WorldWideScience

Sample records for nonlocal yukawa interaction

  1. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  2. Double folded Yukawa interaction potential between two heavy ions

    International Nuclear Information System (INIS)

    Bulgac, A.; Carstoiu, F.; Dumitrescu, O.

    1980-02-01

    A simple semi-analytical formula for the heavy ion interaction potential within the double-folding model approximation is obtained. The folded interaction is assumed to be expressed in Yukawa terms or the derivatives of them. The densities used can be both experimental or theoretical (of simple ''step-wise'', ''Fermi-Saxon-Woods'' or complicated ''shell model'' structure) densities. A way of inserting the exchange terms is discussed. Numerical calculations for some colliding partners are reported. (author)

  3. Nuclear interaction potential in a folded-Yukawa model with diffuse densities

    International Nuclear Information System (INIS)

    Randrup, J.

    1975-09-01

    The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)

  4. Nonlocal interactions and Bell's inequality

    International Nuclear Information System (INIS)

    Garuccio, A.; Selleri, F.

    1976-01-01

    It is shown that natural extensions of the local hidden variable theories to include nonlocal effects still lead to a full validity of Bell's inequality. It is conjectured that the essential point expressed by this inequality is not locality, but the wave-particle dualism

  5. Hyperspherical effective interaction for nonlocal potentials

    International Nuclear Information System (INIS)

    Barnea, N.; Leidemann, W.; Orlandini, G.

    2010-01-01

    The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.

  6. Impact of generalized Yukawa interactions on the lower Higgs-mass bound

    Energy Technology Data Exchange (ETDEWEB)

    Gies, Holger [Friedrich-Schiller-Universitaet Jena, Theoretisch-Physikalisches Institut, Jena (Germany); Friedrich-Schiller-Universitaet Jena, Abbe Center of Photonics, Jena (Germany); Helmholtz-Institut Jena, Jena (Germany); Sondenheimer, Rene [Friedrich-Schiller-Universitaet Jena, Theoretisch-Physikalisches Institut, Jena (Germany); Warschinke, Matthias [Friedrich-Schiller-Universitaet Jena, Theoretisch-Physikalisches Institut, Jena (Germany); Chiba University, Department of Physics, Graduate School of Science, Chiba (Japan)

    2017-11-15

    We investigate the impact of operators of higher canonical dimension on the lower Higgs-mass consistency bound by means of generalized Higgs-Yukawa interactions. Analogously to higher-order operators in the bare Higgs potential in an effective field theory approach, the inclusion of higher-order Yukawa interactions, e.g., φ{sup 3} anti ψψ, leads to a diminishing of the lower Higgs-mass bound and thus to a shift of the scale of new physics towards larger scales by a few orders of magnitude without introducing a metastability in the effective Higgs potential. We observe that similar renormalization group mechanisms near the weak-coupling fixed point are at work in both generalizations of the microscopic action. Thus, a combination of higher-dimensional operators with generalized Higgs as well as Yukawa interactions does not lead to an additive shift of the lower mass bound, but it relaxes the consistency bounds found recently only slightly. On the method side, we clarify the convergence properties of different projection and expansion schemes for the Yukawa potential used in the functional renormalization group literature so far. (orig.)

  7. Discriminating leptonic Yukawa interactions with doubly charged scalar at the ILC

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi; Yokoya, Hiroshi

    2018-04-01

    We explore discrimination of two types of leptonic Yukawa interactions associated with Higgs triplet, LbarLc ΔLL, and with SU (2) singlet doubly charged scalar, ebarRc k++eR. These interactions can be distinguished by measuring the effects of doubly charged scalar boson exchange in the e+e- →ℓ+ℓ- processes at polarized electron-positron colliders. We study a forward-backward asymmetry of scattering angular distribution to estimate the sensitivity for these effects at the ILC. In addition, we investigate prospects of upper bounds on the Yukawa couplings by combining the constraints of lepton flavor violation processes and the e+e- →ℓ+ℓ- processes at the LEP and the ILC.

  8. A model of the extended electron and its nonlocal electromagnetic interaction: Gauge invariance of the nonlocal theory

    International Nuclear Information System (INIS)

    Namsrai, Kh.; Nyamtseren, N.

    1994-09-01

    A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs

  9. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    International Nuclear Information System (INIS)

    Ribas, M O; Samojeden, L L; Devecchi, F P; Kremer, G M

    2015-01-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated–decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field. (paper)

  10. Yukawa multipole electrostatics and nontrivial coupling between electrostatic and dispersion interactions in electrolytes

    International Nuclear Information System (INIS)

    Kjellander, Roland; Ramirez, Rosa

    2008-01-01

    An exact treatment of screened electrostatics in electrolyte solutions is presented. In electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule extends to the far field region. The full directional dependence of the electrostatic potential from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole moments). In particular, the range of the potential from an ion and that from an electroneutral polar particle is generally exactly the same. This is in contrast to the case in vacuum or pure polar liquids, where the potential from a single charge is longer ranged than that from a dipole, which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence of the exponentially screened electrostatic interaction between two molecules in electrolytes is therefore rather complex even at long distances. These facts are formalized in Yukawa multipole expansions of the electrostatic potential and the pair interaction free energy based on the Yukawa function family exp(-κr)/r m , where r is the distance, κ is a decay parameter and m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent and in the primitive model, provided the non-Coulombic interactions between the particles are sufficiently short ranged. The results can also be applied in the Poisson-Boltzmann approximation. Differences and similarities to the ordinary multipole expansion of electrostatics are pointed out. On the other hand, when the non-Coulombic interactions between the constituent particles of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a molecule decays like a power law for long distances rather than as a Yukawa function. This is due to nontrivial coupling between the electrostatic and dispersion interactions. There remains an exponentially decaying component in the electrostatic potential, but it becomes

  11. Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential

    Energy Technology Data Exchange (ETDEWEB)

    Petraki, Kalliopi [LPTHE, CNRS, UMR 7589,4 Place Jussieu, F-75252, Paris (France); Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands); Postma, Marieke; Vries, Jordy de [Nikhef,Science Park 105, 1098 XG Amsterdam (Netherlands)

    2017-04-13

    We calculate the cross-sections for the radiative formation of bound states by dark matter whose interactions are described in the non-relativistic regime by a Yukawa potential. These cross-sections are important for cosmological and phenomenological studies of dark matter with long-range interactions, residing in a hidden sector, as well as for TeV-scale WIMP dark matter. We provide the leading-order contributions to the cross-sections for the dominant capture processes occurring via emission of a vector or a scalar boson. We offer a detailed inspection of their features, including their velocity dependence within and outside the Coulomb regime, and their resonance structure. For pairs of annihilating particles, we compare bound-state formation with annihilation.

  12. Effect of nonlocal dispersion on self-interacting excitations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Gaididei, Yu.B.

    1996-01-01

    The dynamics of self-interacting quasiparticles in 1Dsystems with long-range dispersive interactions isexpressed in terms of a nonlocal nonlinear Schrödingerequation. Two branches of stationary solutions are found.The new branch which contains a cusp soliton is shown to beunstable and blowup...

  13. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    Science.gov (United States)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  14. Nonlocal excitonic–mechanical interaction in a nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)

    2016-11-15

    The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.

  15. Solutions of the Dirac Equation with the Shifted DENG-FAN Potential Including Yukawa-Like Tensor Interaction

    Science.gov (United States)

    Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.

    2013-08-01

    By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.

  16. Two particles interacting via the Yukawa potential in the frame of a truly nonrelativistic wave equation

    International Nuclear Information System (INIS)

    Kukhtin, V.V.; Kuzmenko, M.V.

    2000-01-01

    Complete text of publication follows. Recent studies (1) have shown that the Schroedinger nonrelativistic wave equation for a system of interacting particles is not a rigorously nonrelativistic one since it is based on the implicit assumption that the interaction propagation velocity is a finite value, which implies commutativity of the operators of coordinates and momenta of different particles. The refusal from this assumption implies their noncommutativity, which allows one to construct a truly nonrelativistic nonlinear self-consistent wave equation for a system of interacting particles. In the frame of the advanced wave equation, we investigate the spectrum of bound states for the two-body problem with the Yukawa potential V(r) = -V 0 a exp(-r/a)/r as a function of parameters of the potential. A peculiar feature of the spectrum is the presence of a critical value of V 0 (with the fixed parameter a), above which the given bound state cannot exist. In the ground state with l = 0 at a critical value of V 0 , the mean distance between particles takes the least value equal to the Compton wavelength of the particle with reduced mass. We estimate the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ([χ 1 , p 2x ] = i(h/2π)m 2 /M x ε) for the bound state of a deuteron, for which we consider the lowest state with l = 0 as its ground state. The parameter a of the Yukawa potential is taken to be equal to the Compton wavelength of a pion, 1.41 fm. In order to obtain the binding energy of a deuteron E = -2.22452 MeV, the parameter V 0 has to equal 51.23 MeV. In this case, the parameter of noncommutativity ε for the operators of the coordinate of one particle and of the momentum of other one ε = 0.0011, i.e., the commutator is nonzero even for such a weakly bound system as a deuteron where particles are located outside the region of action of nuclear forces for a significant fraction of time. Moreover

  17. Nonlinear degenerate cross-diffusion systems with nonlocal interaction

    OpenAIRE

    Di Francesco, M.; Esposito, A.; Fagioli, S.

    2017-01-01

    We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...

  18. Fermionic particles with positron-dependent mass in the presence of inversely quadratic Yukawa potential and tensor interaction

    International Nuclear Information System (INIS)

    Bahar, M.K.; Yasuk, F.

    2013-01-01

    Approximate solutions of the Dirac equation with positron-dependent mass are presented for the inversely quadratic Yukawa potential and Coulomb-like tensor interaction by using the asymptotic iteration method. The energy eigenvalues and the corresponding normalized eigenfunctions are obtained in the case of positron-dependent mass and arbitrary spin-orbit quantum number k state and approximation on the spin-orbit coupling term. (author)

  19. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    Science.gov (United States)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been

  20. Eoet-Wash constraints on multiple Yukawa interactions and on a coupling to ''isospin''

    International Nuclear Information System (INIS)

    Stubbs, C.W.

    1989-01-01

    The final results of our lead-source runs are presented. Our data rule out at 2σ the possibility of accounting for all the composition-dependent results in terms of a coupling to ''isospin.'' By exploiting the fact that our hillside layout is fairly complex, we have also set limits on multiple-Yukawa scenarios. 15 refs., 3 figs

  1. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS

    2010-12-01

    In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.

  2. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.

    2012-04-17

    Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.

  3. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  4. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  5. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  6. Explaining DAMPE results by dark matter with hierarchical lepton-specific Yukawa interactions

    Science.gov (United States)

    Liu, Guoli; Wang, Fei; Wang, Wenyu; Yang, Jin-Min

    2018-02-01

    We propose to interpret the DAMPE electron excess at 1.5 TeV through scalar or Dirac fermion dark matter (DM) annihilation with doubly charged scalar mediators that have lepton-specific Yukawa couplings. The hierarchy of such lepton-specific Yukawa couplings is generated through the Froggatt-Nielsen mechanism, so that the dark matter annihilation products can be dominantly electrons. Stringent constraints from LEP2 on intermediate vector boson production can be evaded in our scenarios. In the case of scalar DM, we discuss one scenario with DM annihilating directly to leptons and another scenario with DM annihilating to scalar mediators followed by their decays. We also discuss the Breit-Wigner resonant enhancement and the Sommerfeld enhancement in the case where the s-wave annihilation process is small or helicity-suppressed. With both types of enhancement, constraints on the parameters can be relaxed and new ways for model building can be opened in explaining the DAMPE results. Supported by National Natural Science Foundation of China (11105124, 11105125, 11375001, 11675147, 11675242), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y5KF121CJ1), the Innovation Talent project of Henan Province (15HASTIT017), the Young-Talent Foundation of Zhengzhou University, the CAS Center for Excellence in Particle Physics (CCEPP), the CAS Key Research Program of Frontier Sciences and a Key R&D Program of Ministry of Science and Technology of China (2017YFA0402200-04)

  7. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 ...

    Indian Academy of Sciences (India)

    Department of Physics, University of Kalyani, Kalyani 741 235, India. ∗. Corresponding author. .... The inclusion of nonlocal Coulomb interaction with t = −1 leads .... The authors are thankful to the University of Kalyani, India, for financial help.

  8. Positronium annihilation in liquids in the framework of non-local interaction

    International Nuclear Information System (INIS)

    Mukherjee, Tapas; Dutta, Dhanadeep

    2012-01-01

    In the bubble model of ortho positronium (o-Ps) annihilation in liquid the origin of the trapping of o-Ps is the electron-exchange repulsive interaction between the electron of o-Ps and the electron of the medium. The corresponding effective interaction is non-local in nature. However, in the prevalent bubble model, this effective interaction is usually treated as local (model) potential (sharp or smooth). In the present study, we have taken an approach to consider this trapping interaction as non-local in nature, which is included through a model separable non-local function to tackle the problem in analytically solvable manner. The analytical calculations show that this non-local interaction effectively acts as a gauge potential in the energy of the Ps atom in parameter (bubble radius) space. The computed bubble variables obtained using experimental Ps annihilation data are shown. A comparison between the present data with the calculated results using prevalent bubble model has been presented. Discussions have been made on the input parameter dependencies of the computed data. - Highlights: ► Bubble model has been modified by considering positronium-atom non-local interaction. ► No straight forward correlation between bubble size and effective potential is observed. ► Non-local potential acts as a guage potential.

  9. Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality

    International Nuclear Information System (INIS)

    Dai, Zhiping; Yang, Zhenjun; Ling, Xiaohui; Zhang, Shumin; Pang, Zhaoguang

    2016-01-01

    The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and the oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.

  10. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  11. Nonlocal plasticity effects on interaction of different size voids

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Niordson, Christian Frithiof

    2004-01-01

    A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... dimensional array of spherical voids. It is shown that the high growth rate of very small voids predicted by conventional plasticity theory is not realistic when the effect of a characteristic length, dependent on the dislocation structure, is accounted for. (C) 2003 Elsevier Ltd. All rights reserved....

  12. Interaction of chimera states in a multilayered network of nonlocally coupled oscillators

    Science.gov (United States)

    Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.

    2017-08-01

    The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.

  13. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  14. Non-self-adjoint Schrödinger operators with nonlocal one-point interactions

    Czech Academy of Sciences Publication Activity Database

    Kuzhel, S.; Znojil, Miloslav

    2017-01-01

    Roč. 11, č. 4 (2017), s. 923-944 ISSN 1735-8787 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : 1-dimensional Schrodinger operator * nonlocal one-point interactions * boundary triplet Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.833, year: 2016

  15. The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2007-01-01

    The van der Waals energy of the system constituted by a microparticle and a solid surface characterized by a nonlocal response is calculated taking into account an influence of another microparticle. A saturation of the dispersion interaction at short distances from the surface both for the spectral density of energy and for the total energy is shown. The known McLachlan expression for the pair and triple energies in the case of local media directly follows from the obtained general expression

  16. Constraining the range of Yukawa gravity interaction from S2 star orbits III: improvement expectations for graviton mass bounds

    Science.gov (United States)

    Zakharov, A. F.; Jovanović, P.; Borka, D.; Borka Jovanović, V.

    2018-04-01

    Recently, the LIGO-Virgo collaboration discovered gravitational waves and in their first publication on the subject the authors also presented a graviton mass constraint as mg advance for general relativity and Yukawa potential are different functions on eccentricity and semimajor axis, it gives an opportunity to improve current estimates of graviton mass with future observational facilities. In our considerations of an improvement potential for a graviton mass estimate we adopt a conservative strategy and assume that trajectories of bright stars and their apocenter advance will be described with general relativity expressions and it gives opportunities to improve graviton mass constraints. In contrast with our previous studies, where we present current constraints on parameters of Yukawa gravity [5] and graviton mass [6] from observations of S2 star, in the paper we express expectations to improve current constraints for graviton mass, assuming the GR predictions about apocenter shifts will be confirmed with future observations. We concluded that if future observations of bright star orbits during around fifty years will confirm GR predictions about apocenter shifts of bright star orbits it give an opportunity to constrain a graviton mass at a level around 5 × 10‑23 eV or slightly better than current estimates obtained with LIGO observations.

  17. STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

    KAUST Repository

    FELLNER, KLEMENS; RAOUL, GAË L

    2010-01-01

    .r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive

  18. Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions

    Science.gov (United States)

    Xie, Yu-Xia; Sun, Yu-Hang; Li, Zhao

    2018-01-01

    We investigate the well-defined measures of measurement-induced nonlocality (MIN) for thermal states of the transverse field XX model, with the addition of three-spin interaction terms being introduced. The results showed that the MINs are very sensitive to system parameters of the chain. The three-spin interactions can serve as flexible parameters for enhancing MINs of the boundary spins, and the maximum enhancement achievable by varying strengths of the three-spin interactions are different for the chain with different number of spins.

  19. Effects of nonlocal dispersive interactions on self-trapping excitations

    DEFF Research Database (Denmark)

    Gaididei, Yu.B.; Mingaleev, S.F.; Christiansen, Peter Leth

    1997-01-01

    -site and intersite states. It is shown that for s sufficiently large all features of the model are qualitatively the same as in the NLS model with a nearest-neighbor interaction. For s less than some critical value s(cr), there is an interval of bistability where two stable stationary states exist at each excitation...... number N = Sigma(n)\\psi(n)\\(2). For cubic nonlinearity the bistability of on-site solitons may occur for dipole-dipole dispersive interaction (s = 3), while s(cr) for intersite solitons is close to 2.1. For increasing degree of nonlinearity sigma, s(cr) increases. The long-distance behavior...

  20. Weak solutions for Euler systems with non-local interactions

    Czech Academy of Sciences Publication Activity Database

    Carrillo, J. A.; Feireisl, Eduard; Gwiazda, P.; Swierczewska-Gwiazda, A.

    2017-01-01

    Roč. 95, č. 3 (2017), s. 705-724 ISSN 0024-6107 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Euler system * dissipative solutions * Newtonian interaction Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.895, year: 2016 http://onlinelibrary.wiley.com/doi/10.1112/jlms.12027/abstract

  1. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    Science.gov (United States)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  2. Biography of Hideki Yukawa

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Humitaka [Yukawa Memorial Foundation, c/o Yukawa Institute, Kyoto University, Kyoto 606-8502 (Japan)

    2008-06-01

    Life history of Hideki Yukawa is described, together with that of Sin-itiro Tomonaga. They grew upiin Kyoto city and were classmate. Their independency and collaboration had contributed to the growth of physics research in Japan after the end of WWII.

  3. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens

    2011-04-01

    We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  4. On nonlocally interacting metrics, and a simple proposal for cosmic acceleration

    Science.gov (United States)

    Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra

    2018-03-01

    We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.

  5. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-01-01

    Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found

  6. Relativistic New Yukawa-Like Potential and Tensor Coupling

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.

    2012-01-01

    We approximately solve the Dirac equation for a new suggested generalized inversely quadratic Yukawa potential including a Coulomb-like tensor interaction with arbitrary spin-orbit coupling quantum number κ. In the framework of the spin and pseudo spin (p-spin) symmetry, we obtain the energy eigenvalue equation and the corresponding eigenfunctions, in closed form, by using the parametric Nikiforov-Uvarov method. The numerical results show that the Coulomb-like tensor interaction, -T/r, removes degeneracies between spin and p-spin state doublets. The Dirac solutions in the presence of exact spin symmetry are reduced to Schroedinger solutions for Yukawa and inversely quadratic Yukawa potentials. (author)

  7. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  8. Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation

    Science.gov (United States)

    Yan, Xue-Wei; Tian, Shou-Fu; Dong, Min-Jie; Wang, Xiu-Bin; Zhang, Tian-Tian

    2018-05-01

    We consider the generalised dispersive modified Benjamin-Bona-Mahony equation, which describes an approximation status for long surface wave existed in the non-linear dispersive media. By employing the truncated Painlevé expansion method, we derive its non-local symmetry and Bäcklund transformation. The non-local symmetry is localised by a new variable, which provides the corresponding non-local symmetry group and similarity reductions. Moreover, a direct method can be provided to construct a kind of finite symmetry transformation via the classic Lie point symmetry of the normal prolonged system. Finally, we find that the equation is a consistent Riccati expansion solvable system. With the help of the Jacobi elliptic function, we get its interaction solutions between solitary waves and cnoidal periodic waves.

  9. Interaction of an atom subject to an intense laser field with its own radiation field and nonlocality of electromagnetic interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R Kh; Mutygullina, A A

    2009-01-01

    We discuss the interaction of an atom subject to an intense driving laser field with its own radiation field. In contrast to the states of bare atoms, the energy difference between some dressed states with the same total angular momentum, its projection and parity may be very small. The self-interaction of a combined atom-laser system associated with nonradiative transitions between such states is effectively strong. We show that the contribution to the radiative shift of the sidebands of the Mollow spectrum, which comes from such processes, is very significant and may be much larger than the trivial Lamb shift, which is the simple redistribution of the Lamb shifts of the corresponding bare states. In the final part, we discuss the possibility that in the Mollow spectrum nonlocality of electromagnetic interaction, which in other cases is hidden in the regularization and renormalization procedures, can manifest itself explicitly.

  10. Measure solutions for non-local interaction PDEs with two species

    Energy Technology Data Exchange (ETDEWEB)

    Francesco, Marco Di [Department of Mathematical and Statistical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Fagioli, Simone [DISIM—Department of Information Engineering, Computer Science and Mathematics, University of L' Aquila, Via Vetoio 1 (Coppito) 67100 L' Aquila (AQ) (Italy)

    2013-10-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C{sup 2} potentials using a variant of the method of characteristics. (paper)

  11. Measure solutions for non-local interaction PDEs with two species

    International Nuclear Information System (INIS)

    Francesco, Marco Di; Fagioli, Simone

    2013-01-01

    This paper presents a systematic existence and uniqueness theory of weak measure solutions for systems of non-local interaction PDEs with two species, which are the PDE counterpart of systems of deterministic interacting particles with two species. The main motivations behind those models arise in cell biology, pedestrian movements, and opinion formation. In case of symmetrizable systems (i.e. with cross-interaction potentials one multiple of the other), we provide a complete existence and uniqueness theory within (a suitable generalization of) the Wasserstein gradient flow theory in Ambrosio et al (2008 Gradient Flows in Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics ETH Zürich) 2nd edn (Basel: Birkhäuser)) and Carrillo et al (2011 Duke Math. J. 156 229–71), which allows the consideration of interaction potentials with a discontinuous gradient at the origin. In the general case of non-symmetrizable systems, we provide an existence result for measure solutions which uses a semi-implicit version of the Jordan–Kinderlehrer–Otto (JKO) scheme (Jordan et al 1998 SIAM J. Math. Anal. 29 1–17), which holds in a reasonable non-smooth setting for the interaction potentials. Uniqueness in the non-symmetrizable case is proven for C 2 potentials using a variant of the method of characteristics. (paper)

  12. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  13. 2016 CIME Course on Nonlocal and Nonlinear Diffusions and Interactions : New Methods and Directions

    CERN Document Server

    Grillo, Gabriele

    2017-01-01

    Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.

  14. Off-shell t-matrix for an exponential potential with non-local core interaction

    International Nuclear Information System (INIS)

    Sarkar, S.B.; Talukdar, B.; Chattarji, D.

    1975-01-01

    The wave function approach of Van Leeuwen and Reiner to the t-matrix is generalized to the case of a non-local potential. The transition matrix element for this potential is obtained. The results are used to compute the s-wave part of the t-matrix for a non-local square well potential combined with an outside exponential potential. (Auth.)

  15. Yukawa Tomonaga and nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, Takeshi

    2006-01-01

    Yukawa and Tomonaga made epoch-making contributions to the development of elementary particle physics; Yukawa proposed the meson theory of the nuclear force and Tomonaga developed renormalization theory in QED. The nuclear force is, of course, the basis of all nuclear physics. In this sense, Yukawa's work set the foundations for nuclear physics. Tomonaga worked in his late years on problems of collective motion appearing in many many-particle-systems, nuclear systems being one of the examples. Yukawa and Tomonaga were also deeply involved in founding the Institute of Fundamental Physics and Institute for Nuclear Study, through which they made invaluable contributions to the development of the field of nuclear physics. It is almost impossible to report in this short article on all of what they have achieved and thus I would like to discuss here their contributions to nuclear physics only in a limited scope, based on my personal reminiscence of them. (author)

  16. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  17. Nonlocality in Bohmian mechanics

    Science.gov (United States)

    Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han

    2018-04-01

    The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.

  18. Nonlocal teleparallel cosmology.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C

    2017-01-01

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.

  19. Nonlocal teleparallel cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-09-15

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)

  20. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com [College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Aflaj (Saudi Arabia); Faculty of Science, Assiut University, Assiut (Egypt); Joshi, A., E-mail: mcbamji@gmail.com [Physics Department, Adelphi University Garden City, NY 11530 (United States); Department of Physics and Optical Engineering, RHIT, Terra Haute IN 47803 (United States); Hassan, S.S., E-mail: shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.

  1. On the non-local obstruction to interacting higher spins in flat space

    Energy Technology Data Exchange (ETDEWEB)

    Taronna, Massimo [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2017-05-04

    Owing to a renewed interest in flat space higher spin gauge theories, in this note we provide further details and clarifications on the results presented in arXiv:1107.5843 and arXiv: 1209.5755, which investigated their locality properties. Focusing, for simplicity, on quartic couplings with one of the external legs having non-zero integer spin (which can be considered as a prototype for Weinberg-type arguments), we review the appearance of 1/◻ non-localities. In particular, we emphasise that it appears to be not possible to eliminate all of the aforementioned non-localities in the general quartic Noether procedure solution with a judicious choice of coupling constants and spectrum. We also discuss the light-cone gauge fixing in d=4, and argue that the non-local obstruction discussed in the covariant language cannot be avoided using light-cone gauge formalism.

  2. Local and non-local deficits in amblyopia: acuity and spatial interactions.

    Science.gov (United States)

    Bonneh, Yoram S; Sagi, Dov; Polat, Uri

    2004-12-01

    Amblyopic vision is thought to be limited by abnormal long-range spatial interactions, but their exact mode of action and relationship to the main amblyopic deficit in visual acuity is largely unknown. We studied this relationship in a group (N=59) of anisometropic (N=21) and strabismic (or combined, N=38) subjects, using (1) a single and multi-pattern (crowded) computerized static Tumbling-E test with scaled spacing of two pattern widths (TeVA), in addition to an optotype (ETDRS chart) acuity test (VA) and (2) contrast detection of Gabor patches with lateral flankers (lateral masking) along the horizontal and vertical axes as well as in collinear and parallel configurations. By correlating the different measures of visual acuity and contrast suppression, we found that (1) the VA of the strabismic subjects could be decomposed into two uncorrelated components measured in TeVA: acuity for isolated patterns and acuity reduction due to flanking patterns. The latter comprised over 60% of the VA magnitude, on the average and accounted for over 50% of its variance. In contrast, a slight reduction in acuity was found in the anisometropic subjects, and the acuity for a single pattern could account for 70% of the VA variance. (2) The lateral suppression (contrast threshold elevation) in a parallel configuration along the horizontal axis was correlated with the VA (R2=0.7), as well as with the crowding effect (TeVA elevation, R2=0.5) for the strabismic group. Some correlation with the VA was also found for the collinear configuration in the anisometropic group, but less suppression and no correlation were found for all the vertical configurations in all the groups. The results indicate the existence of a specific non-local component of the strabismic deficit, in addition to the local acuity deficit in all amblyopia types. This deficit might reflect long-range lateral inhibition, or alternatively, an inaccurate and scattered top-down attentional selection mechanism.

  3. Induced boson self couplings in four-fermion and Yukawa theories

    International Nuclear Information System (INIS)

    Tamvakis, K.K.

    1978-01-01

    Theories of self-interacting fermion fields are expanded in a mean field expansion in terms of boson collective variables. Divergences can be absorbed in a renormalized mass and a renormalized Yukawa-type coupling to all orders in the mean field expansion. The cubic and quartic collective boson self-couplings required by renormalization are fixed in terms of the renormalized Yukawa coupling. This fixing is demonstrated by use of the Callan-Symanzik equations. These theories are formally equivalent to Yukawa-type theories, expanded the same way, with the boson self-couplings constrained to be functions of the Yukawa coupling

  4. Nonlocal hidden variables and nonlocal gauge theories

    International Nuclear Information System (INIS)

    Boiteux, M.

    1984-01-01

    A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)

  5. The effect of pre-plasma formation under nonlocal transport conditions for ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Holec, M.; Nikl, J.; Vranic, M.; Weber, S.

    2018-04-01

    Interaction of high-power lasers with solid targets is in general strongly affected by the limited contrast available. The laser pre-pulse ionizes the target and produces a pre-plasma which can strongly modify the interaction of the main part of the laser pulse with the target. This is of particular importance for future experiments which will use laser intensities above 1021 W cm-2 and which are subject to the limited contrast. As a consequence the main part of the laser pulse will be modified while traversing the pre-plasma, interacting with it partially. A further complication arises from the fact that the interaction of a high-power pre-pulse with solid targets very often takes place under nonlocal transport conditions, i.e. the characteristic mean-free-path of the particles and photons is larger than the characteristic scale-lengths of density and temperature. The classical diffusion treatment of radiation and heat transport in the hydrodynamic model is then insufficient for the description of the pre-pulse physics. These phenomena also strongly modify the formation of the pre-plasma which in turn affects the propagation of the main laser pulse. In this paper nonlocal radiation-hydrodynamic simulations are carried out and serve as input for subsequent kinetic simulations of ultra-high intensity laser pulses interacting with the plasma in the ultra-relativistic regime. It is shown that the results of the kinetic simulations differ considerably whether a diffusive or nonlocal transport is used for the radiation-hydrodynamic simulations.

  6. Three-body models of the 6ΛΛHe and 9ΛBe hypernuclei with non-local interactions

    International Nuclear Information System (INIS)

    Theeten, M.; Baye, D.; Descouvemont, P.

    2005-01-01

    A three-body model involving non-local interactions is developed in configuration space. It is based on a hyperspherical-harmonics expansion and the Lagrange-mesh method. The 6 ΛΛ He and 9 Λ Be hypernuclei are studied as three-body αΛΛ and ααΛ systems. Recently proposed quark-model based ΛN and ΛΛ interactions are used. A non-local Λα interaction is obtained by folding the ΛN interaction with a Gaussian α density. Various phenomenological αα interactions are employed. The results agree within 1 keV with recent Faddeev calculations in momentum space. Energies and radii of 6 ΛΛ He and 9 Λ Be are compared with a purely local model. The B(E2) between the 9 Λ Be bound states is also calculated. The role of non-locality is discussed

  7. Conceptual Nonlocality

    Directory of Open Access Journals (Sweden)

    David A. Grandy

    2007-08-01

    Full Text Available Nonlocality is a puzzling issue in modern physics. I propose that, aside from the experimental determination of nonlocality, the concept of atomistic lightmdash;discrete, self-bounded photonsmdash;breaks down toward something like nonlocality when subjected to philosophical scrutiny. Louis de Broglie made a similar argument regarding the material atom: the concept of the classical atom, when interrogated, collapses upon itself to offer a glimpse of wave-particle duality. Light atoms or photons, I argue, similarly collapse toward the contradictory possibility of nonlocality.

  8. Conformal gauge-Yukawa theories away from four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Codello, Alessandro; Langæble, Kasper [CP-Origins, University of Southern Denmark,Campusvej 55, Odense, DK-5230 (Denmark); Litim, Daniel F. [Department of Physics and Astronomy, University of Sussex,Brighton, BN1 9QH (United Kingdom); Sannino, Francesco [CP-Origins, University of Southern Denmark,Campusvej 55, Odense, DK-5230 (Denmark); Danish Institute for Advanced Study, Danish IAS, University of Southern Denmark,Campusvej 55, Odense, DK-5230 (Denmark)

    2016-07-22

    We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in d=4+ϵ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD{sub d} and then we add Yukawa interactions and scalars which we study at next-to- and next-to-next-to-leading order. Interacting infrared fixed points naturally emerge in dimensions lower than four while ultraviolet ones appear above four. We also analyse the stability of the scalar potential for the discovered fixed points. We argue for a very rich phase diagram in three dimensions while in dimensions higher than four certain Gauge-Yukawa theories are ultraviolet complete because of the emergence of an asymptotically safe fixed point.

  9. Local versus nonlocal αα interactions in a 3α description of 12C

    International Nuclear Information System (INIS)

    Suzuki, Y.; Matsumura, H.; Orabi, M.; Fujiwara, Y.; Descouvemont, P.; Theeten, M.; Baye, D.

    2008-01-01

    Local αα potentials reproducing the αα phase shifts fail to describe 12 C as a 3α system. Nonlocal αα potentials that renormalize the energy-dependent kernel of the resonating group method allow interpreting simultaneously the ground state and 0 2 + resonance of 12 C as 3α states. A comparison with fully microscopic calculations provides a measure of the importance of three-cluster exchanges in those states

  10. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  11. Vapour-liquid equilibria of the hard core Yukawa fluid

    NARCIS (Netherlands)

    Smit, B.; Frenkel, D.

    1991-01-01

    Techniques which extend the range of applicability of the Gibbs ensemble technique for particles which interact with a hard core potential are described. The power of the new technique is demonstrated in a numerical study of the vapour-liquid coexistence curve of the hard core Yukawa fluid.

  12. Vacuum stability of asymptotically safe gauge-Yukawa theories

    DEFF Research Database (Denmark)

    Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatr......, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established....

  13. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  14. CRE Solvability, Nonlocal Symmetry and Exact Interaction Solutions of the Fifth-Order Modified Korteweg-de Vries Equation

    Science.gov (United States)

    Cheng, Wen-Guang; Qiu, De-Qin; Yu, Bo

    2017-06-01

    This paper is concerned with the fifth-order modified Korteweg-de Vries (fmKdV) equation. It is proved that the fmKdV equation is consistent Riccati expansion (CRE) solvable. Three special form of soliton-cnoidal wave interaction solutions are discussed analytically and shown graphically. Furthermore, based on the consistent tanh expansion (CTE) method, the nonlocal symmetry related to the consistent tanh expansion (CTE) is investigated, we also give the relationship between this kind of nonlocal symmetry and the residual symmetry which can be obtained with the truncated Painlevé method. We further study the spectral function symmetry and derive the Lax pair of the fmKdV equation. The residual symmetry can be localized to the Lie point symmetry of an enlarged system and the corresponding finite transformation group is computed. Supported by National Natural Science Foundation of China under Grant No. 11505090, and Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009

  15. Equilibration of a strongly interacting plasma: holographic analysis of local and nonlocal probes

    Directory of Open Access Journals (Sweden)

    Bellantuono Loredana

    2016-01-01

    Full Text Available The relaxation of a strongly coupled plasma towards the hydrodynamic regime is studied by analyzing the evolution of local and nonlocal observables in the holographic approach. The system is driven in an initial anisotropic and far-from equilibrium state through an impulsive time-dependent deformation (quench of the boundary spacetime geometry. Effective temperature and entropy density are related to the position and area of a black hole horizon, which has formed as a consequence of the distortion. The behavior of stress-energy tensor, equal-time correlation functions and Wilson loops of different shapes is examined, and a hierarchy among their thermalization times emerges: probes involving shorter length scales thermalize faster.

  16. Remote interactions on two distributed quantum systems: nonlocal unambiguous quantum-state discrimination

    International Nuclear Information System (INIS)

    Chen Libing; Jin Ruibo; Lu Hong

    2008-01-01

    Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM

  17. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  18. From the Yukawa Particle to the QGCW

    CERN Document Server

    Zichichi, A

    2008-01-01

    The remarkable consequences of the Yukawa particle, theoretically proposed in 1935, are reviewed. The production, the decay and the intrinsic structure of the Yukawa particle opened new frontiers with laws and regularities which brought us to the discovery of subnuclear physics and now to the Quark-Gluon-Coloured-World (QGCW).

  19. Holomorphic Yukawa couplings in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Candelas, Philip [Mathematical Institute, University of Oxford,Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2016-01-26

    We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. http://dx.doi.org/10.1007/JHEP06(2014)100.

  20. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  1. Stability of stationary states of non-local equations with singular interaction potentials

    KAUST Repository

    Fellner, Klemens; Raoul, Gaë l

    2011-01-01

    repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.

  2. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    However, the shell-to-shell energy transfer rate is found to be local and forward. .... interaction was strong, but the energy exchange occurred predominantly between ..... The wave-number range considered is in the inverse cascade regime.

  3. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  4. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus

    1998-01-01

    A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...

  5. Minimal SUSY SO(10) and Yukawa unification

    International Nuclear Information System (INIS)

    Okada, Nobuchika

    2013-01-01

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {10⊕126-bar} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y 126 ) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of β(10 14 GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - τ Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - τ Yukawa coupling unification is very accurate, the largest element in Y 126 can become β(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - τ Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  6. A model of Yukawa hierarchies

    International Nuclear Information System (INIS)

    Elwood, J.K.; Irges, N.; Ramond, P.

    1997-05-01

    The authors present a model for the observed hierarchies among the Yukawa couplings of the standard model in the context of an effective low energy theory with an anomalous U(1) symmetry. This symmetry, a generic feature of superstring compactification, is a remnant of the Green-Schwarz anomaly cancellation mechanism. The gauge group is that of the standard model, augmented by X, the anomalous U(1), and two family-dependent phase symmetries Y (1) and Y (2) . The correct hierarchies are reproduced only when sin 2 θ w = 3/8 at the cut-off. To cancel anomalies, right-handed neutrinos and other standard model singlets must be introduced. Independently of the charges of the right-handed neutrinos, this model produces the same neutrino mixing matrix and an inverted hierarchy of neutrino masses. The heaviest is the electron neutrino with a mass ∼ 1 meV, and mixing of the order of λ c 3 with each of the other two neutrinos

  7. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  8. Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction

    International Nuclear Information System (INIS)

    Song, Xue-ke; Wu, Tao; Xu, Shuai; He, Juan; Ye, Liu

    2014-01-01

    In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strong enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state

  9. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei; Lubineau, Gilles

    2011-01-01

    for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can

  10. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions

    Science.gov (United States)

    Kjellander, Roland

    2016-09-01

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κDH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ɛ ˜ ( k ) and some effective relative permittivities ( Er eff and Er ∗ ), which take roles that the dielectric constant ɛr has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ɛ ˜ ( k ) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ɛ ˜ ( k ) → ∞ when k → 0, a well-known effect of perfect screening. The effective relative

  11. Non-Local Effects in Kaonic Atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-01-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self energy in nuclear matter. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful description is obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. (author)

  12. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...

  13. Yukawa Potential, Panharmonic Measure and Brownian Motion

    Directory of Open Access Journals (Sweden)

    Antti Rasila

    2018-05-01

    Full Text Available This paper continues our earlier investigation, where a walk-on-spheres (WOS algorithm for Monte Carlo simulation of the solutions of the Yukawa and the Helmholtz partial differential equations (PDEs was developed by using the Duffin correspondence. In this paper, we investigate the foundations behind the algorithm for the case of the Yukawa PDE. We study the panharmonic measure, which is a generalization of the harmonic measure for the Yukawa PDE. We show that there are natural stochastic definitions for the panharmonic measure in terms of the Brownian motion and that the harmonic and the panharmonic measures are all mutually equivalent. Furthermore, we calculate their Radon–Nikodym derivatives explicitly for some balls, which is a key result behind the WOS algorithm.

  14. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Nikolai [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt (Germany); Scheid, Claire [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); University of Nice – Sophia Antipolis, Mathematics laboratory, Parc Valrose, 06108 Nice, Cedex 02 (France); Lanteri, Stéphane, E-mail: Stephane.Lanteri@inria.fr [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Moreau, Antoine [Institut Pascal, Université Blaise Pascal, 24, avenue des Landais, 63171 Aubière Cedex (France); Viquerat, Jonathan [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system

  15. Superstring threshold corrections to Yukawa couplings

    International Nuclear Information System (INIS)

    Antoniadis, I.; Taylor, T.R.

    1992-12-01

    A general method of computing string corrections to the Kaehler metric and Yukawa couplings is developed at the one-loop level for a general compactification of the heterotic superstring theory. It also provides a direct determination of the so-called Green-Schwarz term. The matter metric has an infrared divergent part which reproduces the field-theoretical anomalous dimensions, and a moduli-dependent part which gives rise to threshold corrections in the physical Yukawa couplings. Explicit expressions are derived for symmetric orbifold compactifications. (author). 20 refs

  16. Unification beyond GUT's: Gauge-Yukawa unification

    International Nuclear Information System (INIS)

    Kubo, J.; Mondragon, M.; Zoupanos, G.

    1996-01-01

    Gauge-Yukawa Unification (GYU) is a renormalization group invariant functional relation among gauge and Yukawa couplings which holds beyond the unification point in Grand Unified Theories (GUTs). We present here various models where GYU is obtained by requiring the principles of finiteness and reduction of couplings. We examine the consequences of these requirements for the low energy parameters, especially for the top quark mass. The predictions are such that they clearly distinguish already GYU from ordinary GUTs. It is expected that it will be possible to discriminate among the various GYUs when more accurate measurements of the top quark mass are available. (author)

  17. Study of the Higgs-Yukawa theory in the strong-Yukawa coupling regime

    International Nuclear Information System (INIS)

    Bulava, John; Gerhold, Philipp; Nagy, Attila; Deutsches Elektronen-Synchrotron; Hou, George W.S.; Smigielski, Brian; Jansen, Karl; Knippschild, Bastian; Univ. of Mainz; Lin, David C.J.; National Centre of Theoretical Sciences, Hsinchu; Nagai, Kei-Ichi; Ogawa, Kenji

    2011-12-01

    In this article, we present an ongoing lattice study of the Higgs-Yukawa model, in the regime of strong-Yukawa coupling, using overlap fermions. We investigated the phase structure in this regime by computing the Higgs vacuum expectation value, and by exploring the finite-size scaling behaviour of the susceptibility corresponding to the magnetisation. Our preliminary results indicate the existence of a second-order phase transition when the Yukawa coupling becomes large enough, at which the Higgs vacuum expectation value vanishes and the susceptibility diverges. (orig.)

  18. New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps

    Science.gov (United States)

    Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-11-01

    We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.

  19. New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, I.A., E-mail: igor_sar@li.ru; Vadivasova, T.E., E-mail: vadivasovate@yandex.ru; Bukh, A.V., E-mail: buh.andrey@yandex.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru; Anishchenko, V.S., E-mail: wadim@info.sgu.ru

    2017-04-25

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied. - Highlights: • Dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime is studied. • A new type of chimera patterns has been found in the noise-free network. • The region of existence of new structures has been explored when varying the coupling parameters.

  20. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction

    Science.gov (United States)

    Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.

    2017-04-01

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.

  1. Auxeticity of Yukawa Systems with Nanolayers in the (111 Crystallographic Plane

    Directory of Open Access Journals (Sweden)

    Paweł M. Pigłowski

    2017-11-01

    Full Text Available Elastic properties of model crystalline systems, in which the particles interact via the hard potential (infinite when any particles overlap and zero otherwise and the hard-core repulsive Yukawa interaction, were determined by Monte Carlo simulations. The influence of structural modifications, in the form of periodic nanolayers being perpendicular to the crystallographic axis [111], on auxetic properties of the crystal was investigated. It has been shown that the hard sphere nanolayers introduced into Yukawa crystals allow one to control the elastic properties of the system. It has been also found that the introduction of the Yukawa monolayers to the hard sphere crystal induces auxeticity in the [ 11 1 ¯ ] [ 112 ] -direction, while maintaining the negative Poisson’s ratio in the [ 110 ] [ 1 1 ¯ 0 ] -direction, thus expanding the partial auxeticity of the system to an additional important crystallographic direction.

  2. Electron-positron pairs creation in the field of two strong counterpropagating laser beams and the nonlocality of the photon-photon interaction

    International Nuclear Information System (INIS)

    Gainutdinov, R.Kh.; Khamadeev, M.A.; Mutygullina, A.A.

    2010-01-01

    Complete text of publication follows. We discuss various approaches to problem of the electron-positron pair creation in the strong external field. Special interest presents the circuit, in which the interaction of two strong counterpropagating laser beams in vacuum is considered. For the calculation of the probability of the creation the following formula is usually applied: W = 2Im(L (E-H) (ρ L )) = 2m 4 /(2π) 3 ρ L 2 Σ n=1 -∞ 1/n 2 e -nπ /ρ L where ρ L = E L / E cr and E cr = m 2 /e = 1.3 x 10 16 V/cm is the Schwinger field limit. However this expression was obtained even in pioneer works dedicated to vacuum nonlinearity and it based on some approximations. Attempt of the strict analysis has been made in work by introducing the nonlocal form-factor into the Lagrangian. But, as it is well known, such procedure leads to the loss of Lorenz invariance or unitarity. We show that the formalism of generalized quantum dynamic (GQD) opens new opportunities to solve such problems. We show also how it can be made proceeding from nonlocal interaction operator obtained earlier within the framework of the formalism of GQD. Acknowledgements. This work was supported by the Grant of Federal Agency on Education, Russia (Contract number 02.740.11.0428) and by the Grant of Russian President No. NSh 2965.2008.2.

  3. Induced Yukawa coupling and finite mass

    International Nuclear Information System (INIS)

    Fujimoto, Y.

    1981-06-01

    We propose that the Yukawa couplings in the unified theories could be of induced nature. The idea is implemented in the gauge theory with either weak or horizontal Susub(L)(2) x SUsub(R)(2) symmetry. A related subject of finite fermion mass is also discussed. (author)

  4. Top Yukawa deviation in extra dimension

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Oda, Kin-ya; Takahashi, Ryo

    2009-01-01

    We suggest a simple one-Higgs-doublet model living in the bulk of five-dimensional spacetime compactified on S 1 /Z 2 , in which the top Yukawa coupling can be smaller than the naive standard-model expectation, i.e. the top quark mass divided by the Higgs vacuum expectation value. If we find only single Higgs particle at the LHC and also observe the top Yukawa deviation, our scenario becomes a realistic candidate beyond the standard model. The Yukawa deviation comes from the fact that the wave function profile of the free physical Higgs field can become different from that of the vacuum expectation value, due to the presence of the brane-localized Higgs potentials. In the Brane-Localized Fermion scenario, we find sizable top Yukawa deviation, which could be checked at the LHC experiment, with a dominant Higgs production channel being the WW fusion. We also study the Bulk Fermion scenario with brane-localized Higgs potential, which resembles the Universal Extra Dimension model with a stable dark matter candidate. We show that both scenarios are consistent with the current electroweak precision measurements.

  5. Phase behavior of the modified-Yukawa fluid and its sticky limit.

    Science.gov (United States)

    Schöll-Paschinger, Elisabeth; Valadez-Pérez, Néstor E; Benavides, Ana L; Castañeda-Priego, Ramón

    2013-11-14

    Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.

  6. Non-local effects in kaonic atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-04-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self-energy in nuclear matter. The optical potentials show strong non-linearities in the nucleon density and sizeable non-local terms. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful fits are obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. We conclude that a microscopic description of kaonic atom data requires further detailed studies of the microscopic K - nuclear dynamics. (orig.)

  7. Schwinger functions for the Yukawa model in two dimensions with space-time cutoff

    International Nuclear Information System (INIS)

    Seiler, E.

    1975-01-01

    It is shown that a Euclidean version of the formulae of Matthews and Salam for the Green's functions of a two-dimensional Yukawa model with interaction in a finite space-time volume makes sense, if renormalized correctly. (orig.) [de

  8. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  9. Van der Waals interaction between a molecule and a spherical cavity in a metal: Nonlocality and anisotropy effects

    International Nuclear Information System (INIS)

    Labani, B.; Boustimi, M.; Baudon, J.

    1997-01-01

    The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field gradient between the two points inside the metallic cavity is formulated by a general expression of the van der Waals energy between the two partners. The induction contribution is introduced by using the field gradient susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present numerical results for typical systems (HF, HCl on Ag, Al, and Cu). copyright 1997 The American Physical Society

  10. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  11. A nonlocal potential form for s-wave α-α scattering

    International Nuclear Information System (INIS)

    Amos, K.; Bennett, M.T.

    1997-01-01

    Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm

  12. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    Science.gov (United States)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  13. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Science.gov (United States)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  14. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  15. Strong coupling transmutation of Yukawa theory

    International Nuclear Information System (INIS)

    Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

    1981-01-01

    In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

  16. The evolution of the mass-transfer functions in liquid Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-09-15

    The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.

  17. Yukawa couplings between (2,1)-forms

    International Nuclear Information System (INIS)

    Candelas, P.

    1988-01-01

    The compactification of superstrings leads to an effective field theory for which the space-time manifold is the product of a four-dimensional Minkowski space with a six-dimensional Calabi-Yau space. The particles that are massless in the four-dimensional world correspond to differential forms of type (1,1) and of type (2,1) on the Calabi-Yau space. The Yukawa couplings between the families correspond to certain integrals involving three differential forms. For an important class of Calabi-Yau manifolds, which includes the cases for which the manifold may be realized as a complete intersection of polynomial equations in a projective space, the families correspond to (2,1)-forms. The relation between (2,1)-forms and the geometrical deformations of the Calabi-Yau space is explained and it is shown, for those cases for which the manifold may be realized as the complete intersection of polynomial equations in a single projective space or for many cases when the manifold may be realized as the transverse intersection of polynomial equations in a product of projective spaces, that the calculation of the Yukawa coupling reduces to a purely algebraic problem involving the defining polynomials. The generalization of this process is presented for a general Calabi-Yau manifold. (orig.)

  18. Yukawa sector of minimal SO(10) unification

    Energy Technology Data Exchange (ETDEWEB)

    Babu, K.S. [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States); Bajc, Borut [Jožef Stefan Institute,Ljubljana, 1000 (Slovenia); Saad, Shaikh [Department of Physics, Oklahoma State University,Stillwater, OK, 74078 (United States)

    2017-02-28

    We show that in SO(10) models, a Yukawa sector consisting of a real 10{sub H}, a real 120{sub H} and a complex 126{sub H} of Higgs fields can provide a realistic fit to all fermion masses and mixings, including the neutrino sector. Although the group theory of SO(10) demands that the 10{sub H} and 120{sub H} be real, most constructions complexify these fields and impose symmetries exterior to SO(10) to achieve predictivity. The proposed new framework with real10{sub H} and real120{sub H} relies only on SO(10) gauge symmetry, and yet has a limited number of Yukawa parameters. Our analysis shows that while there are restrictions on the observables, a good fit to the entire fermion spectrum can be realized. Unification of gauge couplings is achieved with an intermediate scale Pati-Salam gauge symmetry. Proton decay branching ratios are calculable, with the leading decay modes being p→ν̄π{sup +} and p→e{sup +}π{sup 0}.

  19. Modulational instability and nonlocality management in coupled NLS systems

    International Nuclear Information System (INIS)

    Doktorov, Evgeny V; Molchan, Maxim A

    2007-01-01

    The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium

  20. Supersonic flows past an obstacle in Yukawa liquids

    Science.gov (United States)

    Charan, Harish; Ganesh, Rajaraman

    2018-04-01

    Shock formation, when a supersonic flow passes a stationary obstacle, is ubiquitous in nature. Considering particles mediating via a Yukawa-type interaction as a prototype for a strongly coupled complex plasma, characterized by coupling strength (Γ, ratio of the average potential to kinetic energy per particle) and screening parameter (κ, ratio of the mean inter-particle distance to the shielding length), we address the fundamental problem of supersonic fluid flow U0, past a stationary obstacle immersed in this strongly coupled system. We here report the results on the bow shocks formed in Yukawa liquids when the liquid flows at speeds larger than the speed of sound in the system. Depending on the values of Mach number MC L=U/0 CL , where CL is the longitudinal speed of sound in the system, the bow shocks are found to be either traveling or localized. We find that for the transonic flows (0.8 ≲ MC L≲ 1.2), the bow shocks travel in the upstream direction opposite to the incoming fluid. The phase velocity of the traveling bow shocks is found to be a non-monotonous function of κ, varying as ∝1 /k1.11 at a fixed value of Γ, and is found to be independent of Γ at a fixed value of κ. It is observed that for the flow values with MC L>1.5 , the shock waves do not travel in the upstream direction but instead form a stationary arc like structure around the obstacle. For the fluid flows with 1 ≲ MC L≲ 2.6 , secondary bow shocks are seen to emerge behind the stationary obstacle which travel in the downstream direction, and the phase velocity of these secondary bow shocks is found to be equal to that of the primary bow shocks.

  1. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  2. Pressure of two-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Feng, Yan; Wang, Lei; Tian, Wen-de; Goree, J; Liu, Bin

    2016-01-01

    A simple analytic expression for the pressure of a two-dimensional Yukawa liquid is found by fitting results from a molecular dynamics simulation. The results verify that the pressure can be written as the sum of a potential term which is a simple multiple of the Coulomb potential energy at a distance of the Wigner–Seitz radius, and a kinetic term which is a multiple of the one for an ideal gas. Dimensionless coefficients for each of these terms are found empirically, by fitting. The resulting analytic expression, with its empirically determined coefficients, is plotted as isochores, or curves of constant area. These results should be applicable to monolayer dusty plasmas. (paper)

  3. Yukawa Bound States and Their LHC Phenomenology

    Directory of Open Access Journals (Sweden)

    Enkhbat Tsedenbaljir

    2013-01-01

    Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.

  4. Electroweak baryogenesis, large Yukawas and dark matter

    International Nuclear Information System (INIS)

    Provenza, Alessio; Quiros, Mariano; Ullio, Piero

    2005-01-01

    It has recently been shown that the electroweak baryogenesis mechanism is feasible in Standard Model extensions containing extra fermions with large Yukawa couplings. We show here that the lightest of these fermionic fields can naturally be a good candidate for cold dark matter. We find regions in the parameter space where the thermal relic abundance of this particle is compatible with the dark matter density of the Universe as determined by the WMAP experiment. We study direct and indirect dark matter detection for this model and compare with current experimental limits and prospects for upcoming experiments. We find, contrary to the standard lore, that indirect detection searches are more promising than direct ones, and they already exclude part of the parameter space

  5. Multipartite nonlocality distillation

    International Nuclear Information System (INIS)

    Hsu, Li-Yi; Wu, Keng-Shuo

    2010-01-01

    The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

  6. Constraining Light-Quark Yukawa Couplings from Higgs Distributions

    CERN Document Server

    Bishara, Fady

    2017-03-20

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting LHC measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavour tagging. Compared to other proposals it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated to quark-initiated production. We derive constraints using data from LHC Run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  7. Holomorphic Yukawa couplings for complete intersection Calabi-Yau manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2017-01-27

    We develop methods to compute holomorphic Yukawa couplings for heterotic compactifications on complete intersection Calabi-Yau manifolds, generalising results of an earlier paper for Calabi-Yau hypersurfaces. Our methods are based on constructing the required bundle-valued forms explicitly and evaluating the relevant integrals over the projective ambient space. We also show how our approach relates to an earlier, algebraic one to calculate the holomorphic Yukawa couplings. A vanishing theorem, which we prove, implies that certain Yukawa couplings allowed by low-energy symmetries are zero due to topological reasons. To illustrate our methods, we calculate Yukawa couplings for SU(5)-based standard models on a co-dimension two complete intersection manifold.

  8. A generalized nonlocal vector calculus

    Science.gov (United States)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  9. Quantum Nonlocality and Beyond: Limits from Nonlocal Computation

    Science.gov (United States)

    Linden, Noah; Popescu, Sandu; Short, Anthony J.; Winter, Andreas

    2007-11-01

    We address the problem of “nonlocal computation,” in which separated parties must compute a function without any individual learning anything about the inputs. Surprisingly, entanglement provides no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect success. This provides intriguing insights into the limits of quantum information processing, the nature of quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal correlations.

  10. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  11. Nonlocal N=1 supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tetsuji [Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University,Lancaster LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands); Noumi, Toshifumi [Institute for Advanced Study, Hong Kong University of Science and Technology,Clear Water Bay (Hong Kong); Department of Physics, Kobe University,Kobe 657-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan)

    2016-10-05

    We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  12. Upper and lower Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa model

    International Nuclear Information System (INIS)

    Gerhold, Philipp Frederik Clemens

    2009-01-01

    Motivated by the advent of the Large Hadron Collider (LHC) the aim of the present work is the non-perturbative determination of the cutoff-dependent upper and lower mass bounds of the Standard Model Higgs boson based on first principle calculations, in particular not relying on additional information such as the triviality property of the Higgs- Yukawa sector or indirect arguments like vacuum stability considerations. For that purpose the lattice approach is employed to allow for a non-perturbative investigation of a chirally invariant lattice Higgs-Yukawa model, serving here as a reasonable simplification of the full Standard Model, containing only those fields and interactions which are most essential for the intended Higgs boson mass determination. These are the complex Higgs doublet as well as the top and bottom quark fields and their mutual interactions. To maintain the chiral character of the Standard Model Higgs-fermion coupling also on the lattice, the latter model is constructed on the basis of the Neuberger overlap operator, obeying then an exact global lattice chiral symmetry. Respecting the fermionic degrees of freedom in a fully dynamical manner by virtue of a PHMC algorithm appropriately adapted to the here intended lattice calculations, such mass bounds can indeed be established with the aforementioned approach. Supported by analytical calculations performed in the framework of the constraint effective potential, the lower bound is found to be approximately m low H (Λ)=80 GeV at a cutoff of Λ=1000 GeV. The emergence of a lower Higgs boson mass bound is thus a manifest property of the pure Higgs-Yukawa sector that evolves directly from the Higgs-fermion interaction for a given set of Yukawa coupling constants. Its quantitative size, however, turns out to be non-universal in the sense, that it depends on the specific form, for instance, of the Higgs boson self-interaction. The upper Higgs boson mass bound is then established in the strong coupling

  13. SU(5) orientifolds, Yukawa couplings, Stringy Instantons and Proton Decay

    CERN Document Server

    Kiritsis, Elias; Schellekens, Bert; 10.1016

    2009-01-01

    We construct a large class of SU(5) orientifold vacua with tadpole cancellation both for the standard and the flipped case. We give a general analysis of superpotential couplings up to quartic order in orientifold vacua and identify the properties of needed Yukawa couplings as well as the baryon number violating couplings. We point out that successful generation of the perturbatively forbidden Yukawa couplings entails a generically disastrous rate for proton decay from an associated quartic term in the superpotential, generated from the same instanton effects. This problem seems generic and may appear in F-theory vacua as well. We search for the appropriate instanton effects that generate the missing Yukawa couplings in the SU(5) vacua we constructed and find them in a small subset of them.

  14. Flavor cosmology. Dynamical Yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Servant, Geraldine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-12-02

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  15. Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); Servant, Géraldine [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); II. Institute for Theoretical Physics, University of Hamburg,Luruper Chaussee 149, Hamburg, D-22761 (Germany)

    2016-12-15

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  16. Constraining Light-Quark Yukawa Couplings from Higgs Distributions

    Science.gov (United States)

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-01

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  17. Constraining Light-Quark Yukawa Couplings from Higgs Distributions.

    Science.gov (United States)

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-24

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  18. Flavour Geometry and Effective Yukawa Couplings in the MSSM

    CERN Document Server

    Ellis, John; Lee, Jae Sik; Pilaftsis, Apostolos

    2010-01-01

    We present a new geometric approach to the flavour decomposition of an arbitrary soft supersymmetry-breaking sector in the MSSM. Our approach is based on the geometry that results from the quark and lepton Yukawa couplings, and enables us to derive the necessary and sufficient conditions for a linearly-independent basis of matrices related to the completeness of the internal [SU(3) x U(1)]^5 flavour space. In a second step, we calculate the effective Yukawa couplings that are enhanced at large values of tan(beta) for general soft supersymmetry-breaking mass parameters. We highlight the contributions due to non-universal terms in the flavour decompositions of the sfermion mass matrices. We present numerical examples illustrating how such terms are induced by renormalization-group evolution starting from universal input boundary conditions, and demonstrate their importance for the flavour-violating effective Yukawa couplings of quarks.

  19. The 100th anniversary of Yukawa and Tomonaga's birth

    International Nuclear Information System (INIS)

    Sato, Fumitaka; Ukawa, Akira; Takasugi, Eiichi; Kuroda, Yoichiro; Kamefuchi, Susumu; Tanaka, Sho; Kinoshita, Toichiro

    2006-01-01

    The above feature articles contain seven papers such as 1) contribution of leading figures to innovate physics by Humitaka Sato, 2) half century of quantum field theory and renormalization theory by Akira Ukawa, 3) inheritance from Dr. Yukawa by Eiichi Takasugi, 4) Dr. Tomonaga and 'Science and Technology Square' by Yoichiro Kuroda, 5) a trial to Shin-ichiro Tomonaga theory by Susumu Kamefuchi, 6) Dr. Yukawa and Einstein living the century of war and science by Sho Tanaka, and 7) precision calculation of QED and Tomonaga theory by Toichiro Kinoshita. Extracts from Tomonaga's 'Future of the theory of elementary particles', Yukawa's 'Cost of science researches' and 'An age of theoretical physics' are reported. (S.Y.)

  20. Nonlocal transformation optics.

    Science.gov (United States)

    Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2012-02-10

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  1. Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-01-08

    I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.

  2. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Partovi, M.H.

    1982-01-01

    From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories

  3. Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....

  4. Self-organization analysis for a nonlocal convective Fisher equation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)

    2009-02-02

    Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.

  5. Algebraic models of local period maps and Yukawa algebras

    Science.gov (United States)

    Bandiera, Ruggero; Manetti, Marco

    2018-02-01

    We describe some L_{∞} model for the local period map of a compact Kähler manifold. Applications include the study of deformations with associated variation of Hodge structure constrained by certain closed strata of the Grassmannian of the de Rham cohomology. As a by-product, we obtain an interpretation in the framework of deformation theory of the Yukawa coupling.

  6. Testing the supersymmetric QCD Yukawa coupling in a combined ...

    Indian Academy of Sciences (India)

    843–847. Testing the supersymmetric QCD Yukawa coupling ... we will only consider a scenario where the mass difference m˜g − m˜qL is sufficiently large to .... Based on the simulations for squark production at the LHC and the ILC presented.

  7. Large Higgs-electron Yukawa coupling in 2HDM

    Science.gov (United States)

    Dery, Avital; Frugiuele, Claudia; Nir, Yosef

    2018-04-01

    The present upper bound on κ e , the ratio between the electron Yukawa coupling and its Standard Model value, is of O(600) . We ask what would be the implications in case that κ e is close to this upper bound. The simplest extension that allows for such enhancement is that of two Higgs doublet models (2HDM) without natural flavor conservation. In this framework, we find the following consequences: (i) Under certain conditions, measuring κ e and κ V would be enough to predict values of Yukawa couplings for other fermions and for the H and A scalars. (ii) In the case that the scalar potential has a softly broken Z 2 symmetry, the second Higgs doublet must be light, but if there is hard breaking of the symmetry, the second Higgs doublet can be much heavier than the electroweak scale and still allow the electron Yukawa coupling to be very different from its SM value. (iii) CP must not be violated at a level higher than O(0.01/{κ}_e) in both the scalar potential and the Yukawa sector. (iv) LHC searches for e + e - resonances constrain this scenario in a significant way. Finally, we study the implications for models where one of the scalar doublets couples only to the first generation, or only to the third generation.

  8. Conformal Gauge-Yukawa Theories away From Four Dimensions

    DEFF Research Database (Denmark)

    Codello, Alessandro; Langaeble, Kasper; Litim, Daniel

    2016-01-01

    We present the phase diagram and associated fixed points for a wide class of Gauge-Yukawa theories in $d=4+\\epsilon$ dimensions. The theories we investigate involve non-abelian gauge fields, fermions and scalars in the Veneziano-Witten limit. The analysis is performed in steps, we start with QCD$...

  9. Light grand unified theory triplets and Yukawa splitting

    International Nuclear Information System (INIS)

    Rakshit, Subhendu; Shadmi, Yael; Raz, Guy; Roy, Sourov

    2004-01-01

    Triplet-mediated proton decay in grand unified theories (GUTs) is usually suppressed by arranging a large triplet mass. Here we explore instead a mechanism for suppressing the couplings of the triplets to the first and second generations compared to the Yukawa couplings, so that the triplets can be light. This mechanism is based on a 'triplet symmetry' in the context of product-group GUTs. We study two possibilities. The first possibility, which requires the top Yukawa coupling to arise from a nonrenormalizable operator at the GUT scale, is that all triplet couplings to matter are negligible, so that the triplets can be at the weak scale, giving new evidence for grand unification. The second possibility is that some triplet couplings, and in particular Ttb and Tt-barl-bar, are equal to the corresponding Yukawa couplings. This would give a distinct signature of grand unification if the triplets were sufficiently light. However, we derive a model-independent bound on the triplet mass in this case, which is at least 10 6 GeV. Finally, we construct an explicit viable GUT model based on Yukawa splitting, with the triplets at 10 14 GeV, as required for coupling unification to work. This model requires no additional thresholds below the GUT scale

  10. Multipartite fully nonlocal quantum states

    International Nuclear Information System (INIS)

    Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio

    2010-01-01

    We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.

  11. Is scale-invariance in gauge-Yukawa systems compatible with the graviton?

    Science.gov (United States)

    Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron

    2017-10-01

    We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.

  12. S2 like Star Orbits near the Galactic Center in Rn and Yukawa Gravity

    Science.gov (United States)

    Borka, Dusko; Jovanović, Predrag; Jovanović Vesna Borka; Zakharov, Alexander F.

    2015-01-01

    In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed from the exact starting points investigated first by Einstein and Hilbert and aimed from one side to extend the positive results of General Relativity and, on the other hand, to cure its shortcomings. One of the aims of these theories is to explain galactic and extragalactic dynamics without introduction of dark matter. They are based on straightforward generalizations of the Einstein theory where the gravitational action (the Hilbert-Einstein action) is assumed to be linear in the Ricci curvature scalar R. The f(R) gravity is a type of modified gravity which generalizes Einstein's General Relativity, i.e. the simplest case is just the General Relativity. It is actually a family of models, each one defined by a different function of the Ricci scalar. Here, we consider Rn (power-law fourth-order theories of gravity) and Yukawa-like modified gravities in the weak field limit and discuss the constrains on these theories. For that purpose we simulate the orbit of S2 star around the Galactic Center in Rn and Yukawa-like gravity potentials and compare it with New Technology Telescope/Very Large Telescope (NTT/VLT) as well as by Keck telescope observations. Our simulations result in strong constraints on the range of gravity interaction and showed that both Rn and Yukawa gravity could satisfactorily explain the observed orbits of S2 star. However, we concluded that parameters of Rn and Yukawa gravity theories must be very close to those corresponding to the Newtonian limit of the theory. Besides, in contrast to Newtonian gravity, these two modified theories induce orbital precession, even in the case of point-like central mass. The

  13. Entanglement without nonlocality

    International Nuclear Information System (INIS)

    Hewitt-Horsman, C.; Vedral, V.

    2007-01-01

    We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases

  14. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  15. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  16. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove

  17. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Smruti J., E-mail: fizix.smriti@gmail.com; Vinodkumar, P. C. [P. G. Department of Physics, Sardar Patel University, VallabhVidyanagar - 388120, Gujarat (India)

    2016-05-06

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J{sup P} values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  18. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    International Nuclear Information System (INIS)

    Patel, Smruti J.; Vinodkumar, P. C.

    2016-01-01

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J"P values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  19. Fermion Wavefunctions in Magnetized branes Theta identities and Yukawa couplings

    CERN Document Server

    Antoniadis, Ignatios; Panda, Binata

    2009-01-01

    Computation of Yukawa couplings, determining superpotentials as well as the Kähler metric, with oblique (non-commuting) fluxes in magnetized brane constructions is an interesting unresolved issue, in view of the importance of such fluxes for obtaining phenomenologically viable models. In order to perform this task, fermion (scalar) wavefunctions on toroidally compactified spaces are presented for general fluxes, parameterized by Hermitian matrices with eigenvalues of arbitrary signatures. We also give explicit mappings among fermion wavefunctions, of different internal chiralities on the tori, which interchange the role of the flux components with the complex structure of the torus. By evaluating the overlap integral of the wavefunctions, we give the expressions for Yukawa couplings among chiral multiplets arising from an arbitrary set of branes (or their orientifold images). The method is based on constructing certain mathematical identities for general Riemann theta functions with matrix valued modular par...

  20. Yukawa unification in moduli-dominant SUSY breaking

    International Nuclear Information System (INIS)

    Khalil, S.; Tatsuo Kobayashi

    1997-07-01

    We study Yukawa in string models with moduli-dominant SUSY breaking. This type of SUSY breaking in general leads to non-universal soft masses, i.e. soft scalar masses and gaugino masses. Such non-universality is important for phenomenological aspects of Yukawa unification, i.e., successful electroweak breaking, SUSY corrections to the bottom mass and the branching ratio of b → sγ. We show three regions in the whole parameter space which lead to successful electroweak breaking and allow small SUSY corrections to the bottom mass. For these three regions we investigated the b → sγ decay and mass spectra. (author). 26 refs, 6 figs

  1. Yukawa couplings in Superstring derived Standard-like models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1991-01-01

    I discuss Yukawa couplings in Standard-like models which are derived from Superstring in the free fermionic formulation. I introduce new notation for the construction of these models. I show how choice of boundary conditions selects a trilevel Yukawa coupling either for +2/3 charged quark or for -1/3 charged quark. I prove this selection rule. I make the conjecture that in this class of standard-like models a possible connection may exist between the requirements of F and D flatness at the string level and the heaviness of the top quark relative to lighter quarks and leptons. I discuss how the choice of boundary conditions determines the non vanishing mass terms for quartic order terms. I discuss the implication on the mass of the top quark. (author)

  2. Higgs Pair Production as a Signal of Enhanced Yukawa Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Martin [Heidelberg U.; Carena, Marcela [Chicago U., KICP; Carmona, Adrián [U. Mainz, PRISMA

    2017-12-31

    We present a non-trivial correlation between the enhancement of the Higgs-fermion couplings and the Higgs pair production cross section in two Higgs doublet models with a flavour symmetry. This symmetry suppresses flavour-changing neutral couplings of the Higgs boson and allows for a partial explanation of the hierarchy in the Yukawa sector. After taking into account the constraints from electroweak precision measurements, Higgs coupling strength measurements, and unitarity and perturbativity bounds, we identify an interesting region of parameter space leading to enhanced Yukawa couplings as well as enhanced di-Higgs gluon fusion production at the LHC reach. This effect is visible in both the resonant and non-resonant contributions to the Higgs pair production cross section. We encourage dedicated searches based on differential distributions as a novel way to indirectly probe enhanced Higgs couplings to light fermions.

  3. Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model

    Science.gov (United States)

    Ji, Yao; Kelly, Michael

    2018-05-01

    We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].

  4. Critical indices for the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Bonetto, F.

    1997-01-01

    The understanding of the Yukawa 2 quantum field theory is still incomplete if the fermionic mass is much smaller than the coupling. We analyze the Schwinger functions for small coupling uniformly in the mass and we find that the asymptotic behavior of the two-point Schwinger function is anomalous and described by two critical indices, related to the renormalization of the mass and of the wave function. The indices are explicitly computed by convergent series in the coupling. (orig.)

  5. Correlation inequalities for the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Rosen, L.

    1981-01-01

    Correlation inequalities have been useful in statistical mechanics and quantum field theory. In particular, in the case of strongly coupled bose quantum field models such as P(phi) 2 , correlation inequalities provide the best control of the infinite volume limit. The author reports on work in which the FKG inequality was established in the Yukawa 2 quantum field theory. An elementary proof of the first Griffiths inequality is also given. (Auth.)

  6. Analytic regularization of the Yukawa model at finite temperature

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Svaiter, N.F.; Svaiter, B.F.

    1996-07-01

    It is analysed the one-loop fermionic contribution for the scalar effective potential in the temperature dependent Yukawa model. Ir order to regularize the model a mix between dimensional and analytic regularization procedures is used. It is found a general expression for the fermionic contribution in arbitrary spacetime dimension. It is also found that in D = 3 this contribution is finite. (author). 19 refs

  7. Symmetries for Light-Front Quantization of Yukawa Model with Renormalization

    Science.gov (United States)

    Żochowski, Jan; Przeszowski, Jerzy A.

    2017-12-01

    In this work we discuss the Yukawa model with the extra term of self-interacting scalar field in D=1+3 dimensions. We present the method of derivation the light-front commutators and anti-commutators from the Heisenberg equations induced by the kinematical generating operator of the translation P+. Mentioned Heisenberg equations are the starting point for obtaining this algebra of the (anti-) commutators. Some discrepancies between existing and proposed method of quantization are revealed. The Lorentz and the CPT symmetry, together with some features of the quantum theory were applied to obtain the two-point Wightman function for the free fermions. Moreover, these Wightman functions were computed especially without referring to the Fock expansion. The Gaussian effective potential for the Yukawa model was found in the terms of the Wightman functions. It was regularized by the space-like point-splitting method. The coupling constants within the model were redefined. The optimum mass parameters remained regularization independent. Finally, the Gaussian effective potential was renormalized.

  8. Extent of multiparticle quantum nonlocality

    International Nuclear Information System (INIS)

    Jones, Nick S.; Linden, Noah; Massar, Serge

    2005-01-01

    It is well known that entangled quantum states are nonlocal: the corrrelations between local measurements carried out on these states cannot be reproduced by local hidden variable models. Svetlichny, followed by others, showed that multipartite quantum states are more nonlocal than bipartite ones in the sense that even some nonlocal classical models with (super-luminal) communication between some of the parties cannot reproduce the quantum correlations. Here we study in detail the kinds of nonlocality present in quantum states. More precisely, we enquire what kinds of classical communication patterns cannot reproduce quantum correlations. By studying the extremal points of the space of all multiparty probability distributions, in which all parties can make one of a pair of measurements each with two possible outcomes, we find a necessary condition for classical nonlocal models to reproduce the statistics of all quantum states. This condition extends and generalizes work of Svetlichny and others in which it was showed that a particular class of classical nonlocal models, the 'separable' models, cannot reproduce the statistics of all multiparticle quantum states. Our condition shows that the nonlocality present in some entangled multiparticle quantum states is much stronger than previously thought. We also study the sufficiency of our condition

  9. Probes of Yukawa unification in supersymmetric SO(10) models

    Energy Technology Data Exchange (ETDEWEB)

    Westhoff, Susanne

    2009-10-23

    This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.

  10. Cosmological evolution of Yukawa couplings: the 5D perspective

    Energy Technology Data Exchange (ETDEWEB)

    Harling, Benedict von [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Servant, Géraldine [DESY, Notkestrasse 85, 22607 Hamburg (Germany); II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg (Germany)

    2017-05-15

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  11. Cosmological evolution of Yukawa couplings. The 5D perspective

    Energy Technology Data Exchange (ETDEWEB)

    Harling, Benedict von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Servant, Geraldine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-02-15

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  12. Indirect handle on the down-quark Yukawa coupling.

    Science.gov (United States)

    Goertz, Florian

    2014-12-31

    To measure the Yukawa couplings of the up and down quarks, Yu,d, seems to be far beyond the capabilities of current and (near) future experiments in particle physics. By performing a general analysis of the potential misalignment between quark masses and Yukawa couplings, we derive predictions for the magnitude of induced flavor-changing neutral currents (FCNCs), depending on the shift in the physical Yukawa coupling of first-generation quarks. We find that a change of more than 50% in Yd would generically result in ds transitions in conflict with kaon physics. This could already be seen as evidence for a nonvanishing direct coupling of the down quark to the newly discovered Higgs boson. The nonobservation of certain--already well-constrained--processes is thus turned into a powerful indirect measure of otherwise basically unaccessible physical parameters of the effective standard model. Similarly, improvements in limits on FCNCs in the up-type quark sector can lead to valuable information on Yu.

  13. Cosmological evolution of Yukawa couplings. The 5D perspective

    International Nuclear Information System (INIS)

    Harling, Benedict von; Servant, Geraldine; Hamburg Univ.

    2017-02-01

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  14. A Systems-Theoretical Generalization of Non-Local Correlations

    Science.gov (United States)

    von Stillfried, Nikolaus

    Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.

  15. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  16. D-wave resonances in three-body system Ps- with pure Coulomb and screened Coulomb (Yukawa) potentials

    International Nuclear Information System (INIS)

    Kar, S.; Ho, Y.K.

    2009-01-01

    We have investigated the doubly excited 1 D e resonance states of Ps - interacting with pure Coulomb and screened Coulomb (Yukawa) potentials employing highly correlated wave functions. For pure Coulomb interaction, in the framework of stabilization method and complex coordinate rotation method we have obtained two resonances below the n = 2 threshold of the Ps atom. For screened Coulomb interaction, we employ the stabilization method to extract resonance parameters. Resonance energies and widths for the 1 D e resonance states of Ps - for different screening parameter ranging from infinity (pure Coulomb case) to a small value are also reported. (author)

  17. Convergence of perturbation theory expansion for the Yukawa interaction

    International Nuclear Information System (INIS)

    Basuev, A.G.

    1975-01-01

    It is shown that the perturbation theory series in the translational-invariant case and upon removal of the boson propagator cut-off for euclidian Green's functions converges when gsup(2)/2 2 is the mass of the boson and Δ(o) is the fermion propagator in the zero of kappa-space. This problem was previously considered by other methods in respect of pseudo-euclidian functions (for the S-matrix) and of euclidian Green's functions. (author)

  18. Hyper- and hybrid nonlocality

    Science.gov (United States)

    Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto

    2018-02-01

    The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.

  19. Magnetic-field-induced nonlocal effects on the vortex interactions in twin-free YBa2Cu3O7

    DEFF Research Database (Denmark)

    White, J. S.; Heslop, R. W.; Holmes, A. T.

    2011-01-01

    measurements demonstrate how the influence of anisotropy on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important with increasing magnetic field, and suppressed by increasing the temperature toward Tc. The data indicate that nonlocality due to different...... anisotropies plays an important role in determining the VL properties....

  20. Nonlocal heat transfer in nanostructures

    International Nuclear Information System (INIS)

    Kanavin, A.P.; Uryupin, S.A.

    2008-01-01

    Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted

  1. Three-loop SM beta-functions for matrix Yukawa couplings

    Directory of Open Access Journals (Sweden)

    A.V. Bednyakov

    2014-10-01

    Full Text Available We present the extension of our previous results for three-loop Yukawa coupling beta-functions to the case of complex Yukawa matrices describing the flavour structure of the SM. The calculation is carried out in the context of unbroken phase of the SM with the help of the MINCER program in a general linear gauge and cross-checked by means of MATAD/BAMBA codes. In addition, ambiguities in Yukawa matrix beta-functions are studied.

  2. Local and non-local equivalent potentials for p-12C scattering

    International Nuclear Information System (INIS)

    Lovell, A.; Amos, K.

    2000-01-01

    A Newton-Sabatier fixed energy inversion scheme has been used to equate inherently non-local p- 12 C potentials at a variety of energies to pion threshold, with exactly phase equivalent local ones. Those energy dependent local potentials then have been recast in the form of non-local Frahn-Lemmer interactions

  3. Nonlocality and optics of inhomogeneous systems : The role of quantum induction

    NARCIS (Netherlands)

    Wijers, C.M.J.; de Boeij, P.L.

    2002-01-01

    Nonlocal interactions play a prominent role in the optics of inhomogeneous systems. Classical discrete dipole descriptions take into account only electro-magnetic nonlocality. This is insufficient to describe correctly the inhomogeneous optical response (e.g., reflectance anisotropy) for covalently

  4. Nonlocal gravity simulates dark matter

    OpenAIRE

    Hehl, Friedrich W.; Mashhoon, Bahram

    2009-01-01

    A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.

  5. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    Science.gov (United States)

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  6. Non-locality of non-Abelian anyons

    International Nuclear Information System (INIS)

    Brennen, G K; Iblisdir, S; Pachos, J K; Slingerland, J K

    2009-01-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  7. Non-locality of non-Abelian anyons

    Science.gov (United States)

    Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.

    2009-10-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  8. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  9. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  10. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  11. Perturbed Yukawa textures in the minimal seesaw model

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Thomas; Schmitz, Kai [Max Planck Institute for Nuclear Physics (MPIK),69117 Heidelberg (Germany)

    2017-03-29

    We revisit the minimal seesaw model, i.e., the type-I seesaw mechanism involving only two right-handed neutrinos. This model represents an important minimal benchmark scenario for future experimental updates on neutrino oscillations. It features four real parameters that cannot be fixed by the current data: two CP-violating phases, δ and σ, as well as one complex parameter, z, that is experimentally inaccessible at low energies. The parameter z controls the structure of the neutrino Yukawa matrix at high energies, which is why it may be regarded as a label or index for all UV completions of the minimal seesaw model. The fact that z encompasses only two real degrees of freedom allows us to systematically scan the minimal seesaw model over all of its possible UV completions. In doing so, we address the following question: suppose δ and σ should be measured at particular values in the future — to what extent is one then still able to realize approximate textures in the neutrino Yukawa matrix? Our analysis, thus, generalizes previous studies of the minimal seesaw model based on the assumption of exact texture zeros. In particular, our study allows us to assess the theoretical uncertainty inherent to the common texture ansatz. One of our main results is that a normal light-neutrino mass hierarchy is, in fact, still consistent with a two-zero Yukawa texture, provided that the two texture zeros receive corrections at the level of O(10 %). While our numerical results pertain to the minimal seesaw model only, our general procedure appears to be applicable to other neutrino mass models as well.

  12. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    International Nuclear Information System (INIS)

    Totsuji, Hiroo

    2008-01-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  13. Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas

    Science.gov (United States)

    Totsuji, Hiroo

    2008-07-01

    The thermodynamics is analyzed for a system composed of particles with hard cores, interacting via the repulsive Yukawa potential (Yukawa particulates), and neutralizing ambient (background) plasma. An approximate equation of state is given with proper account of the contribution of ambient plasma and it is shown that there exists a possibility for the total isothermal compressibility of Yukawa particulates and ambient plasma to diverge when the coupling between Yukawa particulates is sufficiently strong. In this case, the system undergoes a transition into separated phases with different densities and we have a critical point for this phase separation. Examples of approximate phase diagrams related to this transition are given. It is emphasized that the critical point can be in the solid phase and we have the possibility to observe a solid-solid phase separation. The applicability of these results to fine particle plasmas is investigated. It is shown that, though the values of the characteristic parameters are semiquantitative due to the effects not described by this model, these phenomena are expected to be observed in fine particle plasmas, when approximately isotropic bulk systems are realized with a very strong coupling between fine particles.

  14. On the Activation of Quantum Nonlocality

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Ducuara

    2016-05-01

    Full Text Available We report on some quantum properties of physical systems, namely, entanglement, nonlocality, k-copy nonlocality (superactivation of nonlocality, hidden nonlocality (activation of nonlocality through local filtering and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.

  15. One-loop Yukawa Couplings in Local Models

    CERN Document Server

    Conlon, Joseph P; Palti, Eran; 10.1007

    2010-01-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops.

  16. One-loop Yukawa couplings in local models

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-07-15

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  17. One-loop Yukawa couplings in local models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.; Goodsell, Mark; Palti, Eran

    2010-07-01

    We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)

  18. Wave dispersion relations in two-dimensional Yukawa systems

    International Nuclear Information System (INIS)

    Liu Yanhong; Liu Bin; Chen Yanping; Yang Size; Wang Long; Wang Xiaogang

    2003-01-01

    Collective modes in a two-dimensional Yukawa system are investigated by molecular dynamics simulation in a wide range of coupling parameter Γ and screening strength κ. The dispersion relations and sound speeds of the transverse and longitudinal waves obtained for hexagonal lattice are in agreement with the theoretical results. The negative dispersion of the longitudinal wave is demonstrated. Frequency gaps are found on the dispersion curves of the transverse wave due to scattering of the waves on lattice defects for proper values of Γ. The common frequency of transverse and longitudinal waves drops dramatically with the increasing screening strength κ

  19. Diffusion coefficient of three-dimensional Yukawa liquids

    International Nuclear Information System (INIS)

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-01-01

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions

  20. Conformal operator product expansion in the Yukawa model

    International Nuclear Information System (INIS)

    Prati, M.C.

    1983-01-01

    Conformal techniques are applied to the Yukawa model, as an example of a theory with spinor fields. It is written the partial-wave analysis of the 4-point function of two scalars and two spinors in the channel phi psi → phi psi in terms of spinor tensor representations of the conformal group. Using this conformal expansion, it is diagonalized the Bethe-Salpeter equation, which is reduced to algebraic relations among the partial waves. It is shown that in the γ 5 -invariant model, but not in the general case, it is possible to derive dynamically from the expansions of the 4-point function the vacuum operator product phi psi>

  1. Yukawa's of light stringy states

    Energy Technology Data Exchange (ETDEWEB)

    Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fuer Theoretische Physik; Bianchi, Massimo; Consoli, Dario [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; I.N.F.N., Sezione di Roma ' ' Tor Vergata' ' (Italy)

    2017-01-15

    Light massive string states can appear at D-brane intersections with small angles. We compute tri-linear Yukawa couplings of such open-string states to massless ones and to one another. Due to ambiguities in the normalisation of the vertex operators, that involve twist fields, we proceed via factorization of appropriate scattering amplitudes. Some peculiar features are observed that may lead to interesting signatures at colliders in the future. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    International Nuclear Information System (INIS)

    Zerf, Nikolai; Mihaila, Luminita N.; Herbut, Igor F.; Scherer, Michael M.

    2017-09-01

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε 4 ). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  3. Four-loop critical exponents for the Gross-Neveu-Yukawa models

    Energy Technology Data Exchange (ETDEWEB)

    Zerf, Nikolai; Mihaila, Luminita N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Herbut, Igor F. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Physics; Scherer, Michael M. [Koeln Univ. (Germany). Inst. for Theoretical Physics

    2017-09-15

    We study the chiral Ising, the chiral XY and the chiral Heisenberg models at four-loop order with the perturbative renormalization group in 4-ε dimensions and compute critical exponents for the Gross-Neveu-Yukawa fixed points to order O(ε{sup 4}). Further, we provide Pade estimates for the correlation length exponent, the boson and fermion anomalous dimension as well as the leading correction to scaling exponent in 2+1 dimensions. We also confirm the emergence of supersymmetric field theories at four loops for the chiral Ising and the chiral XY models with N=1/4 and N=1/2 fermions, respectively. Furthermore, applications of our results relevant to various quantum transitions in the context of Dirac and Weyl semimetals are discussed, including interaction-induced transitions in graphene and surface states of topological insulators.

  4. The nonlocal elastomagnetoelectrostatics of disordered micropolar media

    International Nuclear Information System (INIS)

    Kabychenkov, A. F.; Lisiovskii, F. V.

    2016-01-01

    The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.

  5. Electrovacuum solutions in nonlocal gravity

    Science.gov (United States)

    Fernandes, Karan; Mitra, Arpita

    2018-05-01

    We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the Einstein-Hilbert action in addition to a nonlocal R □-2R term associated with a mass scale m . We demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the first-order corrections and demonstrate that the higher order corrections are real and perturbative about the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects on curved backgrounds with horizons.

  6. Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations

    International Nuclear Information System (INIS)

    Anco, S.C.; Bluman, G.

    1997-01-01

    Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics

  7. Large top quark Yukawa coupling and horizontal symmetries

    International Nuclear Information System (INIS)

    Rasin, A.

    1997-05-01

    We consider the maximal U(3) horizontal scheme as a handle on fermion masses and mixings. In particular, we attempt to explain the large top Yukawa coupling and the masses and mixing in the two heaviest generations. A simple model is constructed by enlarging the matter content of the Standard Model with that of a 10 + 10-bar pair of SU(5). The third generation particles get their masses when (U(3) is broken to U(2). Top quark mass is naturally of order one. Bottom and tau masses are suppressed because of a hierarchy in the effective Yukawa couplings and not from the hierarchy in the Higgs doublet vacuum expectation values. The hierarchy is a consequence of the fact that the particle spectrum contains an incomplete vector-like generation and can come from hierarchies between scales of breaking of different grand unified groups. Hierarchies and mixings between the second and third generation are obtained by introducing a single parameters is an element' representing the breaking U(2) → U(1). As a consequence, we show that the successful (and previously obtained) relations V cb approx. m s /m b approx. √ m c /m t easily follow from our scheme. (author). 39 refs, 5 figs

  8. LHC constraints on Yukawa unification in SO(10)

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, Marcin [Cambridge Univ. (United Kingdom). Centre for Mathematical Sciences; Cambridge Univ. (United Kingdom). Cavendish Lab.; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-12-15

    LHC constraints on the recently proposed SUSY SO(10) GUT model with top-bottom-tau Yukawa uni cation are investigated. In this model, various phenomenological constraints are in concord with Yukawa uni cation thanks to the negative sign of {mu}, D-term splitting in the soft scalar masses and non-universal gaugino masses generated by non-zero F-term in a 24-dimensional representation of SU(5) is contained in SO(10). After discussing the impact of the CP-odd Higgs boson mass bound on this model, we provide a detailed analysis of the recent direct SUSY searches performed by ATLAS and investigate the constraints on this SO(10) model. At 95% confidence level, the lower limit on the gluino mass is found at 675 GeV. Assuming an integrated luminosity of 10 fb{sup -1}, this bound may be extended to 1.1 TeV if the right-handed down squark is lighter than about 1 TeV. (orig.)

  9. Yukawa couplings in SO(10) heterotic M-theory vacua

    International Nuclear Information System (INIS)

    Faraggi, Alon E.; Garavuso, Richard S.

    2003-01-01

    We demonstrate the existence of a class of N=1 supersymmetric nonperturbative vacua of Horava-Witten M-theory compactified on a torus fibered Calabi-Yau 3-fold Z with first homotopy group π 1 (Z)=Z 2 , having the following properties: (1) SO(10) grand unification group, (2) net number of three generations of chiral fermions in the observable sector, and (3) potentially viable matter Yukawa couplings. These vacua correspond to semistable holomorphic vector bundles V Z over Z having structure group SU(4) C , and generically contain M5-branes in the bulk space. The nontrivial first homotopy group allows Wilson line breaking of the SO(10) symmetry. Additionally, we propose how the 11-dimensional Horava-Witten M-theory framework may be used to extend the perturbative calculation of the top quark Yukawa coupling in the realistic free-fermionic models to the nonperturbative regime. The basic argument being that the relevant coupling couples twisted-twisted-untwisted states and can be calculated at the level of the Z 2 xZ 2 orbifold without resorting to the full three generation models

  10. Fermion wavefunctions in magnetized branes: Theta identities and Yukawa couplings

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Kumar, Alok; Panda, Binata

    2009-01-01

    Computation of Yukawa couplings, determining superpotentials as well as the Kaehler metric, with oblique (non-commuting) fluxes in magnetized brane constructions is an interesting unresolved issue, in view of the importance of such fluxes for obtaining phenomenologically viable models. In order to perform this task, fermion (scalar) wavefunctions on toroidally compactified spaces are presented for general fluxes, parameterized by Hermitian matrices with eigenvalues of arbitrary signatures. We also give explicit mappings among fermion wavefunctions, of different internal chiralities on the tori, which interchange the role of the flux components with the complex structure of the torus. By evaluating the overlap integral of the wavefunctions, we give the expressions for Yukawa couplings among chiral multiplets arising from an arbitrary set of branes (or their orientifold images). The method is based on constructing certain mathematical identities for general Riemann theta functions with matrix valued modular parameter. We briefly discuss an application of the result, for the mass generation of non-chiral fermions, in the SU(5) GUT model presented by us in Antoniadis, Kumar and Panda (2008) .

  11. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  12. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  13. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  14. Certifying the absence of quantum nonlocality

    OpenAIRE

    Miller, Carl A.; Shi, Yaoyun

    2016-01-01

    Quantum nonlocality is an inherently non-classical feature of quantum mechanics and manifests itself through violation of Bell inequalities for nonlocal games. We show that in a fairly general setting, a simple extension of a nonlocal game can certify instead the absence of quantum nonlocality. Through contraposition, our result implies that a super-classical performance for such a game ensures that a player's output is unpredictable to the other player. Previously such output unpredictabilit...

  15. Bell inequality, nonlocality and analyticity

    International Nuclear Information System (INIS)

    Socolovsky, M.

    2003-01-01

    The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics

  16. Bell inequality, nonlocality and analyticity

    Energy Technology Data Exchange (ETDEWEB)

    Socolovsky, M

    2003-09-15

    The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics.

  17. Closed sets of nonlocal correlations

    International Nuclear Information System (INIS)

    Allcock, Jonathan; Linden, Noah; Brunner, Nicolas; Popescu, Sandu; Skrzypczyk, Paul; Vertesi, Tamas

    2009-01-01

    We present a fundamental concept - closed sets of correlations - for studying nonlocal correlations. We argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of correlations gives insight into which information-theoretic principles are genuinely different, and which are ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is limited, and for finding constraints on physical theories beyond quantum mechanics.

  18. More nonlocality with less purity.

    Science.gov (United States)

    Bandyopadhyay, Somshubhro

    2011-05-27

    Quantum information is nonlocal in the sense that local measurements on a composite quantum system, prepared in one of many mutually orthogonal states, may not reveal in which state the system was prepared. It is shown that in the many copy limit this kind of nonlocality is fundamentally different for pure and mixed quantum states. In particular, orthogonal mixed states may not be distinguishable by local operations and classical communication, no matter how many copies are supplied, whereas any set of N orthogonal pure states can be perfectly discriminated with m copies, where miff the set is not conclusively locally distinguishable with multiple copies. © 2011 American Physical Society

  19. Modulational instability in nonlocal nonlinear Kerr media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens

    2001-01-01

    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defoc...

  20. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  1. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  2. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude...

  3. Quantum nonlocality does not exist.

    Science.gov (United States)

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  4. Nonlocal quasilinear damped differential inclusions

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2002-01-01

    Full Text Available In this paper we investigate the existence of mild solutions to second order initial value problems for a class of damped differential inclusions with nonlocal conditions. By using suitable fixed point theorems, we study the case when the multivalued map has convex and nonconvex values.

  5. Extreme nonlocality with one photon

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)

    2011-05-15

    Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.

  6. Electric dipole moments from Yukawa phases in supersymmetric theories

    International Nuclear Information System (INIS)

    Romanino, A.; Strumia, A.

    1997-01-01

    We study quark and electron EDMs generated by Yukawa couplings in supersymmetric models with different gauge groups, using the EDM properties under flavour transformations. In the MSSM (or if soft terms are mediated below the unification scale) the one-loop contributions to the neutron EDM are smaller than in previous computations based on numerical methods, although increasing as tan 3 β. A neutron EDM close to the experimental limits can be generated in SU(5), if tan β is large, through the u-quark EDM d u , proportional to tan 4 β. This effect has to be taken into account also in SO(10) with large tan β, where d u is comparable to the d quark EDM, proportional to tan β. (orig.)

  7. Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings

    Science.gov (United States)

    Higuchi, Katsuichi; Yamamoto, Katsuji

    We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ≫ mb ˜ mτ as well as mt ≫ mc, mu can be naturally explained.

  8. On nonlocality in quantum physics

    International Nuclear Information System (INIS)

    Spasskij, B.I.; Moskovskij, A.V.

    1984-01-01

    The properties of nonlocality of quantum objects are considered on the example of the Aharonov-Bohm, effect Brown-Twiss effect, Einstein-Podolsky-Rosen paradox. These effects demonstrate inherent features of specific integrity in quantum objects. The term ''nonlocality'' is considered as a ''quantum analog'' of the notion of long range. Experiments on checking the Bell inequalities for fulfilment are described. The inequalities permit to solve which of the quantum mechanics interpretations is correct either the Einstein interpretation according to which the quantum system properties exist as elements of physical reality irrespective of their observation, or the Copenhagen one, according to which the microsystem properties described by noncommuting operators do not exist irrespective of measurement means

  9. Interplay of universality classes in a three-dimensional Yukawa model

    International Nuclear Information System (INIS)

    Focht, E.; Jersak, J.; Paul, J.

    1996-01-01

    We investigate numerically on the lattice the interplay of universality classes of the three-dimensional Yukawa model with U(1) chiral symmetry, using the Binder method of finite size scaling. At zero Yukawa coupling the scaling related to the magnetic Wilson-Fisher fixed point is confirmed. At sufficiently strong Yukawa coupling the dominance of the chiral fixed point associated with the 3D Gross-Neveu model is observed for various values of the coupling parameters, including infinite scalar self-coupling. In both cases the Binder method works consistently in a broad range of lattice sizes. However, when the Yukawa coupling is decreased the finite size behavior gets complicated and the Binder method gives inconsistent results for different lattice sizes. This signals a crossover between the universality classes of the two fixed points. copyright 1996 The American Physical Society

  10. Yukawa couplings and the nature of zero modes in the Skyrme model

    International Nuclear Information System (INIS)

    Kawarabayashi, K.

    1989-01-01

    Several issues related, directly or indirectly, to the Yukawa coupling in the Skyrme model are discussed. The authors try to shed a new light on the physical nature of the zero modes associated with translation (rotation) invariance of the model

  11. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  12. Temporal nonlocality in bistable perception

    Science.gov (United States)

    Atmanspacher, Harald; Filk, Thomas

    2012-12-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.

  13. Nonlocal elasticity tensors in dislocation and disclination cores

    International Nuclear Information System (INIS)

    Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.

    2017-01-01

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.

  14. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  15. Global well posedness of the relativistic Vlasov-Yukawa system with small data

    International Nuclear Information System (INIS)

    Ha, Seung-Yeal; Lee, Ho

    2007-01-01

    In this paper, we present an existence theory and uniform L 1 -stability estimate for classical solutions with small data to the Vlasov-Yukawa system. The Vlasov-Yukawa system corresponds to a short-range correction of the Vlasov-Poisson system appearing in plasma physics and astrophysics. For the existence and stability of classical solutions, we crucially use dispersion estimates due to the smallness of data

  16. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  17. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    OpenAIRE

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...

  18. Frustrated Brownian Motion of Nonlocal Solitary Waves

    International Nuclear Information System (INIS)

    Folli, V.; Conti, C.

    2010-01-01

    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.

  19. Unified criteria for multipartite quantum nonlocality

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E. G. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); He, Q. Y.; Reid, M. D. [Centre for Atom Optics and Ultrafast Spectroscopy and Centre for Quantum-Atom Optics (Australian Research Council), Swinburne University of Technology, Melbourne (Australia); Wiseman, H. M. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); Centre for Quantum Computation and Communication Technology (Australian Research Council), Griffith University, Brisbane, Queensland 4111 (Australia)

    2011-09-15

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  20. Unified criteria for multipartite quantum nonlocality

    International Nuclear Information System (INIS)

    Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.

    2011-01-01

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  1. Robustness of multiparty nonlocality to local decoherence

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Cheong, Yong Wook; Kim, Jaewan; Lee, Hai-Woong

    2006-01-01

    We investigate the robustness of multiparty nonlocality under local decoherence, acting independently and equally on each subsystem. To be specific, we consider an N-qubit Greenberger-Horne-Zeilinger (GHZ) state under a depolarization, dephasing, or dissipation channel, and examine nonlocality by testing violation of the Mermin-Klyshko inequality, which is one of Bell's inequalities for multiqubit systems. The results show that the robustness of nonlocality increases with the number of qubits, and that the nonlocality of an N-qubit GHZ state with even N is extremely persistent against dephasing

  2. Non-unique monopole oscillations of harmonically confined Yukawa systems

    Science.gov (United States)

    Ducatman, Samuel; Henning, Christian; Kaehlert, Hanno; Bonitz, Michael

    2008-11-01

    Recently it was shown that the Breathing Mode (BM), the mode of uniform radial expansion and contraction, which is well known from harmonically confined Coulomb systems [1], does not exist in general for other systems [2]. As a consequence the monopole oscillation (MO), the radial collective excitation, is not unique, but there are several MO with different frequencies. Within this work we show simulation results of those monopole oscillations of 2-dimensional harmonically confined Yukawa systems, which are known from, e.g., dusty plasma crystals [3,4]. We present the corresponding spectrum of the particle motion, including analysis of the frequencies found, and compare with theoretical investigations.[1] D.H.E. Dubin and J.P. Schiffer, Phys. Rev. E 53, 5249 (1996)[2] C. Henning at al., accepted for publication in Phys. Rev. Lett. (2008)[3] A. Melzer et al., Phys. Rev. Lett. 87, 115002 (2001)[4] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)

  3. Multiple-Trace Operators and Non-Local String Theories

    International Nuclear Information System (INIS)

    Silverstein, Eva M.

    2001-01-01

    We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal

  4. Non-local deformation of a supersymmetric field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)

    2017-09-15

    In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)

  5. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  6. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-01-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  7. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    Science.gov (United States)

    Gies, Holger; Rechenberger, Stefan; Scherer, Michael M.; Zambelli, Luca

    2013-12-01

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative—though weak-coupling—threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaußian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a "walking" mid-momentum regime.

  8. Thermodynamic equivalence between the Lennard-Jones and hard-core attractive Yukawa systems

    International Nuclear Information System (INIS)

    Kadiri, Y.; Albaki, R.; Bretonnet, J.L.

    2008-01-01

    The investigation of the thermodynamic properties of the Lennard-Jones (LJ) fluid is made by means of a system of particles interacting with a potential of hard-core plus attractive Yukawa tail (HCY). Due to the similarity between the LJ potential and the HCY potential in its overall form, it is worthwhile seeking to approximate the LJ potential in much the same way that the hard-sphere reference potential has been so used. The study consists in describing the thermodynamics of the LJ fluid in terms of the equivalent HCY system, whose the properties are known accurately, by means of mapping the thermodynamic quantities for the HCY potential parameters. The method is feasible owing to a convenient analytical expression of the Helmholtz free energy from the mean-spherical approximation expanded in power of the inverse temperature. Two different procedures are used to determine the parameters of the HCY potential as a function of the thermodynamic states: one is based on the simultaneous fits of pressure and internal energy of the LJ system and the other uses the concept of collision frequency. The reasonable homogeneity of the results in both procedures of mapping makes that the HCY potential is a very good reference system, whose the proposed theoretical expressions can be used confidently to predict the thermodynamic properties of more realistic potentials

  9. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    CERN Document Server

    Akerlund, Oscar

    2016-01-01

    Using Extended Mean Field Theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the Standard Model Higgs sector, and the effect of higher dimension operators. We note that the discussion of vacuum stability is completely modified in the presence of a $\\phi^6$ term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass $M_h=125$ GeV. By taking a $\\phi^6$ interaction in the Higgs potential as a proxy for a UV completion of the Standard Model, the transition becomes stronger and turns first order if the scale of new physics, i.e. the mass of the lightest mediator particle, is around $1.5$ TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  10. A nonlocal inhomogeneous dispersal process

    Science.gov (United States)

    Cortázar, C.; Coville, J.; Elgueta, M.; Martínez, S.

    This article in devoted to the study of the nonlocal dispersal equation u(x,t)=∫R J({x-y}/{g(y)}){u(y,t)}/{g(y)} dy-u(x,t) in R×[0,∞), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t→∞, showing that they converge locally to zero.

  11. The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model

    International Nuclear Information System (INIS)

    Farkasovsky, Pavol

    2005-01-01

    The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization

  12. The status and prospects of quantum non-local field theory

    International Nuclear Information System (INIS)

    Cornish, N.J.; Melbourne Univ., Parkville

    1991-01-01

    A critical review of the physical constraints on the form the non-locality can take is presented. The conclusion of this review is that non-locality must be restricted to interactions with the vacuum sea of virtual particles. A successful formulation of such a theory, Quantum Nonlocal Field Theory (QNFT), is applied to scalar electrodynamics and serves to illustrate how gauge invariance and manifest finiteness can be achieved. The importance of the infinite dimensional symmetry groups that occur in QNFT are discussed as an alternative to supersymmetry, the ability to generate masses by breaking the non-local symmetry with a non-invariant functional measure is given a critical assessment. To demonstrate some of the many novel applications QNFT may make possible, three disparate examples are mooted, the existence of electroweak monopoles, an mechanism for CP violation and the formulation of a finite perturbative theory of Quantum Gravity. 21 refs., ills

  13. On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas

    Science.gov (United States)

    Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.

    2016-09-01

    This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas.

  14. Equation of state of a hard core fluid with a two-Yukawa tail: toward a simple analytic theory

    International Nuclear Information System (INIS)

    Jedrzejek, C.

    1980-01-01

    Thermodynamic properties of simple fluids are calculated using variational theory for a system of hard-core potential with a two-Yukawa tail. Likewise one Yukawa-tail case the working formulas are analytic. Five parameters of the two Yukawa system are chosen so as to get the best fit to a real argon potential or an ''argon-like'' Lennard-Jones potential. The results are fairly good in light of the extreme simplicity of the method. The discrepancies result from using the variational method and a different shape of Yukawa type potential in comparision to the real argon and Lennard-Jones potentials. (author)

  15. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    Science.gov (United States)

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  16. Nonlocality and localizability in quantum mechanics

    International Nuclear Information System (INIS)

    Matsuno, K.

    1989-01-01

    Nonlocality of simultaneous spatial correlation of a quantum phenomenon as demonstrated in various versions of Einstein-Podolsky-Rosen type experiment reduces to nonlocality of the measurement apparatus in the sense that the eigen-wavefunctions for the apparatus are completely specified in a manner of being independent of whatever object it may measure. Nonlocality of the measurement apparatus however serves as no more than a good approximation to reality at best. The theoretical imposition of nonlocality of the measurement apparatus as an approximation is compatible with the actual locality of quantum mechanics that dispenses with an agent claiming globally simultaneous specifiability of boundary conditions, though the genuine locality of quantum mechanics has to be examined without employing the nonlocality of the measurement apparatus. The actual locality of quantum mechanics is intrinsically irreversible in its development

  17. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...

  18. Nonlocal Galileons and self-acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Yu, Siqing, E-mail: sy1430@nyu.edu

    2017-05-10

    A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  19. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  20. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  1. Nonlocal Quantum Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Yurii V. Dumin

    2014-01-01

    Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.

  2. Patterning in systems driven by nonlocal external forces.

    Science.gov (United States)

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  3. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  4. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  5. Can EPR non-locality be geometrical?

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  6. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  7. Bell's theorem, accountability and nonlocality

    International Nuclear Information System (INIS)

    Vona, Nicola; Liang, Yeong-Cherng

    2014-01-01

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  8. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  9. The a theorem for Gauge-Yukawa theories beyond Banks-Zaks

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Mølgaard, Esben

    2013-01-01

    We investigate the a theorem for nonsupersymmetric gauge-Yukawa theories beyond the leading order in perturbation theory. The exploration is first performed in a model-independent manner and then applied to a specific relevant example. Here, a rich fixed point structure appears including the pres......We investigate the a theorem for nonsupersymmetric gauge-Yukawa theories beyond the leading order in perturbation theory. The exploration is first performed in a model-independent manner and then applied to a specific relevant example. Here, a rich fixed point structure appears including...

  10. E{sub 6} Yukawa couplings in F-theory as D-brane instanton effects

    Energy Technology Data Exchange (ETDEWEB)

    Collinucci, Andrés [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany)

    2017-03-29

    At weak coupling the neighborhood of a E{sub 6} Yukawa point in SU(5) GUT F-theory models is described by a non-resolvable orientifold of the conifold. We explicitly show, first directly in IIB and then via a mirror symmetry argument, that in this limit the E{sub 6} Yukawa coupling is better described as coming from the non-perturbative contribution of a euclidean D1-brane wrapping the non-resolvable cycle. We also discuss how the M-theory description interpolates between the weak and strong coupling viewpoints.

  11. Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence

    CERN Document Server

    Jenkins, Elizabeth E; Trott, Michael

    2014-01-01

    We calculate the complete order y^2 and y^4 terms of the 59 x 59 one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory, where y is a generic Yukawa coupling. These terms, together with the terms of order lambda, lambda^2 and lambda y^2 depending on the Standard Model Higgs self-coupling lambda which were calculated in a previous work, yield the complete one-loop anomalous dimension matrix in the limit of vanishing gauge couplings. The Yukawa contributions result in non-trivial flavor mixing in the various operator sectors of the Standard Model effective theory.

  12. Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey

    Directory of Open Access Journals (Sweden)

    Malay Banerjee

    2018-03-01

    Full Text Available Spatiotemporal pattern formation in integro-differential equation models of interacting populations is an active area of research, which has emerged through the introduction of nonlocal intra- and inter-specific interactions. Stationary patterns are reported for nonlocal interactions in prey and predator populations for models with prey-dependent functional response, specialist predator and linear intrinsic death rate for predator species. The primary goal of our present work is to consider nonlocal consumption of resources in a spatiotemporal prey-predator model with bistable reaction kinetics for prey growth in the absence of predators. We derive the conditions of the Turing and of the spatial Hopf bifurcation around the coexisting homogeneous steady-state and verify the analytical results through extensive numerical simulations. Bifurcations of spatial patterns are also explored numerically.

  13. Dissipation and nonlocality in a general expanding braneworld universe

    International Nuclear Information System (INIS)

    Remazeilles, Mathieu

    2009-01-01

    We study the evolution of both scalar and tensor cosmological perturbations in a Randall-Sundrum braneworld having an arbitrary expansion history. We adopt a four dimensional point of view where the degrees of freedom on the brane constitute an open quantum system coupled to an environment composed of the bulk gravitons. Because of the expansion of the universe, the brane degrees of freedom and the bulk degrees of freedom interact as they propagate forward in time. Brane excitations may decay through the emission of bulk gravitons which may escape to future infinity, leading to a sort of dissipation from the four dimensional point of view of an observer on the brane. Bulk gravitons may also be reflected off of the curved bulk and reabsorbed by the brane, thereby transformed into quanta on the brane, leading to a sort of nonlocality from the four dimensional point of view. The dissipation and the nonlocality are encoded into the retarded bulk propagator. We estimate the dissipation rates of the bound state as well as of the matter degrees of freedom at different cosmological epochs and for different sources of matter on the brane. We use a near-brane limit of the bulk geometry for the study when purely nonlocal bulk effects are encountered.

  14. Reassessment of the nonlocality of correlation boxes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.P.; Parisio, Fernando, E-mail: parisio@df.ufpe.br

    2017-01-15

    Correlation boxes are hypothetical systems usually designed to produce the maximal algebraic violation of a Bell inequality, beyond the quantum bound and without superluminal signalling. The fact that these systems show stronger correlations than those presented by maximally entangled quantum states, as the spin singlet, has been regarded as a demonstration that the former are more nonlocal than the latter. By applying an alternative, consistent measure of nonlocality to a family of correlation boxes, we show that this conclusion is not necessarily true. Complementarily, we define a class of systems displaying subquantum correlations which, nevertheless, are more nonlocal than the singlet state, showing that the extent of the numeric violation of an inequality may have little to do with the degree of nonlocality, especially in the case of correlation boxes.

  15. Unified criteria for multipartite quantum nonlocality

    Science.gov (United States)

    Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.

    2011-09-01

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.140402 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  16. Revealing Hidden Einstein-Podolsky-Rosen Nonlocality

    Science.gov (United States)

    Walborn, S. P.; Salles, A.; Gomes, R. M.; Toscano, F.; Souto Ribeiro, P. H.

    2011-04-01

    Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid’s EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.

  17. Nanoplasmonics: Exploring nonlocal and quantum effects

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2016-01-01

    Plasmonics is commonly understood within classical electrodynamics with local-response constitutive relations. However, possibilities for nonlocal dynamics and quantum effects emerge with strong spatial confinement in plasmonic nanostructures. This talks reviews recent theory and experiments...

  18. Some generalizations of the nonlocal transformations approach

    Directory of Open Access Journals (Sweden)

    V. A. Tychynin

    2015-02-01

    Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a con­nection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transforma­tion with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and for­mulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.

  19. Employee Travel Data (Non-Local)

    Data.gov (United States)

    Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...

  20. Plasmonic nanostructures: local versus nonlocal response

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Wubs, Martijn; Xiao, Sanshui

    2010-01-01

    , and hence it is sensitive to possible narrow resonances that may arise due to strong electronic quantum confinement in the metal. This feature allows us to accurately determine which geometries are strongly affected by nonlocal response, for example regarding applications based on electric field enhancement......We study the importance of taking the nonlocal optical response of metals into account for accurate determination of optical properties of nanoplasmonic structures. Here we focus on the computational physics aspects of this problem, and in particular we report on the nonlocal-response package...... that we wrote for state-of the art numerical software, enabling us to take into account the nonlocal material response of metals for any arbitrarily shaped nanoplasmonic structures, without much numerical overhead as compared to the standard local response. Our method is a frequency-domain method...

  1. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  2. Black hole information, unitarity, and nonlocality

    OpenAIRE

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simul...

  3. Relativistic Inverse Scattering Problem for a Superposition of a Nonlocal Separable and a Local Quasipotential

    International Nuclear Information System (INIS)

    Chernichenko, Yu.D.

    2005-01-01

    Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known

  4. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  5. PET reconstruction via nonlocal means induced prior.

    Science.gov (United States)

    Hou, Qingfeng; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Ma, Jianhua

    2015-01-01

    The traditional Bayesian priors for maximum a posteriori (MAP) reconstruction methods usually incorporate local neighborhood interactions that penalize large deviations in parameter estimates for adjacent pixels; therefore, only local pixel differences are utilized. This limits their abilities of penalizing the image roughness. To achieve high-quality PET image reconstruction, this study investigates a MAP reconstruction strategy by incorporating a nonlocal means induced (NLMi) prior (NLMi-MAP) which enables utilizing global similarity information of image. The present NLMi prior approximates the derivative of Gibbs energy function by an NLM filtering process. Specially, the NLMi prior is obtained by subtracting the current image estimation from its NLM filtered version and feeding the residual error back to the reconstruction filter to yield the new image estimation. We tested the present NLMi-MAP method with simulated and real PET datasets. Comparison studies with conventional filtered backprojection (FBP) and a few iterative reconstruction methods clearly demonstrate that the present NLMi-MAP method performs better in lowering noise, preserving image edge and in higher signal to noise ratio (SNR). Extensive experimental results show that the NLMi-MAP method outperforms the existing methods in terms of cross profile, noise reduction, SNR, root mean square error (RMSE) and correlation coefficient (CORR).

  6. Ultraheavy Yukawa-bound states of fourth-generation at Large ...

    Indian Academy of Sciences (India)

    2012-10-05

    Oct 5, 2012 ... Abstract. A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new 'isospin'. The production of a colour- octet, isosinglet ...

  7. Construction of wave operator for two-dimensional Klein-Gordon-Schrodinger systems with Yukawa coupling

    Directory of Open Access Journals (Sweden)

    Kai Tsuruta

    2013-05-01

    Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.

  8. Molecular dynamics studies of crystalline nucleation in one-component Yukawa plasmas

    International Nuclear Information System (INIS)

    Ravelo, R.; Hammerberg, J.E.; Holian, B.L.

    1992-01-01

    We report on molecular dynamics studies of one-component Yukawa plasmas undergoing rapid quenches from a fluid state with a Coulomb parameter Γ = 40 to solid states in the range 350 < Γ < 800. The detailed dynamical structure of ordering appears more complicated than results from classical theories of nucleation, with planar formation being observed before fully 3-dimensional ordering appears

  9. Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws.

    Science.gov (United States)

    Lehoucq, R B; Sears, Mark P

    2011-09-01

    The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.

  10. Non-local correlation and quantum discord in two atoms in the non-degenerate model

    International Nuclear Information System (INIS)

    Mohamed, A.-B.A.

    2012-01-01

    By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis–Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole–dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole–dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: ► Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. ► There is no asymptotic decay for MIN while asymptotic decay exists for GQD. ► Quantum correlations can be strengthened by introducing the dipole–dipole interaction. ► There exists not only quantum nonlocality without entanglement but also without discord. ► Weak initial entanglement leads to MIN and entanglement in intervals of death discord.

  11. Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity

    DEFF Research Database (Denmark)

    Raza, Søren; Christensen, Thomas; Wubs, Martijn

    2013-01-01

    the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses...

  12. Ab initio translationally invariant nonlocal one-body densities from no-core shell-model theory

    Science.gov (United States)

    Burrows, M.; Elster, Ch.; Popa, G.; Launey, K. D.; Nogga, A.; Maris, P.

    2018-02-01

    Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations, translationally invariant nonlocal densities must be available. Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal one-body densities have not been considered so far. A major reason for this is that the procedure for removing the center-of-mass component from NCSM wave functions up to now has only been developed for local densities. Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components in momentum as well as coordinate space. Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by the shell structure of the nucleus, and cannot be described with simple functional forms.

  13. Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type

    International Nuclear Information System (INIS)

    Maltsev, A Ya

    2005-01-01

    We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system

  14. Nonlocality and entanglement in qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)

    2011-11-04

    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)

  15. Plasmon-enhanced fluorescence near nonlocal metallic nanospheres

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Stefanou, N.; Wubs, Martijn

    Spontaneous emission and fluorescence of organic molecules are known to strongly depend on the local electromagnetic environment. Plasmonic nanoparticles are widely explored as templates for controlling light-matter interactions, and can be tailored to optimize the fluorescence rate (Ȗem......) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces...

  16. A quantum theory of the self-energy of non-relativistic fermions and of the Coulomb-Yukawa force acting between them

    International Nuclear Information System (INIS)

    Ernst, V.

    1978-01-01

    The idea of the systematic Weisskopf-Wigner approximation as used sporadically in atomic physics and quantum optics, is extended here to the interaction of a field of non-relativistic fermions with a field of relativistic bosons. It is shown that the usual (non-existing) interaction Hamiltonian of this system can be written as a sum of a countable number of self-adjoint and bounded partial Hamiltonians. The system of these Hamiltonians defines the order hierarchy of the present approximation scheme. To demonstrate its physical utility it is shown that in a certain order it provides satisfactory quantum theory of the 'self-energy' of the fermions under discussion. This is defined as the binding energy of bosons bound to the fermions and building up the latter's 'individual Coulomb or Yukawa fields' in the sense of expectation values of the corresponding field operator. In states of more than one fermion the bound photons act as a mediating agent between the fermions; this mechanism closely resembles the Coulomb or Yukawa 'forces' used in conventional non-relativistic quantum mechanics. (author)

  17. A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics

    OpenAIRE

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2014-01-01

    A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...

  18. Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals

    Science.gov (United States)

    Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco

    2018-03-01

    The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.

  19. Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model

    International Nuclear Information System (INIS)

    Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.

    2004-01-01

    We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles

  20. Light pseudoscalar mesons in a nonlocal three flavor chiral quark model

    International Nuclear Information System (INIS)

    Gomez Dumm, D.

    2004-01-01

    We study the properties of light pseudoscalar mesons in a nonlocal three flavor chiral quark model with nonlocal separable interactions. We consider the case of a Gaussian regulator, evaluating meson masses and decay constants. Our results are found to be in good agreement with empirical values, in particular, in the case of the ratio f κ /f π and the decay π 0 → γγ. The model leads also to a reasonable description of the observed phenomenology in the η-η ' sector, where two significantly different mixing angles are required. Detailed description of the work sketched here can be found in Ref. [1]. (author)

  1. Constraining generalized non-local cosmology from Noether symmetries.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F

    2017-01-01

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.

  2. Constraining generalized non-local cosmology from Noether symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Dialektopoulos, Konstantinos F. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy)

    2017-11-15

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory. (orig.)

  3. NLOM - a program for nonlocal optical model calculations

    International Nuclear Information System (INIS)

    Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.

    1992-01-01

    A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)

  4. Accurate nonlocal theory for cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  5. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics

    NARCIS (Netherlands)

    Hütter, M.; Brader, J.M.

    2009-01-01

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding

  6. Nonlocal Symmetries, Consistent Riccati Expansion, and Analytical Solutions of the Variant Boussinesq System

    Science.gov (United States)

    Feng, Lian-Li; Tian, Shou-Fu; Zhang, Tian-Tian; Zhou, Jun

    2017-07-01

    Under investigation in this paper is the variant Boussinesq system, which describes the propagation of surface long wave towards two directions in a certain deep trough. With the help of the truncated Painlevé expansion, we construct its nonlocal symmetry, Bäcklund transformation, and Schwarzian form, respectively. The nonlocal symmetries can be localised to provide the corresponding nonlocal group, and finite symmetry transformations and similarity reductions are computed. Furthermore, we verify that the variant Boussinesq system is solvable via the consistent Riccati expansion (CRE). By considering the consistent tan-function expansion (CTE), which is a special form of CRE, the interaction solutions between soliton and cnoidal periodic wave are explicitly studied.

  7. Black hole information, unitarity, and nonlocality

    International Nuclear Information System (INIS)

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arise from ultra-Planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-Planckian physics. This indicates that a reliable argument for information loss has not been constructed, and that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information

  8. Bell-Nonlocality Dynamics of Three Remote Atoms in Tavis—Cummings and Jaynes—Cummings Models

    International Nuclear Information System (INIS)

    Zhen Xiu-Lan; Yang Qing; Yang Ming; Cao Zhuo-Liang

    2014-01-01

    We study the Bell-nonlocality dynamics of three remote atoms, two of which are trapped in one single-mode cavity and the third atom is trapped in another remote single-mode cavity. The interactions between the atoms and the cavity modes are studied via Tavis Cummings and Jaynes Cummings models. Here, the two single-mode cavities are introduced to simulate two different enviroments of the three atoms. The tripartite nonlocal correlations are studied in terms of the Svetlichny inequality and the WWZB inequality, respectively. The results show that the tripartite Bell-nonlocality sudden death will occur for the W state and GHZ state initial conditions. The detailed results demonstrate that the tripartite nonlocality of GHZ state is more robust than that of W state when suffering from the effect of environments. (general)

  9. Spiraling solitons and multipole localized modes in nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form

  10. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form....

  11. Reversed rainbow with a nonlocal metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  12. On nonlocal modeling in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2018-01-01

    Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

  13. Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2012-01-01

    We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...

  14. Classification of scalar and dyadic nonlocal optical response models

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2015-01-01

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...

  15. Collapse arrest and soliton stabilization in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Bang, Ole; Krolikowski, Wieslaw; Wyller, John

    2002-01-01

    that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can otherwise be of completely arbitrary shape and degree of nonlocality...

  16. Thermodynamic properties and static structure factor for a Yukawa fluid in the mean spherical approximation.

    Science.gov (United States)

    Montes-Perez, J; Cruz-Vera, A; Herrera, J N

    2011-12-01

    This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.

  17. Searching for quantum solitons in a (3+1)-dimensional chiral Yukawa model

    International Nuclear Information System (INIS)

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2002-01-01

    We search for static solitons stabilized by heavy fermions in a (3+1)-dimensional Yukawa model. We compute the renormalized energy functional, including the exact one-loop quantum corrections, and perform a variational search for configurations that minimize the energy for a fixed fermion number. We compute the quantum corrections using a phase shift parameterization, in which we renormalize by identifying orders of the Born series with corresponding Feynman diagrams. For higher-order terms in the Born series, we develop a simplified calculational method. When applicable, we use the derivative expansion to check our results. We observe marginally bound configurations at large Yukawa coupling, and discuss their interpretation as soliton solutions subject to general limitations of the model

  18. Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories

    International Nuclear Information System (INIS)

    Tobe, Kazuhiro; Wells, James D.

    2003-01-01

    Third family Yukawa unification, as suggested by minimal SO(10) unification, is revisited in light of recent experimental measurements and theoretical progress. We characterize unification in a semi-model-independent fashion, and conclude that finite b quark mass corrections from superpartners must be non-zero, but much smaller than naively would be expected. We show that a solution that does not require cancellations of dangerously large tanβ effects in observables implies that scalar superpartner masses should be substantially heavier than the Z scale, and perhaps inaccessible to all currently approved colliders. On the other hand, gauginos must be significantly lighter than the scalars. We demonstrate that a spectrum of anomaly-mediated gaugino masses and heavy scalars works well as a theory compatible with third family Yukawa unification and dark matter observations

  19. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Humboldt-Universitaet, Berlin; Jansen, Karl

    2011-11-01

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  20. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  1. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  2. Relation between bottom-quark MS Yukawa coupling and pole mass

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Piclum, J.H.; Steinhauser, M.

    2004-04-01

    We calculate the O (αα s ) corrections to the relationships between the MS Yukawa couplings and the pole masses of the first five quark flavours in the standard model. We also present the corresponding relationships between the MS and pole masses, which emerge as by-products of our main analysis. The occurring self-energies are evaluated using the method of asymptotic expansion. (orig.)

  3. Implications of Yukawa textures in the neutral Higgs decays within the 2HDM–III

    International Nuclear Information System (INIS)

    Barradas–Guevara, J E; Bello–Martínez, H; Félix–Beltrán, O; Hernández–Sánchez, J

    2014-01-01

    We discuss the implications of assuming a four–zero Yukawa ansatz for the neutral Higgs decays, within the context of the general 2–Higgs Doublet Model of type III. We begin by presenting a detailed analysis of the neutral Higgs boson couplings with fermions and gauge bosons and the resulting effects on its decays. In particular, we are interested on the possibility of the neutral Higgs boson production in current colliders

  4. Vectorlike particles, Z′ and Yukawa unification in F-theory inspired E6

    Directory of Open Access Journals (Sweden)

    Athanasios Karozas

    2018-03-01

    Full Text Available We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z′ gauge boson associated with a U(1 symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t−b−τ Yukawa couplings unify.

  5. Vectorlike particles, Z‧ and Yukawa unification in F-theory inspired E6

    Science.gov (United States)

    Karozas, Athanasios; Leontaris, George K.; Shafi, Qaisar

    2018-03-01

    We explore the low energy implications of an F-theory inspired E6 model whose breaking yields, in addition to the MSSM gauge symmetry, a Z‧ gauge boson associated with a U (1) symmetry broken at the TeV scale. The zero mode spectrum of the effective low energy theory is derived from the decomposition of the 27 and 27 ‾ representations of E6 and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an E8 point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the t - b - τ Yukawa couplings unify.

  6. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    International Nuclear Information System (INIS)

    Gonzalez-Martin, S.; Martin, C.P.

    2018-01-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion → fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)

  7. Nonlocality, Entanglement Witnesses and Supra-correlations

    Science.gov (United States)

    2012-04-01

    quantum non-locality, non-signaling theories, Popescu-Rohrlich boxes, EPR 1. INTRODUCTION Physics imposes limits on the correlations that can be...References [1] J.S. Bell, “On the Einstein Podolsky Rosen paradox ,” Physics 1, 195 (1964). [2] B. Tsirelson, “Quantum Generalizations of Bell’s

  8. Energy dependence of nonlocal optical potentials

    Science.gov (United States)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  9. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation...

  10. The statistical strength of nonlocality proofs

    NARCIS (Netherlands)

    Dam, van W.; Gill, R.D.; Grünwald, P.D.

    2005-01-01

    There exist numerous proofs of Bell's theorem, stating that quantum mechanics is incompatible with local realistic theories of nature. Here the strength of such nonlocality proofs is defined in terms of the amount of evidence against local realism provided by the corresponding experiments.

  11. Quantum Nonlocality with Spins in Diamond

    NARCIS (Netherlands)

    Hensen, B.J.

    2016-01-01

    In this thesis we experimentally investigate quantum nonlocality: entangled states of spatially separated objects. Entanglement is one of the most striking consequences of the quantum formalism developed in the 1920's; the predicted outcomes of independent measurements on entangled objects reveal

  12. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  13. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  14. Nonlocal gravity. Conceptual aspects and cosmological predictions

    Science.gov (United States)

    Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele

    2018-03-01

    Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free

  15. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  16. Local and nonlocal order parameters in the Kitaev chain

    Science.gov (United States)

    Chitov, Gennady Y.

    2018-02-01

    We have calculated order parameters for the phases of the Kitaev chain with interaction and dimerization at a special symmetric point applying the Jordan-Wigner and other duality transformations. We use string order parameters (SOPs) defined via the correlation functions of the Majorana string operators. The SOPs are mapped onto the local order parameters of some dual Hamiltonians and easily calculated. We have shown that the phase diagram of the interacting dimerized chain comprises the phases with the conventional local order as well as the phases with nonlocal SOPs. From the results for the critical indices, we infer the two-dimensional Ising universality class of criticality at the particular symmetry point where the model is exactly solvable.

  17. Nonlocal quantum effective actions in Weyl-Flat spacetimes

    Science.gov (United States)

    Bautista, Teresa; Benevides, André; Dabholkar, Atish

    2018-06-01

    Virtual massless particles in quantum loops lead to nonlocal effects which can have interesting consequences, for example, for primordial magnetogenesis in cosmology or for computing finite N corrections in holography. We describe how the quantum effective actions summarizing these effects can be computed efficiently for Weyl-flat metrics by integrating the Weyl anomaly or, equivalently, the local renormalization group equation. This method relies only on the local Schwinger-DeWitt expansion of the heat kernel and allows for a re-summation of the anomalous leading large logarithms of the scale factor, log a( x), in situations where the Weyl factor changes by several e-foldings. As an illustration, we obtain the quantum effective action for the Yang-Mills field coupled to massless matter, and the self-interacting massless scalar field. Our action reduces to the nonlocal action obtained using the Barvinsky-Vilkovisky covariant perturbation theory in the regime R 2 ≪ ∇2 R for a typical curvature scale R, but has a greater range of validity effectively re-summing the covariant perturbation theory to all orders in curvatures. In particular, it is applicable also in the opposite regime R 2 ≫ ∇2 R, which is often of interest in cosmology.

  18. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  19. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics

    OpenAIRE

    Hütter, Markus; Brader, Joseph M.

    2009-01-01

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set...

  20. A realistic approach of the quantum non-locality and their experimental consequences

    International Nuclear Information System (INIS)

    Ryff, Luiz Carlos Bandeira.

    1992-01-01

    A realistic approach to quantum nonlocality is proposed, and four experiments that can be used to test this approach, using pairs of correlated photons are discussed. The first experiment proposed would allow us to investigate the role of the interaction of a quantum system with a macroscopic apparatus (detector) in the so-called collapse of the state vector. The second would investigate the interaction with a polarizer. Following the line of the second, the third experiment raises questions concerning the partial collapse of the state vector. The fourth suggests ways of investigating some possible properties of the superluminal interaction needed to explain nonlocality according to realism. The extension of this approach to include pairs of photons produced via parametric down-conversion of light is discussed. (author). 57 refs, 19 figs

  1. Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.

    Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...

  2. Nonlocal synchronization in nearest neighbour coupled oscillators

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.

    2002-02-01

    We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)

  3. Evidence and concepts for nonlocal transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Kissick, M.W.

    1997-08-01

    Up until a few years ago, most transient transport studies observed primarily diffusive plasma transport responses to fast, localized perturbations. Recently, a number of experiments have, in addition, observed nonlocal electron heat responses. Most remarkably, in cold pulse experiments the abrupt edge cooling via radiative processes can induce both a diffusive cooling response moving in from the edge, and simultaneously a rising electron temperature in the central core of tokamak plasmas--an opposite response even before the diffusive cooling from the edge reaches the center. These and other nonlocal electron heat transport conundrums from recent experiments are reviewed. Also, models and physical processes being advanced to explain these puzzling phenomena are discussed. The importance of resolving this transport enigma is emphasized

  4. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  5. Nonlocal Operational Calculi for Dunkl Operators

    Directory of Open Access Journals (Sweden)

    Ivan H. Dimovski

    2009-03-01

    Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.

  6. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  7. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  8. EPR paradox, quantum nonlocality and physical reality

    International Nuclear Information System (INIS)

    Kupczynski, M

    2016-01-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are

  9. EPR paradox, quantum nonlocality and physical reality

    Science.gov (United States)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  10. Boundary fluxes for non-local diffusion

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.

    2006-01-01

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  11. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  12. Nonlocal Boltzmann theory of plasma channels

    International Nuclear Information System (INIS)

    Yu, S.S.; Melendez, R.E.

    1983-01-01

    The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents

  13. Hartman effect and nonlocality in quantum networks

    International Nuclear Information System (INIS)

    Bandopadhyay, Swarnali; Jayannavar, A.M.

    2005-01-01

    We study the phase time for various quantum mechanical networks having potential barriers in their arms to find the generic presence of Hartman effect. In such systems it is possible to control the 'super arrival' time in one of the arms by changing parameters on another, spatially separated from it. This is yet another quantum nonlocal effect. Negative time delays (time advancement) and 'ultra Hartman effect' with negative saturation times have been observed in some parameter regimes

  14. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  15. Nonlocal Gravity and Structure in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC

    2014-08-26

    The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.

  16. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  17. Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system

    Science.gov (United States)

    Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.

    2018-04-01

    The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.

  18. Measurement of the top-Higgs Yukawa coupling at a Linear e+e- Collider

    OpenAIRE

    Gay, Arnaud

    2006-01-01

    Understanding the mechanism of electroweak symmetry breaking and the origin of boson and fermion masses is among the most pressing questions raised in contemporary particle physics. If these issues involve one (several) Higgs boson(s), a precise measurement of all its (their) properties will be of prime importance. Among those, the Higgs coupling to matter fermions (the Yukawa coupling). At a Linear Collider, the process e+e- -> ttH will allow in principle a direct measurement of the top-Higg...

  19. Non-perturbative Calculation of the Scalar Yukawa Theory in Four-Body Truncation

    International Nuclear Information System (INIS)

    Li, Yang; Maris, P.; Vary, J. P.; Karmanov, V. A.

    2015-01-01

    The quenched scalar Yukawa theory is solved in the light-front Tamm–Dancoff approach including up to four constituents (one scalar nucleon, three scalar pions). The Fock sector dependent renormalization is implemented. By studying the Fock sector norms, we find that the lowest two Fock sectors dominate the state even in the large-coupling region. The one-body sector shows convergence with respect to the Fock sector truncation. However, the four-body norm exceeds the three-body norm at the coupling α≈1.7 . (author)

  20. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A. [Zuerich Univ. (Switzerland). Inst. fuer Theoretische Physik; Skands, P. [Fermi National Accelerator Lab., Batavia, IL (United States); Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2007-03-15

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role. (orig.)

  1. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Ayres; /Zurich U.; Skands, Peter Z.; /Fermilab; Spira, M.; /PSI, Villigen; Zerwas, P.M.; /DESY

    2007-03-01

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role.

  2. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    International Nuclear Information System (INIS)

    Freitas, A.; Spira, M.; Zerwas, P.M.

    2007-03-01

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role. (orig.)

  3. Large Yukawa-coupling impact on H+ decay in the MSSM

    International Nuclear Information System (INIS)

    Bartl, A.; Hidaka, K.; Kizukuri, Y.; Kon, T.; Majerotto, W.

    1994-01-01

    The decay of the charged Higgs boson H + is comprehensively studied in the minimal supersymmetric model. We find that the supersymmetric mode (t tilde)(b tilde and bar) can overwhelmingly dominate the H + decay in a substantially wide (and still allowed) range of the model parameters due to the large t- and b- quark Yukawa couplings and the large t tilde- and b tilde- mixings and that this mode has very distinctive signatures compared to the 'conventional' dominant modes τ + ν τ and tb-bar. This could shed a crucial impact on the H + search at future colliders. (author)

  4. Quark Yukawa pattern from spontaneous breaking of flavour SU(3) 3

    Science.gov (United States)

    Nardi, Enrico

    2015-10-01

    A SU(3)Q × SU(3)u × SU(3)d invariant scalar potential breaking spontaneously the quark flavour symmetry can explain the Standard Model flavour puzzle. The approximate alignment in flavour space of the vacuum expectation values of the up and down 'Yukawa fields' results as a dynamical effect. The observed quark mixing angles, the weak CP violating phase, and hierarchical quark masses can be all reproduced at the cost of introducing additional (auxiliary) scalar multiplets, but without the need of introducing hierarchical parameters.

  5. Bethe-Salpeter kernels and particle structure in the Yukawa2 quantum field theory

    International Nuclear Information System (INIS)

    Cooper, A.S.

    1981-01-01

    The author discusses the extension to the (weakly coupled) Yukawa quantum field theory in two space-time dimensions (Y 2 ), with equal bare masses, of some techniques used in the analysis of particle structure for weakly coupled even P(PHI) 2 . In particular he considers existence, regularity, and decay properties for the inverse two point functions and various Bethe-Salpeter kernels of the theory. These properties suffice to ensure that in the +-2 fermion sectors the mass spectrum is discrete below 2m 0 and the S-matrix is unitary up to 2m 0 + epsilon. (Auth.)

  6. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    Science.gov (United States)

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed.

  7. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  8. Gap solitons under competing local and nonlocal nonlinearities

    International Nuclear Information System (INIS)

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-01-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  9. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  10. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    Science.gov (United States)

    Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.

    2018-04-01

    Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.

  11. Fundamental length, bubble electrons and non-local quantum electrodynamics

    International Nuclear Information System (INIS)

    Hsu, J.P.; Mac, E.

    1977-06-01

    Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed

  12. Experimental demonstration of conflicting interest nonlocal games using superconducting qubits

    Science.gov (United States)

    Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai

    2018-06-01

    Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.

  13. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  14. Survey on nonlocal games and operator space theory

    International Nuclear Information System (INIS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states

  15. Survey on nonlocal games and operator space theory

    Energy Technology Data Exchange (ETDEWEB)

    Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-15

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  16. Front propagation and clustering in the stochastic nonlocal Fisher equation

    Science.gov (United States)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  17. Viable and testable SUSY GUTs with Yukawa unification the case of split trilinears

    CERN Document Server

    Guadagnoli, Diego; Straub, David M

    2009-01-01

    We explore general SUSY GUT models with exact third-generation Yukawa unification, but where the requirement of universal soft terms at the GUT scale is relaxed. We consider the scenario in which the breaking of universality inherits from the Yukawa couplings, i.e. is of minimal flavor violating (MFV) type. In particular, the MFV principle allows for a splitting between the up-type and the down-type soft trilinear couplings. We explore the viability of this trilinear splitting scenario by means of a fitting procedure to electroweak observables, quark masses as well as flavor-changing neutral current processes. Phenomenological viability singles out one main scenario. This scenario is characterized by a sizable splitting between the trilinear soft terms and a large mu term. Remarkably, this scenario does not invoke a partial decoupling of the sparticle spectrum, as in the case of universal soft terms, but instead it requires part of the spectrum, notably the lightest stop, the gluino and the lightest charginos...

  18. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  19. Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities

    Science.gov (United States)

    Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr

    2018-03-01

    Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of He 4 ,6 ,8 , 12C, and 16O are calculated and applied to optical potential construction. The differential cross sections and the analyzing powers for the elastic proton scattering off these nuclei are then calculated for different values of the incident proton energy. The impact of nonlocality and the COM removal is discussed. Conclusions: The use of nonlocal densities has a substantial impact on the differential cross sections and improves agreement with experiment in comparison to results generated with the local densities especially for light nuclei. For the halo nuclei 6He and 8He, the results for the differential cross section are in a reasonable agreement with the data although a more sophisticated model for the optical potential is required to properly describe the analyzing powers.

  20. Nonlocal collisionless and collisional electron transport in low temperature plasmas

    Science.gov (United States)

    Kaganovich, Igor

    2009-10-01

    The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. A distinctive property of partially ionized plasmas is that such plasmas are always in a non-equilibrium state: the electrons are not in thermal equilibrium with the neutral species and ions, and the electrons are also not in thermodynamic equilibrium within their own ensemble, which results in a significant departure of the electron velocity distribution function from a Maxwellian. These non-equilibrium conditions provide considerable freedom to choose optimal plasma parameters for applications, which make gas discharge plasmas remarkable tools for a variety of plasma applications, including plasma processing, discharge lighting, plasma propulsion, particle beam sources, and nanotechnology. Typical phenomena in such discharges include nonlocal electron kinetics, nonlocal electrodynamics with collisionless electron heating, and nonlinear processes in the sheaths and in the bounded plasmas. Significant progress in understanding the interaction of electromagnetic fields with real bounded plasma created by this field and the resulting changes in the structure of the applied electromagnetic field has been one of the major achievements of the last decade in this area of research [1-3]. We show on specific examples that this progress was made possible by synergy between full scale particle-in-cell simulations, analytical models, and experiments. In collaboration with Y. Raitses, A.V. Khrabrov, Princeton Plasma Physics Laboratory, Princeton, NJ, USA; V.I. Demidov, UES, Inc., 4401 Dayton-Xenia Rd., Beavercreek, OH 45322, USA and AFRL, Wright-Patterson AFB, OH 45433, USA; and D. Sydorenko, University of Alberta, Edmonton, Canada. [4pt] [1] D. Sydorenko, A. Smolyakov, I. Kaganovich, and Y. Raitses, IEEE Trans. Plasma Science 34, 895 (2006); Phys. Plasmas 13, 014501 (2006); 14 013508 (2007); 15, 053506 (2008). [0pt] [2] I. D. Kaganovich, Y. Raitses, D. Sydorenko, and

  1. Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2014-01-01

    Experimental data of femtosecond thick-crystal second-harmonic generation show that when tuning away from phase matching, a dominating narrow spectral peak appears in the second harmonic that can be tuned over hundreds of nanometers by changing the phase-mismatch parameter. Traditional theory...... and the nonlocal theory indirectly proves that we have observed a soliton-induced nonlocal resonance. The soliton exists in the self-defocusing regime of the cascaded nonlinear interaction and in the normal dispersion regime of the crystal, and needs high input intensities to become excited....

  2. Local and non-local potentials for deuteron elastic scattering

    International Nuclear Information System (INIS)

    Ramirez, J.A.

    1976-01-01

    The nucleon--nucleus local potential (central and spin--orbit) and the deuteron--nucleus nonlocal potential (central, spin--orbit, spin--radial tensor) are calculated by the folding-model (FM). Simple analytic expressions are obtained for the nucleon--nucleus potential by the use of Gaussians to represent the nucleon--nucleus potential and the charge and mass densities of the target. The analytic expressions give qualitative descriptions of phenomenological nucleon--nucleus interactions. A systematic target--mass dependence of realistic local FM deueron potentials is also included. Local-equivalent, energy-dependent, deuteron potentials are obtained from the nonlocal FM deuteron potentials and the energy dependence of the local potential parameters are presented. The local FM deuteron potential is tested for 60 Ni(d,d) 60 Ni at E/sub α/ = 15 MeV by comparing the predictions of the FM potentials with data in which all five polarization moments were measured. A qualitative fit to the data is obtained, but it overestimates the volume integral of the central potential by 7%. Energy-dependence effects are estimated by evaluating the local-equivalent potentials at E/sub α/ = 30 MeV and comparing the predictions to the E/sub α/ = 15 MeV potentials. The energy dependence of the central potential dominates the angular dependence of all five observables while the energy dependence of the spin--orbit and tensor potentials produces only scale changes (approx. 3%) in the vector and tensor analyzing powers. The scattering formalism for a spin-1 on a spin-0 target nucleus, and a description of the coupled--channels computer code DDUNC1 which treats the spin--radial tensor potential exactly, are included

  3. Some loopholes to save quantum nonlocality

    Science.gov (United States)

    Accardi, Luigi

    2005-02-01

    The EPR-chameleon experiment has closed a long standing debate between the supporters of quantum nonlocality and the thesis of quantum probability according to which the essence of the quantum pecularity is non Kolmogorovianity rather than non locality. The theory of adaptive systems (symbolized by the chameleon effect) provides a natural intuition for the emergence of non-Kolmogorovian statistics from classical deterministic dynamical systems. These developments are quickly reviewed and in conclusion some comments are introduced on recent attempts to "reconstruct history" on the lines described by Orwell in "1984".

  4. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  5. Non-local Effects of Conformal Anomaly

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  6. Spectral tunneling of lattice nonlocal solitons

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2010-01-01

    We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.

  7. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  8. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  9. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  10. Discussion record of the workshop on nonlocal transport

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Stroth, U.; Iwasaki, T.; Yagi, M.; Fukuyama, A.

    1997-06-01

    The discussion on the problem of the transient response and nonlocal transport is reported. Problem of the transient response is surveyed, and several approaches are reviewed. The formulation based on the nonlocal transport is discussed. Example of the analysis is presented. Future study is identified. (author)

  11. Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions

    International Nuclear Information System (INIS)

    Lee, Jinhyoung; Lee, Seung-Woo; Kim, M. S.

    2006-01-01

    We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality

  12. On nonlocal symmetries of some shallow water equations

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)

    2007-04-27

    A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.

  13. Higgs boson resonance parameters and the finite temperature phase transition in a chirally invariant Higgs-Yukawa model

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Gerhold, Philip; Kallarackal, Jim; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humbolt-Univ. Berlin (Germany)

    2011-12-15

    We study a chirally invariant Higgs-Yukawa model regulated on a space-time lattice. We calculate Higgs boson resonance parameters and mass bounds for various values of the mass of the degenerate fermion doublet. Also, first results on the phase transition temperature are presented. In general, this model may be relevant for BSM scenarios with a heavy fourth generation of quarks. (orig.)

  14. Prospects for the measurement of the Higgs Yukawa couplings to b and c quarks, and muons at CLIC

    Czech Academy of Sciences Publication Activity Database

    Grefe, C.; Laštovička, Tomáš; Strube, J.

    2013-01-01

    Roč. 73, č. 2 (2013), s. 1-7 ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : Higgs * branching * ratio * Yukawa * couplings * quarks * muons * CLIC * inear collider Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.436, year: 2013

  15. A new treatment of nonlocality in scattering process

    Science.gov (United States)

    Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.

    2018-01-01

    Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.

  16. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  17. Protecting nonlocality of multipartite states by feed-forward control

    Science.gov (United States)

    Li, Xiao-Gang; Zou, Jian; Shao, Bin

    2018-06-01

    Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.

  18. Buonomano against Bell: Nonergodicity or nonlocality?

    Science.gov (United States)

    Khrennikov, Andrei

    The aim of this note is to attract attention of the quantum foundational community to the fact that in Bell’s arguments, one cannot distinguish two hypotheses: (a) quantum mechanics is nonlocal, (b) quantum mechanics is nonergodic. Therefore, experimental violations of Bell’s inequality can be as well interpreted as supporting the hypothesis that stochastic processes induced by quantum measurements are nonergodic. The latter hypothesis was discussed actively by Buonomano since 1980. However, in contrast to Bell’s hypothesis on nonlocality, it did not attract so much attention. The only experiment testing the hypothesis on nonergodicity was performed in neutron interferometry (by Summhammer, in 1989). This experiment can be considered as rejecting this hypothesis. However, it cannot be considered as a decisive experiment. New experiments are badly needed. We point out that a nonergodic model can be realistic, i.e. the distribution of hidden (local!) variables is well-defined. We also discuss coupling of violation of the Bell inequality with violation of the condition of weak mixing for ergodic dynamical systems.

  19. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  20. Yukawa corrections from PGBs in OGTC model to the process γγ→bb-bar

    International Nuclear Information System (INIS)

    Huang Jinshu; Song Taiping; Song Haizhen; Lu gongru

    2000-01-01

    The Yukawa corrections from the pseudo-Goldstone bosons (PGBs) in the one generation technicolor (OGTC) model to the process γγ→bb-bar are calculated. The authors find the corrections from the PGBs to the cross section γγ→bb-bar are more than 10% in the certain parameter values region. The maximum of the relative corrections to the process e + e - →γγ→bb-bar may reach -51% in laser back-scattering photos mode, and is only -17.9% in Beamstrahlung photons mode. The corrections are greatly larger the contributions from the relevant particles in the standard model and the supersymmetric model. It can be considered as a signatures of finding the technicolor at the next-generation high energy photons collision

  1. Critical parameters of hard-core Yukawa fluids within the structural theory

    Science.gov (United States)

    Bahaa Khedr, M.; Osman, S. M.

    2012-10-01

    A purely statistical mechanical approach is proposed to account for the liquid-vapor critical point based on the mean density approximation (MDA) of the direct correlation function. The application to hard-core Yukawa (HCY) fluids facilitates the use of the series mean spherical approximation (SMSA). The location of the critical parameters for HCY fluid with variable intermolecular range is accurately calculated. Good agreement is observed with computer simulation results and with the inverse temperature expansion (ITE) predictions. The influence of the potential range on the critical parameters is demonstrated and the universality of the critical compressibility ratio is discussed. The behavior of the isochoric and isobaric heat capacities along the equilibrium line and the near vicinity of the critical point is discussed in details.

  2. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    International Nuclear Information System (INIS)

    Landmann, S.; Kählert, H.; Thomsen, H.; Bonitz, M.

    2015-01-01

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility of the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas

  3. Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    Science.gov (United States)

    Qureshi, Mumnuna A.; Zhong, Johnny; Qureshi, Zihad; Mason, Peter; Betouras, Joseph J.; Zagoskin, Alexandre M.

    2018-03-01

    We consider the evolution of the quantum states of a Hamiltonian that is parametrically perturbed via a term proportional to the adiabatic parameter λ (t ) . Starting with the Pechukas-Yukawa mapping of the energy eigenvalue evolution in a generalized Calogero-Sutherland model of a one-dimensional classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d λ /d t and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of nonadiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfiability problem, we obtain the occupation dynamics, which provides insight into the population of states and sources of decoherence in a quantum system.

  4. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-02-01

    In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.

  5. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2002-01-01

    Numerical cell-model analyses for the matrix-fibre debonding in a metal matrix composite are used to study the effect of a characteristic material length in the plasticity description of the matrix material deformations. Characteristic material lengths are already present in the model problem...... in the problem. The nonlocal plasticity effect tends to increase the stress level at a given overall strain, which clearly tends to promote the onset of debonding......., in the form of fibre sizes and the length associated with the debonding process, so the nonlocal plasticity model brings in an additional material length. The analyses for metal reinforced by aligned short fibres are used to obtain an understanding of the interaction of the different length scales...

  6. Nonlocality of classical electrodynamics of point particles, and violation of Bell's inequalities

    International Nuclear Information System (INIS)

    Carati, A.; Galagni, L.

    1999-01-01

    This study shows that Bell's inequalities are violated in a model of two charged particles interacting with two potential barriers, which mimic the measuring instruments; the motion in the nonrelativistic version, and the role of the hidden variables is played by the initial accelerations. The essential nonlocality property of the system is induced by the celebrated Dirac's non-runway condition, which makes the measuring instruments have a certain influence on the observed system, by determining the domain of definition of the hidden variable (the Bopp-Haag phenomenon). So this model strongly supports E. Nelson's suggestion, namely that nonlocality properties suited to violate Bell's inequalities appear in classical field theories when regularizing cutoff are removed

  7. Definition of current density in the presence of a non-local potential.

    Science.gov (United States)

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  8. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  9. Definition of current density in the presence of a non-local potential

    International Nuclear Information System (INIS)

    Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian

    2008-01-01

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results

  10. Mermin Non-Locality in Abstract Process Theories

    Directory of Open Access Journals (Sweden)

    Stefano Gogioso

    2015-11-01

    Full Text Available The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y, opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.

  11. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  12. Steering, Entanglement, Nonlocality, and the EPR Paradox

    Science.gov (United States)

    Wiseman, Howard; Jones, Steve; Andrew, Doherty

    2007-06-01

    The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.

  13. Certainty relations between local and nonlocal observables

    International Nuclear Information System (INIS)

    Diaz, R Garcia; Romero, J L; Bjoerk, G; Bourennane, M

    2005-01-01

    We point out that for an arbitrary number of identical particles, each defined on a Hilbert space of arbitrary dimension, there exists a whole ladder of relations of complementarity between certain local and nonlocal measurements corresponding to every conceivable grouping of the particles, e.g., the more accurately we can know (by a measurement) some joint property of three qubits (projecting the state onto a tripartite-entangled state), the less accurate some other property, local to the three qubits, becomes. We investigate the relation between these complementarity relations and a similar relation based on interference visibilities. We also show that the complementarity relations are particularly tight for particles defined on prime dimensional Hilbert spaces

  14. Switching non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  15. The quantum handshake entanglement, nonlocality and transactions

    CERN Document Server

    Cramer, John G

    2016-01-01

    This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.

  16. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  17. Graphene plasmons: Impurities and nonlocal effects

    Science.gov (United States)

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  18. A nonlocal spatial model for Lyme disease

    Science.gov (United States)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  19. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Science.gov (United States)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  20. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Directory of Open Access Journals (Sweden)

    P.G.L. Leach

    2005-11-01

    Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  1. Global solution branches for a nonlocal Allen-Cahn equation

    Science.gov (United States)

    Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji

    2018-05-01

    We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.

  2. Torsion of cracked nanorods using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J

    2014-01-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)

  3. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  4. Nonlocal kinetic energy functionals by functional integration

    Science.gov (United States)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  5. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  6. Relativistic rapprochement of electromagnetic and strong interactions

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    On the basis of the Lienard-Wiechert potential and the relativistic Yukawa potential it is shown that the corresponding interactions with velocity growth increase differently (the electromagnetic one increases faster). According to preliminary estimations they are equivalent, at distances of the 'action radius' of nuclear forces, at γ≅ 960, where γ is the Lorentz factor. 2 refs

  7. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  8. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Kallarackal, Jim

    2011-01-01

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  9. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    International Nuclear Information System (INIS)

    Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan

    2011-01-01

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  10. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  11. Entanglement and nonlocality in multi-particle systems

    Science.gov (United States)

    Reid, Margaret D.; He, Qiong-Yi; Drummond, Peter D.

    2012-02-01

    Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hiddenvariable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.

  12. Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems

    Energy Technology Data Exchange (ETDEWEB)

    D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)

    2016-04-15

    The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.

  13. Non-local means filter for trim statics

    KAUST Repository

    Huang, Yunsong; Wang, Xin; Schuster, Gerard T.

    2014-01-01

    this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image

  14. A single variable shear deformable nonlocal theory for transversely ...

    Indian Academy of Sciences (India)

    Rameshchandra P Shimpi

    2018-05-11

    May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.

  15. Nonlocality versus complementarity: a conservative approach to the information problem

    International Nuclear Information System (INIS)

    Giddings, Steven B

    2011-01-01

    A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.

  16. Top and Higgs mass predictions in supersymmetric SU(5) model with big top quark Yukawa coupling constant

    International Nuclear Information System (INIS)

    Krasnikov, N.V.; Rodenberg, R.

    1993-01-01

    From the requirement of the absence of the Landau pole singularity for the effective top quark Yukawa coupling constant up to Planck scale in SU(5) supersymmetric model we find an upper bound m t ≤ 187 GeV for the top quark mass. For the SU(5) fixed point renormalization group solution for top quark Yukawa coupling constant which can be interpreted as the case of composite superhiggs we find that m t ≥ 140 GeV. Similar bound takes place in all models with big anti h t (m t ). For m t ≤ 160 GeV we find also that the Higgs boson is lighter than m Z and hence it can be discovered at LEP2

  17. Mass scale of vectorlike matter and superpartners from IR fixed point predictions of gauge and top Yukawa couplings

    Science.gov (United States)

    Dermíšek, Radovan; McGinnis, Navin

    2018-03-01

    We use the IR fixed point predictions for gauge couplings and the top Yukawa coupling in the minimal supersymmetric model (MSSM) extended with vectorlike families to infer the scale of vectorlike matter and superpartners. We quote results for several extensions of the MSSM and present results in detail for the MSSM extended with one complete vectorlike family. We find that for a unified gauge coupling αG>0.3 vectorlike matter or superpartners are expected within 1.7 TeV (2.5 TeV) based on all three gauge couplings being simultaneously within 1.5% (5%) from observed values. This range extends to about 4 TeV for αG>0.2 . We also find that in the scenario with two additional large Yukawa couplings of vectorlike quarks the IR fixed point value of the top Yukawa coupling independently points to a multi-TeV range for vectorlike matter and superpartners. Assuming a universal value for all large Yukawa couplings at the grand unified theory scale, the measured top quark mass can be obtained from the IR fixed point for tan β ≃4 . The range expands to any tan β >3 for significant departures from the universality assumption. Considering that the Higgs boson mass also points to a multi-TeV range for superpartners in the MSSM, adding a complete vectorlike family at the same scale provides a compelling scenario where the values of gauge couplings and the top quark mass are understood as a consequence of the particle content of the model.

  18. Study on the nonlocality effects for generalized optical potentials

    International Nuclear Information System (INIS)

    Gurbanovich, I.S.; Zelenskaya, N.S.

    1981-01-01

    In previous studies the authors have ihown that the generalized optic potential (GOP) of particles interaction is a superposition of local and non local potentials (LP, NLP). On the example of α- particles scattering on the 8 Be nucleus at about 10-15 MeV the GOP nonlocal part is considered. For obtaining NLP the spectral decomposition of the Green function taking into account only contribution of relative motion of two α-particles in S-state is used. The locally-equivalent addition to central potential of α-particles scattering at 8 Be previously calculated is obtained. In a graphical form a total locally-equivalent potential and local GOP part are presented. It is shown that taking into account the nonlocallity effect in a locally energy approximation for precise wave function in S-state widen a potential hole without changing its depth. Such widening corresponds to the general character of behaviour of non local potentials calculated in the microscopic approach [ru

  19. Phenomenology of enhanced light quark Yukawa couplings and the W{sup ±}h charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Felix [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University, Mainz, 55099 (Germany)

    2017-02-15

    I propose the measurement of the W{sup ±}h charge asymmetry as a consistency test for the Standard Model (SM) Higgs, which is sensitive to enhanced Yukawa couplings of the first and second generation quarks. I present a collider analysis for the charge asymmetry in the same-sign lepton final state, pp→W{sup ±}h→(ℓ{sup ±}ν)(ℓ{sup ±}νjj), aimed at discovery significance for the SM W{sup ±}h production mode in each charge channel with 300 fb{sup −1} of 14 TeV LHC data. Using this decay mode, I estimate the statistical precision on the charge asymmetry should reach 0.4% with 3 ab{sup −1} luminosity, enabling a strong consistency test of the SM Higgs hypothesis. I also discuss direct and indirect constraints on light quark Yukawa couplings from direct and indirect probes of the Higgs width as well as Tevatron and Large Hadron Collider Higgs data. While the main effect from enhanced light quark Yukawa couplings is a rapid increase in the total Higgs width, such effects could be mitigated in a global fit to Higgs couplings, leaving the W{sup ±}h charge asymmetry as a novel signature to test directly the Higgs couplings to light quarks.

  20. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Wang, Yi-Ze [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); Li, Feng-Ming, E-mail: fmli@bjut.edu.cn [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); College of Mechanical Engineering, Beijing University of Technology, Beijing 100124 (China)

    2015-06-15

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  1. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.

    Science.gov (United States)

    Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze

    2015-06-01

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  2. On an application of Tikhonov's fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation

    Science.gov (United States)

    Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen

    2016-06-01

    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.

  3. A gateway to new physics: direct measurement of the top Yukawa coupling to the Higgs boson

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00405244; Wermes, Norbert

    The top quark has the largest Yukawa coupling in the Standard Model, is the main contribution to the Higgs mass $m_H$ corrections and defines the evolution of the Higgs effective potential with the energy, together with $m_H$. It can be directly measured through the associated production process $pp \\to t\\bar{t}H$. Two searches for this process are described in this thesis, using data collected with the ATLAS detector at the Large Hadron Collider. The fully hadronic analysis is performed with data corresponding to an integrated luminosity of $20.3\\,\\text{fb}^{-1}$ at a centre-of-mass energy of $\\sqrt{s}=8\\,\\text{TeV}$ and uses a boosted decision tree algorithm to discriminate between signal and background: the dominant multijet background is estimated using a data-driven method. An upper limit of $6.4$ ($5.4$) times the Standard Model cross section is observed (expected) at 95% confidence level and a best-fit value of $1.6 \\pm 2.6$ for the signal strength $\\mu_{t\\bar{t}H}=\\sigma_{t\\bar{t}H}^\\text{obs}/\\sigma...

  4. Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2008-01-01

    In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a non-uniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail. (condensed matter: structure, thermal and mechanical properties)

  5. Renormalization and radiative corrections to masses in a general Yukawa model

    Science.gov (United States)

    Fox, M.; Grimus, W.; Löschner, M.

    2018-01-01

    We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.

  6. Measurement of the top-Yukawa coupling and the search for ttH production

    CERN Document Server

    Vasquez, Jared; The ATLAS collaboration

    2015-01-01

    To test whether the observed Higgs boson follows the predictions of the SM, careful study and measurement of its properties are necessary. Due to the top quark's large mass, a measurement of the top-Yukawa coupling (Y_t) is paramount to an understanding of EWSB and could provide a viable probe for new physics. While most production processes provide only an indirect measurement of Y_t via loop effects, the ttH and tH production allow for a direct tree-level measurement of the coupling strength (which could differ due to new physics contamination). The ttH process is probed through various Higgs decay channels with several advantages. The H->bb channel allows for a coupling measurement of both 3rd generation quarks while profiting from the largest Higgs branching ratio. The h->γγ channel has a much smaller branching ratio but benefits from a fine diphoton mass resolution. The process is also probed in the multilepton channel, which is targeted at the off-shell Higgs coupling of H->WW* and H->ZZ* as well as t...

  7. Static and time-dependent solutions of Einstein-Maxwell-Yukawa fields

    International Nuclear Information System (INIS)

    Lal, K.B.; Khan, M.Q.

    1977-01-01

    An exact solution of Einstein-Maxwell-Yukawa field equations has been obtained in a space-time with a static metric. A critical analysis reveals that the results previously obtained by Patel (Tensor New Sci.; 29:237 (1975)), Singh (Gen. Rel. Grav.; 6:657 (1974)), and Taub (Ann. Math.; 53:472 (1951)) are particular cases of the present solution. The singular behaviour of the solution is also discussed in this paper. Further, extending the technique developed by Janis et al (Phys. Rev.; 186:1729 (1969)), for static fields, to the case of nonstatic fields, an exact time-dependent axially symmetric solution of EMY fields has been obtained. The present solution in the nonstatic case is nonsingular in the sense of Bonnor (J. Math. Mech.; 6:203 (1957)) and presents a generalization of the results obtained by Misra (Proc. Cambridge Philos. Soc.; 58:711 (1962)) to the case when a zero-mass scalar field coexists with a source free electromagnetic field. (author)

  8. Energy barrier of bcc-fcc phase transition via the Bain path in Yukawa system

    Science.gov (United States)

    Kiyokawa, Shuji

    2018-05-01

    In the Yukawa system with the dimensionless screening parameter κ>1.5 , when bcc-fcc transition occurs via Bain path, we show that spontaneous transitions do not occur even if the system temperature reaches the transition point of bcc-fcc because it is necessary to increase once the free energy in the process of transition from bcc to fcc through Bain deformation. Here, we refer the temporary increment of the free energy during Bain deformation as Bain barrier. Since there are the Bain barriers at the transitions between bcc and fcc phases, these phases may coexist as metastable state in the wide region (not a coexistence line) of κ and the coupling constant Γ. We study the excess energy of the system and the free energy difference between bcc and fcc phases by the Monte Carlo method, where the simulation box is divided into a large number of elements with small volume and a particle in the box is restricted be placed in one of these elements. By this method, we can tabulate the values of the interparticle potential and can calculate the internal energy fast and precisely.

  9. Probing the CP properties of top Yukawa coupling at an e + e - collider

    Science.gov (United States)

    Hagiwara, Kaoru; Yokoya, Hiroshi; Zheng, Ya-Juan

    2018-02-01

    We study consequences of CP violation in the ht\\overline{t} Yukawa coupling through the process {e}+{e}-\\to h(125)t\\overline{t} . The helicity amplitudes are calculated in the t\\overline{t} rest frame, where the initial e + e - current and the final Higgs boson have the same three-momentum. CP-violating asymmetries appear not only in the azimuthal angle between the e + e - plane and the t\\overline{t} plane about the Higgs momentum direction, but also in the correlated decay angular distributions of t and \\overline{t} . Complete description of the production and decay angular distributions are obtained analytically, including both leptonic and hadronic decays of t and \\overline{t} . We study the ultimate sensitivity to the CP-violating ht\\overline{t} coupling at a few center-of-mass energies. Our analysis shows that the possibility of discovering CP-violating ht\\overline{t} coupling improves significantly by studying t\\overline{t} decay angular correlations, and more importantly, by increasing its energy upgrade target from √{s}=500 GeV to 550 GeV.

  10. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.; Landman, Kerry A.; Fellner, Klemens

    2012-01-01

    both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach

  11. Glueball phenomenology within a nonlocal approach

    International Nuclear Information System (INIS)

    Giacosa, F.

    2005-01-01

    In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits

  12. Causality and local determinism versus quantum nonlocality

    International Nuclear Information System (INIS)

    Kupczynski, M

    2014-01-01

    The entanglement and the violation of Bell and CHSH inequalities in spin polarization correlation experiments (SPCE) is considered to be one of the biggest mysteries of Nature and is called quantum nonlocality. In this paper we show once again that this conclusion is based on imprecise terminology and on the lack of understanding of probabilistic models used in various proofs of Bell and CHSH theorems. These models are inconsistent with experimental protocols used in SPCE. This is the only reason why Bell and CHSH inequalities are violated. A probabilistic non-signalling description of SPCE, consistent with quantum predictions, is possible and it depends explicitly on the context of each experiment. It is also deterministic in the sense that the outcome is determined by supplementary local parameters describing both physical signals and measuring instruments. The existence of such description gives additional arguments that quantum theory is emergent from some more detailed theory respecting causality and local determinism. If quantum theory is emergent then there exist perhaps some fine structures in time-series of experimental data which were not predicted by quantum theory. In this paper we explain how a systematic search for such fine structures can be done. If such reproducible fine structures were found it would show that quantum theory is not predictably complete, which would be a major discovery.

  13. Exploring nonlocal observables in shock wave collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; Stricker, Stefan A. [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Schee, Wilke van der [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-11-09

    We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.

  14. Experimental nonlocal steering of Bohmian trajectories.

    Science.gov (United States)

    Xiao, Ya; Kedem, Yaron; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2017-06-26

    Interpretations of quantum mechanics (QM), or proposals for underlying theories, that attempt to present a definite realist picture, such as Bohmian mechanics, require strong non-local effects. Naively, these effects would violate causality and contradict special relativity. However if the theory agrees with QM the violation cannot be observed directly. Here, we demonstrate experimentally such an effect: we steer the velocity and trajectory of a Bohmian particle using a remote measurement. We use a pair of photons and entangle the spatial transverse position of one with the polarization of the other. The first photon is sent to a double-slit-like apparatus, where its trajectory is measured using the technique of Weak Measurements. The other photon is projected to a linear polarization state. The choice of polarization state, and the result, steer the first photon in the most intuitive sense of the word. The effect is indeed shown to be dramatic, while being easy to visualize. We discuss its strength and what are the conditions for it to occur.

  15. Understanding quantum interference in general nonlocality

    International Nuclear Information System (INIS)

    Wang Haijun

    2011-01-01

    In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].

  16. Magnetic Cavitation and the Reemergence of Nonlocal Transport in Laser Plasmas

    International Nuclear Information System (INIS)

    Ridgers, C. P.; Kingham, R. J.; Thomas, A. G. R.

    2008-01-01

    We present the first fully kinetic Vlasov-Fokker-Planck simulations of nanosecond laser-plasma interactions including self-consistent magnetic fields and hydrodynamic plasma expansion. For the largest magnetic fields externally applied to long-pulse laser-gas-jet experiments (12 T) a significant degree of cavitation of the B field (>40%) will be shown to occur from the laser-heated region in under half a nanosecond. This is due to the Nernst effect and leads to the reemergence of nonlocality even if the initial value of the magnetic field strength is sufficient to localize the transport

  17. Global solutions for 3D nonlocal Gross-Pitaevskii equations with rough data

    Directory of Open Access Journals (Sweden)

    Hartmut Pecher

    2012-10-01

    Full Text Available We study the Cauchy problem for the Gross-Pitaevskii equation with a nonlocal interaction potential of Hartree type in three space dimensions. If the potential is even and positive definite or a positive function and its Fourier transform decays sufficiently rapidly the problem is shown to be globally well-posed for large rough data which not necessarily have finite energy and also in a situation where the energy functional is not positive definite. The proof uses a suitable modification of the I-method.

  18. Light-quarks Yukawa couplings and new physics in exclusive high-pT Higgs boson +jet and Higgs boson + b -jet events

    Science.gov (United States)

    Cohen, Jonathan; Bar-Shalom, Shaouly; Eilam, Gad; Soni, Amarjit

    2018-03-01

    We suggest that the exclusive Higgs +light (or b)-jet production at the LHC, p p →h +j (jb), is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon h g g and quark-gluon q q g interactions. We study the Higgs pT-distribution in p p →h +j (jb)→γ γ +j (jb), i.e., in h +j (jb) production followed by the Higgs decay h →γ γ , employing the (pT-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parametrize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive h +j (jb) production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to O (10 ) TeV , depending on the flavor, chirality and Lorentz structure of the underlying physics.

  19. Rational solitons in the parity-time-symmetric nonlocal nonlinear Schrödinger model

    International Nuclear Information System (INIS)

    Li Min; Xu Tao; Meng Dexin

    2016-01-01

    In this paper, via the generalized Darboux transformation, rational soliton solutions are derived for the parity-time-symmetric nonlocal nonlinear Schrödinger (NLS) model with the defocusing-type nonlinearity. We find that the first-order solution can exhibit the elastic interactions of rational antidark-antidark, dark-antidark, and antidark-dark soliton pairs on a continuous wave background, but there is no phase shift for the interacting solitons. Also, we discuss the degenerate case in which only one rational dark or antidark soliton survives. Moreover, we reveal that the second-order rational solution displays the interactions between two solitons with combined-peak-valley structures in the near-field regions, but each interacting soliton vanishes or evolves into a rational dark or antidark soliton as |z| → ∞. In addition, we numerically examine the stability of the first- and second-order rational soliton solutions. (author)

  20. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)

  1. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  2. On a non-local gas dynamics like integrable hierarchy

    International Nuclear Information System (INIS)

    Brunelli, Jose Carlos; Das, Ashok

    2004-01-01

    We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)

  3. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  4. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  5. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  6. Nonlocal conductivity in type-II superconductors

    International Nuclear Information System (INIS)

    Mou, C.; Wortis, R.; Dorsey, A.T.; Huse, D.A.

    1995-01-01

    Multiterminal transport measurements on YBa 2 Cu 2 O 7 crystals in the vortex liquid regime have shown nonlocal conductivity on length scales up to 50 microns. Motivated by these results we explore the wave vector (k) dependence of the dc conductivity tensor, σ μν (k), in the Meissner, vortex lattice, and disordered phases of a type-II superconductor. Our results are based on time-dependent Ginzburg-Landau (TDGL) theory and on phenomenological arguments. We find four qualitatively different types of behavior. First, in the Meissner phase, the conductivity is infinite at k=0 and is a continuous function of k, monotonically decreasing with increasing k. Second, in the vortex-lattice phase, in the absence of pinning, the conductivity is finite (due to flux flow) at k=0; it is discontinuous there and remains qualitatively like the Meissner phase for k>0. Third, in the vortex liquid regime in a magnetic field and at low temperature, the conductivity is finite, smooth and nonmonotonic, first increasing with k at small k and then decreasing at larger k. This third behavior is expected to apply at temperatures just above the melting transition of the vortex lattice, where the vortex liquid shows strong short-range order and a large viscosity. Finally, at higher temperatures in the disordered phase, the conductivity is finite, smooth and again monotonically decreasing with k. This last, monotonic behavior applies in zero magnetic field for the entire disordered phase, i.e., at all temperatures above T c , while in a field the nonmonotonic behavior may occur in a low-temperature portion of the disordered phase

  7. Random access codes and nonlocal resources

    Science.gov (United States)

    Chaturvedi, Anubhav; Pawlowski, Marcin; Horodecki, Karol

    2017-08-01

    This work explores the notion of inter-convertibility between a cryptographic primitive: the random access code (RAC) and bipartite no-signaling nonlocal resources. To this end we introduce two generalizations of the Popescu-Rohrlich box (PR) and investigate their relation with the corresponding RACs. The first generalization is based on the number of Alice's input bits; we refer to it as the Bn-box. We show that the no-signaling condition imposes an equivalence between the Bn-box and the (n →1 ) RAC (encoding of n input bits to 1 bit of message). As an application we show that (n -1 ) PRs supplemented with one bit communication are necessary and sufficient to win a (n →1 ) RAC with certainty. Furthermore, we present a signaling instant of a perfectly working (n →1 ) RAC which cannot simulate the Bn-box, thus showing that it is weaker than its no-signaling counterpart. For the second generalization we replace Alice's input bits with d its (d -leveled classical systems); we call this the Bnd-box. In this case the no-signaling condition is not enough to enforce an equivalence between the Bnd-box and (n →1 ,d ) RAC (encoding of n input d its to 1 d it of message); i.e., while the Bnd-box can win a (n →1 ,d ) RAC with certainty, not all no-signaling instances of a (n →1 ,d ) RAC can simulate the Bnd-box. We use resource inequalities to quantitatively capture these results.

  8. A gateway to new physics. Direct measurement of the top Yukawa coupling to the Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Bruscino, Nello

    2017-05-15

    The top quark has the largest Yukawa coupling in the Standard Model, is the main contribution to the Higgs mass m{sub H} corrections and defines the evolution of the Higgs effective potential with the energy, together with m{sub H}. It can be directly measured through the associated production process pp → t anti tH. Two searches for this process are described in this thesis, using data collected with the ATLAS detector at the Large Hadron Collider. The fully hadronic analysis is performed with data corresponding to an integrated luminosity of 20.3 fb{sup -1} at a centre-of-mass energy of √(s)=8 TeV and uses a boosted decision tree algorithm to discriminate between signal and background: the dominant multijet background is estimated using a data-driven method. An upper limit of 6.4(5.4) times the Standard Model cross section is observed (expected) at 95% confidence level and a best-fit value of 1.6±2.6 for the signal strength μ{sub t} {sub anti} {sub tH}=σ{sub t} {sub anti} {sub tH}{sup obs}/σ{sub t} {sub anti} {sub tH}{sup SM} is measured. The multilepton analysis uses data collected at √(s)=13 TeV, corresponding to an integrated luminosity of 36.5 fb{sup -1}. Events with exactly three leptons are selected and a boosted decision tree is also exploited. The major sources of background are estimated using a simultaneous fit technique, which determines their normalisations in three control regions. An upper limit of 2.3(1.7) times the Standard Model cross section is observed (expected) at 95% confidence level and a best-fit value of 0.68{sup +0.89}{sub -0.68} for μ{sub t} {sub anti} {sub tH} is measured.

  9. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  10. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  11. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load

    International Nuclear Information System (INIS)

    Li, C; Yu, J L; Lim, C W

    2011-01-01

    This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension

  12. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation

    Science.gov (United States)

    Park, Sohyun

    2018-02-01

    We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard (DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by localizing the model and found that the growth in their localized version is suppressed even compared to the one in GR. The question was whether the discrepancy originates from an intrinsic difference between the nonlocal and localized formulations or is due to their different implementations of the subhorizon limit. We show that the nonlocal and local formulations give the same solutions for the linear perturbations as long as the initial conditions are set the same. The different implementations of the subhorizon limit lead to different transient behaviors of some perturbation variables; however, they do not affect the growth of matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the numerical calculation code of the former group and verify that after fixing the error the nonlocal version also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective gravitational constant taken by the two groups and some open problems.

  13. Nonlocal Free Energy of a Spatially Inhomogeneous Superconductor

    International Nuclear Information System (INIS)

    Grigorishin, K.V.; Lev, B.I.

    2012-01-01

    The microscopic approach is developed for obtaining of the free energy of a superconductor based on direct calculation of the vacuum amplitude. The free energy functional of the spatially inhomogeneous superconductor in a magnetic field is obtained with help of the developed approach. The obtained functional is generalization of Ginzburg-Landau functionals for any temperature, for arbitrary spatial variations of the order parameter and for the nonlocality of a magnetic response and the order parameter. Moreover, the nonlocality of the magnetic response is the consequence of order parameter's nonlocality. The extremals of this functional are considered in the explicit form in the low- and high-temperature limit at the condition of slowness of spatial variations of the order parameter. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Nonlocal superconducting correlations in graphene in the quantum Hall regime

    Science.gov (United States)

    Beconcini, Michael; Polini, Marco; Taddei, Fabio

    2018-05-01

    We study Andreev processes and nonlocal transport in a three-terminal graphene-superconductor hybrid system under a quantizing perpendicular magnetic field [G.-H. Lee et al., Nat. Phys. 13, 693 (2017), 10.1038/nphys4084]. We find that the amplitude of the crossed Andreev reflection (CAR) processes crucially depends on the orientation of the lattice. By employing Landauer-Büttiker scattering theory, we find that CAR is generally very small for a zigzag edge, while for an armchair edge it can be larger than the normal transmission, thereby resulting in a negative nonlocal resistance. In the case of an armchair edge and with a wide superconducting region (as compared to the superconducting coherence length), CAR exhibits large oscillations as a function of the magnetic field due to interference effects. This results in sign changes of the nonlocal resistance.

  15. Nonlocal surface plasmons by Poisson Green's function matching

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J

    2006-01-01

    The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field

  16. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  17. A non-local variable for general relativity

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.

    1983-01-01

    The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)

  18. Non-local quantal Noether identities and their applications

    International Nuclear Information System (INIS)

    Li Ziping

    2002-01-01

    Based on the phase-space generating functional for a system with a singular high-order Lagrangian, the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived. For a gauge-invariant system with a higher-order Lagrangian, the quantal Noether identities under the local and non-local transformation in configuration space have also been derived. it has been pointed out that in certain cases the quantal Noether identities may be converted to the conservation laws at the quantum level. This algorithm to derive the quantal conservation laws is significantly different from the first quantal Noether theorem. The applications to the non-Abelian CS theories with higher-order derivatives are given. The conserved quantities at the quantum level for some local and non-local transformation are found respectively

  19. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  20. Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic Interactions

    International Nuclear Information System (INIS)

    Nakada, H.

    2009-01-01

    We have developed semi-realistic NN interactions [1, 2] by modifying the M3Y interaction [3] that was derived from the G-matrix. The modification has been made so that the saturation and the spin-orbit splittings could be reproduced. The new interactions contain finite-range LS and tensor channels, as well as Yukawa-form central channels having reasonable spin and spin-isospin properties. In order to handle such interactions in practical calculations, we have also developed new numerical methods [4-6], in which the Gaussian expansion method [7] is applied. It is noted that these methods have the following advantages: (i) we can efficiently describe the energy-dependent asymptotics of single-particle wave functions at large r, as is typified in arguments on the deformed neutron halo in 4 0M g [6], (ii) we can handle various effective interactions, including those having non-locality, and (iii) a single-set of bases is applicable to wide mass range of nuclei and therefore is suitable to systematic calculations. Thereby we can implement Hartree-Fock, Hartree-Fock-Bogolyubov and RPA calculations for stable and unstable nuclei with the semi-realistic interactions. It will be shown first that the new interactions have desired characters for the nuclear matter and for the single- and double-closed nuclei. We shall particularly focus on roles of specific channels of the effective interaction, by studying (a) 'shell evolution' and role of the spin-isospin and the tensor channels [8] in stable and unstable nuclei, and (b) the magnetic response in a fully self-consistent RPA calculation with the tensor force [9]. All these properties seem to be simultaneously and naturally reproduced by the semi-realistic interactions. Thus the semi-realistic interactions are promising in describing various aspects of nuclear structure from stable to drip-line nuclei, in a self-consistent and unified manner. Since they have microscopic origin with minimal modification, we can expect high

  1. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  2. Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons

    Science.gov (United States)

    Ayral, Thomas; Kotliar, Gabriel

    The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.

  3. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  4. Local models and hidden nonlocality in Quantum Theory

    OpenAIRE

    Guerini, Leonardo

    2014-01-01

    This Master's thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werner's local model and the hidden nonlocality of some Werner states of dimension $d\\geq5$, the Gisin-Degorre's local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them f...

  5. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  6. Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)

    2012-07-01

    The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.

  7. To the non-local theory of cold nuclear fusion.

    Science.gov (United States)

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.

  8. Faithful test of nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-01-01

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  9. Effects of screened Coulomb (Yukawa) and exponential-cosine-screened Coulomb potentials on photoionization of H and He+

    International Nuclear Information System (INIS)

    Lin, C.Y.; Ho, Y.K.

    2010-01-01

    The screening effects due to the exponential-cosine-screened Coulomb and screened Coulomb (Yukawa) potentials on photoionization processes are explored within the framework of complex coordinate rotation method. The energy levels of H and He + in both screened potentials shifted with various Debye screening lengths are presented. The photoionization cross sections illustrate the considerable screening effects on photoionization processes in low energy region. The shape resonances can be found near ionization thresholds for certain of Debye screening lengths. The relations between the appearance of resonances and the existence of quasi-bound states under shielding conditions are discussed. (authors)

  10. Full simulation study of the top Yukawa coupling at the ILC at $\\sqrt{s}$ = 1 TeV

    CERN Document Server

    Price, Tony; Strube, Jan; Tanabe, Tomohiko

    2015-01-01

    We present a study of the expected precision for measurement of the top Yukawa coupling, yt, in e+e- collisions at a center-of-mass energy of 1 TeV and assuming a beam polarization of P (e-, e+) = (-0.8,+0.2). Independent analyses of ttH final states containing at least six hadronic jets are performed, based on detailed simulations of SiD and ILD, the two candidate detector concepts for the ILC. We estimate that a statistical precision of yt of 4% can be obtained with an integrated luminosity of 1 $\\mathrm{ab}^{-1}$.

  11. Two-loop top and bottom Yukawa corrections to the Higgs-boson masses in the complex MSSM

    Science.gov (United States)

    Paßehr, Sebastian; Weiglein, Georg

    2018-03-01

    Results for the two-loop corrections to the Higgs-boson masses of the MSSM with complex parameters of O{( α _t^2+α _tα _b+α _b^2) } from the Yukawa sector in the gauge-less limit are presented. The corresponding self-energies and their renormalization have been obtained in the Feynman-diagrammatic approach. The impact of the new contributions on the Higgs spectrum is investigated. Furthermore, a comparison with an existing result in the limit of the MSSM with real parameters is carried out. The new results will be included in the public code FeynHiggs.

  12. Two-loop top and bottom Yukawa corrections to the Higgs-boson masses in the complex MSSM

    International Nuclear Information System (INIS)

    Passehr, Sebastian; Weiglein, Georg

    2017-05-01

    Results for the two-loop corrections to the Higgs-boson masses of the MSSM with complex parameters of O(α 2 t +α t α b +α 2 b ) from the Yukawa sector in the gauge-less limit are presented. The corresponding self-energies and their renormalization have been obtained in the Feynman-diagrammatic approach. The impact of the new contributions on the Higgs spectrum is investigated. Furthermore, a comparison with an existing result in the limit of the MSSM with real parameters is carried out. The new results will be included in the public code FeynHiggs.

  13. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  14. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  15. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    Science.gov (United States)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one

  16. On a nonlocal Cauchy problem for differential inclusions

    Directory of Open Access Journals (Sweden)

    Y. G. Sficas

    2004-05-01

    Full Text Available We establish sufficient conditions for the existence of solutions for semilinear differential inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction multivalued maps due to Covitz and Nadler andon the Schaefer's fixed-point theorem combined with lower semicontinuous multivalued operators with decomposable values.

  17. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering

    International Nuclear Information System (INIS)

    Jones, S. J.; Wiseman, H. M.; Doherty, A. C.

    2007-01-01

    In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined 'steering', a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob's state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob's state was subsequently called steering by Schroedinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox

  18. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering

    Science.gov (United States)

    Jones, S. J.; Wiseman, H. M.; Doherty, A. C.

    2007-11-01

    In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined “steering,” a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob’s state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob’s state was subsequently called steering by Schrödinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox.

  19. Tomograms and the quest for single particle nonlocality

    International Nuclear Information System (INIS)

    Anisimov, M A; Caponigro, M; Mancini, S; Man'ko, V I

    2007-01-01

    By using a tomographic approach to quantum states, we rise the problem of nonlocality within a single particle (single degree of freedom). We propose a possible way to look for such effects on a qubit. Although a conclusive answer is far from being reached, we provide some reflections on the foundational ground

  20. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger

    2018-01-01

    separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalized nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations...... architectures with ultrafine geometrical details....