuel combustion has been carried out in the pressure range of 0.1-3 MPa with methane as the fuel and carbondioxide-diluted oxygen with trace amount of nitrogen (termed here as c{sub a}ir) as the oxidant. The flame structure and NO generation rate have been calculated using the flamelet model with the detailed GRI 3.0 mechanism for two oxygen concentrations of 23.3% and 20% by weight in the oxidant at a strain rate of 40 s{sup -1} (corresponding to a scalar dissipation rate of 1 s{sup -1}). It is observed that, for the reference case of 23.3 wt.% of oxygen, as the pressure increases, the peak temperature of the flame increases rapidly up to a pressure of 0.5 MPa, and more gradually at higher pressures. The concentrations of important intermediate radicals such as CH{sub 3}, H and OH decrease considerably with increasing pressure while NO concentration follows the same trend as the temperature. Reducing the oxygen concentration to 20% by weight leads to an order of magnitude reduction in NO concentration. Also, for pressures greater than 0.3 MPa, the NO concentration decreases with increasing pressure in spite of the increasing peak flame temperatures. This can be attributed to the increasing domination of recombination reactions leading to less availability of the intermediate radicals H and OH which are necessary for the formation of NO by the thermal route. It is concluded that a stable, low NO{sub x} oxy-fuel flame can be obtained at high pressures at slightly increased dilution of oxygen. (author)

  18. Application of a modified OxiTop® respirometer for laboratory composting studies

    Directory of Open Access Journals (Sweden)

    Malińska Krystyna

    2016-03-01

    Full Text Available This study applied a modified OxiTop® system to determine the oxygen uptake rate during a 2-day respiration test of selected composting materials at different moisture contents, air-filled porosities and composition of composting mixtures. The modification of the OxiTop® respirometer included replacement and adjustment of a glass vessel (i.e. a 1.9-L glass vessel with wide mouth was used instead of a standard 1-L glass bottle, additionally the twist-off vessel lid was adjusted to attach the measuring head and application of a closed steel mesh cylinder of 5 cm in diameter and 10 cm in height with the open surface area of the mesh of approximately 56.2%. This modification allowed obtaining different bulk densities (and thus air-porosities of the investigated composting materials in laboratory composting studies. The test was performed for apple pomace and composting mixtures of apple pomace with wood chips at ratios of 1:0.5, 1:1, 1:1.5 (d.w, moisture contents of 60%, 65% and 75% and air-filled porosities ranging from 46% to 1%. Due to diverse biodegradability of the investigated apple pomace and composting mixtures this test allows for the determination of the effects of different air-porosities (due to compaction in a pile on the oxygen uptake rate for mixtures with a fixed ratio of a bulking agent. The described method allows for laboratory determination of the effects of moisture content and compaction on biodegradation dynamics during composting.

  19. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Adamczyk, Wojciech P.; Kozołub, Paweł; Klimanek, Adam; Białecki, Ryszard A.; Andrzejczyk, Marek; Klajny, Marcin

    2015-01-01

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  20. Formation and Control of Sulfur Oxides in Sour Gas Oxy-Combustion: Prediction Using a Reactor Network Model

    KAUST Repository

    Bongartz, Dominik

    2015-11-19

    © 2015 American Chemical Society. Sour natural gas currently requires expensive gas cleanup before it can be used in power generation because it contains large amounts of hydrogen sulfide (H2S) and carbon dioxide (CO2) that entail a low heating value and highly corrosive combustion products. A potential alternative is to use the gas directly in a gas turbine process employing oxy-fuel combustion, which could eliminate the need for gas cleanup while also enabling the application of carbon capture and sequestration, possibly combined with enhanced oil recovery (EOR). However, the exact influence of an oxy-fuel environment on the combustion products of sour gas has not been quantified yet. In this work, we used a reactor network model for the combustor and the gas turbine together with our recently assembled and validated detailed chemical reaction mechanism for sour gas combustion to investigate the influence of some basic design parameters on the combustion products of natural gas and sour gas in CO2 or H2O diluted oxy-fuel combustion as well as in conventional air combustion. Our calculations show that oxy-fuel combustion produces up to 2 orders of magnitude less of the highly corrosive product sulfur trioxide (SO3) than air combustion, which clearly demonstrates its potential in handling sulfur containing fuels. Unlike in air combustion, in oxy-fuel combustion, SO3 is mainly formed in the flame zone of the combustor and is then consumed as the combustion products are cooled in the dilution zone of the combustor and the turbine. In oxy-fuel combustion, H2O dilution leads to a higher combustion efficiency than CO2 dilution. However, if the process is to be combined with EOR, CO2 dilution makes it easier to comply with the very low levels of oxygen (O2) required in the EOR stream. Our calculations also show that it might even be beneficial to operate slightly fuel-rich because this simultaneously decreases the O2 and SO3 concentration further. The flame zone

  1. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    Science.gov (United States)

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  2. 40 CFR 721.2275 - N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3-cyclohexane di-meth-anamine.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,N,Nâ²,Nâ²-Tetrakis(oxi-ranyl- methyl... Significant New Uses for Specific Chemical Substances § 721.2275 N,N,N′,N′-Tetrakis(oxi-ranyl- methyl)-1,3... chemical substance identified as N,N,N′,N′-tetrakis(oxiranylmethyl)-1,3-cyclohexanedimethanamine (P-84-7...

  3. Comparison of the OxyMask and Venturi Mask in the Delivery of Supplemental Oxygen: Pilot Study in Oxygen-Dependent Patients

    Directory of Open Access Journals (Sweden)

    Jaime M Beecroft

    2006-01-01

    Full Text Available BACKGROUND: The OxyMask (Southmedic Inc, Canada is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA in patients with chronic hypoxemia.

  4. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  5. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  6. 'Gigantic' increase of AFMR frequencies induced by nonmagnetic impurity ions in orthoferrites RFe1-xAlxO3 (R=Gd,Tb)

    International Nuclear Information System (INIS)

    Mukhin, A.A.; Parsegov, I.Yu.

    1996-01-01

    We observed a 'gigantic' increase (up to three times) of the AFMR frequencies ν 1,2 with decreasing temperature in GdFe 0.9 Al 0.1 O 3 and TbFe 0.925 Al 0.075 O 3 in contrast to pure GdFeO 3 and TbFeO 3 . The effects observed are explained by the appearance of an additional exchange field H mv ∼20 -36 kOe on rare-earth ions due to decompensation of the surrounding antiferromagnetically ordered Fe ions near nonmagnetic impurity ions. (orig.)

  7. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    Directory of Open Access Journals (Sweden)

    Rania Abutarboush

    2014-11-01

    Full Text Available The use of hemoglobin-based oxygen carriers (HBOC as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO. OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa. The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05 with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm and medium-sized (50–100 µm pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure.

  8. Thermodynamic evaluation of supercritical oxy-type power plant with high-temperature three-end membrane for air separation

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-09-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.

  9. The role of SO{sub 4}{sup 2−} surface distribution in arsenic removal by iron oxy-hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Tresintsi, S. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Simeonidis, K., E-mail: ksime@physics.auth.gr [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Department of Mechanical Engineering, University of Thessaly, 38334 Volos (Greece); Pliatsikas, N.; Vourlias, G.; Patsalas, P. [Laboratory of Applied Physics, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Mitrakas, M. [Analytical Chemistry Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-05-01

    This study investigates the contribution of chemisorbed SO{sub 4}{sup 2−} in improving arsenic removal properties of iron oxy-hydroxides through an ion-exchange mechanism. An analytical methodology was developed for the accurate quantification of sulfate ion (SO{sub 4}{sup 2−}) distribution onto the surface and structural compartments of iron oxy-hydroxides synthesized by FeSO{sub 4} precipitation. The procedure is based on the sequential determination of SO{sub 4}{sup 2−} presence in the diffuse and Stern layers, and the structure of these materials as defined by the sulfate-rich environments during the reaction and the variation in acidity (pH 3–12). Physically sorbed SO{sub 4}{sup 2−}, extracted in distilled water, and physically/chemically adsorbed ions on the oxy-hydroxide's surface leached by a 5 mM NaOH solution, were determined using ion chromatography. Total sulfate content was gravimetrically measured by precipitation as BaSO{sub 4}. To validate the suggested method, results were verified by X-ray photoelectron and Fourier-transformed infrared spectroscopy. Results showed that low precipitation pH-values favor the incorporation of sulfate ions into the structure and the inner double layer, while under alkaline conditions ions shift to the diffuse layer. - Graphical abstract: An analytical methodology for the accurate quantification of sulfate ions (SO{sub 4}{sup 2−}) distribution onto the diffuse layer, the Stern layer and the structure of iron oxy-hydroxides used as arsenic removal agents. - Highlights: • Quantification of sulfate ions presence in FeOOH surface compartments. • Preparation pH defines the distribution of sulfates. • XPS and FTIR verify the presence of SO{sub 4}{sup 2−} in the structure, the Stern layer the diffuse layer of FeOOH. • Chemically adsorbed sulfates control the arsenic removal efficiency of iron oxyhydroxides.

  10. Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage

    OpenAIRE

    Hanak, Dawid Piotr; Manovic, Vasilije

    2017-01-01

    Around 43% of the cumulative CO2 emissions from the power sector between 2012 and 2050 could be mitigated through implementation of carbon capture and storage, and utilisation of renewable energy sources. Energy storage technologies can increase the efficiency of energy utilisation and thus should be widely deployed along with low-emission technologies. This study evaluates the techno-economic performance of cryogenic O2 storage implemented in an oxy-combustion coal-fired power plant as a mea...

  11. Analysis of cumulative energy consumption in an oxy-fuel combustion power plant integrated with a CO2 processing unit

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-01-01

    Highlights: • Oxy-fuel combustion is promising CCS technology. • Sum of direct and indirect energy consumption ought to be consider. • This sum is expressed by cumulative energy consumption. • Input–output analysis is adequate method of CCS modeling. - Abstract: A balance of direct energy consumption is not a sufficient tool for an energy analysis of an oxy-fuel combustion power plant because of the indirect consumption of energy in preceding processes in the energy-technological set of interconnections. The sum of direct and indirect consumption expresses cumulative energy consumption. Based on the “input–output” model of direct energy consumption the mathematical model of cumulative energy consumption concerning an integrated oxy-fuel combustion power plant has been developed. Three groups of energy carriers or materials are to be distinguished, viz. main products, by-products and external supplies not supplementing the main production. The mathematical model of the balance of cumulative energy consumption based on the assumption that the indices of cumulative energy consumption of external supplies (mainly fuels and raw materials) are known a’priori. It results from weak connections between domestic economy and an integrated oxy-fuel combustion power plant. The paper presents both examples of the balances of direct and cumulative energy consumption. The results of calculations of indices of cumulative energy consumption concerning main products are presented. A comparison of direct and cumulative energy effects between three variants has been worked out. Calculations of the indices of cumulative energy consumption were also subjected to sensitive analysis. The influence of the indices of cumulative energy consumption of external supplies (input data), as well as the assumption concerning the utilization of solid by-products of the combustion process have been investigated

  12. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  13. High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

    OpenAIRE

    Chakroun, Nadim Walid; Ghoniem, Ahmed F

    2015-01-01

    The growing concerns over global warming and carbon dioxide emissions have driven extensive research into novel ways of capturing carbon dioxide in power generation plants. In this regard, oxy-fuel combustion has been considered as a promising technology. One unconventional fuel that is considered is sour gas, which is a mixture of methane, hydrogen sulfide and carbon dioxide. In this paper, carbon dioxide is used as the dilution medium in the combustor and different combined cycle configurat...

  14. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    International Nuclear Information System (INIS)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois; Brown, Gordon E. Jr.

    2007-01-01

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite

  15. The effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C.G.; Na, I.H.; Lee, J.W.; Chae, T.Y.; Yang, W. [Korea Insitute of Industrial Technology, Seoul (Korea, Republic of). Energy System R and D Dept.

    2013-07-01

    This study is aimed to derive effects of de-humidification and O{sub 2} direct injection in oxy-PC combustion system. Temperature distribution and flue gas composition were observed for various air and oxy-fuel conditions such as effect of various O{sub 2} concentration of total oxidant, O{sub 2} concentration of primary stream and O{sub 2} direct injection through 0-D heat and mass balance calculation and experiments in the oxy-PC combustion system of 0.3 MW scale in KITECH (Korea Institute of Industrial Technology). Flame attachment characteristic related to O{sub 2} direct injection was also observed experimentally. We found that FEGT (furnace exit gas temperature) of 100% de-humidification to oxidizer is lower than humidification condition; difference between two conditions is lower than 20 C in all cases. The efficiency changing of combustion was negligible in O{sub 2} direct injection. But O{sub 2} direct injection should be carefully designed to produce a stable flame.

  16. Amination of oxy acids in aqueous solution by gamma-irradiation

    International Nuclear Information System (INIS)

    Ema, Kimiko; Kato, Taizo; Shinagawa, Mutsuaki

    1978-01-01

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH 2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  17. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay; Kumfer, Benjamin

    2014-09-30

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressed by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for

  18. Radiation and convective heat transfer, and burnout in oxy-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    J.P. Smart; P. O' Nions; G.S. Riley [RWE npower, Swindon (United Kingdom)

    2010-09-15

    Measurements of radiative and convective heat transfer, and carbon-in-ash have been taken on the RWEn 0.5 MWth combustion test facility (CTF) firing two different coals under oxy-fuel firing conditions. The two coals fired were a Russian Coal and a South African Coal. Recycle ratios were varied within the range of 65-75% dependent on coal. Furnace exit O{sub 2} values were maintained at 3% and 6% for the majority of tests. Air firing tests were also performed to generate baseline data. The work gives a comprehensive insight into the effect of oxy-fuel combustion on both radiative and convective heat transfer, and carbon-in-ash compared to air under dry simulated recycle conditions. Results have shown peak radiative heat flux values are inversely related to the recycle ratio for the two coals studied. Conversely, the convective heat flux values increase with increasing recycle ratio. It was also observed that the axial position of the peak in radiative heat flux moves downstream away from the burner as recycle ratio is increased. A 'working range' of recycle ratios exists where both the radiative and convective heat fluxes are comparable with air. Carbon-in-ash (CIA) was measured for selected conditions. For air firing of Russian Coal, the CIA for follows and expected trend with CIA decreasing with increasing furnace exit O{sub 2}. The CIA data for the two recycle ratios of 72% and 68% for the same coal show that the CIA values are lower than for air firing for corresponding furnace exit O{sub 2} levels and vary little with the value of furnace exit O{sub 2}. CIA measurements were taken for the South African Coal for a range of recycle ratios at 3% and 6% furnace exit O{sub 2} levels. Results indicate that the CIA values are lower for higher furnace exit O{sub 2}. 32 refs., 11 figs., 1 tab.

  19. Non-magnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, M.A.; Stone, P.R.; Sharp, I.D.; Haller, E.E.; Dubon, O.D.; Beeman, J.W.; Yu, K.M.

    2008-02-05

    The electronic and magnetic effects of intentional compensation with non-magnetic donors are investigated in the ferromagnetic semiconductors Ga1-xMnxAs and Ga1-xMnxP synthesized using ion implantation and pulsed-laser melting (II-PLM). It is demonstrated that compensation with non-magnetic donors and MnI have similarqualitative effects on materials properties. With compensation TC decreases, resistivity increases, and stronger magnetoresistance and anomalous Hall effect attributed to skew scattering are observed. Ga1-xMnxAs can be controllably compensated with Te through a metal-insulator transition through which the magnetic and electrical properties vary continuously. The resistivity of insulating Ga1-xMnxAs:Te can be described by thermal activation to the mobility edge and simply-activated hopping transport. Ga1-xMnxP doped with S is insulating at all compositions but shows decreasing TC with compensation. The existence of a ferromagnetic insulating state in Ga1-xMnxAs:Te and Ga1-xMnxP:S having TCs of the same order as the uncompensated materials demonstrates that localized holes are effective at mediating ferromagnetism in ferromagnetic semiconductors through the percolation of ferromagnetic 'puddles' which at low temperatures.

  20. Magnetic vs. non-magnetic colloids - A comparative adsorption study to quantify the effect of dye-induced aggregation on the binding affinity of an organic dye.

    Science.gov (United States)

    Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud

    2016-11-01

    Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Generation of oxy-hydrogen gas and its effect on performance of spark ignition engine

    Science.gov (United States)

    Patil, N. N.; Chavan, C. B.; More, A. S.; Baskar, P.

    2017-11-01

    Considering the current scenario of petroleum fuels, it has been observed that, they will last for few years from now. On the other hand, the ever increasing cost of a gasoline fuels and their related adverse effects on environment caught the attention of researchers to find a supplementary source. For commercial fuels, supplementary source is not about replacing the entire fuel, instead enhancing efficiency by simply making use of it in lesser amount. From the recent research that has been carried out, focus on the use of Hydrogen rich gas as a supplementary source of fuel has increased. But the problem related to the storage of hydrogen gas confines the application of pure hydrogen in petrol engine. Using oxy-hydrogen gas (HHO) generator the difficulties of storing the hydrogen have overcome up to a certain limit. The present study highlights on performance evaluation of conventional petrol engine by using HHO gas as a supplementary fuel. HHO gas was generated from the electrolysis of water. KOH solution of 3 Molar concentration was used which act as a catalyst and accelerates the rate of generation of HHO gas. Quantity of gas to be supplied to the engine was controlled by varying amount of current. It was observed that, engine performance was improved on the introduction of HHO gas.

  2. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    Science.gov (United States)

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  3. 4′,5-Dihy­droxy-7-meth­oxy­flavanone dihydrate

    Science.gov (United States)

    Brito, Iván; Bórquez, Jorge; Simirgiotis, Mario; Cárdenas, Alejandro; López-Rodríguez, Matías

    2012-01-01

    The title compound, C16H14O5·2H2O [systematic name: 5-hy­droxy-2-(4-hy­droxy­phen­yl)-7-meth­oxy­chroman-4-one dihydrate], is a natural phytoalexin flavone isolated from the native chilean species Heliotropium taltalense and crystallizes with an organic mol­ecule and two water mol­ecules in the asymmetric unit. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The 4-hy­droxy­phenyl benzene ring is bonded equatorially to the pyrone ring, which adopts a slightly distorted sofa conformation. The title compound is the hydrated form of a previously reported structure [Shoja (1990 ▶). Acta Cryst. C46, 1969–1971]. There are only slight variations in the mol­ecular geometry between the two compounds. PMID:22259537

  4. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  5. Coal-based oxy-fuel system evaluation and combustor development

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Biebuyck, C.; Anderson, R.; Pronske, K. [Clean Energy Systems Inc., Rancho Cordova, CA (United States)

    2007-07-01

    The core of the Clean Energy Systems, Inc. (CES) process is an oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include syngas from coal, refinery residues, or biomass; natural gas; landfill gas; glycoal solutions and oil/water emulsions. The combustion is performed at near-stoichiometric conditions in the presence of recycled water to produce a steam/CO{sub 2} mixture at high temperature and pressure. These combustion products power conventional or advanced steam turbines and may use modified gas turbines operating at high-temperatures for expansion at intermediate pressures. The gas exiting the turbines enter a condenser/separator where it is cooled, separating into its components, water and CO{sub 2}. The recovered CO{sub 2} is conditioned and purified as appropriate and sold or sequestered. Most of the water is recycled to the gas generator but excess high-purity water is produced and available for export. The development, evaluation and demonstration of the CES combustor are described. 8 refs., 4 figs., 1 tab.

  6. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    International Nuclear Information System (INIS)

    Woo, Mino; Park, Kweon Ha; Choi, Byung Chul

    2013-01-01

    Nitric oxide (NO x ) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NO x emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NO x emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NO x emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NO x formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NO x emissions

  7. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  8. Crystal structure of [1,1':3',1''-ter-phenyl]-2',3,3''-tri-carb-oxy-lic acid.

    Science.gov (United States)

    Decato, Daniel A; Berryman, Orion B

    2015-09-01

    The asymmetric unit of the title compound, C21H14O6, com-prises two symmetrically independent mol-ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb-oxy-lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter-connected by hydrogen bonds involving the remaining carb-oxy-lic acid groups. The plane of the central carb-oxy-lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter-connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The 'distal' carb-oxy-lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with 'reversed' functionality, as compared with the central carb-oxy-lic acid groups.

  9. Identification of Mycobacterium tuberculosis complex based on amplification and sequencing of the oxyR pseudogene from stored Ziehl-Neelsen-stained sputum smears in Brazil

    Directory of Open Access Journals (Sweden)

    Marcio Roberto Silva

    2011-02-01

    Full Text Available A cross-sectional analysis of stored Ziehl-Neelsen (ZN-stained sputum smear slides (SSS obtained from two public tuberculosis referral laboratories located in Juiz de Fora, Minas Gerais, was carried out to distinguish Mycobacterium bovis from other members of the Mycobacterium tuberculosis complex (MTC. A two-step approach was used to distinguish M. bovis from other members of MTC: (i oxyR pseudogene amplification to detect MTC and, subsequently, (ii allele-specific sequencing based on the polymorphism at position 285 of this gene. The oxyR pseudogene was successfully amplified in 100 of 177 (56.5% SSS available from 99 individuals. No molecular profile of M. bovis was found. Multivariate analysis indicated that acid-fast bacilli (AFB results and the source laboratory were associated (p < 0.05 with oxyR pseudogene amplification. SSS that were AFB++ SSS showed more oxyR pseudogene amplification than those with AFB0, possibly due to the amount of DNA. One of the two source laboratories presented a greater chance of oxyR pseudogene amplification, suggesting that differences in sputum conservation between laboratories could have influenced the preservation of DNA. This study provides evidence that stored ZN-SSS can be used for the molecular detection of MTC.

  10. A study on elongation/contraction behavior and mechanical properties of oxy-polyacrylonitrile(PAN) fiber in basic/acidic solution for artificial muscle applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.K.; Kim, S.W.; Lee, K.S.; Cho, I.H.; Lee, J.H.; Lee, J.W. [Sungkyunkwan University, Suwon (Korea); Kim, K.J. [University of Nevada, Reno (United States); Nam, J.D. [Sungkyunkwan University, Suwon (Korea)

    2002-07-01

    Oxy-PAN fiber prepared from the preoxidation and saponification of raw PAN fiber is known to elongate and contract when immersed in basic and acidic solutions, respectively. In this study, about 30% elongation in NaOH solution and 30{approx}50% contraction in HCl solution have been observed. In mechanical test, the mechanical properties of oxy-PAN fiber in the contracted state was stronger than that in the elongated state. These behaviors and mechanical properties are compared to those of living muscle and linear actuator. The change of length in NaOH and HCl solutions is due to switching between a hydrophilic and a hydrophobic structure. Other reasons are exchange of ion and water in/out of oxy-PAN fiber, and osmotic pressure difference associated with relevant ions. Much studies are needed to clarify the effective factors on but the oxy-PAN fiber's elongation/contraction behavior and mechanical properties, but the oxy-PAN fiber prepared in our laboratory has a sufficient potential for application as artificial muscle and linear actuator. (author). 20 refs., 1 tab., 9 figs.

  11. Ethyl 3-[7-eth­oxy-6-(4-meth­oxy­benzene­sulfonamido)-2H-indazol-2-yl]propano­ate

    Science.gov (United States)

    Abbassi, Najat; Oulemda, Bassou; Rakib, El Mostapha; Geffken, Detlef; Zouihri, Hafid

    2012-01-01

    In the title compound, C21H25N3O6S, the dihedral angle between the meth­oxy­benzene and indazole rings is 74.96 (5)°. The crystal packing is stabilized by an N—H⋯O hydrogen bond into a two-dimensional network. In addition, C—H⋯π inter­actions and a π–π contact, with a centroid–centroid distance of 3.5333 (6) Å, are observed. The crystal packing is stabilized by N—H⋯O and C—H⋯O hydrogen bonds. PMID:22589994

  12. Hepatotoxicity associated with the dietary supplement OxyELITE Pro™ — Hawaii, 2013

    Science.gov (United States)

    Johnston, David I.; Chang, Arthur; Viray, Melissa; Chatham-Stephens, Kevin; He, Hua; Taylor, Ethel; Wong, Linda L.; Schier, Joshua; Martin, Colleen; Fabricant, Daniel; Salter, Monique; Lewis, Lauren; Park, Sarah Y.

    2015-01-01

    Dietary supplements are increasingly marketed to and consumed by the American public for a variety of purported health benefits. On 9 September 2013, the Hawaii Department of Health (HDOH) was notified of a cluster of acute hepatitis and fulminant hepatic failure among individuals with exposure to the dietary supplement OxyELITE Pro™ (OEP). HDOH conducted an outbreak investigation in collaboration with federal partners. Physicians were asked to report cases, defined as individuals with acute onset hepatitis of unknown etiology on or after 1 April 2013, a history of weight-loss/muscle-building dietary supplement use during the 60 days before illness onset, and residence in Hawaii during the period of exposure. Reported cases’ medical records were reviewed, questionnaires were administered, and a product investigation, including chemical analyses and trace back, was conducted. Of 76 reports, 44 (58%) met case definition; of these, 36 (82%) reported OEP exposure during the two months before illness. No other common supplements or exposures were observed. Within the OEP-exposed subset, two patients required liver transplantation, and a third patient died. Excessive product dosing was not reported. No unique lot numbers were identified; there were multiple mainland distribution points, and lot numbers common to cases in Hawaii were also identified in continental states. Product analysis found consumed products were consistent with labeled ingredients; the mechanism of hepatotoxicity was not identified. We report one of the largest statewide outbreaks of dietary supplement-associated hepatotoxicity. The implicated product was OEP. The increasing popularity of dietary supplements raises the potential for additional clusters of dietary supplement-related adverse events. PMID:26538199

  13. Hepatotoxicity associated with the dietary supplement OxyELITE Pro™ - Hawaii, 2013.

    Science.gov (United States)

    Johnston, David I; Chang, Arthur; Viray, Melissa; Chatham-Stephens, Kevin; He, Hua; Taylor, Ethel; Wong, Linda L; Schier, Joshua; Martin, Colleen; Fabricant, Daniel; Salter, Monique; Lewis, Lauren; Park, Sarah Y

    2016-01-01

    Dietary supplements are increasingly marketed to and consumed by the American public for a variety of purported health benefits. On 9 September 2013, the Hawaii Department of Health (HDOH) was notified of a cluster of acute hepatitis and fulminant hepatic failure among individuals with exposure to the dietary supplement OxyELITE Pro™ (OEP). HDOH conducted an outbreak investigation in collaboration with federal partners. Physicians were asked to report cases, defined as individuals with acute onset hepatitis of unknown etiology on or after 1 April 2013, a history of weight-loss/muscle-building dietary supplement use during the 60 days before illness onset, and residence in Hawaii during the period of exposure. Reported cases' medical records were reviewed, questionnaires were administered, and a product investigation, including chemical analyses and traceback, was conducted. Of 76 reports, 44 (58%) met case definition; of these, 36 (82%) reported OEP exposure during the two months before illness. No other common supplements or exposures were observed. Within the OEP-exposed subset, two patients required liver transplantation, and a third patient died. Excessive product dosing was not reported. No unique lot numbers were identified; there were multiple mainland distribution points, and lot numbers common to cases in Hawaii were also identified in continental states. Product analysis found consumed products were consistent with labeled ingredients; the mechanism of hepatotoxicity was not identified. We report one of the largest statewide outbreaks of dietary supplement-associated hepatotoxicity. The implicated product was OEP. The increasing popularity of dietary supplements raises the potential for additional clusters of dietary supplement-related adverse events. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  15. Thermoeconomic cost analysis of CO_2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    Highlights: • Thermoeconomic cost analysis for CO_2 compression and purification unit is conducted. • Exergy cost and thermoeconomic cost occur in flash separation and mixing processes. • Unit exergy costs for flash separator and multi-stream heat exchanger are identical. • Multi-stage CO_2 compressor contributes to the minimum unit exergy cost. • Thermoeconomic performance for optimized CPU is enhanced. - Abstract: High CO_2 purity products can be obtained from oxy-combustion power plants through CO_2 compression and purification unit (CPU) based on phase separation method. To identify cost formation process and potential energy savings for CPU, detailed thermoeconomic cost analysis based on structure theory of thermoeconomics is applied to an optimized CPU (with double flash separators). It is found that the largest unit exergy cost occurs in the first separation process while the multi-stage CO_2 compressor contributes to the minimum unit exergy cost. In two flash separation processes, unit exergy costs for the flash separator and multi-stream heat exchanger are identical but their unit thermoeconomic costs are different once monetary cost for each device is considered. For cost inefficiency occurring in CPU, it mainly derives from large exergy costs and thermoeconomic costs in the flash separation and mixing processes. When compared with an unoptimized CPU, thermoeconomic performance for the optimized CPU is enhanced and the maximum reduction of 5.18% for thermoeconomic cost is attained. To achieve cost effective operation, measures should be taken to improve operations of the flash separation and mixing processes.

  16. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  17. Is the ground state of 5d4 double-perovskite Iridate Ba2YIrO6 magnetic or nonmagnetic?

    Science.gov (United States)

    Gong, Hoshin; Kim, Kyoo; Kim, Beom Hyun; Kim, Bongjae; Kim, Junwon; Min, B. I.

    2018-05-01

    We have investigated electronic structures and magnetic properties of double perovskite Iridate Ba2YIrO6 with 5d4 configuration, employing the exact diagonalization method for multi-site clusters. We have considered a many-body Hamiltonian for all d states (eg and t2g) including all relevant physical parameters such as the Coulomb correlation, spin-orbit coupling, crystal-field effect, and Hund coupling. We have found that the ground state of Ba2YIrO6 is nonmagnetic and that the Hund coupling plays an important role in the magnetic properties of the 5d4 systems, unlike the well-studied 5d5 systems.

  18. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  19. Effects of magnetic and nonmagnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor: Application to CePt3Si

    Science.gov (United States)

    Yavari, H.; Mokhtari, M.; Tamaddonpour, M.

    2013-10-01

    The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.

  20. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  1. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  2. Structural Properties of the Cr(III)-Fe(III) (Oxy)Hydroxide Compositional Series: Insights for a Nanomaterial 'Solid Solution'

    International Nuclear Information System (INIS)

    Tang, Y.; Zhang, L.; Michel, F.M.; Harrington, R.; Parise, J.B.; Reeder, R.J.

    2010-01-01

    Chromium(III) (oxy)hydroxide and mixed Cr(III)-Fe(III) (oxy)hydroxides are environmentally important compounds for controlling chromium speciation and bioaccessibility in soils and aquatic systems and are also industrially important as precursors for materials and catalyst synthesis. However, direct characterization of the atomic arrangements of these materials is complicated because of their amorphous X-ray properties. This study involves synthesis of the complete Cr(III)-Fe(III) (oxy)hydroxide compositional series, and the use of complementary thermal, microscopic, spectroscopic, and scattering techniques for the evaluation of their structural properties. Thermal analysis results show that the Cr end member has a higher hydration state than the Fe end member, likely associated with the difference in water exchange rates in the first hydration spheres of Cr(III) and Fe(III). Three stages of weight loss are observed and are likely related to the loss of surface/structural water and hydroxyl groups. As compared to the Cr end member, the intermediate composition sample shows lower dehydration temperatures and a higher exothermic transition temperature. XANES analysis shows Cr(III) and Fe(III) to be the dominant oxidation states. XANES spectra also show progressive changes in the local structure around Cr and Fe atoms over the series. Pair distribution function (PDF) analysis of synchrotron X-ray total scattering data shows that the Fe end member is nanocrystalline ferrihydrite with an intermediate-range order and average coherent domain size of ∼27 (angstrom). The Cr end member, with a coherent domain size of ∼10 (angstrom), has only short-range order. The PDFs show progressive structural changes across the compositional series. High-resolution transmission electron microscopy (HRTEM) results also show the loss of structural order with increasing Cr content. These observations provide strong structural evidence of chemical substitution and progressive structural

  3. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  4. Measurement of pO2 in a Pre-clinical Model of Rabbit Tumor Using OxyChip, a Paramagnetic Oxygen Sensor.

    Science.gov (United States)

    Hou, H; Khan, N; Kuppusamy, P

    2017-01-01

    The objective of this work was to establish a novel and robust technology, based on electron paramagnetic resonance (EPR) oximetry, as a practical tool for measurement of tumor oxygen. Previously, we have reported on the development of oxygen-sensing paramagnetic crystals (LiNc-BuO) encapsulated in a biocompatible polymer, called OxyChip. In this report we present our recent data on the use of OxyChip for pO 2 measurements in the tumor of a pre-clinical, large-animal rabbit model. The results establish that OxyChip is capable of noninvasive and repeated measurement of pO 2 in a large animal model.

  5. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Szubin, Richard

    2015-01-01

    Three transcription factors (TFs), OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, an...

  6. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    Science.gov (United States)

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  7. Single crystal growth of yttrium calcium oxy borate (YCOB) crystals by flux technique and their characterization. CP-3.5

    International Nuclear Information System (INIS)

    Arun Kumar, R.; Senthilkumar, M.; Dhanasekaran, R.

    2007-01-01

    Yttrium calcium oxy borate single crystals were grown by the flux technique for the first time. Polycrystalline YCOB material was prepared by solid state reaction method. Single crystals of YCOB were grown using boron-tri-oxide flux. Several transparent single crystals of dimensions 10 x 5 x 5 mm 3 were obtained. The grown crystals were characterized by powder XRD and UV- VIS-NIR studies. The results of powder XRD confirm the crystalline structure of YCOB. The UV- VIS-NIR transmission spectrum reveals that the crystal is highly transparent (above 75%) from ultraviolet (220 nm) to near IR regions enabling it as a suitable candidate for high power UV applications

  8. 3,5-Bis(4-meth-oxy-phen-yl)-1-phenyl-4,5-dihydro-1H-pyrazole.

    Science.gov (United States)

    Baktır, Zeliha; Akkurt, Mehmet; Samshuddin, S; Narayana, B; Yathirajan, H S

    2011-01-12

    In the title compound, C(23)H(22)N(2)O(2), the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two meth-oxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C-H⋯π stacking inter-actions and weak π-π inter-actions [centriod-centroid distance = 3.891 (2) Å].

  9. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation

    Directory of Open Access Journals (Sweden)

    Denisa Hathazi

    2018-02-01

    Full Text Available The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb, an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916. The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA using glutaraldehyde leads to a distinct increase of the lag time

  10. Effects of Ramadan intermittent fasting on North African children's heart rate and oxy-haemoglobin saturation at rest and during sub-maximal exercise.

    Science.gov (United States)

    Fenneni, Mohamed Amine; Latiri, Imed; Aloui, Asma; Rouatbi, Sonia; Chamari, Karim; Saad, Helmi Ben

    To examine the effects of Ramadan intermittent fasting (RIF) on the heart rate (HR) and oxyhaemoglobin saturation levels (oxy-sat) of boys at rest and during a six-minute walking test (6MWT). Eighteen boys (age: 11.9 ± 0.8 years, height: 153.00 ± 8.93 cm, body mass: 55.4 ± 18.2 kg), who fasted the entire month of Ramadan in 2012 for the first time in their lives, were included. The experimental protocol comprised four testing phases: two weeks before Ramadan (pre-R), the end of the second week of Ramadan (R-2), the end of the fourth week of Ramadan (R-4), and 10 to 12 days after the end of Ramadan (post-R). During each phase, participants performed the 6MWT at approximately 15:00. HR (expressed as percentage of maximal predicted HR) and oxy-sat (%) were determined at rest and in each minute of the 6MWT. R-4 HR values were lower than those of (1) pre-R (in the second minute), (2) R-2 (in the first and second minutes), and (3) post-R (in the first, second, fourth, fifth and sixth minutes). R-2 oxy-sat values were higher than those of pre-R (in the third minute) and those of post-R (in the fifth minute). Post-R oxy-sat values were lower than those of pre-R and R-4 in the fifth minute. These oxy-sat changes were not clinically significant since the difference was less than five points. In non-athletic children, their first RIF influenced their heart rate data but had a minimal effect on oxy-sat values.

  11. Reprint of “Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions”

    International Nuclear Information System (INIS)

    Gómez, M.; Fernández, A.; Llavona, I.; Kuivalainen, R.

    2015-01-01

    CO 2 and SO 2 from fossil fuel combustion are contributors to greenhouse effect and acid rain respectively. Oxy-combustion technology produces a highly concentrated CO 2 stream almost ready for capture. Circulating Fluidized Bed (CFB) boiler technology allows in-situ injection of calcium-based sorbents for efficient SO 2 capture. CIUDEN's 30 MWth CFB boiler, supplied by Foster Wheeler and located at the Technology Development Centre for CO 2 Capture and Transport (es.CO 2 ) in Spain, is the first of its kind for executing test runs at large pilot scale under both air-combustion and oxy-combustion conditions. In this work, SO 2 emissions under different scenarios have been evaluated. Variables such as limestone composition, Ca/S molar ratio and bed temperature among others have been considered along different test runs in both air-combustion and oxy-combustion conditions to analyse its influence on SO 2 abatement. Fly and bottom ash, together with flue gas analysis have been carried-out. Desulphurization performance tests results are presented. - Highlights: • Sulphur capture efficiency (%) was higher in oxy-combustion compared to air-combustion in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • For a Ca/S molar ratio higher than 2.6 there was barely any improvement on sulphur capture efficiency for both air-combustion and oxy-combustion conditions in a 30 MW thermal CFB boiler using anthracite and limestone as sulphur sorbent. • Optimum temperature for sulphur capture at a fixed Ca/S molar ratio is around 880–890 °C under oxy-combustion conditions and for anthracite coal with limestone as sorbent in a 30 MW thermal CFB boiler

  12. Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry

    Science.gov (United States)

    Walgraeve, Christophe; Chantara, Somporn; Sopajaree, Khajornsak; De Wispelaere, Patrick; Demeestere, Kristof; Van Langenhove, Herman

    2015-04-01

    An analytical method using gas chromatography high resolution mass spectrometry was developed for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) and 12 oxygenated PAHs (of which 4 diketones, 3 ketones, 4 aldehydes and one anhydride) on atmospheric particulate matter with an aerodynamic diameter less than 10 μm (PM10). The magnetic sector mass spectrometer was run in multiple ion detection mode (MID) with a mass resolution above 10 000 (10% valley definition) and allows for a selective accurate mass detection of the characteristic ions of the target analytes. Instrumental detection limits between 0.04 pg and 1.34 pg were obtained for the PAHs, whereas for the oxy-PAHs they ranged between 0.08 pg and 2.13 pg. Pressurized liquid extraction using dichloromethane was evaluated and excellent recoveries ranging between 87% and 98% for the PAHs and between 74% and 110% for 10 oxy-PAHs were obtained, when the optimum extraction temperature of 150 °C was applied. The developed method was finally used to determine PAHs and oxy-PAHs concentration levels from particulate matter samples collected in the wet season at 4 different locations in Chiang Mai, Thailand (n = 72). This study brings forward the first concentration levels of oxy-PAHs in Thailand. The median of the sum of the PAHs and oxy-PAHs concentrations was 3.4 ng/m3 and 1.1 ng/m3 respectively, which shows the importance of the group of the oxy-PAHs as PM10 constituents. High molecular weight PAHs contributed the most to the ∑PAHs. For example, benzo[ghi]perylene was responsible for 30-44% of the ∑PAHs. The highest contribution to ∑oxy-PAHs came from 1,8-napthalic anhydride (26-78%), followed by anthracene-9,10-dione (4-27%) and 7H-benzo[de]anthracene-7-one (6-26%). Indications of the degradation of PAHs and/or formation of oxy-PAHs were observed.

  13. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  14. A Comparative CFD Study on Simulating Flameless Oxy-Fuel Combustion in a Pilot-Scale Furnace

    Directory of Open Access Journals (Sweden)

    Mersedeh Ghadamgahi

    2016-01-01

    Full Text Available The current study presents a method to model the flameless oxy-fuel system, with a comparative approach, as well as validation of the predictions. The validation has been done by comparing the predicted results with previously published experimental results from a 200 kW pilot furnace. A suction pyrometer has been used to measure the local temperature and concentrations of CO, CO2, and O2 at 24 different locations. A three-dimensional CFD model was developed and the validity of using different submodels describing turbulence and chemical reactions was evaluated. The standard k-ε model was compared with the realizable k-ε model for turbulence, while Probability Density Function (PDF with either chemical equilibrium or the Steady Laminar Flamelet Model (SLFM was evaluated for combustion. Radiation was described using a Discrete Ordinates Model (DOM with weighted-sum-of-grey-gases model (WSGGM. The smallest deviation between predictions and experiments for temperature (1.2% was found using the realizable k-ε model and the SLFM. This improvement affects the prediction of gaseous species as well since the deviation between predictions and experiments for CO2 volume percentages decreased from 6% to 1.5%. This provides a recommendation for model selections in further studies on flameless oxy-fuel combustion.

  15. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Case for Tetrahedral Oxy-subhydride (TOSH Structures in the Exclusion Zones of Anchored Polar Solvents Including Water

    Directory of Open Access Journals (Sweden)

    Klaus Oehr

    2014-11-01

    Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.

  17. 5-(sulfonyl)oxy-tryptamines and ethylamino side chain restricted derivatives. Structure-affinity relationships for h5-HT1B and h5-HT1D receptors

    NARCIS (Netherlands)

    Barf, T; Wikstrom, H; Pauwels, PJ; Palmier, C; Tardif, S; Lundmark, M; Sundell, S

    A number of sulfonic acid ester derivatives of serotonin (5-hydroxytryptamine; 5-HT; 1) were prepared and their affinities are compared to that of the reference compound 5-[[(trifluoromethyl)sulfonyl]oxy]-tryptamine (8b). The structure-affinity relationship (SAFIR) is discussed in terms of in vitro

  18. COMPARATIVE ELECTRON-MICROSCOPY AND IMAGE-ANALYSIS OF OXY-HEMOCYANIN AND DEOXY-HEMOCYANIN FROM THE SPINY LOBSTER PANULIRUS-INTERRUPTUS

    NARCIS (Netherlands)

    DEHAAS, F; VANBREEMEN, JFL; BOEKEMA, EJ; KEEGSTRA, W; VANBRUGGEN, EFJ

    Structural differences between oxy-hemocyanin and deoxy-hemocyanin from the spiny lobster P. interruptus were studied by electron microscopy and image analysis of negatively stained preparations. Projections of the hexameric P. interruptus hemocyanin from electron microscopy were compared with

  19. 75 FR 42318 - Poly(oxy-1,2-ethanediyl), α-isotridecyl-ω-methoxy; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-07-21

    ....2600) in guinea pigs showed skin sensitization when exposed to poly(oxy-1,2-ethanediyl), [alpha.... Potentially affected entities may include, but are not limited to: Crop production (NAICS code 111). Animal production (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532...

  20. Feasibility Assessment of CO2 Capture Retrofitted to an Existing Cement Plant : Post-combustion vs. Oxy-fuel Combustion Technology

    NARCIS (Netherlands)

    Gerbelová, Hana; Van Der Spek, Mijndert; Schakel, Wouter

    2017-01-01

    This research presents a preliminary techno-economic evaluation of CO2 capture integrated with a cement plant. Two capture technologies are evaluated, monoethanolamine (MEA) post-combustion CO2 capture and oxy-fuel combustion. Both are considered potential technologies that could contribute to

  1. Experimental investigation of the oxy-fuel combustion of hard coal in a circulating fluidized-bed combustion; Experimentelle Untersuchung der Oxy-Fuel-Verbrennung von Steinkohle in einer zirkulierenden Wirbelschichtfeuerung

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Gerrit Arne

    2017-03-16

    The United Nations Framework Convention on Climate Change (UNFCCC) in 1992 first illustrated the social, economic and politic focus being placed on combating climate change caused by anthropogenic greenhouse gases. From there onwards research and development efforts have particularly centred on the reduction of CO{sub 2} emissions in the production of electrical power through the use of carbonaceous fossil fuels. The long-term goal is a conversion to sustainable and CO{sub 2} free means of producing power, utilizing in the main part renewable forms of energy such as solar, wind and hydro power. Currently, such renewable ways of creating electricity only represent a small percentage of global energy production. The technological and economic hurdles that are associated with a substantial increase of renewable energy production have greatly slowed their increased implementation. However, the goal of keeping the atmospheric CO{sub 2} concentration below 450 ppm requires a significantly faster reduction in the amount of greenhouse gas emissions. Therefore, considerations are being given to bridge technologies which would be able to capture and store the CO{sub 2} emissions from fossil fired power plants. These technologies are referred to as CCS (carbon capture and storage). Oxy-fuel combustion, combustion with pure oxygen instead of air, is one of those technologies and forms the focus of investigation of this work. The Institute of Combustion and Power Plant Technology in Stuttgart, Germany, have researched this matter, carrying out combustion experiments in its 150 kW{sub th} circulating fluidized bed pilot facility. The experiments were aimed at investigating the influence of excess oxygen, combustion temperature and inlet oxygen concentration on the combustion process and comparing air to oxy-fuel combustion. These results were compared to the results of fundamental investigations and combustion experiments carried out by other research groups. The relationship

  2. Low cyclic fatigue behavior of 32 % Mn nonmagnetic steel and the effects of C and N in liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Shibata, Koji; Fujita, Toshio

    1987-01-01

    The effects of testing temperature, C, and N on the low cyclic deformation behavior of 32 % Mn non-magnetic steels have been investigated in ambient air, liquid nitrogen, and liquid helium. It was observed that several problems exsisted in fatigue tests in liquid helium due to special phenomena occurred at very low temperatures. The steel containing 0.3 % N, which showed large fatigue softening at room temperature, increased the trend toward the softening at low temperatures. The steel containing 0.14 % C and 0.13 % N also increased the tendency of softening with the temperature decrease, while it was not so large at room temperature. Dislocation configuration in steels showing the softening tended to be mainly planne at very low temperatures same as at room temperature. The steel with a very low content of C and N, the 0.3 % C steel, and the 0.12 % N steel did not show the softening at low temperatures, but showed only fatigue hardening. The hardening of the former two steels increased remarkably as the temperature decreased. This phenomenon was attributable to ε martensite induced by the cyclic deformation. The fatigue softening behavior observed at low temperatures could qualitatively be explained with the hypothesis that the softening occurred through the breakdown of solid solution strengthening due to IS complexes during the cyclic deformation. (author)

  3. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    International Nuclear Information System (INIS)

    Daqiq, Reza; Ghobadi, Nader

    2016-01-01

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  4. Magnetic versus nonmagnetic ion substitution effects on Tc in the La-Sr-Cu-O and Nd-Ce-Cu-O systems

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Wang, E.; Kivelson, S.; Bagley, B.G.; Hull, G.W.; Ramesh, R.

    1990-01-01

    The effects of a substitution for Cu by other 3d metals (Ni, Co, and Zn) on T c in the Nd-Ce-Cu-O system was studied and compared with effects of the same ions on T c in the La-Sr-Cu-O system. We found (1) Zn suppresses T c more slowly in the Nd than in the La systems, so the disorder produced by the nonmagnetic ions is less important in the Nd system, (2) Ni and Co depress T c more quickly in the Nd than in the La system, showing that the magnetic pair breaking is stronger in the Nd system, and (3) in the La system the magnetism of the dopant has no effect on T c . Thus, within the same chemical system (cuprates) we find that as the correlation length is increased one obtains more familiar BCS-type behavior. We suggest that much of the behavior of the various high-T c oxides may be simply a function of the correlation length

  5. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    Science.gov (United States)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  6. Effect of non-magnetic intermediate layer on film structure, magnetic properties, and noise characteristics of FeCSi soft magnetic multilayers

    International Nuclear Information System (INIS)

    Kawano, Hiroyasu; Morikawa, Takeshi; Matsumoto, Koji; Shono, Keiji

    2004-01-01

    The film structures, magnetic properties, and noise characteristics of soft magnetic multilayers with alternately stacked FeCSi soft magnetic layers and non-magnetic intermediate layers were investigated. The FeCSi layers in an as-deposited multilayer with C or Ta intermediate layers had the same nano-sized fine crystalline grains and low media noise as an as-deposited FeCSi monolayer. Amorphous C intermediate layers suppressed the amplitude of spike noise especially well. In contrast, FeCSi layers in an as-deposited multilayer with Cr or Ti intermediate layers were composed of coarse crystalline grains, which increased the media noise. The crystallographic match at the interface between the layers in a multilayer could explain these phenomena. The similarity of the atomic arrangement at the interface between layers and the crystallographic match of less than a few percent for the distance between atoms crystallized FeCSi layers with nano-sized fine crystalline grains into ones with coarse crystalline grains during deposition

  7. Quantum size effects on spin-transfer torque in a double barrier magnetic tunnel junction with a nonmagnetic-metal (semiconductor) spacer

    Energy Technology Data Exchange (ETDEWEB)

    Daqiq, Reza; Ghobadi, Nader

    2016-07-15

    We study the quantum size effects of an MgO-based double barrier magnetic tunnel junction with a nonmagnetic-metal (DBMTJ-NM) (semiconductor (DBMTJ-SC)) spacer on the charge current and the spin-transfer torque (STT) components using non-equilibrium Green's function (NEGF) formalism. The results show oscillatory behavior due to the resonant tunneling effect depending on the structure parameters. We find that the charge current and the STT components in the DBMTJ-SC demonstrate the magnitude enhancement in comparison with the DBMTJ-NM. The bias dependence of the STT components in a DBMTJ-NM shows different behavior in comparison with spin valves and conventional MTJs. Therefore, by choosing a specific SC spacer with suitable thickness in a DBMTJ the charge current and the STT components significantly increase so that one can design a device with high STT and faster magnetization switching. - Highlights: • The quantum size effects are studied in double barrier magnetic tunnel junctions. • Spin torque (ST) components oscillate for increasing of middle spacer thicknesses. • Due to the resonant tunneling in the quantum well, oscillations have appeared. • By replacement a metal spacer with a semiconductor (ZnO) ST has increased. • The ST components vs. bias show gradually decreasing unlike spin valves or MTJs.

  8. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe{sub 4}As{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dapeng

    2015-02-25

    Highlights: • CaFe{sub 3.64}Pt{sub 0.36}As{sub 3} and CaFe{sub 3.64}Ga{sub 0.36}As{sub 3} were grown using Sn flux method. • The two magnetic transition temperatures of CaFe{sub 4}As{sub 3} remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe{sub 4}As{sub 3}. • The magnetic structure of CaFe{sub 4}As{sub 3} is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe{sub 4}As{sub 3} and investigated the structure and physical properties of CaFe{sub 3.64}X{sub 0.36}As{sub 3} (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe{sub 4}As{sub 3} is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe{sub 4}As{sub 3}.

  9. Burned after reading: the so-called list of Alexandrian librarians in P. Oxy. X 1241 Brûlée après lecture : la liste dite des Bibliothécaires d'Alexandrie dans le P.Oxy. X 1241 Burned after reading; la cosiddetta lista di bibliotecari alessandrini in P.Oxy. X 1241

    Directory of Open Access Journals (Sweden)

    Jackie Murray

    2012-06-01

    Full Text Available Cet article remet en question la valeur et la fiabilité du contenu du P.Oxy. X 1241, la liste dite des Bibliothécaires d’Alexandrie. Plutôt que de traiter de la liste des grammairiens des colonnes i.5.-ii.30 pour elle-même, comme les savants l’ont fait depuis que le papyrus a été publié, cet article prend en considération le document dans son intégralité. Cette lecture plus attentive du P.Oxy. X 1241 démontre qu’il y a une évidente continuité thématique entre la liste des grammairiens et les catalogues militaires qui suivent, qui n’a jamais été observée précédemment parce que les deux parties du document ont été traitées séparement. Il en découle des questions concernant trois hypothèses essentielles émises par les éditeurs originaux, B. P. Grenfell et A. S. Hunt : (1 la liste des col. i.5-ii.30 est-elle en réalité une liste des Bibliothécaires en chef de la Bibliothèque d’Alexandrie ? (2 le document est-il une copie ou une compilation de quelque œuvre savante qui remonte à la période hellénistique, et non la production d’un savant/grammairien du deuxième siècle de notre ère environ ? (3 Est-ce que les contenus du papyrus reflètent l’œuvre d’un savant/grammairien compétent qui était suffisamment informé sur la chronologie de la période ptolémaïque pour donner un décompte historiquement exact de la succession d’individus liés à la cour des Ptolémées et à la Bibliothèque d’Alexandrie ? S’il est vrai que dans son contenu et son utilisation de citations savantes le P.Oxy. X 1241 partage de nombreux points communs avec les catalogues en prose des époques hellénistique et impériale, les stratégies du discours savant déployées par l’auteur dans le catalogue militaire ne sont pas conformes aux normes des exemples scientifiques fiables. En conséquence, la valeur du texte comme preuve documentaire de l’histoire de la Bibliothèque d’Alexandrie a besoin d

  10. Evaluation and improvement of gamma-ray stability of chelating resins containing oxy-acid groups of phosphorus

    International Nuclear Information System (INIS)

    Jyo, Akinori; Yamabe, Kazunori; Shuto, Taketomi

    1998-01-01

    Chelating resins containing oxy-acid groups of phosphorus, such as phosphonic and phosphoric acid groups have been studied from the point of view of solvent extraction processes for the separation of nuclear fuel elements as well as of fission product ones. The present work was planned to evaluate the effect of gamma-ray on properties of the resins and to obtain directional information for design of the resins having high stability to gamma-ray. It was clarified that gamma-ray stability of the resins is not high; tolerance limit is ca. 2.3x10 3 C/kg. The present work also clarified that polymers crosslinked with divinylbenzene have much higher gamma-ray stability than ones crosslinked with dimetacrylate esters of oligo (ethylene glycol)s. (J.P.N.)

  11. 2,3-Diamino­pyridinium 6-carb­oxy­pyridine-2-carboxyl­ate

    Science.gov (United States)

    Foroughian, Mahsa; Foroumadi, Alireza; Notash, Behrouz; Bruno, Giuseppe; Amiri Rudbari, Hadi; Aghabozorg, Hossein

    2011-01-01

    The asymmetric unit of the title proton-transfer compound, C5H8N3 +·C7H4NO4 −, consists of one mono-deprotonated pyridine-2,6-dicarb­oxy­lic acid as anion and one protonated 2,3-diamino­pyridine as cation. The crystal packing shows extensive O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds. Thre are also several π–π inter­actions between the anions and also between the cations [centriod–centroid distances = 3.6634 (7), 3.7269 (7), 3.6705 (7) and 3.4164 (7) Å]. PMID:22199823

  12. An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames

    International Nuclear Information System (INIS)

    Abdul-Sater, Hassan; Krishnamoorthy, Gautham

    2013-01-01

    Twenty four, laboratory scale, laminar to transitional, diffusion oxy-methane flames were simulated employing different radiation modeling options and their predictions compared against experimental measurements of: temperature, flame length and radiant fraction. The models employed were: gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model, non-adiabatic extension of the equilibrium based mixture fraction model and investigations into the effects of: the thermal boundary conditions, soot and turbulence radiation interactions (TRI). Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. Flame lengths determined through the axial profiles of OH confirmed with the experimental trends by increasing with increase in fuel-inlet Reynolds numbers and decreasing with the increase in O 2 composition in oxidizer. The temperature and flame length predictions were not sensitive to the radiative property model employed. There were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The inclusion of soot model and TRI model did not affect our predictions as a result of low soot volume fractions and the radiation emission enhancement to the temperature fluctuations being localized to the flame sheet. -- Highlights: • Twenty four, lab scale, laminar to transitional, diffusion, oxy-methane flames were simulated. • Equilibrium model adequately predicted the temperature and flame lengths. • The experimental trends in radiant fractions were replicated. • Gray and non-gray model differences in radiant fractions were amplified at low Re. • Inclusion of soot and TRI models did not affect our predictions

  13. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts

    KAUST Repository

    Liang, Yin

    2014-03-24

    A universal reaction mechanism involved in the oxidative coupling of methane (OCM) is demonstrated under oxy-steam conditions using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from a H 2O-O2 reaction followed by C-H activation in CH 4 with an OH radical. Thus, the presence of water enhances both the CH4 conversion rate and the C2 selectivity. This OH radical pathway that is selective for the OCM was observed for the catalyst without Mn, which suggests clearly that Mn is not the essential component in a selective OCM catalyst. The experiments with different catalyst compositions revealed that the OH.-mediated pathway proceeded in the presence of catalysts with different alkali metals (Na, K) and different oxo anions (W, Mo). This difference in catalytic activity for OH radical generation accounts for the different OCM selectivities. As a result, a high C2 yield is achievable by using Na2WO4/SiO2, which catalyzes the OH.-mediated pathway selectively. Make it methane: A universal reaction mechanism involved in the oxidative coupling of methane is demonstrated under oxy-stream conditions by using alkali-metal-based catalysts. Rigorous kinetic measurements indicated a reaction mechanism that is consistent with OH radical formation from an H2O-O2 reaction, followed by C-H activation in CH4 with an OH radical. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants

    International Nuclear Information System (INIS)

    Kunze, Christian; Spliethoff, Hartmut

    2012-01-01

    Highlights: ► Hot gas cleanup is a highly favorable technology for all selected IGCC concepts. ► Proposed high pressure IGCC with membrane reactor enables direct CO 2 condensation. ► IGCC with OTM and carbonate looping enable significant synergy effects. ► Combining IGCC and oxy-fuel is technically challenging but energetically favorable. ► All selected IGCC concepts are able to realize CO 2 capture rates up to 99%. -- Abstract: Environmental damage due to the emission of greenhouse gases from conventional coal-based power plants is a growing concern. Various carbon capture strategies to minimize CO 2 emissions are currently being investigated. Unfortunately, the efficiency drop due to de-carbonization is still significant and the capture rate is limited. Therefore three future hard coal IGCC concepts are assessed here, applying emerging technologies and various carbon capture approaches. The advanced pre-combustion capture concept is based on hot gas clean-up, membrane-enhanced CO conversion and direct CO 2 condensation. The concept reached a net efficiency of 45.1% (LHV), representing an improvement of 6.46% compared to the conventional IGCC base case. The second IGCC concept, based on post-combustion capture via calcination–carbonation loops, hot gas clean-up and oxygen membranes, showed a net efficiency of 45.87% (LHV). The third IGCC concept applies hot gas clean-up and combustion of the unconverted fuel gas using pure oxygen. The oxygen is supplied by an integrated oxygen membrane. The combination of IGCC and oxy-fuel process reached a net efficiency of 45.74% (LHV). In addition to their increased efficiency, all of the concepts showed significantly improved carbon capture rates up to 99%, resulting in virtually carbon-free fossil power plants.

  15. FutureGen 2.0 Oxy-Coal Combustion Carbon Capture Plant Pre-FEED Design and Cost

    Energy Technology Data Exchange (ETDEWEB)

    Flanigan, Tom; Pybus, Craig; Roy, Sonya; Lockwood, Frederick; McDonald, Denny; Maclnnis, Jim

    2011-09-30

    This report summarizes the results of the Pre-Front End Engineering Design (pre-FEED) phase of a proposed advanced oxy-combustion power generation plant to repower the existing 200 MWe Unit 4 at Ameren Energy Resources’ (AER) Meredosia Power Plant. AER has formed an alliance with Air Liquide Process and Construction, Inc. (ALPC) and Babcock & Wilcox Power Generation Group (B&W PGG) for the design, construction, and testing of the facility, and has contracted with URS Corporation (URS) for preliminary design and Owner’s engineering services. The Project employs oxy-combustion technology – combustion of coal with nearly pure oxygen and recycled flue gas (instead of air) – to capture approximately 90% of the flue gas CO2 for transport and sequestration by another Project. Plant capacity and configuration has been developed based on the B&W PGG-ALPC cool recycle process firing high-sulfur bituminous coal fuel, assuming baseload plant operation to maximize existing steam turbine capability, with limited consideration for plant redundancy and performance optimization in order to keep plant costs as low as practical. Activities and preliminary results from the pre-FEED phase addressed in this report include the following: Overall plant thermal performance; Equipment sizing and system configuration; Plant operation and control philosophy; Plant emissions and effluents; CO2 production and recovery characteristics; Project cost estimate and economic evaluation; Integrated project engineering and construction schedule; Project risk and opportunity assessment; Development of Project permitting strategy and requirements During the Phase 2 of the Project, additional design details will be developed and the Phase 1 work products updated to support actual construction and operation of the facility in Phase 3. Additional information will be provided early in Phase 2 to support Ameren-Environmental in finalizing the appropriate permitting strategies and permit

  16. Numerical investigation of liquid methanol evaporation and oxy-combustion inside a button-cell ITM reactor

    International Nuclear Information System (INIS)

    Nemitallah, Medhat A.; Habib, Mohamed A.

    2017-01-01

    Highlights: • Analysis of liquid methanol evaporation and oxy-combustion in an ITM reactor. • A semi-empirical model is applied after fitting with the available LNO membrane data. • Influences of inlet fuel fraction, inlet gas temperature and inlet sweep flux are studied. • High combustion efficiency is encountered at moderate inlet gas temperatures. • High fuel concentration at low inlet sweep flow resulted in high oxygen flux. - Abstract: A numerical study is conducted to investigate the performance of a button-cell LNO-ITM reactor utilizing the soot-free oxygenated liquid methanol under oxy-combustion condition. The Euler-Lagrange approach is utilized to solve discrete phase model. Taylor analogy breakup (TAB) model is used due to its convenience with the cases of low injection speed. A plain orifice atomizer is used for fuel atomization and CO_2 is used as sweep gas. A semi-empirical oxygen permeation model (ABn model) is validated with the available experimental data and is, then, applied in the present model. Over a wide range of inlet fuel concentrations, the results showed increase in oxygen permeation flux of about five times in cases of reacting conditions as compared to the cases of non-reacting cases. The results showed high oxygen permeation flux at low inlet fuel concentrations due to the improvement in the oxygen to fuel ratio toward the stoichiometric conditions. At inlet gas temperatures of 1223 K, 1123 K, 1023 K and 923 K, the combustion temperature approached 1423 K, 1347 K, 1284 K and 1231 K, respectively, indicating an average combustion efficiency of 43% at moderate inlet gas temperatures. High fuel concentration at low inlet sweep flow resulted in high oxygen flux and high combustion temperature.

  17. Investigations of mechanical, electronic, and magnetic properties of non-magnetic MgTe and ferro-magnetic Mg0.75TM0.25Te (TM = Fe, Co, Ni): An ab-initio calculation

    International Nuclear Information System (INIS)

    Mahmood, Q; Alay-e-Abbas, S M; Mahmood, I; Noor, N A; Asif, Mahmood

    2016-01-01

    The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg 0.75 TM 0.25 Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg 0.75 TM 0.25 Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p–d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites. (paper)

  18. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  19. Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression.

    Directory of Open Access Journals (Sweden)

    Anton M Markovets

    Full Text Available UNLABELLED: The incidence of age-related macular degeneration (AMD, the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1 is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD. Here we examine the effects of SkQ1 on expression of key regulators of angiogenesis vascular endothelial growth factor A (VEGF and its antagonist pigment epithelium-derived factor (PEDF genes in the retina of OXYS rats as evidenced by real-time PCR and an ELISA test for VEGF using Wistar rats as control. Ophthalmoscopic examinations confirmed that SkQ1 supplementation (from 1.5 to 3 months of age, 250 nmol/kg prevented development while eye drops SkQ1 (250 nM, from 9 to 12 months caused some reduction of retinopathy signs in OXYS rats and did not reveal any negative effects on the control Wistar rat's retina. Prevention of premature retinopathy by SkQ1 was connected with an increase of VEGF mRNA and protein in OXYS rat's retina up to the levels corresponding to the Wistar rats, and did not involve changes in PEDF expression. In contrast the treatment with SkQ1 drops caused a decrease of VEGF mRNA and protein levels and an increase in the PEDF mRNA level in the middle-aged OXYS rats, but in Wistar rats the changes of gene expression were the opposite. CONCLUSIONS: The beneficial effects of SkQ1 on retinopathy connected with normalization of expression of VEGF and PEDF in the retina of OXYS rats and depended on age of the animals and the stage of retinopathy.

  20. Detailed investigation of thermal and electron transport properties in strongly correlated compound Ce6Pd12In5 and its nonmagnetic analog La6Pd12In5

    Science.gov (United States)

    Falkowski, M.; Krychowski, D.; Strydom, A. M.

    2016-11-01

    An in-depth study of thermal and electron transport properties including thermal conductivity κ(T), thermoelectric power S(T), and electrical resistivity ρ(T) of the heavy fermion Kondo lattice Ce6Pd12In5 and its nonmagnetic reference compound La6Pd12In5 is presented. The absolute κ(T) value of Ce6Pd12In5 is smaller that than of La6Pd12In5, which indicates that conduction electron-4f electron scattering has a large impact on the reduction of thermal conductivity. The isolated 4f electron contributions to the electrical resistivity ρ 4 f (T), electronic thermal resistivity displayed in the form W e l , 4 f (T) .T, and thermoelectric power S 4 f (T) reveal a low- and high-temperature -lnT behaviour characteristic of Kondo systems with strong crystal-electric field (CEF) interactions. The analysis of phonon scattering processes of lattice thermal conductivity κph(T) in (Ce, La)6Pd12In5 was performed over the whole accessible temperature range according to the Callaway model. In the scope of a theoretical approach based on the perturbation type calculation, we were able to describe our experimental data of ρ 4 f (T) and W e l , 4 f (T) .T by using the model incorporating simultaneously the Kondo effect in the presence of the CEF splitting, as it is foreseen in the framework of the Cornut-Coqblin and Bhattacharjee-Coqblin theory. Considering the fact that there are not many cases of similar studies at all, we also show the numerical calculations of temperature-dependent behaviour of spin-disorder resistivity ρs(T), magnetic resistivity ρ 4 f (T), and occupation number ⟨ N i ⟩ due to the various types of degeneracy of the ground state multiplet of Ce 3 + (J = 5/2).

  1. A Suppressor of the Menadione-Hypersensitive Phenotype of a Xanthomonas campestris pv. phaseoli oxyR Mutant Reveals a Novel Mechanism of Toxicity and the Protective Role of Alkyl Hydroperoxide Reductase

    Science.gov (United States)

    Vattanaviboon, Paiboon; Whangsuk, Wirongrong; Mongkolsuk, Skorn

    2003-01-01

    We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyRXp). The oxyRR2Xp mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H2O2 and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2Xp mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2Xp mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyRXp mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris. PMID:12591894

  2. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    Science.gov (United States)

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  3. AlN and Al oxy-nitride gate dielectrics for reliable gate stacks on Ge and InGaAs channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Li, H.; Robertson, J. [Engineering Department, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2016-05-28

    AlN and Al oxy-nitride dielectric layers are proposed instead of Al{sub 2}O{sub 3} as a component of the gate dielectric stacks on higher mobility channels in metal oxide field effect transistors to improve their positive bias stress instability reliability. It is calculated that the gap states of nitrogen vacancies in AlN lie further away in energy from the semiconductor band gap than those of oxygen vacancies in Al{sub 2}O{sub 3}, and thus AlN might be less susceptible to charge trapping and have a better reliability performance. The unfavourable defect energy level distribution in amorphous Al{sub 2}O{sub 3} is attributed to its larger coordination disorder compared to the more symmetrically bonded AlN. Al oxy-nitride is also predicted to have less tendency for charge trapping.

  4. Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Lukasz; Kotowicz, Janusz; Job, Marcin

    2013-01-01

    Highlights: • Mathematical models of an integrated oxy-combustion power plant. • Thermodynamic analysis of the modeled different cases of the plant. • Analysis of the methods of increasing the net efficiency of the plant. • Economic comparative analysis of the air-type and oxy-type plants. - Abstract: In the face of existing international provisions limiting the emissions of greenhouse gases, primarily carbon dioxide, it is necessary to introduce solutions that will allow the production of electricity from coal with high efficiency and low emissions. Oxy-combustion systems integrated with carbon capture and storage (CCS) installations may prove to be such a solution. This paper presents the main results from a thermodynamic analysis of a supercritical unit operating in oxy-combustion technology, fueled with pulverized coal with a power output of 460 MW. The parameters of the live steam in the analyzed system are 600 °C/30 MPa. To perform the numerical analyses, models of the individual components were built, including an oxygen production installation (ASU), a boiler, a steam cycle and a flue gas conditioning system (CPU). The models were built in the commercial programs GateCycle and Aspen and then integrated into the Excel environment. In this paper, different structures for an integrated oxy-type system were analyzed and compared. The auxiliary power rates were determined for individual technological installations of the oxy-combustion power plant. The highest value of this indicator, in the range between 15.65% and 19.10% was calculated for the cryogenic ASU. The total value of this index for the whole installation reaches as high as 35% for the base case. The use of waste heat from the interstage cooling of compressors in the air separation installation and flue gas conditioning system was considered as the methods of counteracting the efficiency decrease resulting from the introduction of ASU and CPU. The proposed configurations and optimization

  5. Thermal decomposition of solid mixtures of 2-oxy-4,6-dinitramine-s-triazine (DNAM) and phase stabilized ammonium nitrate (PSAN)

    OpenAIRE

    Simões, P. N.; Pedroso, L. M.; Portugal, A. A.; Campos, J. L.

    2000-01-01

    The thermal decomposition of solid mixtures of 2-oxy-4,6-dinitramine-s-triazine (DNAM) and phase stabilized ammonium nitrate (PSAN) at different mass ratios has been studied. Simultaneous thermal analysis (DSC/TG) and thermomicroscopy have been used. It was found that PSAN promotes the lowering of the decomposition temperature of DNAM. The beginning of this process occurs when both components are in the solid state irrespective of the composition. However, the composition appears as the main ...

  6. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  8. A Comparative Evaluation of EPR and OxyLite Oximetry Using a Random Sampling of pO2 in a Murine Tumor

    Science.gov (United States)

    Vikram, Deepti S.; Bratasz, Anna; Ahmad, Rizwan; Kuppusamy, Periannan

    2015-01-01

    Methods currently available for the measurement of oxygen concentrations (oximetry) in viable tissues differ widely from each other in their methodological basis and applicability. The goal of this study was to compare two novel methods, particulate-based electron paramagnetic resonance (EPR) and OxyLite oximetry, in an experimental tumor model. EPR oximetry uses implantable paramagnetic particulates, whereas OxyLite uses fluorescent probes affixed on a fiber-optic cable. C3H mice were transplanted with radiation-induced fibrosarcoma (RIF-1) tumors in their hind limbs. Lithium phthalocyanine (LiPc) microcrystals were used as EPR probes. The pO2 measurements were taken from random locations at a depth of ~3 mm within the tumor either immediately or 48 h after implantation of LiPc. Both methods revealed significant hypoxia in the tumor. However, there were striking differences between the EPR and OxyLite readings. The differences were attributed to the volume of tissue under examination and the effect of needle invasion at the site of measurement. This study recognizes the unique benefits of EPR oximetry in terms of robustness, repeatability and minimal invasiveness. PMID:17705635

  9. Subsurface characterization of an oxidation-induced phase transformation and twinning in nickel-based superalloy exposed to oxy-combustion environments

    International Nuclear Information System (INIS)

    Zhu Jingxi; Holcomb, Gordon R.; Jablonski, Paul D.; Wise, Adam; Li Jia; Laughlin, David E.; Sridhar, Seetharaman

    2012-01-01

    Highlights: ►Oxidation products of Ni-based superalloy were studied in oxy-fuel combustion conditions. ► An oxidation-induced phase transformation occurred in the subsurface region. ► One of the two product phases was not in the Ni database of Thermo-Calc. ► This unknown phase is an ordered derivative of FCC structure of Ni–Ti(–Ta) system. ► This phase is likely detrimental to the mechanical integrity of the alloy in use. - Abstract: In the integration of oxy-fuel combustion to turbine power generation system, turbine alloys are exposed to high temperature and an atmosphere comprised of steam, CO 2 and O 2 . While surface and internal oxidation of the alloy takes place, the microstructure in the subsurface region also changes due to oxidation. In this study, bare metal coupons of Ni-base superalloys were exposed in oxy-fuel combustion environment for up to 1000 h and the oxidation-related microstructures were examined. Phase transformation occurred in the subsurface region in Ni-based superalloy and led to twinning. The transformation product phases were analyzed through thermodynamic equilibrium calculations and various electron microscopy techniques, including scanning electron microscopy (SEM), orientation imaging microscopy (OIM) and transmission electron microscopy (TEM). The mechanism by which the phase transformation and the formation of the microstructure occurred was also discussed. The possible effects of the product phases on the performance of the alloy in service were discussed.

  10. Tailoring a High Temperature Corrosion Resistant FeNiCrAl for Oxy-Combustion Application by Thermal Spray Coating and HIP

    Directory of Open Access Journals (Sweden)

    Jarkko Metsäjoki

    2015-10-01

    Full Text Available Oxy-fuel combustion combined with CCS (carbon capture and storage aims to decrease CO2 emissions in energy production using fossil fuels. Oxygen firing changes power plant boiler conditions compared to conventional firing. Higher material temperatures and harsher and more variable environmental conditions cause new degradation processes that are inadequately understood at the moment. In this study, an Fe-Ni-Cr-Al alloy was developed based on thermodynamic simulations. The chosen composition was manufactured as powder by gas atomization. The powder was sieved into two fractions: The finer was used to produce thermal spray coatings by high velocity oxy-fuel (HVOF and the coarser to manufacture bulk specimens by hot isostatic pressing (HIP. The high temperature corrosion properties of the manufactured FeNiCrAl coating and bulk material were tested in laboratory conditions simulating oxy-combustion. The manufacturing methods and the results of high temperature corrosion performance are presented. The corrosion performance of the coating was on average between the bulk steel references Sanicro 25 and TP347HFG.

  11. SYNTHESIS AND HEMOLYTIC PROPERTIES OF DERIVATIVES OF 4,4'-DIHYDROXYBIPHENYL – 2,2'-[BIPHENYL-4,4'- DIYLBIS(OXY]BIS[N-(METHYLAMINOALKILACETAMIDES

    Directory of Open Access Journals (Sweden)

    S. O. Zanoza

    2016-04-01

    Full Text Available The purpose of this work was synthesis of 4,4’-dihydroxybiphenyl derivatives, namely 2,2’-[biphenyl-4,4’-diylbis(oxy]bis[N-(2-aminoalkylacetamide], study of their hemolytic properties and the effect of the side chain structure on hemolytic properties. 2,2’-[Biphenyl-4,4’-diylbis(oxy]diacetic acid was synthesized by alkylation of 4,4’-dihydroxybiphenyl with methylbromoacetate, followed by alkaline hydrolysis. Chloroanhydride was obtained by treatment of this acid with thionyl chloride. 2,2’-[Biphenyl-4,4’-diylbis(oxy]  bis-[N-(2-aminoalkylacetamides] were synthesized in the biphasic media (dichloromethane/ aqueous sodium carbonate. Structures of synthesized compounds were proved by mass-spectrometryand 1Н NMR. Hemolytic properties were studied using healthy donors’ erythrocytes 0(I/Rh+. The absence of hemolytic properties for obtained compounds was shown, unlike similar 4,4’-aminoalkoxybiphenyls for which a significant hemolysis was shown. Thus, replacement of the ethylene group with amide group in the side chain of 4,4’-bissubstituted biphenyls significantly reduces hemolytic properties.

  12. Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant

    International Nuclear Information System (INIS)

    Sanusi, Yinka S.; Mokheimer, Esmail M.A.; Habib, Mohamed A.

    2017-01-01

    Highlights: •A methane reforming reactor integrated to an oxy-combustion plant is proposed. •Co-production of power and hydrogen was investigated and presented. •Optimal thermo-economic operating conditions of the system were identified and presented. •The ion transport membrane oxygen separation unit has the highest capital cost. •The combustor has the highest exergy destruction. -- Abstract: The demand for hydrogen has greatly increased in the last decade due to the stringent regulations enacted to address environmental pollution concerns. Natural gas reforming is currently the most mature technology for large-scale hydrogen production. However, it is usually associated with greenhouse gas emissions. As part of the strategies to reduce greenhouse gas emissions, new designs need to be developed to integrate hydrogen production facilities that are based on natural gas reforming with carbon capture facilities. In this study, we carried out energy, exergy and economic analysis of hydrogen production in a steam methane reforming reactor integrated with an oxy-combustion plant for co-production of power and hydrogen. The results show that the overall system efficiency and hydrogen production efficiency monotonically increase with increasing the combustor exit temperature (CET), increasing the amount of hydrogen extracted and decreasing the auxiliary fuel added to the system. The optimal thermo-economic operating conditions of the system were obtained as reformer pressure of 15 bar, auxiliary fuel factor of 0.8 and hydrogen extraction factor of 0.6. The production cost of hydrogen using the proposed system, under these optimal operating conditions, is within the range suggested by the International Energy Agency (IEA). Further analysis shows that the capital cost of the membrane-air separation unit (ITM) has the major share in the total investment cost of the system and constitutes 37% of the total capital cost of the system at the CET of 1500 K. The exergy

  13. α-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    International Nuclear Information System (INIS)

    Jerzykiewicz, Maria; Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam

    2011-01-01

    Graphical abstract: α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . Display Omitted Highlights: → α-Tocopherol does not inhibit the oxidation of DMSO to ·CH 3 . → α-Tocopherol inhibits the oxidation of ·CH 3 to ·OCH 3 . → α-Tocopherol does not inhibit the oxidation of PBN. → The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of α-tocopherol. Additionally, the mixtures of α-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. α-Tocopherol inhibited oxidation of the main decomposition product of DMSO, ·CH 3 to ·OCH 3 but did not prevent the transformation process of N-t-butyl-α-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  14. {alpha}-Tocopherol impact on oxy-radical induced free radical decomposition of DMSO: Spin trapping EPR and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Jerzykiewicz, Maria, E-mail: Mariaj@wchuwr.pl [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland); Cwielag-Piasecka, Irmina; Witwicki, Maciej; Jezierski, Adam [Faculty of Chemistry, Wroclaw University, 14 F. Joliot-Curie St., 50-383 Wroclaw (Poland)

    2011-05-26

    Graphical abstract: {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. Display Omitted Highlights: {yields} {alpha}-Tocopherol does not inhibit the oxidation of DMSO to {center_dot}CH{sub 3}. {yields} {alpha}-Tocopherol inhibits the oxidation of {center_dot}CH{sub 3} to {center_dot}OCH{sub 3}. {yields} {alpha}-Tocopherol does not inhibit the oxidation of PBN. {yields} The structures of observed spin adducts were theoretically confirmed. - Abstract: EPR spin trapping and theoretical methods such as density functional theory (DFT) as well as combined DFT and quadratic configuration interaction approach (DFT/QCISD) were used to identify the radicals produced in the reaction of oxy-radicals and dimethyl sulfoxide (DMSO) in the presence and absence of {alpha}-tocopherol. Additionally, the mixtures of {alpha}-tocopherol with linolenic acid and glyceryl trilinoleate as well as bioglycerols (glycerol fractions from biodiesel production) were tested. {alpha}-Tocopherol inhibited oxidation of the main decomposition product of DMSO, {center_dot}CH{sub 3} to {center_dot}OCH{sub 3} but did not prevent the transformation process of N-t-butyl-{alpha}-phenylnitrone (PBN) into 2-methyl-2-nitrosopropane (MNP). Theoretical investigations confirmed the structures of proposed spin adducts and allowed to correlate the EPR parameters observed in the experiment with the spin adducts electronic structure.

  15. In situ fabrication of Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays and their application in supercapacitors.

    Science.gov (United States)

    Zheng, Xiaoyu; Quan, Honglin; Li, Xiaoxin; He, Hai; Ye, Qinglan; Xu, Xuetang; Wang, Fan

    2016-09-29

    Three-dimensional (3D) hybrid nanostructured arrays grown on a flexible substrate have recently attracted great attention owing to their potential application as supercapacitor electrodes in portable and wearable electronic devices. Here, we report an in situ conversion of Ni-Co active electrode materials for the fabrication of high-performance electrodes. Ni-Co carbonate hydroxide nanowire arrays on carbon cloth were initially synthesized via a hydrothermal method, and they were gradually converted to Ni-Co (oxy)hydroxide nanowire-supported nanoflake arrays after soaking in an alkaline solution. The evolution of the supercapacitor performance of the soaked electrode was investigated in detail. The areal capacitance increases from 281 mF cm -2 at 1 mA cm -2 to 3710 and 3900 mF cm -2 after soaking for 36 h and 48 h, respectively. More interestingly, the electrode also shows an increased capacitance with charge/discharge cycles due to the long-time soaking in KOH solution, suggesting novel cycling durability. The enhancement in capacitive performance should be related to the formation of a unique nanowire-supported nanoflake array architecture, which controls the agglomeration of nanoflakes, making them fully activated. As a result, the facile in situ fabrication of the hybrid architectural design in this study provides a new approach to fabricate high-performance Ni/Co based hydroxide nanostructure arrays for next-generation energy storage devices.

  16. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  17. Effect of vacuum oxy-nitrocarburizing on the microstructure of tool steels: an experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Nikolova Maria

    2017-01-01

    Full Text Available The thermochemical treatments of tool steels improve the performance of the components with respect to surface hardness, wear and tribological performance as well as corrosion resistance. Compared to the conventional gas ferritic nitrocarburizing process, the original vacuum oxy-nitrocarburizing is a time-, cost-effective and environmentally-friendly gas process. Because of the oxidizing nature of the gas atmosphere, there is no need to perform subsequent post-oxidation.In this study, a vacuum oxynitrocarburizing process was carried out onto four tool steels (AISI H10, H11, H21 and D2 at 570 °C, after hardening and single tempering. The structural analysis of the compound and diffusion layers was performed by optical and electron microscopy, X-ray diffraction and glow discharge optical emission spectrometry (GDOES methods. A largely monophase ε- layer is formed with a carbon accumulation at the substrate adjacent area. The overlaying oxides adjacent to the ε-carbonitride phase contained Fe3O4 (magnetite as a main constituent. A thermodynamic modelling approach was also performed to understand and optimize the process. The “Equilib module” of FactSage software which uses Gibbs energy minimization method, was used to estimate the possible products during vacuum oxynitrocarburising process.

  18. Study of intramolecular isotope heterogeneity of organic oxy acids in order to detect sophisticated wines and juice drinks

    Directory of Open Access Journals (Sweden)

    Kuzmina Helen

    2014-01-01

    Full Text Available According to International Code of Oenological Practices it is allowed to use acide L(+tartrique for wine acidification, while use of synthetic dihydroxysuccinic acid is forbidden. Today it is impossible to differentiate natural dihydroxysuccinic acid from synthetic one by standard techniques. Even by using very sensitive method of isotope mass spectrometry certain difficulties emerge because total isotope characteristics of carbon of dihydroxysuccinic acid of different nature have the same values. However, isotope characteristics of carbon of intramolecular structural groups of dihydroxysuccinic acid made of different raw materials differ significantly. This allows specifying the nature of dihydroxysuccinic acid that is used for making of wines and juice drinks. In Russia, scientific and research institute of beer brewing and wine-making industry carried out a work for studying isotope characteristics of intramolecular isotope heterogeneity of dihydroxysuccinic acid from different origins in order to identify wines and juice drinks. Isotope characteristics of organic oxy acids from different origins were studied including them obtained by synthetic way and numeric range of value δ13 C,‰ were specified. The obtained results allow performing identification tests of wines and juice drinks to find out the products that contain not specified additives as that allowed for its use in production process.

  19. Testing of gadolinium oxy-sulphide phosphors for use in CCD-based X-ray detectors for macromolecular crystallography

    CERN Document Server

    Pokric, M

    2002-01-01

    The resolution and detective quantum efficiency of CCD-based detectors used for X-ray diffraction is primarily affected by the layer of phosphor that converts incident X-ray photons into visible photons. The optimum thickness of this phosphor layer is strongly dependent on the fraction of absorbed incident X-ray photons and required spatial resolution. A range of terbium doped gadolinium oxy-sulphide (Gd sub 2 O sub 2 S : Tb) phosphor samples, provided by Applied Scintillation Technologies, have been evaluated for spatial resolution, light output and uniformity. The phosphor samples varied in coating weight (10-25 mg/cm sup 2), grain size (2.5, 4, 10 mu m), and applied coating (no coating, reflectors and absorbers). In addition, a non-uniform layer was introduced to some samples in order to provide an inherent diffusion layer. The experimental results showed that the introduction of a reflector increases the point spread function (PSF) and increases light yield up to 30%, while an absorber reduces the PSF tai...

  20. OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Xia

    Full Text Available Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS. In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.

  1. Identification of redox-sensitive cysteines in the arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method

    KAUST Repository

    Liu, Pei

    2014-01-28

    Cellular redox status plays a key role in mediating various physiological and developmental processes often through modulating activities of redox-sensitive proteins. Various stresses trigger over-production of reactive oxygen/nitrogen species which lead to oxidative modifications of redox-sensitive proteins. Identification and characterization of redox-sensitive proteins are important steps toward understanding molecular mechanisms of stress responses. Here, we report a high-throughput quantitative proteomic approach termed OxiTRAQ for identifying proteins whose thiols undergo reversible oxidative modifications in Arabidopsis cells subjected to oxidative stress. In this approach, a biotinylated thiol-reactive reagent is used for differential labeling of reduced and oxidized thiols. The biotin-tagged peptides are affinity purified, labeled with iTRAQ reagents, and analyzed using a paralleled HCD-CID fragmentation mode in an LTQ-Orbitrap. With this approach, we identified 195 cysteine-containing peptides from 179 proteins whose thiols underwent oxidative modifications in Arabidopsis cells following the treatment with hydrogen peroxide. A majority of those redox-sensitive proteins, including several transcription factors, were not identified by previous redox proteomics studies. This approach allows identification of the specific redox-regulated cysteine residues, and offers an effective tool for elucidation of redox proteomes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system

    International Nuclear Information System (INIS)

    Li, H.; Yan, J.; Yan, J.; Anheden, M.

    2009-01-01

    Based on the requirements of CO 2 transportation and storage, non-condensable gases, such as O 2 , N 2 and Ar should be removed from the CO 2 -stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO 2 -streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO 2 purity of separation product and CO 2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO 2 ; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of Ar; but in the distillation system, the energy consumption of condensation is more sensitive to the variation of SO 2 , and CO 2 purity of separation is more sensitive to the variation of SO 2 . (author)

  3. Crystal structure of 4-meth­oxy-N-(piperidine-1-carbono­thio­yl)benzamide

    Science.gov (United States)

    Suhud, Khairi; Hasbullah, Siti Aishah; Ahmad, Musa; Heng, Lee Yook

    2017-01-01

    In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth­oxy­benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N—C(=S)—N(H)—C(=O) bridge is twisted with an N—C—N—C torsion angle of 74.8 (6)°. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C—H⋯π inter­actions, forming layers parallel to the ac plane. The layers are linked by offset π–π inter­actions [inter­centroid distance = 3.927 (3) Å], forming a supra­molecular three-dimensional structure. PMID:29250374

  4. Changes in drug use patterns reported on the web after the introduction of ADF OxyContin: findings from the Researched Abuse, Diversion, and Addiction-Related Surveillance (RADARS) System Web Monitoring Program.

    Science.gov (United States)

    Vosburg, Suzanne K; Haynes, Colleen; Besharat, Andrea; Green, Jody L

    2017-09-01

    This qualitative study summarizes information that individuals shared online about use of OxyContin following the August 2010 introduction of the abuse deterrent formulation (ADF). The primary objective was to study online posts that endorsed continued use of OxyContin or a switch from OxyContin to another formulation of oxycodone or another substance altogether following the introduction of the ADF. A secondary objective was to determine whether posts revealed that the ADF led to cessation of OxyContin use. Data were collected with the Researched Abuse, Diversion, and Addiction-Related Surveillance System Web Monitoring Program, an online surveillance system that collects and organizes posts about prescription drugs from social media websites, blogs, and forums from 3Q2009 to 4Q2014 using a commercially available web platform. Posts were categorized by whether they conveyed a switch to drugs other than reformulated OxyContin or a continuation of reformulated OxyContin abuse. "Switch posts" primarily discussed switching to immediate-release opioids. "Continue abusing" posts identified tampering strategies for alternate routes of administration, oral use, and continued use although post authors were generally unhappy with the experience. No reference to OxyContin cessation as a function of the introduction of the ADF was found; however, discontinued use was discussed. Web Monitoring data are useful for capturing cross sections of Internet conversation reflecting reactions to new drug formulations. These data support the notion that users will gravitate to non-ADFs generally, and to immediate-release non-ADF opioid formulations, specifically, as long as these options remain on the market. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Crystal structure of [1,1′:3′,1′′-ter­phenyl]-2′,3,3′′-tri­carb­oxy­lic acid

    Science.gov (United States)

    Decato, Daniel A.; Berryman, Orion B.

    2015-01-01

    The asymmetric unit of the title compound, C21H14O6, com­prises two symmetrically independent mol­ecules that form a locally centrosymmetric hydrogen-bonded dimer, with the planes of the corresponding carb­oxy­lic acid groups rotated by 15.8 (1) and 17.5 (1)° relative to those of the adjacent benzene rings. The crystal as a whole, however, exhibits a noncentrosymmetric packing, described by the polar space group Pca21. The dimers form layers along the ab plane, being inter­connected by hydrogen bonds involving the remaining carb­oxy­lic acid groups. The plane of the central carb­oxy­lic acid group forms dihedral angles of 62.5 (1) and 63.0 (1)° with those of the adjacent benzene rings and functions as a hydrogen-bond donor and acceptor. As a donor, it inter­connects adjacent layers, while as an acceptor it stabilizes the packing within the layers. The ‘distal’ carb­oxy­lic acid groups are nearly coplanar with the planes of the adjacent benzene rings, forming dihedral angles of 1.8 (1) and 7.1 (1)°. These groups also form intra- and inter-layer hydrogen bonds, but with ‘reversed’ functionality, as compared with the central carb­oxy­lic acid groups. PMID:26396894

  6. In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy

    Science.gov (United States)

    Yang, Huan; Wang, Zhenyu; Fang, Delong; Deng, Qiang; Wang, Qiang-Hua; Xiang, Yuan-Yuan; Yang, Yang; Wen, Hai-Hu

    2013-01-01

    The origin of superconductivity in the iron pnictides remains unclear. One suggestion is that superconductivity in these materials has a magnetic origin, which would imply a sign-reversal s± pairing symmetry. Another suggests it is the result of orbital fluctuations, which would imply a sign-equal s++ pairing symmetry. There is no consensus yet which of these two distinct and contrasting pairing symmetries is the right one in iron pnictide superconductors. Here we explore the nature of the pairing symmetry in the superconducting state of Na(Fe0.97−xCo0.03Cux)As by probing the effect of scattering of Cooper pairs by non-magnetic Cu impurities. Using scanning tunnelling spectroscopy, we identify the in-gap quasiparticle states induced by the Cu impurities, showing signatures of Cooper pair breaking by these non-magnetic impurities–a process that is only consistent with s± pairing. This experiment provides strong evidence for the s± pairing. PMID:24248097

  7. Clay minerals, metallic oxides and oxy-hydroxides and soil organic carbon distribution within soil aggregates in temperate forest soils

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Fernández-Ugalde, Oihane; Virto, Iñigo; Arias-González, Ander

    2017-04-01

    Soil mineralogy is of primary importance for key environmental services provided by soils like carbon sequestration. However, current knowledge on the effects of clay mineralogy on soil organic carbon (SOC) stabilization is based on limited and conflicting data. In this study, we investigated the relationship between clay minerals, metallic oxides and oxy-hydroxides and SOC distribution within soil aggregates in mature Pinus radiata D.Don forest plantations. Nine forest stands located in the same geographical area of the Basque Country (North of Spain) were selected. These stands were planted on different parent material (3 on each of the following: sandstone, basalt and trachyte). There were no significant differences in climate and forest management among them. Moreover, soils under these plantations presented similar content of clay particles. We determined bulk SOC storage, clay mineralogy, the content of Fe-Si-Al-oxides and oxyhydroxides and the distribution of organic C in different soil aggregate sizes at different soil depths (0-5 cm and 5-20 cm). The relationship between SOC and abiotic factors was investigated using a factor analysis (PCA) followed by stepwise regression analysis. Soils developed on sandstone showed significantly lower concentration of SOC (29 g C kg-1) than soils developed on basalts (97 g C kg-1) and trachytes (119 g C kg-1). The soils on sandstone presented a mixed clay mineralogy dominated by illite, with lesser amounts of hydroxivermiculite, hydrobiotite and kaolinite, and a total absence of interstratified chlorite/vermiculite. In contrast, the major crystalline clay mineral identified in the soils developed on volcanic rocks was interstratified chlorite/vermiculite. Nevertheless, no major differences were observed between basaltic and trachytic soils in the clay mineralogy. The selective extraction of Fe showed that the oxalate extractable iron was significantly lower in soils on sandstone (3.7%) than on basalts (11.2%) and

  8. Numerical study on NO formation in a pulverized coal-fired furnace using oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiyue; Chen, Yuan; Sheng, Changdong [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    Computational fluid dynamics (CFD) approach was employed to numerically investigate NO formation in a 600 MW wall-fired pulverized coal-fired furnace retrofitted for oxy-coal combustion, aimed at the impacts of flue gas recycle ratio, O{sub 2} staging and recycled NO with the recycled flue gas (RFG) on NO formation and emission. An in-house CFD research code for conventional air combustion was developed and extended to simulate O{sub 2}/RFG combustion with specific considerations of the change of gas properties and its impact on coal particle combustion processes. The extended De Soete mechanisms including NO reburning mechanism were applied to describe transformations of fuel nitrogen. It was shown that CFD simulation represented the significant reduction of NO formation during O{sub 2}/RFG combustion compared to that during air combustion. The in-burner and particularly the in-furnace O{sub 2} staging were confirmed still to play very important roles in NO formation control. Changing the recycle ratio had significant impact on the combustion performance and consequently on NO formation and emission. With the combustion performance ensured, decreasing the flue gas recycle ratio or increasing the inlet O{sub 2} concentration of combustion gas led to reduction of NO formation and emission. Although NO formation and emission was found to increase with increasing the inlet NO concentration of combustion gas, CFD simulation indicated that {proportional_to}74% of the inlet NO was reduced in the furnace, consistent with the experimental data reported in the literature. This demonstrated the significant contribution of reburning mechanism to the reduction of the recycled NO in the furnace.

  9. Prescribing practices amid the OxyContin crisis: examining the effect of print media coverage on opioid prescribing among physicians.

    Science.gov (United States)

    Borwein, Alexandra; Kephart, George; Whelan, Emma; Asbridge, Mark

    2013-12-01

    The pain medication OxyContin (hereafter referred to as oxycodone extended release) has been the subject of sustained, and largely negative, media attention in recent years. We sought to determine whether media coverage of oxycodone extended release in North American newspapers has led to changes in prescribing of the drug in Nova Scotia, Canada. An interrupted time-series design examined the effect of media attention on physicians' monthly prescribing of opioids. The outcome measures were, for each physician, the monthly proportions of all opioids prescribed and the proportion of strong opioids prescribed that were for oxycodone extended release. The exposure of interest was media attention defined as the number of articles published each month in 27 North American newspapers. Variations in media effects by provider characteristics (specialty, prescribing volume, and region) were assessed. Within-provider changes in the prescribing of oxycodone extended release in Nova Scotia were observed, and they followed changes in media coverage. Oxycodone extended release prescribing rose steadily prior to receiving media attention. Following peak media attention in the United States, the prescribing of oxycodone extended release slowed. Likewise, following peak coverage in Canadian newspapers, the prescribing of oxycodone extended release declined. These patterns were observed across prescriber specialties and by prescriber volume, though the magnitude of change in prescribing varied. This study demonstrates that print media reporting of oxycodone extended release in North American newspapers, and its continued portrayal as a social problem, coincided with reductions in the prescribing of oxycodone extended release by physicians in Nova Scotia. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  10. Elucidating the mechanism of Cr(VI) formation upon the interaction with metal oxides during coal oxy-fuel combustion.

    Science.gov (United States)

    Chen, Juan; Jiao, Facun; Zhang, Lian; Yao, Hong; Ninomiya, Yoshihiko

    2013-10-15

    The thermodynamics underpinning the interaction of Cr-bearing species with basic metal oxides, i.e. K2O, Fe2O3, MgO and CaO, during the air and oxy-fuel combustion of coal have been examined. The synchrotron-based X-ray adsorption near-edge spectroscopy (XANES) was used for Cr speciation. For the oxides tested, Cr(VI) formation is dominated by the reduction potential of the metals. The oxides of Ca(2+) with high reduction potential favored the oxidation of Cr(III), same for K(+). The other two basic metals, Fe2O3 and MgO with lower reduction potentials reacted with Cr(III) to form the corresponding chromites at the temperatures above 600°C. Coal combustion experiments in drop-tube furnace have confirmed the rapid capture of Cr vapors, either trivalent or hexavalent, by CaO into solid ash. The existence of HCl in flue gas favored the vaporization of Cr as CrO2Cl2, which was in turn captured by CaO into chromate. Both Fe2O3 and MgO exhibited less capability on scavenging the Cr(VI) vapor. Particularly, MgO alone exhibited a low capability for capturing the vaporized Cr(III) vapors. However, its co-existence with CaO in the furnace inhibited the Cr(VI) formation. This is beneficial for minimizing the toxicity of Cr in the coal combustion-derived fly ash. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Iron oxi-hydroxides characterization and associated elements (S, Se, As, Mo, V, Zr) in the redox environments favorable for uranium deposits

    International Nuclear Information System (INIS)

    Pons, Tony

    2015-01-01

    This work presents a multi-scale and a multi-technical study for the characterization of iron oxi-hydroxides in three uranium-type deposits and host rock. The choice of sites has focused on a roll front deposit: Zoovch Ovoo in a Cretaceous basin of East Gobi (Mongolia); a tectonic-lithological type: Akola/Ebba in Tim Mersoi basin (Niger) and a Proterozoic unconformity type: Kiggavik in Thelon basin (Canada). A new approach has been implemented to characterize the iron oxi-hydroxides on macroscopic samples: field infrared spectroscopy using the ASD TerraSpec spectrometer. From the original indexes calculated on the spectra, it was possible both to characterize the iron oxi-hydroxides; only hematite and goethite were identified in the different parts of oxidized uranium fronts, and visualize the alteration zonation along the redox front. In addition, the visible part of spectrum was used to quantify the color of samples through the IHS system parameters (Intensity - Hue - Saturation) and the Munsell system. The color setting of the study identified a specific hue for mineralized samples studied: a mixture of yellow and red (2.5 to 10 Yr in Munsell notation). At the crystals scale, the iron-hydroxides were characterized by μ-Raman spectroscopy. The study highlighted a difference in crystallinity of hematite crystals in different fields. From a morphological point of view, the crystals of goethite in the Zoovch Ovoo deposit, is only authigenic iron oxi-hydroxides described in this uranium front, are twinned in the form of six-pointed star, reflecting a low crystallization temperature, compared to Niger and Kiggavik deposits. This crystallization is mainly controlled by the availability of Fe(III) ions in the fluid, released by pyrite dissolution in an oxidizing environment and pH. From a chemical point of view, iron oxi-hydroxides record the fluid passage owing their uranium content. Secondly, the composition in trace elements marks the type of deposit, for example

  12. Crystal structure of 2-amino-4-methyl-pyridin-1-ium (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate monohydrate.

    Science.gov (United States)

    Jovita, J V; Sathya, S; Usha, G; Vasanthi, R; Ramanand, A

    2014-09-01

    The title mol-ecular salt, C6H9N2 (+)·C4H5O6 (-)·H2O, crystallized with two 2-amino-4-methyl-pyridin-1-ium cations, two l-(+)-tartaric acid monoanions [systematic name: (2R,3R)-3-carb-oxy-2,3-di-hydroxy-propano-ate] and two water mol-ecules in the asymmetric unit. In the crystal, the cations, anions and water mol-ecules are linked via a number of O-H⋯O and N-H⋯O hydrogen bonds, and a C-H⋯O hydrogen bond, forming a three-dimensional structure.

  13. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    Science.gov (United States)

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-07-15

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2

  14. Application of oxy-fuel CO2 capture for In-situ bitumen extraction from Canada's oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Mark; Goold, Scott; Laux, Stefan; Sharma, Apoorva; Aasen, Knut; Neu, Ben

    2010-09-15

    The CO2 Capture Project, along with Praxair, Devon Canada, Cenovus Energy and Statoil are executing a project to demonstrate oxy-fuel combustion as a practical and economic method for CO2 capture from once-through steam generators used in the in-situ production of bitumen in the Canadian Oil Sands. The goal of the project is to develop a reliable, lower cost solution for capturing CO2 that will eliminate up to 90% of the GHG emissions from in-situ operations. The participants will present results of Phase I of this project, and will also outline the future Phases to pilot this technology.

  15. 3-[(3-(Trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid: An efficient recyclable heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao Jetti

    2017-05-01

    Full Text Available An efficient method for the synthesis of 3,4-dihydropyrimidin-2(1H-ones and thiones through one-pot three-component reaction of ethyl acetoacetate, aryl aldehyde and urea or thiourea in ethanol using 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as catalyst is described. The use of 3-[(3-(trimethoxysilylpropylthio]propane-1-oxy-sulfonic acid as a catalyst offers several advantages such as high yields, short reaction times, mild reaction condition and a recyclable catalyst with a very easy work up.

  16. Predicting Risk of Cognitive Decline in Very Old Adults Using Three Models: The Framingham Stroke Risk Profile; the Cardiovascular Risk Factors, Aging, and Dementia Model; and Oxi-Inflammatory Biomarkers.

    Science.gov (United States)

    Harrison, Stephanie L; de Craen, Anton J M; Kerse, Ngaire; Teh, Ruth; Granic, Antoneta; Davies, Karen; Wesnes, Keith A; den Elzen, Wendy P J; Gussekloo, Jacobijn; Kirkwood, Thomas B L; Robinson, Louise; Jagger, Carol; Siervo, Mario; Stephan, Blossom C M

    2017-02-01

    To examine the Framingham Stroke Risk Profile (FSRP); the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) risk score, and oxi-inflammatory load (cumulative risk score of three blood biomarkers-homocysteine, interleukin-6, C-reactive protein) for associations with cognitive decline using three cohort studies of very old adults and to examine whether incorporating these biomarkers with the risk scores can affect the association with cognitive decline. Three longitudinal, population-based cohort studies. Newcastle-upon-Tyne, United Kingdom; Leiden, the Netherlands; and Lakes and Bay of Plenty District Health Board areas, New Zealand. Newcastle 85+ Study participants (n = 616), Leiden 85-plus Study participants (n = 444), and Life and Living in Advanced Age, a Cohort Study in New Zealand (LiLACS NZ Study) participants (n = 396). FSRP, CAIDE risk score, oxi-inflammatory load, FSRP incorporating oxi-inflammatory load, and CAIDE risk score incorporating oxi-inflammatory load. Oxi-inflammatory load could be calculated only in the Newcastle 85+ and the Leiden 85-plus studies. Measures of global cognitive function were available for all three data sets. Domain-specific measures were available for the Newcastle 85+ and the Leiden 85-plus studies. Meta-analysis of pooled results showed greater risk of incident global cognitive impairment with higher FSRP (hazard ratio (HR) = 1.46, 95% confidence interval (CI) = 1.08-1.98), CAIDE (HR = 1.53, 95% CI = 1.09-2.14), and oxi-inflammatory load (HR = 1.73, 95% CI = 1.04-2.88) scores. Adding oxi-inflammatory load to the risk scores increased the risk of cognitive impairment for the FSRP (HR = 1.65, 95% CI = 1.17-2.33) and the CAIDE model (HR = 1.93, 95% CI = 1.39-2.67). Adding oxi-inflammatory load to cardiovascular risk scores may be useful for determining risk of cognitive impairment in very old adults. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  17. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  18. Antiproliferative effect of a novel nitro-oxy derivative of celecoxib in human colon cancer cells: role of COX-2 and nitric oxide.

    Science.gov (United States)

    Bocca, Claudia; Bozzo, Francesca; Bassignana, Andrea; Miglietta, Antonella

    2010-07-01

    It has been shown previously that a novel nitrooxy derivative of celecoxib exerts antiproliferative and pro-apoptotic effects in human colon cancer cells. The aim of this study was to elucidate whether these biological properties depend on COX-2 inhibition and/or NO release. Therefore, the derivative was decomposed into the parent compound celecoxib and the NO donor benzyl nitrate and the biological role of each was tested in COX-2-positive (HT-29) and -negative (SW-480) colon cancer cells. The main findings were that the nitro-oxy derivative behaved like celecoxib in HT-29 cells in terms of COX-2 and ERK/MAPK inhibition, as well as induction of apoptosis, while the benzyl nitrate had no such effects. Interestingly, the beta-catenin system was activated by the nitro-oxy derivative as well as by benzyl nitrate alone more potently than by the parent compound celecoxib, suggesting a possible regulatory role for NO. In SW480 cells, these activities were substantially less pronounced, suggesting the presence of COX-2-dependent mechanisms in the modulation of these parameters.

  19. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé , Alexander W.; Ohno, Tsutomu; Higgins, Steven R.; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B.

    2015-01-01

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  20. Genome-wide Reconstruction of OxyR and SoxRS Transcriptional Regulatory Networks under Oxidative Stress in Escherichia coli K-12 MG1655

    Directory of Open Access Journals (Sweden)

    Sang Woo Seo

    2015-08-01

    Full Text Available Three transcription factors (TFs, OxyR, SoxR, and SoxS, play a critical role in transcriptional regulation of the defense system for oxidative stress in bacteria. However, their full genome-wide regulatory potential is unknown. Here, we perform a genome-scale reconstruction of the OxyR, SoxR, and SoxS regulons in Escherichia coli K-12 MG1655. Integrative data analysis reveals that a total of 68 genes in 51 transcription units (TUs belong to these regulons. Among them, 48 genes showed more than 2-fold changes in expression level under single-TF-knockout conditions. This reconstruction expands the genome-wide roles of these factors to include direct activation of genes related to amino acid biosynthesis (methionine and aromatic amino acids, cell wall synthesis (lipid A biosynthesis and peptidoglycan growth, and divalent metal ion transport (Mn2+, Zn2+, and Mg2+. Investigating the co-regulation of these genes with other stress-response TFs reveals that they are independently regulated by stress-specific TFs.

  1. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation.

    Science.gov (United States)

    Mollace, Vincenzo; Ragusa, Salvatore; Sacco, Iolanda; Muscoli, Carolina; Sculco, Francesca; Visalli, Valeria; Palma, Ernesto; Muscoli, Saverio; Mondello, Luigi; Dugo, Paola; Rotiroti, Domenicantonio; Romeo, Francesco

    2008-06-01

    Lectin-like oxyLDL receptor-1 (LOX-1) has recently been suggested to be involved in smooth muscle cell (SMC) proliferation and neointima formation in injured blood vessels. This study evaluates the effect of the nonvolatile fraction (NVF), the antioxidant component of bergamot essential oil (BEO), on LOX-1 expression and free radical generation in a model of rat angioplasty. Common carotid arteries injured by balloon angioplasty were removed after 14 days for histopathological, biochemical, and immunohistochemical studies. Balloon injury led to a significant restenosis with SMC proliferation and neointima formation, accompanied by increased expression of LOX-1 receptor, malondialdehyde and superoxide formation, and nitrotyrosine staining. Pretreatment of rats with BEO-NVF reduced the neointima proliferation together with free radical formation and LOX-1 expression in a dose-dependent manner. These results suggest that natural antioxidants may be relevant in the treatment of vascular disorders in which proliferation of SMCs and oxyLDL-related endothelial cell dysfunction are involved.

  2. Effects of low concentration biodiesel blends application on modern passenger cars. Part 3: Impact on PAH, nitro-PAH, and oxy-PAH emissions

    International Nuclear Information System (INIS)

    Karavalakis, Georgios; Fontaras, Georgios; Ampatzoglou, Dimitrios; Kousoulidou, Marina; Stournas, Stamoulis; Samaras, Zissis; Bakeas, Evangelos

    2010-01-01

    This study explores the impact of five different types of methyl esters on polycyclic aromatic hydrocarbon (PAH), nitrated-PAH and oxygenated PAH emissions. The measurements were conducted on a chassis dynamometer, according to the European regulation. Each of the five different biodiesels was blended with EN590 diesel at a proportion of 10-90% v/v (10% biodiesel concentration). The vehicle was a Euro 3 compliant common-rail diesel passenger car. Emission measurements were performed over the NEDC and compared with those of the real traffic-based Artemis driving cycles. The experimental results showed that the addition of biodiesel led to some important increases in low molecular-weight PAHs (phenanthrene and anthracene) and to both increases and reductions in large PAHs which are characterised by their carcinogenic and mutagenic properties. Nitro-PAHs were found to reduce with biodiesel whereas oxy-PAH emissions presented important increases with the biodiesel blends. The impact of biodiesel source material was particularly clear on the formation of PAH compounds. It was found that most PAH emissions decreased as the average load and speed of the driving cycle increased. Cold-start conditions negatively influenced the formation of most PAH compounds. A similar trend was observed with particulate alkane emissions. - This investigation is a contribution to the understanding the impact of different biodiesels on the formation of PAHs, nitro-PAHs and oxy-PAHs over different driving conditions.

  3. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces

    KAUST Repository

    Chassé, Alexander W.

    2015-08-18

    © 2015 American Chemical Society. The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  4. Ferromagnetism in 4H-GaN polytype doped by non-magnetic light elements Li, Be, B, C, O, F, Ne, Na, and Mg: Ab-initio study

    International Nuclear Information System (INIS)

    Torrichi, M.; Ferhat, M.; Bouhafs, B.

    2016-01-01

    Using density-functional theory within the generalized-gradient approximation, we explore the magnetic behavior induced by nonmagnetic impurity X atoms, such as Li, Be, B, C, O, F, Ne, Na, and Mg on cation site in 4H-GaN polytype. The results reveal that Ne doped 4H-GaN has the highest magnetic moment of 3µ B , whereas Mg doped 4H-GaN has the lowest magnetic moment of 0.75µ B . Among the systems studied 4H-GaN doped Ne has been found to be half-metallic, whereas 4H-GaN doped F and Na are found to be nearly half-metallic. The partial density of states evidence that magnetism is achieved through a p-p like coupling between the impurity and the host 2p states. Furthermore, we inspect whether there exists a relationship between the spin-polarization and the local structure around the doping X atoms. It is found that for all the compounds studied, the total magnetic moment increases with increasing the X–N bond lengths. Interestingly, 4H-GaN:Be becomes ferromagnetic with increasing the Be–N bond length, whereas 4H-GaN:Na and 4H-GaN:F become half-metallic with increasing Na–N and F–N bond lengths. - Highlights: • The partial densities of states of 4H-GaN polytype doped light nonmagnetic elements have been investigated. • We found that 4H-GaN:Ne is half metallic. • We found that N atoms induced strong local magnetic. • We found that doping with half-filled X-s impurity states promotes ferromagnetism. • We found that doping with full-filled X-s impurity annihilates ferromagnetism.

  5. NOVEL SILICON BISALKOXY COMPLEXES WITH A PSEUDO-ATRANE STRUCTURE - SYNTHESIS AND MOLECULAR-STRUCTURES OF 2,6-DI(2-HYDROXY(2-ADAMANTYL))ETHYLPYRIDINE AND 2,6-DI(2-OXY(2-ADAMANTYLIDINE))ETHYLPYRIDINE DIMETHYLSILICON

    NARCIS (Netherlands)

    EDEMA, JJH; LIBBERS, R; RIDDER, A; KELLOGG, RM; SPEK, AL; Libbers, Rob

    1994-01-01

    Reaction of 2,6-lutidine with 2 equivalents of (n)BuLi followed by addition of 2-adamantanone affords the doubly functionalized 2,6-di-(2-oxy(2-adamantylidine))ethylpyridine (2a). Reaction of 2a with Me(2)SiCl(2) gives the pseudo-pentacoordinate

  6. Oxy-schorl, Na(Fe2+2Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Bačík, P.; Cempírek, J.; Uher, P.; Novák, M.; Ozdín, D.; Filip, J.; Škoda, R.; Breiter, Karel; Klementová, Mariana; Ďuďa, R.; Groat, L. A.

    2013-01-01

    Roč. 98, 2/3 (2013), s. 485-492 ISSN 0003-004X Institutional support: RVO:67985831 ; RVO:68378271 Keywords : Oxy-schorl * tourmaline-supergroup minerals * new mineral * electron microanalysis * crystal-structure refinement * Přibyslavice * Zlatá Idka Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.059, year: 2013

  7. OxyContin

    Science.gov (United States)

    ... Partner Attend an Event Winter Wish Gala All-Star Tasting Help Fund Our Work Donate Now Start ... struggling with addiction. Donate Follow Us Twitter Facebook YouTube Instagram Privacy Policy Terms of Use Newsroom © 2018 ...

  8. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  9. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz

    2015-01-01

    Highlights: • Mathematical model of an integrated oxy-combustion power plant. • Comparison of a hybrid membrane–cryogenic oxygen generation plant with a cryogenic plant. • Thermodynamic analysis of the modeled cases of the plant. • Comparative economic analysis of the power plant with cryogenic and hybrid ASU. • Comparative risk analysis using a Monte Carlo method and sensitivity analysis. - Abstract: This paper presents a comparison of two types of oxy-combustion power plant that differ from each other in terms of the method of oxygen separation. For the purpose of the analysis, detailed thermodynamic models of oxy-fuel power plants with gross power of approximately 460 MW were built. In the first variant (Case 1), the plant is integrated with a cryogenic air separation unit (ASU). In the second variant (Case 2), the plant is integrated with a hybrid membrane–cryogenic installation. The models were built and optimized using the GateCycle, Aspen Plus and Aspen Custom Modeller software packages and with the use of our own computational codes. The results of the thermodynamic evaluation of the systems, which primarily uses indicators such as the auxiliary power and efficiencies of the whole system and of the individual components that constitute the unit, are presented. Better plant performance is observed for Case 2, which has a net efficiency of electricity generation that is 1.1 percentage points greater than that of Case 1. For the selected structure of the system, an economic analysis of the solutions was made. This analysis accounts for different scenarios of the functioning of the Emission Trading Scheme and includes detailed estimates of the investment costs in both cases. As an indicator of profitability, the break-even price of electricity was used primarily. The results of the analysis for the assumptions made are presented in this paper. A system with a hybrid air separation unit has slightly better economic performance. The break-even price

  10. Development of a low-cost oxy-hydrogen bio-fuel cell for generation of electricity using Nostoc as a source of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sangeeta Dawar; Behera, B.K. [Maharshi Dayanand University, Rohtak (India). Dept. of Biosciences; Prasanna Mohanty [Jawaharlal Nehru University, New Delhi (India). School of Life Sciences

    1998-10-10

    An oxy-hydrogen bio-fuel cell, based on a carbon-carbon electrode has been fabricated. The electrode pellets were prepared by taking carbon powder mixed with polyvinylalcohol as a binder. The anode was charged with Co-Al spinel mixed oxide at 700{sup o}C, 30% KOH acted as an electrolyte. For the cyanobacterial bioreactor, a potential heterocystous blue green alga of Nostoc spp. has been used for hydrogen production and electrical energy generation. Various nutrient enrichment techniques are employed to increase the hydrogen generation efficiency of the algae. One litre free cell algal reactor attached to the fuel cell, at the anode end for hydrogen gas input, generated about 300 mV of voltage and 100 mA of current. Our present findings on the development of a low cost fuel cell with high efficiency of current output may be helpful in commercializing this technology. (author)

  11. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    Science.gov (United States)

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  12. 3,5-Bis(4-meth­oxy­phen­yl)-1-phenyl-4,5-dihydro-1H-pyrazole

    Science.gov (United States)

    Baktır, Zeliha; Akkurt, Mehmet; Samshuddin, S.; Narayana, B.; Yathirajan, H. S.

    2011-01-01

    In the title compound, C23H22N2O2, the central pyrazole ring is nearly planar (r.m.s. deviation = 0.046 Å) and it makes a dihedral angle of 18.5 (2)° with the phenyl ring. The dihedral angles between the phenyl and the two meth­oxy-substituted phenyl rings are 26.2 (2) and 80.6 (2)°. The crystal structure is stabilized by C—H⋯π stacking inter­actions and weak π–π inter­actions [centriod–centroid distance = 3.891 (2) Å]. PMID:21523013

  13. The influence of selected parameters on the efficiency and economic charactersistics of the oxy-type coal unit with a membrane-cryogenic oxygen separator

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-03-01

    Full Text Available In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2 emission by 90%. In this work the influence of the main parameter of the membrane process – the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.

  14. Preparation and study of chlorine mono-fluoride and of chlorine oxi-fluorides; Preparation et etude du monofluorure et des oxyfluorures de chlore

    Energy Technology Data Exchange (ETDEWEB)

    Macheteau, Yves

    1969-07-01

    The objective of this engineering school report was to be a contribution to the study of a family of fluorine compounds: chlorine mono-fluoride (ClF), chlorine fluoride oxide (ClOF), chloryl fluoride (ClO{sub 2}F), perchloryl fluoride (ClO{sub 3}F) and perchloryl oxi-fluoride (ClO{sub 4}F). Such a study required very pure products to be obtained in order to be able to characterize them by different methods (infrared, micro-sublimation, and chromatography). The thermolysis of ClO{sub 2}F and ClO{sub 4}F has been particularly studied, and magnetic resonance has been used to establish a relationship between fluorine chemical displacement and the electro-negativity of the F-X bond where X represents the atom group to which fluorine is bonded.

  15. Efficiency of Iron-Based Oxy-Hydroxides in Removing Antimony from Groundwater to Levels below the Drinking Water Regulation Limits

    Directory of Open Access Journals (Sweden)

    Konstantinos Simeonidis

    2017-02-01

    Full Text Available This study evaluates the efficiency of iron-based oxy-hydroxides to remove antimony from groundwater to meet the requirements of drinking water regulations. Results obtained by batch adsorption experiments indicated that the qualified iron oxy-hydroxide (FeOOH, synthesized at pH 4 for maintaining a high positive charge density (2.5 mmol OH−/g achieved a residual concentration of Sb(III below the EU drinking water regulation limit of 5 μg/L by providing an adsorption capacity of 3.1 mg/g. This is more than twice greater compared either to similar commercial FeOOHs (GFH, Bayoxide or to tetravalent manganese feroxyhyte (Fe-MnOOH adsorbents. In contrast, all tested adsorbents failed to achieve a residual concentration below 5 μg/L for Sb(V. The higher efficiency of the qualified FeOOH was confirmed by rapid small-scale column tests, since an adsorption capacity of 3 mg Sb(III/g was determined at a breakthrough concentration of 5 μg/L. However, it completely failed to achieve Sb(V concentrations below 5 μg/L even at the beginning of the column experiments. The results of leaching tests classified the spent qualified FeOOH to inert wastes. Considering the rapid kinetics of this process (i.e., 85% of total removal was performed within 10 min, the developed qualified adsorbent may be promoted as a prospective material for point-of-use Sb(III removal from water in vulnerable communities, since the adsorbent’s cost was estimated to be close to 30 ± 3.4 €/103 m3 for every 10 μg Sb(III/L removed.

  16. Measurements of partial oxygen pressure pO2 using the OxyLite system in R3327-AT tumors under isoflurane anesthesia.

    Science.gov (United States)

    Wen, Bixiu; Urano, Muneyasu; O'Donoghue, Joseph A; Ling, C Clifton

    2006-09-01

    The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.

  17. Crystal structures and Hirshfeld surface analyses of bis-[N,N-bis-(2-meth-oxy-eth-yl)di-thio-carbamato-κ2S,S']di-n-butyl-tin(IV) and [N-(2-meth-oxy-eth-yl)-N-methyl-dithio-carbamato-κ2S,S']tri-phenyl-tin(IV).

    Science.gov (United States)

    Mohamad, Rapidah; Awang, Normah; Kamaludin, Nurul Farahana; Jotani, Mukesh M; Tiekink, Edward R T

    2018-03-01

    The crystal and mol-ecular structures of the two title organotin di-thio-carbamate compounds, [Sn(C 4 H 9 ) 2 (C 7 H 14 NO 2 S 2 ) 2 ], (I), and [Sn(C 6 H 5 ) 3 (C 5 H 10 NOS 2 )], (II), are described. Both structures feature asymmetrically bound di-thio-carbamate ligands leading to a skew-trapezoidal bipyramidal geometry for the metal atom in (I) and a distorted tetra-hedral geometry in (II). The complete mol-ecule of (I) is generated by a crystallographic twofold axis (Sn site symmetry 2). In the crystal of (I), mol-ecules self-assemble into a supra-molecular array parallel to (10-1) via methyl-ene-C-H⋯O(meth-oxy) inter-actions. In the crystal of (II), supra-molecular dimers are formed via pairs of weak phenyl-C-H⋯π(phen-yl) contacts. In each of (I) and (II), the specified assemblies connect into a three-dimensional architecture without directional inter-actions between them. Hirshfeld surface analyses confirm the importance of H⋯H contacts in the mol-ecular packing of each of (I) and (II), and in the case of (I), highlight the importance of short meth-oxy-H⋯H(but-yl) contacts between layers.

  18. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor deposited onto non-magnetic ternary alloy NiCrW RABiTS tape by in situ pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R I; Kursumovic, A; Majoros, M; Glowacki, B A; Evetts, J E; Tuissi, A; Villa, E; Zamboni, M; Sun, Y; Toenies, S; Weber, H W

    2003-01-01

    Pulsed laser deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)/buffer (Y{sub 2}O{sub 3}, YSZ, CeO{sub 2}) heterostructures have been performed in situ onto recently developed non-magnetic oxygenation resistant NiCrW tape. The influence of the critical processing parameters on texture development are investigated and the issues involved in NiO formation and relation to the substrate surface quality are discussed. The roles of Ni poisoning YBCO as well as local cation disorder are considered as possible current limiting factors. X-ray diffraction has been used for macro-texture evaluation. Both buffers and YBCO layers show good biaxial alignment with {omega} and {phi} scans having best YBCO FWHM values of 4.0 deg. and 6.5 deg. respectively. A comparison is made with results achieved on industrial Ni{sub 50}Fe{sub 50} tape. The film morphology has been characterized using atomic force microscopy and scanning electron microscopy. The cation disorder has been studied by Raman spectroscopy. Critical temperatures of 90 K ({delta}T{sub c}=5 K) have been measured. Direct transport as well as magnetic measurements shows the critical current density J{sub c} is 0.2 MA/cm{sup 2} in self-field at liquid nitrogen temperatures.

  19. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  20. Electrical and gas sensing properties of novel cobalt(II), copper(II), manganese(III) phthalocyanines carrying ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties

    Science.gov (United States)

    Köksoy, Baybars; Aygün, Meryem; Çapkin, Aylin; Dumludağ, Fatih; Bulut, Mustafa

    The synthesis of metallophthalocyanines (M = Co, Cu, Mn) bearing four ethyl 7-oxy-4,8-dimethylcoumarin-3-propanoate moieties was performed. These novel compounds were characterized by elemental analysis, 1H-NMR spectroscopy, FT-IR, UV-vis and mass spectral data. DC and AC electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. AC measurements were performed in the frequency range of 40-105 Hz. Activation energy values of the films took place between 0.55 eV-0.93 eV. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature, indicating semiconductor properties. DC conductivity results also supported this result. Their gas sensing properties were also investigated for the vapors of Volatile Organic Compounds (VOCs), n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C. Sensitivity and response times of the films for the tested vapors were reported. The results were found to be reversible and sensitive to the vapors of n-butyl acetate and ammonia. It was found that Mn(OAc)Pc showed better sensitivity than CoPc and CuPc for n-butyl acetate vapors at all measured vapor concentrations and temperatures. Mn(OAc)Pc also showed better sensitivity than CoPc and CuPc for ammonia vapors at 22°C. Co(II), Cu(II), Mn(III)OAc phthalocyanines bearing four ethyl 7-oxy-4,8-dimethyl-coumarin-3-propanoate moieties were prepared and characterized. DC and AC (40-105 Hz) electrical properties of the films of metallophthalocyanines were investigated in the temperature range of 295-523 K. Impedance spectroscopy measurements revealed that bulk resistance decreases with increasing temperature indicating semiconductor property. Their gas sensing properties were also investigated for the vapors of VOCs, n-butyl acetate (200-3200 ppm) and ammonia (7000-56000 ppm) between temperatures 25-100°C.

  1. Predicting Radiative Heat Transfer in Oxy-Methane Flame Simulations: An Examination of Its Sensitivities to Chemistry and Radiative Property Models

    Directory of Open Access Journals (Sweden)

    Hassan Abdul-Sater

    2015-01-01

    Full Text Available Measurements from confined, laminar oxy-methane flames at different O2/CO2 dilution ratios in the oxidizer are first reported with measurements from methane-air flames included for comparison. Simulations of these flames employing appropriate chemistry and radiative property modeling options were performed to garner insights into the experimental trends and assess prediction sensitivities to the choice of modeling options. The chemistry was modeled employing a mixture-fraction based approach, Eddy dissipation concept (EDC, and refined global finite rate (FR models. Radiative properties were estimated employing four weighted-sum-of-gray-gases (WSGG models formulated from different spectroscopic/model databases. The mixture fraction and EDC models correctly predicted the trends in flame length and OH concentration variations, and the O2, CO2, and temperature measurements outside the flames. The refined FR chemistry model predictions of CO2 and O2 deviated from their measured values in the flame with 50% O2 in the oxidizer. Flame radiant power estimates varied by less than 10% between the mixture fraction and EDC models but more than 60% between the different WSGG models. The largest variations were attributed to the postcombustion gases in the temperature range 500 K–800 K in the upper sections of the furnace which also contributed significantly to the overall radiative transfer.

  2. Demonstration of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with silicon-oxy-nitride as the gate insulator

    International Nuclear Information System (INIS)

    Balachander, K.; Arulkumaran, S.; Egawa, T.; Sano, Y.; Baskar, K.

    2005-01-01

    AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) were fabricated with plasma enhanced chemical vapor deposited silicon oxy-nitride (SiON) as an insulating layer. The compositions of SiON thin films were confirmed using X-ray photoelectron spectroscopy. The fabricated MOSHEMTs exhibited a very high saturation current density of 1.1 A/mm coupled with high positive operational gate voltage up to +7 V. The MOSHEMTs also exhibited four orders of low gate leakage current and high forward-on voltage when compared with the conventional HEMTs. The drain current collapse using gate pulse measurements showed only a negligible difference in the saturation current density revealing the drastic improvement in passivation of the surface states due to the high quality of dielectric thin films deposited. Thus, based on the improved direct-current operation, SiON can be considered to be a potential gate oxide comparable with other dielectric insulators

  3. (E)-Methyl 3-(3,4-dimeth­oxy­phen­yl)-2-[(1,3-dioxoisoindolin-2-yl)meth­yl]acrylate

    Science.gov (United States)

    Kannan, D.; Bakthadoss, M.; Lakshmanan, D.; Murugavel, S.

    2012-01-01

    In the title compound, C21H19NO6, the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth­oxy groups are almost coplanar with the attached benzene ring [C—O—C—C = 3.7 (4) and 4.3 (4)°]. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol­ecules are linked through bifurcated C—H⋯(O,O) hydrogen bonds having R 1 2(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π–π inter­actions [centriod–centroid distance = 3.463 (1) Å]. PMID:22589965

  4. (E)-Methyl 3-(3,4-dimeth-oxy-phen-yl)-2-[(1,3-dioxoisoindolin-2-yl)meth-yl]acrylate.

    Science.gov (United States)

    Kannan, D; Bakthadoss, M; Lakshmanan, D; Murugavel, S

    2012-04-01

    In the title compound, C(21)H(19)NO(6), the isoindole ring system is essentially planar [maximum deviation = 0.019 (2) Å for the N atom] and is oriented at a dihedral angle of 51.3 (1)° with respect to the benzene ring. The two meth-oxy groups are almost coplanar with the attached benzene ring [C-O-C-C = 3.7 (4) and 4.3 (4)°]. The mol-ecular conformation is stabilized by an intra-molecular C-H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, mol-ecules are linked through bifurcated C-H⋯(O,O) hydrogen bonds having R(1) (2)(5) ring motifs, forming chains along the b-axis direction. The crystal packing is further stabilzed by π-π inter-actions [centriod-centroid distance = 3.463 (1) Å].

  5. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  6. Reduction of emission when applying thermal separation processes in the dismantling of nuclear facilities - oxy-fuel gas and plasma arc cutting

    International Nuclear Information System (INIS)

    Stoiber, H.; Hammer, G.; Schultz, H.

    1995-01-01

    Plasma arc cutting and laser beam cutting was used for the studies with the goal of significantly reducing material emission by changing the operating and equipment parameters. Some separations using the oxy-fuel gas cutting process served the purpose of providing a guide for determining which factors can most effectively reduce emission. The separation experiments were carried out with specimens of R-St 37-2, 10 mm thick, as well as of X 6 CrNi 18 10 steel 5, 10, 15 and 20 mm thick. In all cases, lowering speed and the amount of gas proved at first to be effective measures to check material emission. It was also possible to achieve adherence of molten mass and slag on the flank of the joint with excessive icicling. When the plasma separates the CrNi steel, it is possible to increase emission reduction additionally by using an argon/hydrogen mixture instead of nitrogen as a cutting gas. (orig./DG) [de

  7. Soil-to-plant, plant-to-milk and plant-to-meat transfers for the Oxi-sols in Tahiti, French Polynesia

    International Nuclear Information System (INIS)

    Descamps, B.

    2006-01-01

    French Polynesia is included in the latitude band 10 -30 degrees S.. In this band the total deposition of 137 Cs is about 1000 Bq.m -2; the French tests represent 13 % of this total deposition. The radiological survey of the French Polynesia environment exists since the beginning of the French nuclear program in 1966.It concerns 7 islands: Hiva Oa in the north (10 degrees S), Tubuai in the south (25 degrees S) and, from east to west, Mangareva, Hao, Rangiroa, Tahiti and Maupiti. Tahiti is a recent, high and volcanic island;it is the largest of the French Polynesia as a whole.Under tropical humid climate with heavy rainfalls, high summer temperatures, and excessive air humidity, the strong relief has been considerably eroded with the formation of particular soils, the oxi-sols.On these soils, in the Taravao peninsula, a cattle breeding farm of about 400 hectares has been studied since more than 30 years. Local milk is an important contributor to the ingestion dose in Tahiti and also an excellent item for the determination of the effective decrease of long -lived radionuclides in the environment. During the 1974 -1994 period the long term decrease for milk shows an effective half-live of 14.8 years and an environmental half-live of 24.8 years.In west european zones the effective half-live is about 5 years. To explain this difference we must mainly consider that the pasture zone in Taravao peninsula is a natural area whereas it is semi-natural in Europe. Moreover we assume that a 137 Cs stocking zone exists with very humic soils in some higher summits; a progressive lixiviation of 137 Cs could take place then. For the 1974 -1994 period the effective half live for the beef meat is about 11.5 years against 18.5 years for the environmental half-live. The difference between effective half-live for milk and meat can be explain by a greater collection zone for meat than for milk. The soil-to-plant transfer factor (F.T.) is about 10 (reporting dry matter) for the genus

  8. EOSLT Consortium Biomass Co-firing. WP 4. Biomass co-firing in oxy-fuel combustion. Part 1. Lab- Scale Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fryda, L.E. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2011-07-15

    In the frame of WP4 of the EOS LT Co-firing program, the ash formation and deposition of selected coal/biomass blends under oxyfuel and air conditions were studied experimentally in the ECN lab scale coal combustor (LCS). The fuels used were Russian coal, South African coal and Greek Lignite, either combusted separately or in blends with cocoa and olive residue. The first trial period included tests with the Russian and South African coals and their blends with cocoa, the second trial period included Lignite with olive residue tests and a final period firing only Lignite and Russian coal, mainly to check and verify the observed results. During the testing, also enriched air combustion was applied, in order to establish conclusions whether a systematic trend on ash formation and deposition exists, ranging from conventional air, to enriched air (improving post combustion applications) until oxyfuel conditions. A horizontal deposition probe equipped with thermocouples and heat transfer sensors for on line data acquisition, and a cascade impactor (staged filter) to obtain size distributed ash samples including the submicron range at the reactor exit were used. The deposition ratio and the deposition propensity measured for the various experimental conditions were higher in all oxyfuel cases. No significant variations in the ash formation mechanisms and the ash composition were established. Finally the data obtained from the tests performed under air and oxy-fuel conditions were utilised for chemical equilibrium calculations in order to facilitate the interpretation of the measured data; the results indicate that temperature dependence and fuels/blends ash composition are the major factors affecting gaseous compound and ash composition rather than the combustion environment, which seems to affect neither the ash and fine ash (submicron) formation, nor the ash composition. The ash deposition mechanisms were studied in more detail in Part II of this report.

  9. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides

    International Nuclear Information System (INIS)

    Duc, M.

    2002-11-01

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  10. Analysis of an integrated cryogenic air separation unit, oxy-combustion carbon dioxide power cycle and liquefied natural gas regasification process by exergoeconomic method

    International Nuclear Information System (INIS)

    Mehrpooya, Mehdi; Zonouz, Masood Jalali

    2017-01-01

    Highlights: • Exergoeconomic analyses is done on an integrated cryogenic air separation unit. • Liquefied natural gas cold energy is used in the process. • The main multi stream heat exchanger is the worst device based on the results. - Abstract: Exergoeconomic and sensitivity analyses are performed on the integrated cryogenic air separation unit, oxy-combustion Carbon dioxide power cycle and liquefied natural gas regasification process. Exergy destruction, exergy efficiency, cost rate of exergy destruction, cost rate of capital investment and operating and maintenance, exergoeconomic factor and relative cost difference have been calculated for the major components of the process. The exergy efficiency of the process is around 67.1% and after mixers, tees, tank and expansion valves the multi-stream heat exchanger H-3 have the best exergy efficiency among all process components. Total exergy destruction rate of the process is 1.93 × 10"7 kW. Results of exergoeconomic analysis demonstrates that maximum exergy destruction and capital investment operating and maintenance cost rate are related to the multi-stream heat exchanger H-1 and pump P-1 with the values of 335,144 ($/h) and 12,838 ($/h), respectively. In the sensitivity analysis section the effects of the varying economic parameters, such as interest rate and plant life time are investigated on the trend of the capital investment operating and maintenance cost rate of the major components of the process and in another cases the effect of the gas turbine isentropic efficiency on the exergy and exergoeconomic parameters are studied.

  11. Role of CO2 in the oxy-dehydrogenation of ethylbenzene to styrene on the CeO2(111) surface

    Science.gov (United States)

    Fan, Hong-Xia; Feng, Jie; Li, Wen-Ying; Li, Xiao-Hong; Wiltowski, Tomasz; Ge, Qing-Feng

    2018-01-01

    The role of CO2 in the ethylbenzene oxy-dehydrogenation to styrene on the CeO2(111) surface was thoroughly investigated by the density functional theory (DFT) calculations. Results show that the first Csbnd H bond of ethylbenzene is activated via the oxo-insertion with a barrier of 1.70 eV, resulting in a 2-phenylethyl species and an H atom adsorbed on two-adjacent-lattice oxygen. The H adatom forms a hydroxyl-like species (denoted as O*H). The subsequent dehydrogenation to styrene can be assisted by either the next lattice oxygen (pathway R1) or the O*H species (pathway R2). The two pathways have almost the same activation energy (0.84 eV for R1 and 0.85 eV for R2), forming a new O*H and desorbing a H2O molecule while leaving an oxygen vacancy on the surface, respectively. In the presence of CO2, it will react with O*H through the reverse water gas shift reaction with an activation barrier of 0.98 eV and reaction energy of 0.30 eV. The reverse water gas shift reaction helps to clear the H adatoms from the lattice oxygen, thereby competing with styrene formation via pathway R2. However, the activation energy following the reverse water gas shift mechanism is 0.13 eV higher than that of styrene formation via pathway R2. Therefore, the formation of oxygen vacancy cannot be inhibited, while CO2 can react with the surface oxygen vacancy to produce CO with a high activation energy of 2.10 eV.

  12. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE = Eu3+, Tb3+) under UV, VUV excitation

    International Nuclear Information System (INIS)

    Ingle, J.T.; Gawande, A.B.; Sonekar, R.P.; Omanwar, S.K.; Wang, Yuhua; Zhao, Lei

    2014-01-01

    Graphical abstract: VUV Photoluminescence of YCa 4 O(BO 3 ) 3 : Eu 3+ and YCa 4 O(BO 3 ) 3 : Tb 3+ for PDPs applications. Highlights: • Inorganic Oxy-borate phosphors YCa 4 O(BO 3 ) 3 :Eu 3+ ,Tb 3+ was synthesized by novel solution combustion synthesis. • This single host produces efficient and intense Red and Green color for display applications. • Good agreement with CIE co-ordinates as prescribes by NTCL, for flat panel, PDP display color. • Synthesized materials were characterized using powder XRD, FE-SEM, UV and VUV Spectophotometer. -- Abstract: The inorganic Oxy-borate host phosphors YCa 4 O(BO 3 ) 3 :RE 3+ (RE = Eu 3+ ,Tb 3+ ) were synthesized by a novel solution combustion technique. The synthesis is based on the exothermic reaction between the fuel (Urea) and Oxidizer (Ammonium nitrate). The heat generated in reaction is use for auto combustion of precursors. The structures of the prepared samples were confirmed by powder XRD technique. The photoluminescence properties of the powder samples were investigated under UV and VUV excitation; “The phosphor YCa 4 O(BO 3 ) 3 :Eu 3+ and YCa 4 O(BO 3 ) 3 :Tb 3+ shows strong absorption in UV and VUV region and exhibits intense red and green emission upon excited by 254 nm UV and 147 nm VUV radiation”

  13. Effects of Y2O3 on crystallization kinetics of SiO2-Al2O3-CaO-CaF2 oxy-fluoride glass-ceramic system

    Directory of Open Access Journals (Sweden)

    M. Soleymani Zarabad

    Full Text Available Differential thermal analysis (DTA patterns of SiO2-Al2O3-CaO-CaF2 oxy-fluoride glass system with adding different amounts of Y2O3 from 0.5 (wt% to 1.5 (wt% have been studied under isochronal circumstances. It is concluded that, the crystallization of the glasses is a process controlled by Avrami nucleation, three dimensional diffusion controlled growth and anisotropic growth impingement mode. Afterwards, the effective activation energy Qp, growth exponent, nucleation activation energy QN, and growth activation energy QG, have been determined and were in the range of 283–321 kJ mol−1, 2.05–2.25, 190–249 kJ mol−1 and 325–349 kJ mol−1, respectively. Qp, QN, QG and np are increased with increase of Y2O3 amount, which is related to the network forming role of Y2O3 in these systems. Keywords: Oxy-fluoride glass-ceramics, Activation energy, Crystallization mechanism, Growth exponent

  14. Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: A first-principles viewpoint

    KAUST Repository

    Harb, Moussab

    2014-01-01

    Finding an ideal photocatalyst for achieving efficient overall water splitting still remains a great challenge. By applying accurate first-principles quantum calculations based on DFT with the screened non-local hybrid HSE06 functional, we bring rational insights at the atomic level into the influence of non-stoichiometric compositions on essential properties of tantalum (oxy)nitride compounds as visible-light-responsive photocatalysts for water splitting. Indeed, recent experiments show that such non-stoichiometry is inherent to the nitridation methods of tantalum oxide with unavoidable oxygen impurities. We considered here O-enriched Ta3N5 and N-enriched TaON materials. Although their structural parameters are found to be very similar to those of pure compounds and in good agreement with available experimental studies, their photocatalytic features for visible-light-driven overall water splitting reactions show different behaviors. Further partial nitration of TaON leads to a narrowed band gap, but partially oxidizing Ta3N5 causes only subtle changes in the gap. The main influence, however, is on the band edge positions relative to water redox potentials. The pure Ta3N5 is predicted to be a good candidate only for H+ reduction and H2 evolution, while the pure TaON is predicted to be a good candidate for water oxidation and O2 evolution. Non-stoichiometry has here a positive influence, since partially oxidized tantalum nitride, Ta(3-x)N(5-5x)O5x (for x ≥ 0.16) i.e. with a composition in between TaON and Ta3N5, reveals suitable band edge positions that correctly bracket the water redox potentials for visible-light-driven overall water splitting reactions. Among the various explored Ta(3-x)N(5-5x)O5x structures, a strong stabilization is obtained for the configuration displaying a strong interaction between the O-impurities and the created Ta-vacancies. In the lowest-energy structure, each created Ta-vacancy is surrounded by five O-impurity species substituting

  15. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    International Nuclear Information System (INIS)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-01-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn_6O_4(OH)_4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn_6O_4(OH)_4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn_6O_4(OH)_4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)_3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO_2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ("2C) and monodentate ("1V) geometries, at the expense of the present bidentate mononuclear ("2E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn_6O_4(OH)_4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the "2C and "1V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn_6O_4(OH)_4 • Sn_6O_4(OH)_4 transformation to SnO_2 after Cr(VI) reduction to Cr(III) • Strong Cr(III) sorption onto SnO_2 by formation of inner sphere complexes • Cr(III) sorption

  16. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    Science.gov (United States)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Duc, M

    2002-11-15

    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  18. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, Fani; Kaprara, Efthimia [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos [Aristotle University of Thessaloniki, School of Physics, Department of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, Manassis, E-mail: manasis@eng.auth.gr [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn{sub 6}O{sub 4}(OH){sub 4}) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn{sub 6}O{sub 4}(OH){sub 4} for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn{sub 6}O{sub 4}(OH){sub 4} can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH){sub 3} precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO{sub 2}, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ({sup 2}C) and monodentate ({sup 1}V) geometries, at the expense of the present bidentate mononuclear ({sup 2}E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn{sub 6}O{sub 4}(OH){sub 4} in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the {sup 2}C and {sup 1}V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn{sub 6}O{sub 4}(OH){sub 4} • Sn{sub 6}O{sub 4}(OH){sub 4} transformation to SnO{sub 2} after Cr

  19. Development & automation of a novel ["1"8F]F prosthetic group, 2-["1"8F]-fluoro-3-pyridinecarboxaldehyde, and its application to an amino(oxy)-functionalised Aβ peptide

    International Nuclear Information System (INIS)

    Morris, Olivia; Gregory, J.; Kadirvel, M.; Henderson, Fiona; Blykers, A.; McMahon, Adam; Taylor, Mark; Allsop, David; Allan, Stuart; Grigg, J.; Boutin, Herve; Prenant, Christian

    2016-01-01

    2-["1"8F]-Fluoro-3-pyridinecarboxaldehyde (["1"8F]FPCA) is a novel, water-soluble prosthetic group. It's radiochemistry has been developed and fully-automated for application in chemoselective radiolabelling of amino(oxy)-derivatised RI-OR2-TAT peptide, (Aoa-k)-RI-OR2-TAT, using a GE TRACERlab FX-FN. RI-OR2-TAT is a brain-penetrant, retro-inverso peptide that binds to amyloid species associated with Alzheimer's Disease. Radiolabelled (Aoa-k)-RI-OR2-TAT was reproducibly synthesised and the product of the reaction with FPCA has been fully characterised. In-vivo biodistribution of ["1"8F]RI-OR2-TAT has been measured in Wistar rats.

  20. Development of novel CO{sub 2}-stable oxygen permeable dual phase membranes for CO{sub 2} capture in an oxy-fuel process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huixia

    2012-07-19

    The combustion of fossil fuels in power stations with pure oxygen following the oxy-fuel process allows the Sequestration of CO{sub 2}. The pure oxygen needed can be separated from air by oxygen transporting ceramics like single phase perovskites. However, most of the so far developed single phase perovskites have stability problems in a CO{sub 2} containing atmosphere. Dual phase membranes are micro-scale mixtures of an electron conducting phase and an oxygen ion conducting phase and their compositions can be tailored according to practical requirements, which are considered to be promising substitutes for the single phase perovskite materials. In my thesis the issues of phase stability for perovskite-type material with the common composition Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 3-{delta}} (BSCF) as weil as the development of a series of novel CO{sub 2}-stable dual phase membranes were studied. In Chapter 2, the phase stability and permeation behavior of a dead-end BSCF tube membrane in high-purity oxygen at temperatures below 750 C, were elucidated using powder X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field (HAADF) and scanning transmission electron microscopy (STEM). lt was found that parts of the cubic perovskite BSCF transformed into a hexagonal perovskite Ba{sub 0.5{+-}x}Sr{sub 0.5{+-}x}CoO{sub 3-{delta}} (x {approx} 0.1) and a trigonal mixed oxide Ba{sub 1-x}Sr{sub x}CO{sub 2-y}Fe{sub y}O{sub 5{+-}{delta}} (x {approx} 0.15, y {approx} 0.25) in high-purity oxygen at 750 C. On the other hand, it was found that the partial degradation of cubic BSCF perovskite at 750 C was more pronounced under the strongly oxidizing conditions on the oxygen supply (feed) side than on the oxygen release (permeate) side of the membrane. The structural instability of BSCF is attributed to an oxidation of cobalt from Co{sup 2+} to Co{sup 3+} and Co{sup 4+}, which exhibits an ionic radius that is too small to be tolerated by

  1. Performance and stability of (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-LaCr0.85Cu0.10Ni0.05O3-δ oxygen transport membranes under conditions relevant for oxy-fuel combustion

    DEFF Research Database (Denmark)

    Pirou, Stéven; Bermudez, Jose M.; Tak Na, Beom

    2018-01-01

    Self-standing, planar dual-phase oxygen transport membranes consisting of 70 vol.% (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10 (10Sc1YSZ) and 30 vol.% LaCr0.85Cu0.10Ni0.05O3-δ (LCCN) were successfully developed and tested. The stability of the composite membrane was studied in simulated oxy-fuel power plant...

  2. Regional Differential Effects of the Novel Histamine H3 Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats

    OpenAIRE

    Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della; Blandina, Patrizio

    2010-01-01

    After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3...

  3. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability.

    Science.gov (United States)

    Arp, Hans Peter H; Lundstedt, Staffan; Josefsson, Sarah; Cornelissen, Gerard; Enell, Anja; Allard, Ann-Sofie; Kleja, Dan Berggren

    2014-10-07

    Soil quality standards are based on partitioning and toxicity data for laboratory-spiked reference soils, instead of real world, historically contaminated soils, which would be more representative. Here 21 diverse historically contaminated soils from Sweden, Belgium, and France were obtained, and the soil-porewater partitioning along with the bioaccumulation in exposed worms (Enchytraeus crypticus) of native polycyclic aromatic compounds (PACs) were quantified. The native PACs investigated were polycyclic aromatic hydrocarbons (PAHs) and, for the first time to be included in such a study, oxygenated-PAHs (oxy-PAHs) and nitrogen containing heterocyclic PACs (N-PACs). The passive sampler polyoxymethylene (POM) was used to measure the equilibrium freely dissolved porewater concentration, Cpw, of all PACs. The obtained organic carbon normalized partitioning coefficients, KTOC, show that sorption of these native PACs is much stronger than observed in laboratory-spiked soils (typically by factors 10 to 100), which has been reported previously for PAHs but here for the first time for oxy-PAHs and N-PACs. A recently developed KTOC model for historically contaminated sediments predicted the 597 unique, native KTOC values in this study within a factor 30 for 100% of the data and a factor 3 for 58% of the data, without calibration. This model assumes that TOC in pyrogenic-impacted areas sorbs similarly to coal tar, rather than octanol as typically assumed. Black carbon (BC) inclusive partitioning models exhibited substantially poorer performance. Regarding bioaccumulation, Cpw combined with liposome-water partition coefficients corresponded better with measured worm lipid concentrations, Clipid (within a factor 10 for 85% of all PACs and soils), than Cpw combined with octanol-water partition coefficients (within a factor 10 for 76% of all PACs and soils). E. crypticus mortality and reproducibility were also quantified. No enhanced mortality was observed in the 21 historically

  4. Influence of synthesis route and composition on electrical properties of La{sub 9.33+x}Si{sub 6}O{sub 26+3x/2} oxy-apatite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chesnaud, A.; Dezanneau, G.; Bogicevic, C.; Karolak, F.; Geneste, G. [Laboratoire Structure Proprietes et Modelisation des Solides, Ecole Centrale Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry Cedex (France); Estournes, C. [CIRIMAT et Plateforme Nationale de Frittage Flash du CNRS (PNF2-MHT-UPS), Universite Paul-Sabatier, 118 Route de Narbonne, 31062, Toulouse (France); Geiger, S. [Laboratoire Structure Proprietes et Modelisation des Solides, Ecole Centrale Paris, Grande Voie des Vignes, 92295, Chatenay-Malabry Cedex (France)]|[Faculte de Pharmacie, Universite Paris-Sud, 5 Rue J-B Clement, 92296, Chatenay-Malabry (France)

    2008-10-15

    Oxy-apatite materials La{sub 9.33+x}Si{sub 6}O{sub 26+3x/2} are thought as zirconia-substitutes in Solid Oxide Fuel Cells due to their fast ionic conduction. However, the well-known difficulties related to their densification prevent them from being used as such. This paper presents strategies to obtain oxy-apatite dense materials. First, freeze-drying has been optimized to obtain ultrafine and very homogeneous La{sub 9.33+x}Si{sub 6}O{sub 26+3x/2} (0{<=}x{<=}0.67) nanopowders. From these powders, conventional and Spark Plasma Sintering (SPS) have been used leading to very dense samples obtained at temperatures rather lower than those previously reported. For instance, SPS has allowed to prepare fully dense and transparent ceramics from 1200 C under 100 MPa. The microstructure and transport properties of such samples have been then evaluated as a function of sintering conditions and lanthanum content. It will be show that for lanthanum content higher than 9.60 per unit formula, the parasitic phase La{sub 2}SiO{sub 5} appears leading to a degradation of conduction properties. We also show that grain boundaries and porosity (for conventionally-sintered materials) seem to have blocking effects on oxygen transport. The highest overall conductivity values at 700 C, i.e. {sigma}{sub 700{sub C}} = 7.33.10{sup -3} S cm{sup -1}, were measured for La{sub 9.33}Si{sub 6}O{sub 26} material conventionally-sintered at 1500 C which contains bigger grains' size by comparison with {sigma}{sub 700{sub C}} = 4.77.10{sup -3} S cm{sup -1} for SPS-sintered materials at the same temperature but for few minutes. These values are associated with activation energies close to 0.83-0.91 eV, regardless of sintering condition, which are commonly encountered for anionic conductivity into such materials. (author)

  5. Ash partitioning during the oxy-fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H{sub 2}O, HCl and SO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Facun Jiao; Juan Chen; Lian Zhang; Yajuan Wei; Yoshihiko Ninomiya; Sankar Bhattacharya; Hong Yao [Monash University, Clayton, Vic. (Australia). Department of Chemical Engineering

    2011-06-15

    Oxy-fuel combustion of a brown coal (i.e. lignite) has been carried out at 1000{sup o}C to experimentally examine the vaporisation of organically bound metals and the agglomeration of ash particles as a function of the concentration of gaseous impurities including H{sub 2}O, HCl and SO{sub 2} in about 27% O{sub 2} balanced with CO{sub 2}. The properties of bulk ash and individual metals were investigated intensively. Particularly, attention was paid to Na which is notorious for fouling and to organically bound Al which has been less studied. The results indicate that, the organically bound metals, although possessing a very low content in the raw coal, are vital for the agglomeration of ash particles, which are also highly sensitive to the loading of gas impurities in flue gas. HCl recirculation is the most crucial factor promoting the vaporisation of metals via chlorination. Apart from alkali metals, the organically bound Al and Ti were also vaporised noticeably. Recirculation of SO{sub 2} promoted the sulfation of Na to condense into liquid droplet which increased fine ash yield. Co-existence of bulk HCl and SO{sub 2} played a synergetic role in the sulfation of Na via an initial chlorination of the char-bound Na. In contrast, co-existence of steam with HCl and SO{sub 2} favored the formation of Na alumino-silicates, which are favorable for ash agglomeration. 34 refs., 15 figs., 3 tabs.

  6. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    Science.gov (United States)

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  7. In vitro anti-Candida activity and single crystal X-ray structure of ({(1E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amino}oxy(4-nitrophenylmethanone

    Directory of Open Access Journals (Sweden)

    Mohamed I. Attia

    2014-03-01

    Full Text Available Synthesis, characterization, and anti-Candida activity of ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amino}oxy(4-nitrophenylmethanone (4 are repor-ted. Compound 4 showed anti-Candida albicans activity (MIC = 0.6862 µmol/mL being nearly 5-fold more potent than the gold standard antifungal drug, fluconazole (MIC ˃ 3.265 µmol/mL, on the clinical isolates of Candida albicans. Single crystal X-ray structure of the title compound 4 confirmed its assigned (E-configuration. The compound crystallizes in the triclinic, P-1 (no. 2, a = 6.4633 (1 Å, b = 11.1063 (2 Å, c = 12.9872 (2 Å, α = 67.650 (1°, β = 86.415 (1°, γ = 86.776 (1°, V = 860.01 (3Å3, Z = 2, R(F = 0.046, wR(F2 = 0.139, T = 296 K. The crystal structure is stabilized by weak intermolecular C—H•••O hydrogen interactions.

  8. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  9. Influences of residual oxygen impurities, cubic indium oxide grains and indium oxy-nitride alloy grains in hexagonal InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yodo, T.; Nakamura, T.; Kouyama, T.; Harada, Y.

    2005-01-01

    We investigated the influences of residual oxygen (O) impurities, cubic indium oxide (β-In 2 O 3 ) grains and indium oxy-nitride (InON) alloy grains in 200 nm-thick hexagonal (α)-InN crystalline films grown on Si(111) substrates by electron cyclotron resonance plasma-assisted molecular beam epitaxy. Although β-In 2 O 3 grains with wide band-gap energy were formed in In film by N 2 annealing, they were not easily formed in N 2 -annealed InN films. Even if they were not detected in N 2 -annealed InN films, the as-grown films still contained residual O impurities with concentrations of less than 0.5% ([O]≤0.5%). Although [O]∝1% could be estimated by investigating In 2 O 3 grains formed in N 2 -annealed InN films, [O]≤0.5% could not be measured by it. However, we found that they can be qualitatively measured by investigating In 2 O 3 grains formed by H 2 annealing with higher reactivity with InN and O 2 , using X-ray diffraction and PL spectroscopy. In this paper, we discuss the formation mechanism of InON alloy grains in InN films. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5′-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yan-Peng [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Department of Chemistry and Chemical Engineering, Ordos College of Inner Mongolia University, Ordos 017000 (China); Department of Chemistry and Chemical Engineering, Ordos Applied Technology College, Ordos 017000 (China); Guo, Le [Department of Chemistry and Chemical Engineering, Ordos College of Inner Mongolia University, Ordos 017000 (China); Department of Chemistry and Chemical Engineering, Ordos Applied Technology College, Ordos 017000 (China); Dong, Wei; Jia, Min; Zhang, Jing-Xue; Sun, Zhong [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Chang, Fei, E-mail: ndchfei@imu.edu.cn [Inner Mongolia Key Lab Chem & Phys Rare Earth Mat, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2016-08-15

    Three new mixed-ligand metal-organic frameworks based on 5,5′-(butane-1,4- diyl)-bis(oxy)-diisophthalic acid and transitional metal cations with the help of two ancillary bridging N-donor pyridyl and imidazole linkers, [Zn(L){sub 0.5}(4,4′-bpy)]·2(H{sub 2}O) (1), [M(L){sub 0.5}(bib)]·4(H{sub 2}O) (M = Zn (2), Co (3)), (4,4′-bpy=4,4′–bipyridine, bib=1,4-bis (1H-imidazol-1-yl)-butane), have been synthesized under solvothermal conditions. Their structures and properties were determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses and thermogravimetric analyses (TGA). Compounds 1–3 display a 3D 3-fold interpenetrated frameworks linked by the L{sup 4−} ligands, ancillary N-donor linkers and the free water molecules in the crystal lattice. Topological analysis reveals that 1–3 are a (4,4)-connected bbf topology net with the (6{sup 4}·8{sup 2})(6{sup 6}) topology. The effects of the L{sup 4−} anions, the N-donor ligands, and the metal ions on the structures of the coordination polymers have been discussed. Furthermore, luminescence properties and thermogravimetric properties of these compounds were investigated. - Graphical abstract: Three new compounds of MOFs have been prepared and characterized. The luminescence properties and thermogravimetric properties of compounds were investigated. Display Omitted.

  11. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent

    Science.gov (United States)

    Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.

    2018-05-01

    The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.

  12. Correlations of mutations in katG, oxyR-ahpC and inhA genes and in vitro susceptibility in Mycobacterium tuberculosis clinical strains segregated by spoligotype families from tuberculosis prevalent countries in South America

    Directory of Open Access Journals (Sweden)

    Suffys Philip N

    2009-02-01

    Full Text Available Abstract Background Mutations associated with resistance to rifampin or streptomycin have been reported for W/Beijing and Latin American Mediterranean (LAM strain families of Mycobacterium tuberculosis. A few studies with limited sample sizes have separately evaluated mutations in katG, ahpC and inhA genes that are associated with isoniazid (INH resistance. Increasing prevalence of INH resistance, especially in high tuberculosis (TB prevalent countries is worsening the burden of TB control programs, since similar transmission rates are noted for INH susceptible and resistant M. tuberculosis strains. Results We, therefore, conducted a comprehensive evaluation of INH resistant M. tuberculosis strains (n = 224 from three South American countries with high burden of drug resistant TB to characterize mutations in katG, ahpC and inhA gene loci and correlate with minimal inhibitory concentrations (MIC levels and spoligotype strain family. Mutations in katG were observed in 181 (80.8% of the isolates of which 178 (98.3% was contributed by the katG S315T mutation. Additional mutations seen included oxyR-ahpC; inhA regulatory region and inhA structural gene. The S315T katG mutation was significantly more likely to be associated with MIC for INH ≥2 μg/mL. The S315T katG mutation was also more frequent in Haarlem family strains than LAM (n = 81 and T strain families. Conclusion Our data suggests that genetic screening for the S315T katG mutation may provide rapid information for anti-TB regimen selection, epidemiological monitoring of INH resistance and, possibly, to track transmission of INH resistant strains.

  13. Hydroquinone analog 4-[(Tetrahydro-2H-pyran-2‑yl) oxy] phenol induces C26 colon cancer cell apoptosis and inhibits tumor growth in vivo.

    Science.gov (United States)

    Du, Qigen; Xin, Guang; Niu, Hai; Huang, Wen

    2015-06-01

    The 4[(Tetrahydro‑2H‑pyran‑2‑yl) oxy] phenol (XG‑d) hydroquinone analog, is found in Vaccinium vitis‑idaea  L. Although it is known for its antioxidant properties and high level of safety, its antitumor activity remains to be elucidated. In the present study, the anticancer effect of XG‑d was determined in vitro and in vivo. The cytotoxicity of XG‑d against C26 murine colon carcinoma cells was found to occur in a time‑ and concentration‑dependent manner, whereas little effect was observed in the two normal cell lines (HK‑2 and L02) investigated. Oral administration of XG‑d (100 mg/kg) had effects on the tumor growth of tumor‑bearing mice. Furthermore, marked apoptosis was observed using Hoechst 33258 staining and flow cytometric analysis with annexin V/propidium iodide double staining. XG‑d also downregulated the expression of B‑cell lymphoma 2 (Bcl‑2), increased the expression levels of Bcl‑2‑associated X protein and activated caspase‑9, caspase‑3 and poly(adenosine diphosphate‑ribose) polymerase. The present study demonstrated for the first time, to the best of our knowledge, that XG‑d inhibited cancer cell growth via the induction of apoptosis and was also able to inhibit tumor growth in vivo. These results demonstrated that XG‑d may be used as a potential natural agent for cancer therapy with low toxicity.

  14. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status.

    Science.gov (United States)

    Guseva, Natalya V; Rokhlin, Oskar W; Glover, Rebecca A; Cohen, Michael B

    2011-07-01

    A key player in prostate cancer development and progression is the androgen receptor (AR). Tumor-associated lipogenesis can protect cancer cells from carcinogenic- and therapeutic-associated treatments. Increased synthesis of fatty acids and cholesterol is regulated by androgens through induction of several genes in androgen-responsive cancer cells. Acetyl-CoA-carboxylase-α (ACCA) is a key enzyme in the regulation of fatty acids synthesis. Here we show that AR binds in vivo to intron regions of human ACCA gene. We also show that the level of ACCA protein in LNCaP depends on AR expression and that DHT treatment increases ACCA expression and fatty acid synthesis. Inhibition of ACCA by TOFA (5-tetradecyl-oxy-2-furoic acid) decreases fatty acid synthesis and induces caspase activation and cell death in most PCa cell lines. Our data suggest that TOFA can kill cells via the mitochondrial pathway since we found cytochrome c release after TOFA treatment in androgen sensitive cell lines. The results also imply that the pro-apoptotic effect of TOFA may be mediated via a decrease of neuropilin-1(NRP1) and Mcl-1expression. We have previously reported that Mcl-1 is under AR regulation and plays an important role in resistance to drug-induced apoptosis in prostate cancer cells, and NRP1 is known to regulate Mcl-1 expression. Here, we show for the first time that NRP1 expression is under AR control. Taken together, our data suggest that TOFA is a potent cell death inducing agent in prostate cancer cells.

  15. F19 relaxation in non-magnetic hexafluorides

    International Nuclear Information System (INIS)

    Rigny, P.

    1969-01-01

    The interesting properties of the fluorine magnetic resonance in the hexafluorides of molybdenum, tungsten and uranium, are very much due to large anisotropies of the chemical shift tensors. In the solid phases these anisotropies, the values of which are deduced from line shape studies, allow one to show that the molecules undergo hindered rotations about the metal atom. The temperature and frequency dependence of the fluorine longitudinal relaxation times shows that the relaxation is due to the molecular motion. The dynamical parameters of this motion are then deduced from the complete study of the fluorine relaxation in the rotating frame. In the liquid phases, the existence of anisotropies allows an estimation of the different contributions to the relaxation. In particular, the frequency and temperature dependence of the relaxation shows it to be dominated by the spin-rotation interaction. We have shown that the strength of this interaction can be deduced from the chemical shifts, and the angle through which the molecule rotates quasi-freely can be determined. In the hexafluorides, this angle is roughly one radian at 70 C, and with the help of this value, the friction coefficients which describe the intermolecular interactions are discussed. (author) [fr

  16. Structural and electronic properties of non-magnetic intermetallic ...

    Indian Academy of Sciences (India)

    LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation. (GGA). ... A class of compounds that has attracted a great attention in recent years is RETX, .... states (DOS) was determined by the tetrahedral integration ... The features of the occupied densities of states for both ...

  17. Modeling of rotational induction heating of nonmagnetic cylindrical billets

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Mach, F.; Doležel, Ivo

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7170-7180 ISSN 0096-3003 Grant - others:GA ČR(CZ) GAP102/10/0216 Program:GA Institutional support: RVO:61388998 Keywords : induction heating * magnetic field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.journals.elsevier.com/applied-mathematics- and -computation/

  18. Nonmagnetic ground state of PuO.sub.2./sub

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Kolorenč, Jindřich; Havela, L.; Gouder, T.; Caciuffo, R.

    2014-01-01

    Roč. 89, č. 4 (2014), "041109-1"-"041109-4" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330 Institutional support: RVO:68378271 Keywords : actinides * strongly correlated electrons * LDA+DMFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.041109

  19. Crystal field of Dy in non-magnetic metals

    NARCIS (Netherlands)

    Kikkert, Pieter Jan Willem

    1980-01-01

    Many investigations carried out during the last 15 years have demonstrated that the crystalline electric field (CEF) has a great influence on the low temperature magnetic behaviour of rare earth ions in metallic systems (see e.g. /1/) . It is therefore important to understand the origin of the CEF

  20. Integral Model of Eddy Currents in Nonmagnetic Structures

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Karban, P.

    2004-01-01

    Roč. 4, č. 3 (2004), s. 5-12 ISSN 1335-8243 R&D Projects: GA ČR GA102/03/0047 Keywords : magnetic field * eddy currents * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Circular polarization in a non-magnetic resonant tunneling device

    Directory of Open Access Journals (Sweden)

    Airey Robert

    2011-01-01

    Full Text Available Abstract We have investigated the polarization-resolved photoluminescence (PL in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW PL presents strong circular polarization (values up to -70% at 19 T. The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  2. Oxy-combustion in CFB conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tomasz Czakiert; Rafal Kobylecki; Zbigniew Bis; Waldemar Muskala; Wojciech Nowak [Czestochowa University of Technology, Czestochowa (Poland)

    2005-07-01

    Results of the investigation on oxygen-enriched combustion in a circulating fluidized bed (CFB) are presented and discussed in this paper. The information includes data on emission of CO{sub 2}, CO, NOx and SO{sub 2}. The investigations have been performed on an electrically heated laboratory-scale experimental setup with a circulating fluidized bed. Brown coal was selected as fuel. The fed gases were O{sub 2}+N{sub 2} and O{sub 2}+CO{sub 2} based mixtures with an oxygen concentration of 21%, 40% and 60%. During measurements the bed temperature was changed in the range of 973K to 1133K 5 refs., 10 figs., 2 tabs.

  3. Parthenope's Novel: P.Oxy. 435 Revisited

    OpenAIRE

    López-Martínez, María P.; Ruiz-Montero, Consuelo

    2016-01-01

    Our aim is to provide a new edition with translation and commentary of POxy. 435, corresponding to the so-called Parthenope's Novel. The original, perhaps one of the first Greek novels, produced a long and complex tradition with versions in prose and verse and a Christian martyrology, and was translated into different languages (Greek, Arab, Persian and Coptic). Although our text is badly preserved and difficult to read, we offer new proposals of reading that allow a better understanding of t...

  4. Crystal structure of poly[[μ-1,1′-(butane-1,4-diylbis(1H-benzimidazole-κ2N3:N3′]{μ-4,4′-[1,4-phenylenebis(oxy]dibenzoato-κ4O,O′:O′′,O′′′}cobalt(II

    Directory of Open Access Journals (Sweden)

    Chen Xie

    2015-06-01

    Full Text Available In the title compound, [Co(C20H12O6(C18H18N4]n, the CoII atom, located on a twofold rotation axis, is hexacoordinated to four O from two bis-bidentate 4,4′-[phenylenebis(oxy]dibenzoate (L ligands and two N atoms from two 1,1′-(butane-1,4-diylbis(1H-benzimidazole (bbbm ligands, forming a distorted octahedral cis-N2O4 coordination environment. Polymeric zigzag chains along [102] are built up by the bridging L ligands. These chains are additionally connected by the bbbm ligands to produce a two-dimensional coordination polymer parallel too (010.

  5. Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5}, K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} and K{sub 2}TiF{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Jie [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang Kaibin, E-mail: kbtang@ustc.edu.cn [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Cheng Wei; Wang Junli; Nie Yanxiang; Yang Qing [Division of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230026 (China); Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-11-15

    Complex (oxy)fluorides K{sub 2}TiF{sub 6}, K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5} and K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} have been successfully synthesized for the first time through a controllable solvothermal route involving different solvents, for example, methanol, methanol-H{sub 2}O and methanol-H{sub 2}O{sub 2}. The as-prepared products were characterized by X-ray powder diffraction, N{sub 2} surface area adsorption, scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis absorption spectra and X-ray fluorescence. The influences of reaction conditions such as the ratio of methanol to H{sub 2}O{sub 2} or methanol to H{sub 2}O, reaction temperature on the phase, crystallizability and purity of the (oxy)fluorides products were discussed in detail. Meanwhile, the photocatalytic behaviors of the as-prepared K{sub 2}TiF{sub 6}, K{sub 2}TiOF{sub 4}, K{sub 3}TiOF{sub 5} and K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} were evaluated by degradation of rhodamine B molecules, and the results showed that all of the products possessed photocatalytic activities in the order of K{sub 2}TiOF{sub 4} > K{sub 2}TiF{sub 6} > K{sub 7}Ti{sub 4}O{sub 4}F{sub 7} > K{sub 3}TiOF{sub 5} at room temperature under the UV light.

  6. Overview of ultraviolet and infrared spectroscopic properties of Yb{sup 3+} doped borate and oxy-borates compounds; De l'ultraviolet a l'infrarouge: caracterisation spectroscopique de materiaux type borate et oxyborate dopes a l'ytterbium trivalent

    Energy Technology Data Exchange (ETDEWEB)

    Sablayrolles, J

    2006-12-15

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li{sub 6}Y(BO{sub 3}){sub 3} and two oxy-borates: LiY{sub 6}O{sub 5}(BO{sub 3}){sub 3} and Y{sub 17,33}B{sub 8}O{sub 38}. For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+}. An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+} crystal are reported. (author)

  7. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats.

    Science.gov (United States)

    Giannoni, Patrizia; Medhurst, Andrew D; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della; Blandina, Patrizio

    2010-01-01

    After oral administration, the nonimidazole histamine H(3) receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H(3) receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components.

  8. Design and Discovery of N -(2-Methyl-5'-morpholino-6'-((tetrahydro-2 H -pyran-4-yl)oxy)-[3,3'-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): A Potent, Selective, and Efficacious RAF Inhibitor Targeting RAS Mutant Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, Gisele A.; Rico, Alice; Tanner, Huw; Aversa, Robert J.; Taft, Benjamin R.; Subramanian, Sharadha; Setti, Lina; Burger, Matthew T.; Wan, Lifeng; Tamez, Victoriano; Smith, Aaron; Lou, Yan; Barsanti, Paul A.; Appleton, Brent A.; Mamo, Mulugeta; Tandeske, Laura; Dix, Ina; Tellew, John E.; Huang, Shenlin; Griner, Lesley A. Mathews; Cooke, Vesselina G.; Van Abbema, Anne; Merritt, Hanne; Ma, Sylvia; Gampa, Kalyani; Feng, Fei; Yuan, Jing; Wang, Yingyun; Haling, Jacob R.; Vaziri; #8741; , Sepideh; Hekmat-Nejad, Mohammad; Jansen, Johanna M.; Polyakov, Valery; Zang, Richard; Sethuraman, Vijay; Amiri, Payman; Singh, Mallika; Lees, Emma; Shao, Wenlin; Stuart, Darrin D.; Dillon, Michael P.; Ramurthy, Savithri (Novartis)

    2017-06-06

    RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [Aversa, Biaryl amide compounds as kinase inhibitors and their preparation. WO 2014151616, 2014], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.

  9. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR insights, electronic profiling and DFT computations on ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene] amino}oxy(4-nitrophenylmethanone, an imidazole-bearing anti-Candida agent

    Directory of Open Access Journals (Sweden)

    Al-Wahaibi Lamya H.

    2018-02-01

    Full Text Available The anti-Candida agent, ({(E-[3-(1H-imidazol-1-yl-1-phenylpropylidene]amnio}oxy(4-nitropheny methanone (IPAONM, was subjected to comprehensive spectroscopic (FT-IR, FT-Raman, UV–Vis 1H and 13C NMR characterization as well as Hartree Fock and density functional theory computation studies. The selected optimized geometric bond lengths and bond angles of the IPAONM molecule were compared with the experimental values. The calculated wavenumbers have been scaled and compared with the experimental spectra. Mulliken charges and natural bond orbital analysis of the title molecule were calculated and interpreted. The energy and oscillator strengths of the IPAONM molecule were calculated by time-dependent density functional theory (TD-DFT. In addition, frontier molecular orbitals and molecular electrostatic potential diagram of the title compound were computed and analyzed. A study on the electronic properties, such as HOMO, HOMO-1, LUMO and LUMO+1 energies was carried out using TD-DFT approach. The 1H and 13C NMR chemical shift values of the title compound were calculated by the gauge independent atomic orbital method and compared with the experimental results.

  10. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  11. Absence of synproportionation between oxy and ferryl leghemoglobin. off

    DEFF Research Database (Denmark)

    Mathieu, C; Swaraj, K; Davies, Michael Jonathan

    1997-01-01

    The synproportionation reaction between ferryl leghemoglobin and oxyleghemoglobin does not occur, at least under conditions where this process could be clearly demonstrated with myoglobin and hemoglobin. In contrast, a cross synproportionation can occur between oxyleghemoglobin and ferryl myoglob...

  12. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used

  13. Oxy combustion with CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    An update for oxyfuel-combustion carbon capture in the power industry is provided. The report was developed by the Electric Power Research Institute (EPRI) on behalf of the Global CCS Institute. In the oxyfuel-combustion processes, the bulk nitrogen is removed from the air before combustion. The resulting combustion products will have CO2 content up to about 90 per cent (dry basis). The flue gas impurities (predominantly O2, N2, and Ar) may be removed by reducing the flue gas (at moderate pressure) to a temperature at which the CO2 condenses and the impurities do not. Oxyfuel-combustion may be employed with solid fuels such as coal, petroleum coke, and biomass, as well as liquid and gaseous fuels. Some key points raised in the oxyfuel-combustion carbon capture report are: The oxyfuel-combustion/CO2 capture power plant designs being developed and deployed for service in the next four or five years are based on individual component technologies and arrangements which have demonstrated sufficient maturity, with the greatest remaining technical challenge being integrating the systems into a complete steam-electric power plant; By its nature, an oxyfuel-coal power plant is likely to be a 'near zero' emitter of all criteria pollutants; Existing air-fired power plants might be retrofitted with an air separation unit, oxyfuel-fired burners, flue gas recycle, and a CO2 processing unit, with the large fleet of air-fired power plants in service calling for more study of this option; and, Future efficiency improvements to the oxyfuel-combustion process for power generation point toward an oxyfuel-combustion plant with near zero emissions of conventional pollutants, up to 98 per cent CO2 capture, and efficiency comparable to the best power plants currently being built.

  14. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  15. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  16. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension-fired po......The power and heat producing sector is facing a continuously increasing demand to reduce its emissions of CO2. Oxyfuel combustion combined with CO2 storage is suggested as one of the possible, promising technologies which will enable the continuous use of the existing fleet of suspension......-fired power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen....... The oxidant thus contains little or no nitrogen and a near-pure CO2 stream can be produced by cooling the flue gas to remove water. The change to the oxidant composition compared to combustion in air will induce significant changes to the combustion process. This Ph.D. thesis presents experimental...

  17. Cinética e equilíbrio de adsorção dos oxiânions Cr (VI, Mo (VI e Se (VI pelo sal de amônio quaternário de quitosana Kinetics and equilibrium of adsorption of oxyanions Cr (VI, Mo (VI and Se (VI by quaternary ammonium chitosan salt

    Directory of Open Access Journals (Sweden)

    Viviane A. Spinelli

    2005-07-01

    Full Text Available O sal quaternário de quitosana foi sintetizado com cloreto de glicidil trimetil amônio. A modificação química foi caracterizada por espectrometria no IV, RMN de 13C e ¹H, e mmol/g de grupos quaternários presentes na matriz polimérica por condutimetria. A remoção de Cr (VI, Mo (VI e Se (VI, em meio aquoso, foi investigada em processo de batelada. A adsorção mostrou ser dependente do pH para o Cr (VI e Se (VI, com um pH ótimo de adsorção, entre 4,0 a 6,0. Para o Mo (VI a adsorção manteve-se quase constante no intervalo de pH entre 4,0 e 11,5. O modelo de isoterma de Langmuir descreveu melhor os dados de equilíbrio na faixa de concentração investigada. No presente estudo, um grama do sal quaternário de quitosana reticulado com glutaraldeído adsorveu 68,3 mg de Cr, 63,4 mg de Mo e 90,0 mg de Se. A velocidade de adsorção, no processo, segue a equação cinética de pseudo segunda-ordem, sendo que o equilíbrio para os três íons foi alcançado próximo aos 200 minutos. A análise dispersiva de raios-X para o Cr (VI mostrou que o principal mecanismo de adsorção é a troca iônica entre os íons Cl- da superfície do polímero pelos oxiânions. O trocador aniônico apresentou a seguinte ordem de seletividade: Cr (VI > Mo (VI > Se (VI.Quaternary chitosan salt was synthesized in the presence of glycidyl trimetyl ammonium chloride. The polymer was characterized by spectroscopic techniques: infrared, 13C and ¹H NMR, while the amount of quaternary ammonium groups was obtained by condutimetry. The removal of Cr (VI, Mo (VI and Se (VI from aqueous solutions was carried out in batch adsorption processes. The process seemed to be pH dependent for Cr (VI and Se (VI with an optimum pH ranging from 4.0 to 6.0; while for Mo (VI the adsorption remained almost constant within the range between 4.0 and 11.5. The Langmuir isotherm model provided the best fit of the equilibrium data over the whole concentration investigated. In the experiment

  18. Bi∼3.785Cd∼3.575Cu∼1.5(PO4)3.5O5.5, a new arrangement of double (n=2) and triple (n=3) [M4Bi2n-2O2n]x+ polycationic ribbons in the bismuth-transition metal oxy-phosphate series

    International Nuclear Information System (INIS)

    Colmont, Marie; Huve, Marielle; Abraham, Francis; Mentre, Olivier

    2004-01-01

    This work is dedicated to investigation of new disordered bismuth-containing oxy-phosphates compounds with an original structure type. As previously observed in this series, they are formed of [M 4 Bi 2n-2 O 2n ] x+ polycationic ribbons of width n O(Bi,M) 4 tetrahedra, surrounded by PO 4 groups. In the new crystal structure type, double (=D), triple (=T) and tunnels (=t) alternate along a common axis obeying the TtDtTtDt/TTtTTt sequence in respect to a nomenclature previously described and recalled in this work. The existence this new polymorph has first been detected by electron diffraction in a multi-phased sample. Then, the crystal structure type, i.e., the TtDtTtDt/TTtTTt sequence, has been deduced from HREM images help to a contrast-interpreting code available for these series of polycations-formed compounds. The subsequent compounds formulation leads to a number of new materials that verify the general formula: [Bi 2 (Bi,M) 4 O 4 ] 2 [Bi 4 (Bi,M) 4 O 6 ] 6 (PO 4 ) 28 M x , with x= 2+ , Cd 2+ cations. Single crystals of the nominal [O6Bi 4.57 Cd 3.43 ] 4 +8.57 [O 6 Bi 4 Cd 4 ] 2 +8 [O 4 Bi 2 Cd 3.56 Cu 0.44 ] 2 +6 (PO 4 ) 28 Cu 10.86 have been prepared in a further stage and confirms the predicted crystal structure, Bi ∼3.785 Cd ∼3.575 Cu ∼1.5 (PO 4 ) 3.5 O 5.5 , a=11.506(8)A, b=5.416(4)A, c=53.94 (4)A, β=90.10(1) o , RF=0.0835, RwF=0.0993, SG=A2/m, Z=8. As already observed for other elements of this family such as Bi ∼1.2 M ∼1.2 O 1.5 (PO 4 ), Bi ∼6.2 Cu ∼6.2 O 8 (PO 4 ) 5 or Bi ∼3 Cd ∼3.72 M ∼1.28 O 5 (PO 4 ) 3 (M=Cu, Co, Zn), this compound shows an additional example of PO 4 disorder due to the presence of mixed Bi 3+ /M 2+ sites at the edges of ribbons. The origin and consequence of this so-called disorder mostly occurring on PO 4 configurations is intensively discussed and has been characterized by infrared spectroscopy and by neutron diffraction on similar compounds. It is noticeable that the great number of antagonist PO 4

  19. Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Alexey

    2008-04-14

    The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)

  20. Superconductivity in SnO: a nonmagnetic analog to Fe-based superconductors?

    Science.gov (United States)

    Forthaus, M K; Sengupta, K; Heyer, O; Christensen, N E; Svane, A; Syassen, K; Khomskii, D I; Lorenz, T; Abd-Elmeguid, M M

    2010-10-08

    We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., β-FeSe, undergoes a transition to a superconducting state for p≳6 GPa with a maximum Tc of 1.4 K at p=9.3 GPa. The pressure dependence of Tc reveals a domelike shape and superconductivity disappears for p≳16 GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc as a function of pressure.

  1. Non-Magnetic On-Chip Resonant Acousto-Optic Isolator at 780 nm

    Science.gov (United States)

    2017-08-04

    actuator on a piezoelectric substrate. We fabricated the device using only CMOS-compatible dielectric materials with the assistance of e- beam...on-chip, without the use of magnetic fields or magneto-optical materials. Our technical approach was to employ momentum-conservation in photon-phonon...interactions to break the propagation symmetry of light using a unidirectional acoustic pump. This acoustic wave was transduced using an RF-driven SAW

  2. Spin injection, accumulation, and precession in a mesoscopic nonmagnetic metal island

    NARCIS (Netherlands)

    Zaffalon, M; van Wees, BJ

    We experimentally study spin accumulation in an aluminum island with all dimensions smaller than the spin-relaxation length, so that the spin imbalance throughout the island is uniform. Electrical injection and detection of the spin accumulation are carried out in a four-terminal geometry by means

  3. Competing effects in the magnetic polarization of non-magnetic atoms

    International Nuclear Information System (INIS)

    Boada, R; Piquer, C; Chaboy, J; Laguna-Marco, M A

    2013-01-01

    The magnetic polarization of the Lu 5d states through the Ho 1-x Lu x (Fe 1-y Al y ) 2 series has been studied by means of x-ray magnetic circular dichroism. A combined study of the dichroic signals performed at the Fe K-, Ho L 2 - and Lu L 2,3 -edges gives a complete picture of the polarization scheme at the conduction band. The results show that in the presence of competing localized magnetic moments, μ Fe (3d) and μ Ho (4f), the dichroic signal at the Lu site is mainly due to the Fe atoms, the effect of the magnetic rare-earth being negligible. Estimation of the spin and orbital components of the Lu(5d) induced magnetic moment have been obtained by applying the magneto-optical sum rules derived for x-ray magnetic circular dichroism.

  4. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents

    International Nuclear Information System (INIS)

    Ning, Deng; Lei, Zhang; Shu-Chao, Zhang; Pei-Yi, Chen; Jian-Shi, Tang

    2010-01-01

    For ferromagnetic metal (FM)/semiconductor (SC) structure with ohmic contact, the effect of carrier polarization in the semiconductor combined with drift part of injection current on current polarization is investigated. Based on the general model we established here, spin injection efficiency under different injection current levels is calculated. Under a reasonable high injection current, current polarization in the semiconductor is actually much larger than that predicted by the conductivity mismatch model because the effect of carrier polarization is enhanced by the increasing drift current. An appreciable current polarization of 1% could be achieved for the FM/SC structure via ohmic contact, which means that efficient spin injection from FM into SC via ohmic contact is possible. The reported dependence of current polarization on temperature is verified quantitatively. To achieve even larger spin injection efficiency, a gradient doping semiconductor is suggested to enhance the drift current effect

  5. X-ray magnetic circular dichroism strongly influenced by non-magnetic cover layers

    International Nuclear Information System (INIS)

    Zafar, K.; Audehm, P.; Schütz, G.; Goering, E.; Pathak, M.; Chetry, K.B.; LeClair, P.R.; Gupta, A.

    2013-01-01

    Highlights: •Energy filtering gives much larger sampling depth and escape length as expected. •XMCD sum rules could be dramatically altered by this effect. •Strong enhanced effective escape length for buried layers. •A “universal curve” model gives semi quantitative understanding. •Buried layers are more sensitive to self-absorption phenomena. -- Abstract: Total electron yield (TEY) is the dominating measurement mode in soft X-ray absorption spectroscopy (XAS), where the sampling depth is generally assumed to be quite small and constant, and the related self-absorption or saturation phenomena are about to be negligible at normal incidence conditions. From the OK edge to CrL 2,3 edge XAS ratio we determined a strong change in the effective electron escape length between an uncovered and a RuO 2 covered CrO 2 sample. This effect has been explained by a simple electron energy filtering model, providing a semi quantitative description. In addition, this simple model can quantitatively describe the unexpected reduced and positive CrL 2,3 X-ray magnetic circular dichroism (XMCD) signal of a RuO 2 /CrO 2 bilayer, while previous results have identified a clear negative Cr magnetization at the RuO 2 /CrO 2 interface. In our case this escape length enhancement has strong impact on the XMCD sum rule results and in general it provides much deeper sampling depth, but also larger self-absorption or saturation effects

  6. Off-great-circle paths in transequatorial propagation: 2. Nonmagnetic-field-aligned reflections

    Science.gov (United States)

    Tsunoda, Roland T.; Maruyama, Takashi; Tsugawa, Takuya; Yokoyama, Tatsuhiro; Ishii, Mamoru; Nguyen, Trang T.; Ogawa, Tadahiko; Nishioka, Michi

    2016-11-01

    There is considerable evidence that plasma structure in nighttime equatorial F layer develops from large-scale wave structure (LSWS) in bottomside F layer. However, crucial details of how this process proceeds, from LSWS to equatorial plasma bubbles (EPBs), remain to be sorted out. A major obstacle to success is the paucity of measurements that provide a space-time description of the bottomside F layer over a broad geographical region. The transequatorial propagation (TEP) experiment is one of few methods that can do so. New findings using a TEP experiment, between Shepparton (SHP), Australia, and Oarai (ORI), Japan, are presented in two companion papers. In Paper 1 (P1), (1) off-great-circle (OGC) paths are described in terms of discrete and diffuse types, (2) descriptions of OGC paths are generalized from a single-reflection to a multiple-reflection process, and (3) discrete type is shown to be associated with an unstructured but distorted upwelling, whereas the diffuse type is shown to be associated with EPBs. In Paper 2 (P2), attention is placed on differences in east-west (EW) asymmetry, found between OGC paths from the SHP-ORI experiment and those from another near-identical TEP experiment. Differences are reconciled by allowing three distinct sources for the EW asymmetries: (1) reflection properties within an upwelling (see P1), (2) OGC paths that depend on magnetic declination of geomagnetic field (B), and (3) OGC paths supported by non-B-aligned reflectors at latitudes where inclination of B is finite.

  7. Superconductivity in SnO: A Nonmagnetic Analog to Fe-Based Superconductors?

    DEFF Research Database (Denmark)

    Forthaus, M. K.; Sengupta, K.; Heyer, O.

    2010-01-01

    We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., β-FeSe, undergoes a transition to a superconducting state for p≳6  GPa with a maximum Tc of 1.4 K at p=9.3  GPa. The pressure dependence of Tc reveals a domelike shape...... and superconductivity disappears for p≳16  GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc...

  8. Electronic structure and nonmagnetic character of δ -Pu-Am alloys

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Havela, L.; Kolorenč, Jindřich; Drchal, Václav; Gouder, T.; Oppeneer, P.M.

    2006-01-01

    Roč. 73, č. 10 (2006), 104415/1-104415/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100530; GA ČR(CZ) GA202/04/1103; GA ČR(CZ) GA202/04/1055 Institutional research plan: CEZ:AV0Z1010914 Keywords : fcc -Pu-Am alloys * electronic structure * localised moments Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  9. One-step magnetic modification of non-magnetic solid materials

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Šafaříková, Miroslava

    2014-01-01

    Roč. 105, č. 1 (2014), s. 104-107 ISSN 1862-5282 R&D Projects: GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic iron oxide microparticles * microwave assisted synthesis * postmagnetization * magentic separation Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.639, year: 2014

  10. Simulation of physical processes in devices with non-magnetic, milk-dispersed secondary part

    Directory of Open Access Journals (Sweden)

    Minkin Maksim

    2017-01-01

    Full Text Available At present, most machine-building enterprises focus on the problem of saving energy resources. The proposed system of air regeneration in industrial premises will allow to keep the air in the room at a comfortable temperature without removing it to the atmosphere. The second problem solved by this system is the prevention of pollutants entering the atmosphere. At the same time, the efficiency of this system is not inferior to analogs, and many of them even surpass. Energy costs are reduced by at least 30% because there is no need to use the system of regeneration of working elements. However, the development of this system requires the solution of a number of problems. One of the main problems is the control of the motion of particles in the corona discharge region. A number of differently directed forces act on a particle of a finely dispersed substance, which actually form the equation of motion of this particle. However, when composing the equation of particle motion, it is necessary to take into account the space charge in the outer region of the corona. With a fairly complex geometry of the core, it is impossible to take into account the influence of a volumetric charge analytically, and, consequently, the use of computer modeling tools is required. Another factor that needs to be taken into account is the appearance of an aerodynamic force arising from such a poorly understood phenomenon as the “ion wind” that appears in the presence of a corona discharge. The solution of the described problem will allow to create a system of air regeneration in industrial premises, allowing recirculation of polluted air without diversion into the atmosphere, which will reduce the cost of energy.

  11. Extended neutral atmosphere effect on solar wind interaction with nonmagnetic bodies of the solar system

    International Nuclear Information System (INIS)

    Breus, T.K.; Krymskij, A.M.; Mitnitskij, V.Ya.

    1987-01-01

    Numeric modelling of the Venus flow-around by the solar wind with regard to stream loading by heavy ions, produced under photoionization of the Venus neutral oxygen corona, is conducted. It is shown, that this effect can account for a whole number of peculiarities related to the solar wind interaction with the planet which have not been clearly explained yet, namely, shock wave position, solar wind stream and magnetic field characteristics behind the front

  12. {sup 77}Se NMR study of nonmagnetic-magnetic transition in (TMTSF){sub 2}X

    Energy Technology Data Exchange (ETDEWEB)

    Mito, T., E-mail: mito_takeshi@hotmail.co [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Nishiyama, K.; Koyama, T.; Ueda, K.; Kohara, T.; Takeuchi, K.; Akutsu, H.; Yamada, J. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Kornilov, A.; Pudalov, V.M. [P.N. Lebedev Physics Institute, Moscow 119991 (Russian Federation); Qualls, J.S. [Sonoma State University, Rohnert Park, CA 94928 (United States)

    2010-12-15

    {sup 77}Se NMR measurements have been carried out on (TMTSF){sub 2}X (X = PF{sub 6} and AsF{sub 6}) single crystals. For both compounds, NMR lines split into double-peaked spectra in the SDW state, which is explained with sinusoidal internal field at Se nucleus positions having the same incommensurate wave number with that of the SDW order. No change in the lineshape was observed at T{sub x} at which the spin-relaxation rate shows a kink, suggesting that this anomaly does not cause significant static changes in internal field at the Se-site.

  13. Microscopic theory of spin-filtering in non-magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, T.; Vogl, P. [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)

    2008-07-01

    In this paper, we investigate the intrinsic spin-Hall effect in mesoscopic systems, i.e. spin-orbit induced spin-polarizations with and without external magnetic fields in confined two-dimensional systems at low temperatures. We employ a non-equilibrium Green's function approach that takes into account the coupling of non-equilibrium spin occupancies and spin-resolved electronic scattering states in open nanometer quantum systems. Importantly, our calculations go beyond the widely used continuum approximation of the spin-orbit interaction in the envelope function approximation and are based on a microscopic relativistic tight-binding approach that ensures the spin-orbit effects to be properly taken into account for any degree of charge confinement and localization and to all orders in the electron wave vector. We show that the qualitative trends and results in spin polarizations, their dependency on charge density, spin-orbit interaction strength, and confinement, as obtained within the envelope function approximation, agree with the results of atomistic calculations. The quantitative results, on the other hand, can differ significantly. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Simulation and measurement of ferromagnetic impurities in non-magnetic aeroengine turbine disks using fluxgate magnetometers

    OpenAIRE

    Sebastian Hantscher; Ruixin Zhou; Albert Seidl; Johann Hinken; Christian Ziep

    2015-01-01

    In this paper, ferromagnetic impurities in paramagnetic aeroengine turbine disks are investigated. Because such inclusions represent a significant threat in aviation, a detailed analysis is required for impured turbine disks. For this purpose, sensitive fluxgate magnetometers are used. After a premagnetisation, this sensor is able to detect small ferromagnetic particles by recording the variation of the magnetic flux density while the disk rotates below the sensor head. This trajectory create...

  15. Atomic and ionic density measurement by laser absorption spectroscopy of magnetized or non-magnetized plasmas

    International Nuclear Information System (INIS)

    Le Gourrierec, P.

    1989-11-01

    Laser absorption spectroscopy is an appreciated diagnostic in plasma physics to measure atomic and ionic densities. We used it here more specifically on metallic plasmas. Firstly, a uranium plasma was created in a hollow cathode. 17 levels of U.I and U.II (12 for U.I and 5 for U.II) are measured by this method. The results are compared with the calculated levels of two models (collisional-radiative and LTE). Secondly, the theory of absorption in presence of a magnetic field is recalled and checked. Then, low-density magnetized plasma produced on our ERIC experiment (acronym for Experiment of Resonance Ionic Cyclotron), have been diagnosed successfully. The use of this technique on a low density plasma has not yet been published to our knowledge. The transverse temperature and the density of a metastable atomic level of a barium plasma has been derived. The evolution of a metastable ionic level of this element is studied in terms of two source parameters (furnace temperature and injected hyperfrequency power) [fr

  16. Efficient Arrangement of Field Coils for Rotational Induction Heating of Nonmagnetic Cylindrical Billets

    Czech Academy of Sciences Publication Activity Database

    Donátová, M.; Karban, P.; Doležel, Ivo

    2010-01-01

    Roč. 86, č. 1 (2010), s. 83-85 ISSN 0033-2097 Grant - others:GA MŠk(CZ) MEB050807 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * integrodifferential model * electromagnetic field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.242, year: 2010 http://pe.org.pl/

  17. One-step preparation of magnetically responsive materials from non-magnetic powders

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Pospíšková, K.; Šafaříková, Miroslava

    2012-01-01

    Roč. 229, OCT 2012 (2012), s. 285-289 ISSN 0032-5910 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : magnetic fluid * magnetic separations * magnetic modification * spent tea leaves * montmorillonite Subject RIV: BO - Biophysics Impact factor: 2.024, year: 2012

  18. Integrodifferential model of eddy currents in axisymetric nonmagnetic bodies heated by moving inductor

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Doležel, Ivo; Šolín, Pavel

    2006-01-01

    Roč. 54, č. 4 (2006), s. 497-507 ISSN 0004-0746 R&D Projects: GA ČR(CZ) GA102/04/0095 Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * electromagnetic field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Investigation of non-magnetic alloys for the suppression of tritium permeation

    International Nuclear Information System (INIS)

    1980-07-01

    The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: problem definition, and literature search and analysis. Task I was complicated by the incomplete status of fusion reactor development, particularly with respect to selection of coolant and blanket materials and temperatures. The approach taken was to establish a probable range of requirements

  20. Teacher Expectations and Academic Achievement: A Comparison of Magnet and Non-Magnet Traditional Elementary Schools

    Science.gov (United States)

    Woods, Bonita K.

    2012-01-01

    National mandates such as the No Child Left Behind Act of 2001 and the state of Texas standardized system of accountability pressures educators to provide optimum educational experiences for our students. The momentous challenge is not just to educate students who can compete in the 21st century global society but to prepare them for the most…