WorldWideScience

Sample records for nonlocal terms based

  1. Non-local gravity with a Weyl-square term

    CERN Document Server

    Cusin, Giulia; Maggiore, Michele; Mancarella, Michele

    2016-01-01

    Recent work has shown that modifications of General Relativity based on the addition of a non-local term $R\\,\\Box^{-2}R$ produce a dynamical model of dark energy, which is cosmologically viable both at the background level and at the level of cosmological perturbations. We explore a more general class of models based on the addition of terms proportional to $R_{\\mu\

  2. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  3. On nonlocal semi linear elliptic problem with an indefinite term

    International Nuclear Information System (INIS)

    Yechoui, Akila

    2007-08-01

    The aim of this paper is to investigate the existence of solutions of a nonlocal semi linear elliptic equation with an indefinite term. The monotone method, the method of upper and lower solutions and the classical maximum principle are used to obtain our results. (author)

  4. Feature-Based Nonlocal Polarimetric SAR Filtering

    Directory of Open Access Journals (Sweden)

    Xiaoli Xing

    2017-10-01

    Full Text Available Polarimetric synthetic aperture radar (PolSAR images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often affected by the distribution parameters and modeling texture components. In this paper, a novel filtering method introduces the coefficient of variance ( CV and Pauli basis (PB to measure the similarity, and the two features are combined with the framework of the nonlocal mean filtering. The CV is used to describe the complexity of various scenes and distinguish the scene heterogeneity; moreover, the Pauli basis is able to express the polarimetric information in PolSAR image processing. This proposed filtering combines the CV and Pauli basis to improve the estimation accuracy of the similarity weights. Then, the similarity of the features is deduced according to the test statistic. Subsequently, the filtering is proceeded by using the nonlocal weighted estimation. The performance of the proposed filter is tested with the simulated images and real PolSAR images, which are acquired by AIRSAR system and ESAR system. The qualitative and quantitative experiments indicate the validity of the proposed method by comparing with the widely-used despeckling methods.

  5. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    International Nuclear Information System (INIS)

    Garcia-Aldea, David; Alvarellos, J. E.

    2008-01-01

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved

  6. A Monte Carlo procedure for Hamiltonians with small nonlocal correction terms

    International Nuclear Information System (INIS)

    Mack, G.; Pinn, K.

    1986-03-01

    We consider lattice field theories whose Hamiltonians contain small nonlocal correction terms. We propose to do simulations for an auxiliarly polymer system with field dependent activities. If a nonlocal correction term to the Hamiltonian is small, it need to be evaluated only rarely. (orig.)

  7. Exact solutions of fractional Schroedinger-like equation with a nonlocal term

    International Nuclear Information System (INIS)

    Jiang Xiaoyun; Xu Mingyu; Qi Haitao

    2011-01-01

    We study the time-space fractional Schroedinger equation with a nonlocal potential. By the method of Fourier transform and Laplace transform, the Green function, and hence the wave function, is expressed in terms of H-functions. Graphical analysis demonstrates that the influence of both the space-fractal parameter α and the nonlocal parameter ν on the fractional quantum system is strong. Indeed, the nonlocal potential may act similar to a fractional spatial derivative as well as fractional time derivative.

  8. Real-Time Nonlocal Means-Based Despeckling.

    Science.gov (United States)

    Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad

    2017-06-01

    In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.

  9. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  10. A nonlocal phase-field system with inertial term

    Czech Academy of Sciences Publication Activity Database

    Grasselli, M.; Petzeltová, Hana; Schimperna, G.

    2007-01-01

    Roč. 65, č. 3 (2007), s. 451-469 ISSN 0033-569X R&D Projects: GA AV ČR(CZ) IAA100190606 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlocal phase-field system * Lojasiewicz inequality * convergence to equilibria Subject RIV: BA - General Mathematics Impact factor: 0.463, year: 2007

  11. Experimental nonlocality-based randomness generation with nonprojective measurements

    Science.gov (United States)

    Gómez, S.; Mattar, A.; Gómez, E. S.; Cavalcanti, D.; Farías, O. Jiménez; Acín, A.; Lima, G.

    2018-04-01

    We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the standard methods using projective measurements. Additionally, we estimate the amount of randomness certified in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified randomness generation using current technology.

  12. Formulation analysis and computation of an optimization-based local-to-nonlocal coupling method.

    Energy Technology Data Exchange (ETDEWEB)

    D' Elia, Marta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Bochev, Pavel Blagoveston [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research

    2017-01-01

    In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.

  13. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    Science.gov (United States)

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  14. Measurement-induced nonlocality in arbitrary dimensions in terms of the inverse approximate joint diagonalization

    Science.gov (United States)

    Zhang, Li-qiang; Ma, Ting-ting; Yu, Chang-shui

    2018-03-01

    The computability of the quantifier of a given quantum resource is the essential challenge in the resource theory and the inevitable bottleneck for its application. Here we focus on the measurement-induced nonlocality and present a redefinition in terms of the skew information subject to a broken observable. It is shown that the obtained quantity possesses an obvious operational meaning, can tackle the noncontractivity of the measurement-induced nonlocality and has analytic expressions for pure states, (2 ⊗d )-dimensional quantum states, and some particular high-dimensional quantum states. Most importantly, an inverse approximate joint diagonalization algorithm, due to its simplicity, high efficiency, stability, and state independence, is presented to provide almost-analytic expressions for any quantum state, which can also shed light on other aspects in physics. To illustrate applications as well as demonstrate the validity of the algorithm, we compare the analytic and numerical expressions of various examples and show their perfect consistency.

  15. Current-based detection of nonlocal spin transport in graphene for spin-based logic applications

    Science.gov (United States)

    Wen, Hua; Zhu, Tiancong; Luo, Yunqiu Kelly; Amamou, Walid; Kawakami, Roland K.

    2014-05-01

    Graphene has been proposed for novel spintronic devices due to its robust and efficient spin transport properties at room temperature. Some of the most promising proposals require current-based readout for integration purposes, but the current-based detection of spin accumulation has not yet been developed. In this work, we demonstrate current-based detection of spin transport in graphene using a modified nonlocal geometry. By adding a variable shunt resistor in parallel to the nonlocal voltmeter, we are able to systematically cross over from the conventional voltage-based detection to current-based detection. As the shunt resistor is reduced, the output current from the spin accumulation increases as the shunt resistance drops below a characteristic value R*. We analyze this behavior using a one-dimensional drift-diffusion model, which accounts well for the observed behavior. These results provide the experimental and theoretical foundation for current-based detection of nonlocal spin transport.

  16. Surface effects on static bending of nanowires based on non-local elasticity theory

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2015-10-01

    Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.

  17. Thermoelastic Damping in FGM Nano-Electromechanical System in Axial Vibration Based on Eringen Nonlocal Theory

    Science.gov (United States)

    Rahimi, Z.; Rashahmadi, S.

    2017-11-01

    The thermo-elastic damping is a dominant source of internal damping in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). The internal damping cannot neither be controlled nor minimized unless either mechanical or geometrical properties are changed. Therefore, a novel FGMNEM system with a controllable thermo-elastic damping of axial vibration based on Eringen nonlocal theory is considered. The effects of different parameter like the gradient index, nonlocal parameter, length of nanobeam and ambient temperature on the thermo-elastic damping quality factor are presented. It is shown that the thermo-elastic damping can be controlled by changing different parameter.

  18. Multi-atlas labeling with population-specific template and non-local patch-based label fusion

    DEFF Research Database (Denmark)

    Fonov, Vladimir; Coupé, Pierrick; Eskildsen, Simon Fristed

    We propose a new method combining a population-specific nonlinear template atlas approach with non-local patch-based structure segmentation for whole brain segmentation into individual structures. This way, we benefit from the efficient intensity-driven segmentation of the non-local means framework...... and from the global shape constraints imposed by the nonlinear template matching....

  19. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)

    2016-06-06

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  20. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    International Nuclear Information System (INIS)

    Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2016-01-01

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  1. Non-local effect in Brillouin optical time-domain analyzer based on Raman amplification

    International Nuclear Information System (INIS)

    Jia Xinhong; Rao Yunjiang; Wang Zinan; Zhang Weili; Ran Zengling; Deng Kun; Yang Zixin

    2012-01-01

    Compared with conventional Brillouin optical time-domain analyzer (BOTDA), the BOTDA based on Raman amplification allows longer sensing range, higher signal-to-noise ratio and higher measurement accuracy. However, the non-local effect induced by pump depletion significantly restricts the probe optical power injected to sensing fiber, thereby limiting the further extension for sensing distance. In this paper, the coupled equations including the interaction of probe light, Brillouin and Raman pumps are applied to the study on the non-local characteristics of BOTDA based on Raman amplification. The results show that, the system error induced by non-local effect worsens with increased powers of probe wave and Raman pump. The frequency-division-multiplexing (cascading the fibers with various Brillouin frequency shifts) and time-division-multiplexing (modulating both of the Brillouin pump and probe lights) technologies are efficient approaches to suppress the non-local effect, through shortening the effective interaction range between Brillouin pump and probe lights. (authors)

  2. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    Science.gov (United States)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  3. A generalized nonlocal vector calculus

    Science.gov (United States)

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2015-10-01

    A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.

  4. Fluid model of dc glow discharge with nonlocal ionization source term

    International Nuclear Information System (INIS)

    Rafatov, I R; Bogdanov, E A; Kudryavtsev, A A

    2012-01-01

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the fluid framework. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  5. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  6. Conceptual Nonlocality

    Directory of Open Access Journals (Sweden)

    David A. Grandy

    2007-08-01

    Full Text Available Nonlocality is a puzzling issue in modern physics. I propose that, aside from the experimental determination of nonlocality, the concept of atomistic lightmdash;discrete, self-bounded photonsmdash;breaks down toward something like nonlocality when subjected to philosophical scrutiny. Louis de Broglie made a similar argument regarding the material atom: the concept of the classical atom, when interrogated, collapses upon itself to offer a glimpse of wave-particle duality. Light atoms or photons, I argue, similarly collapse toward the contradictory possibility of nonlocality.

  7. Advanced numerical simulation based on a non-local micromorphic model for metal forming processes

    Directory of Open Access Journals (Sweden)

    Diamantopoulou Evangelia

    2016-01-01

    Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.

  8. Global solution branches for a nonlocal Allen-Cahn equation

    Science.gov (United States)

    Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji

    2018-05-01

    We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.

  9. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  10. Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method

    Science.gov (United States)

    Ansari, R.; Torabi, J.; Norouzzadeh, A.

    2018-04-01

    Due to the capability of Eringen's nonlocal elasticity theory to capture the small length scale effect, it is widely used to study the mechanical behaviors of nanostructures. Previous studies have indicated that in some cases, the differential form of this theory cannot correctly predict the behavior of structure, and the integral form should be employed to avoid obtaining inconsistent results. The present study deals with the bending analysis of nanoplates resting on elastic foundation based on the integral formulation of Eringen's nonlocal theory. Since the formulation is presented in a general form, arbitrary kernel functions can be used. The first order shear deformation plate theory is considered to model the nanoplates, and the governing equations for both integral and differential forms are presented. Finally, the finite element method is applied to solve the problem. Selected results are given to investigate the effects of elastic foundation and to compare the predictions of integral nonlocal model with those of its differential nonlocal and local counterparts. It is found that by the use of proposed integral formulation of Eringen's nonlocal model, the paradox observed for the cantilever nanoplate is resolved.

  11. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity.

  12. Nonlocal hidden variables and nonlocal gauge theories

    International Nuclear Information System (INIS)

    Boiteux, M.

    1984-01-01

    A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)

  13. Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory

    International Nuclear Information System (INIS)

    Wang, C M; Zhang, Y Y; Ramesh, Sai Sudha; Kitipornchai, S

    2006-01-01

    This paper is concerned with the elastic buckling analysis of micro- and nano-rods/tubes based on Eringen's nonlocal elasticity theory and the Timoshenko beam theory. In the former theory, the small scale effect is taken into consideration while the effect of transverse shear deformation is accounted for in the latter theory. The governing equations and the boundary conditions are derived using the principle of virtual work. Explicit expressions for the critical buckling loads are derived for axially loaded rods/tubes with various end conditions. These expressions account for a better representation of the buckling behaviour of micro- and nano-rods/tubes where small scale effect and transverse shear deformation effect are significant. By comparing it with the classical beam theories, the sensitivity of the small scale effect on the buckling loads may be observed

  14. Adaptive nonlocal means filtering based on local noise level for CT denoising

    International Nuclear Information System (INIS)

    Li, Zhoubo; Trzasko, Joshua D.; Lake, David S.; Blezek, Daniel J.; Manduca, Armando; Yu, Lifeng; Fletcher, Joel G.; McCollough, Cynthia H.

    2014-01-01

    Purpose: To develop and evaluate an image-domain noise reduction method based on a modified nonlocal means (NLM) algorithm that is adaptive to local noise level of CT images and to implement this method in a time frame consistent with clinical workflow. Methods: A computationally efficient technique for local noise estimation directly from CT images was developed. A forward projection, based on a 2D fan-beam approximation, was used to generate the projection data, with a noise model incorporating the effects of the bowtie filter and automatic exposure control. The noise propagation from projection data to images was analytically derived. The analytical noise map was validated using repeated scans of a phantom. A 3D NLM denoising algorithm was modified to adapt its denoising strength locally based on this noise map. The performance of this adaptive NLM filter was evaluated in phantom studies in terms of in-plane and cross-plane high-contrast spatial resolution, noise power spectrum (NPS), subjective low-contrast spatial resolution using the American College of Radiology (ACR) accreditation phantom, and objective low-contrast spatial resolution using a channelized Hotelling model observer (CHO). Graphical processing units (GPU) implementation of this noise map calculation and the adaptive NLM filtering were developed to meet demands of clinical workflow. Adaptive NLM was piloted on lower dose scans in clinical practice. Results: The local noise level estimation matches the noise distribution determined from multiple repetitive scans of a phantom, demonstrated by small variations in the ratio map between the analytical noise map and the one calculated from repeated scans. The phantom studies demonstrated that the adaptive NLM filter can reduce noise substantially without degrading the high-contrast spatial resolution, as illustrated by modulation transfer function and slice sensitivity profile results. The NPS results show that adaptive NLM denoising preserves the

  15. Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach

    Science.gov (United States)

    Norouzzadeh, A.; Ansari, R.; Rouhi, H.

    2017-05-01

    Differential form of Eringen's nonlocal elasticity theory is widely employed to capture the small-scale effects on the behavior of nanostructures. However, paradoxical results are obtained via the differential nonlocal constitutive relations in some cases such as in the vibration and bending analysis of cantilevers, and recourse must be made to the integral (original) form of Eringen's theory. Motivated by this consideration, a novel nonlocal formulation is developed herein based on the original formulation of Eringen's theory to study the buckling behavior of nanobeams. The governing equations are derived according to the Timoshenko beam theory, and are represented in a suitable vector-matrix form which is applicable to the finite-element analysis. In addition, an isogeometric analysis (IGA) is conducted for the solution of buckling problem. Construction of exact geometry using non-uniform rational B-splines and easy implementation of geometry refinement tools are the main advantages of IGA. A comparison study is performed between the predictions of integral and differential nonlocal models for nanobeams under different kinds of end conditions.

  16. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Wang, Yi-Ze [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); Li, Feng-Ming, E-mail: fmli@bjut.edu.cn [School of Astronautics, Harbin Institute of Technology, P. O. Box 137, Harbin 150001 (China); College of Mechanical Engineering, Beijing University of Technology, Beijing 100124 (China)

    2015-06-15

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  17. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.

    Science.gov (United States)

    Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze

    2015-06-01

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  18. Non-Local Effects in Kaonic Atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-01-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self energy in nuclear matter. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful description is obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. (author)

  19. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li

    2013-01-01

    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  20. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  1. Non-local effects in kaonic atoms

    International Nuclear Information System (INIS)

    Lutz, M.; Florkowski, W.

    2000-04-01

    Optical potentials with non-local (gradient) terms are used to describe the spectra of kaonic atoms. The strength of the non-local terms is determined from a many-body calculation of the kaon self-energy in nuclear matter. The optical potentials show strong non-linearities in the nucleon density and sizeable non-local terms. We find that the non-local terms are quantitatively important and the results depend strongly on the way the gradient terms are arranged. Phenomenologically successful fits are obtained for p-wave like optical potentials. It is suggested that the microscopic form of the non-local interaction terms is obtained systematically by means of a semi-classical expansion of the nucleus structure. We conclude that a microscopic description of kaonic atom data requires further detailed studies of the microscopic K - nuclear dynamics. (orig.)

  2. Nonlocal Intracranial Cavity Extraction

    Science.gov (United States)

    Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat

    2014-01-01

    Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511

  3. Nonlocal Intracranial Cavity Extraction

    Directory of Open Access Journals (Sweden)

    José V. Manjón

    2014-01-01

    Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.

  4. Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media

    Science.gov (United States)

    Zhang, Huafeng; Lü, Hua; Luo, Jianghua; Sun, Lihui

    2016-08-01

    The influence of phase-front curvature on the dynamical behavior of the fundamental mode soliton during its transmission in asymmetrical nonlocal media is studied in detail and the phase-front curvature can be imposed on the fundamental mode soliton by reshaping or phase imprinting technologies. By changing the phase-front curvature or its imposed position, controllable soliton propagation in asymmetrical nonlocal media can be achieved. Project supported by the National Natural Science Foundation of China (Grants Nos. 11547007 and 11304024), the Innovation Personnel Training Plan for Excellent Youth of Guangdong University Project (Grant No. 2013LYM_0023), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).

  5. Nonlocal transformation optics.

    Science.gov (United States)

    Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2012-02-10

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  6. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2017-02-01

    Main object of the present research is an exact investigation of wave propagation responses of smart rotating magneto-electro-elastic (MEE) graded nanoscale plates. In addition, effective material properties of functionally graded (FG) nanoplate are presumed to be calculated using the power-law formulations. Also, it has been tried to cover both softening and stiffness-hardening behaviors of nanostructures by the means of employing nonlocal strain gradient theory (NSGT). Due to increasing the accuracy of the presented model in predicting shear deformation effects, a refined higher-order plate theory is introduced. In order to cover the most enormous circumstances, maximum amount of load generated by plate’s rotation is considered. Furthermore, utilizing a developed form of Hamilton’s principle, containing magneto-electric effects, the nonlocal governing equations of MEE-FG rotating nanoplates are derived. An analytical solution is obtained to solve the governing equations and validity of the solution method is proven by comparing results from present method with those of former attempts. At last, outcomes are plotted in the framework of some figures to show the influences of various parameters such as wave number, nonlocality, length scale parameter, magnetic potential, electric voltage, gradient index and angular velocity on wave frequency, phase velocity and escape frequency of the examined nanoplate.

  7. Nonlocal Galileons and self-acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Yu, Siqing, E-mail: sy1430@nyu.edu

    2017-05-10

    A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  8. Frustrated Brownian Motion of Nonlocal Solitary Waves

    International Nuclear Information System (INIS)

    Folli, V.; Conti, C.

    2010-01-01

    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave packets. The result is valid for any kind of nonlocality and in the presence of nonparaxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equations.

  9. Locality and nonlocality in geomorphic transport laws: Implications of a particle-based model of hillslope evolution

    Science.gov (United States)

    Tucker, G. E.; Bradley, D. N.

    2008-12-01

    Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the

  10. Electrovacuum solutions in nonlocal gravity

    Science.gov (United States)

    Fernandes, Karan; Mitra, Arpita

    2018-05-01

    We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the Einstein-Hilbert action in addition to a nonlocal R □-2R term associated with a mass scale m . We demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the first-order corrections and demonstrate that the higher order corrections are real and perturbative about the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects on curved backgrounds with horizons.

  11. Unified criteria for multipartite quantum nonlocality

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E. G. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); He, Q. Y.; Reid, M. D. [Centre for Atom Optics and Ultrafast Spectroscopy and Centre for Quantum-Atom Optics (Australian Research Council), Swinburne University of Technology, Melbourne (Australia); Wiseman, H. M. [Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111 (Australia); Centre for Quantum Computation and Communication Technology (Australian Research Council), Griffith University, Brisbane, Queensland 4111 (Australia)

    2011-09-15

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  12. Unified criteria for multipartite quantum nonlocality

    International Nuclear Information System (INIS)

    Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.

    2011-01-01

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett. 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  13. Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations

    International Nuclear Information System (INIS)

    Anco, S.C.; Bluman, G.

    1997-01-01

    Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics

  14. The small length scale effect for a non-local cantilever beam: a paradox solved.

    Science.gov (United States)

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  15. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  16. NLOM - a program for nonlocal optical model calculations

    International Nuclear Information System (INIS)

    Kim, B.T.; Kyum, M.C.; Hong, S.W.; Park, M.H.; Udagawa, T.

    1992-01-01

    A FORTRAN program NLOM for nonlocal optical model calculations is described. It is based on a method recently developed by Kim and Udagawa, which utilizes the Lanczos technique for solving integral equations derived from the nonlocal Schroedinger equation. (orig.)

  17. Constraining generalized non-local cosmology from Noether symmetries.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F

    2017-01-01

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.

  18. Constraining generalized non-local cosmology from Noether symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Dialektopoulos, Konstantinos F. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy)

    2017-11-15

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory. (orig.)

  19. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    Science.gov (United States)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  20. Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2016-08-07

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.

  1. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  2. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  3. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude...

  4. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1987-01-01

    Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found

  5. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  6. Non-local model analysis of heat pulse propagation

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi

    1998-01-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  7. Quantum nonlocality does not exist.

    Science.gov (United States)

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  8. Nonlocality in Bohmian mechanics

    Science.gov (United States)

    Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han

    2018-04-01

    The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.

  9. Nonlocal teleparallel cosmology.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C

    2017-01-01

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.

  10. Nonlocal teleparallel cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-09-15

    Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)

  11. On nonlocality in quantum physics

    International Nuclear Information System (INIS)

    Spasskij, B.I.; Moskovskij, A.V.

    1984-01-01

    The properties of nonlocality of quantum objects are considered on the example of the Aharonov-Bohm, effect Brown-Twiss effect, Einstein-Podolsky-Rosen paradox. These effects demonstrate inherent features of specific integrity in quantum objects. The term ''nonlocality'' is considered as a ''quantum analog'' of the notion of long range. Experiments on checking the Bell inequalities for fulfilment are described. The inequalities permit to solve which of the quantum mechanics interpretations is correct either the Einstein interpretation according to which the quantum system properties exist as elements of physical reality irrespective of their observation, or the Copenhagen one, according to which the microsystem properties described by noncommuting operators do not exist irrespective of measurement means

  12. Revealing Hidden Einstein-Podolsky-Rosen Nonlocality

    Science.gov (United States)

    Walborn, S. P.; Salles, A.; Gomes, R. M.; Toscano, F.; Souto Ribeiro, P. H.

    2011-04-01

    Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid’s EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states.

  13. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  14. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  15. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  16. Unified criteria for multipartite quantum nonlocality

    Science.gov (United States)

    Cavalcanti, E. G.; He, Q. Y.; Reid, M. D.; Wiseman, H. M.

    2011-09-01

    Wiseman and co-workers [H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.140402 98, 140402, (2007)] proposed a distinction among the nonlocality classes of Bell's nonlocality, Einstein-Podolsky-Rosen (EPR) paradox or steering, and entanglement based on whether or not an overseer trusts each party in a bipartite scenario where they are asked to demonstrate entanglement. Here we extend that concept to the multipartite case and derive inequalities that progressively test for those classes of nonlocality, with different thresholds for each level. This framework includes the three classes of nonlocality above in special cases and introduces a family of others.

  17. Plasmonic nanostructures: local versus nonlocal response

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Wubs, Martijn; Xiao, Sanshui

    2010-01-01

    , and hence it is sensitive to possible narrow resonances that may arise due to strong electronic quantum confinement in the metal. This feature allows us to accurately determine which geometries are strongly affected by nonlocal response, for example regarding applications based on electric field enhancement......We study the importance of taking the nonlocal optical response of metals into account for accurate determination of optical properties of nanoplasmonic structures. Here we focus on the computational physics aspects of this problem, and in particular we report on the nonlocal-response package...... that we wrote for state-of the art numerical software, enabling us to take into account the nonlocal material response of metals for any arbitrarily shaped nanoplasmonic structures, without much numerical overhead as compared to the standard local response. Our method is a frequency-domain method...

  18. Gap solitons under competing local and nonlocal nonlinearities

    International Nuclear Information System (INIS)

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-01-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  19. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    Science.gov (United States)

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  20. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  1. Multipartite nonlocality distillation

    International Nuclear Information System (INIS)

    Hsu, Li-Yi; Wu, Keng-Shuo

    2010-01-01

    The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

  2. Non-localization and localization ROC analyses using clinically based scoring

    Science.gov (United States)

    Paquerault, Sophie; Samuelson, Frank W.; Myers, Kyle J.; Smith, Robert C.

    2009-02-01

    We are investigating the potential for differences in study conclusions when assessing the estimated impact of a computer-aided detection (CAD) system on readers' performance. The data utilized in this investigation were derived from a multi-reader multi-case observer study involving one hundred mammographic background images to which fixed-size and fixed-intensity Gaussian signals were added, generating a low- and high-intensity signal sets. The study setting allowed CAD assessment in two situations: when CAD sensitivity was 1) superior or 2) lower than the average reader. Seven readers were asked to review each set in the unaided and CAD-aided reading modes, mark and rate their findings. Using this data, we studied the effect on study conclusion of three clinically-based receiver operating characteristic (ROC) scoring definitions. These scoring definitions included both location-specific and non-location-specific rules. The results showed agreement in the estimated impact of CAD on the overall reader performance. In the study setting where CAD sensitivity is superior to the average reader, the mean difference in AUC between the CAD-aided read and unaided read was 0.049 (95%CIs: -0.027; 0.130) for the image scoring definition that is based on non-location-specific rules, and 0.104 (95%CIs: 0.036; 0.174) and 0.090 (95%CIs: 0.031; 0.155) for image scoring definitions that are based on location-specific rules. The increases in AUC were statistically significant for the location-specific scoring definitions. It was further observed that the variance on these estimates was reduced when using the location-specific scoring definitions compared to that using a non-location-specific scoring definition. In the study setting where CAD sensitivity is equivalent or lower than the average reader, the mean differences in AUC are slightly above 0.01 for all image scoring definitions. These increases in AUC were not statistical significant for any of the image scoring definitions

  3. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  4. Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-09-01

    Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

  5. Nonlocality and entanglement in qubit systems

    Energy Technology Data Exchange (ETDEWEB)

    Batle, J [Departament de Fisica, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain); Casas, M, E-mail: vdfsjbv4@uib.es [Departament de Fisica and IFISC-CSIC, Universitat de les Illes Balears, 07122 Palma de Mallorca (Spain)

    2011-11-04

    Nonlocality and quantum entanglement constitute two special aspects of the quantum correlations existing in quantum systems, which are of paramount importance in quantum-information theory. Traditionally, they have been regarded as identical (equivalent, in fact, for pure two qubit states, that is, Gisin's Theorem), yet they constitute different resources. Describing nonlocality by means of the violation of several Bell inequalities, we obtain by direct optimization those states of two qubits that maximally violate a Bell inequality, in terms of their degree of mixture as measured by either their participation ratio R = 1/Tr({rho}{sup 2}) or their maximum eigenvalue {lambda}{sub max}. This optimum value is obtained as well, which coincides with previous results. Comparison with entanglement is performed too. An example of an application is given in the XY model. In this novel approximation, we also concentrate on the nonlocality for linear combinations of pure states of two qubits, providing a closed form for their maximal nonlocality measure. The case of Bell diagonal mixed states of two qubits is also extensively studied. Special attention concerning the connection between nonlocality and entanglement for mixed states of two qubits is paid to the so-called maximally entangled mixed states. Additional aspects for the case of two qubits are also described in detail. Since we deal with qubit systems, we will perform an analogous study for three qubits, employing similar tools. Relation between distillability and nonlocality is explored quantitatively for the whole space of states of three qubits. We finally extend our analysis to four-qubit systems, where nonlocality for generalized Greenberger-Horne-Zeilinger states of arbitrary number of parties is computed. (paper)

  6. Quantum Nonlocality and Beyond: Limits from Nonlocal Computation

    Science.gov (United States)

    Linden, Noah; Popescu, Sandu; Short, Anthony J.; Winter, Andreas

    2007-11-01

    We address the problem of “nonlocal computation,” in which separated parties must compute a function without any individual learning anything about the inputs. Surprisingly, entanglement provides no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect success. This provides intriguing insights into the limits of quantum information processing, the nature of quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal correlations.

  7. A new treatment of nonlocality in scattering process

    Science.gov (United States)

    Upadhyay, N. J.; Bhagwat, A.; Jain, B. K.

    2018-01-01

    Nonlocality in the scattering potential leads to an integro-differential equation. In this equation nonlocality enters through an integral over the nonlocal potential kernel. The resulting Schrödinger equation is usually handled by approximating r,{r}{\\prime }-dependence of the nonlocal kernel. The present work proposes a novel method to solve the integro-differential equation. The method, using the mean value theorem of integral calculus, converts the nonhomogeneous term to a homogeneous term. The effective local potential in this equation turns out to be energy independent, but has relative angular momentum dependence. This method is accurate and valid for any form of nonlocality. As illustrative examples, the total and differential cross sections for neutron scattering off 12C, 56Fe and 100Mo nuclei are calculated with this method in the low energy region (up to 10 MeV) and are found to be in reasonable accord with the experiments.

  8. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    Science.gov (United States)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  9. A novel segmentation method for uneven lighting image with noise injection based on non-local spatial information and intuitionistic fuzzy entropy

    Science.gov (United States)

    Yu, Haiyan; Fan, Jiulun

    2017-12-01

    Local thresholding methods for uneven lighting image segmentation always have the limitations that they are very sensitive to noise injection and that the performance relies largely upon the choice of the initial window size. This paper proposes a novel algorithm for segmenting uneven lighting images with strong noise injection based on non-local spatial information and intuitionistic fuzzy theory. We regard an image as a gray wave in three-dimensional space, which is composed of many peaks and troughs, and these peaks and troughs can divide the image into many local sub-regions in different directions. Our algorithm computes the relative characteristic of each pixel located in the corresponding sub-region based on fuzzy membership function and uses it to replace its absolute characteristic (its gray level) to reduce the influence of uneven light on image segmentation. At the same time, the non-local adaptive spatial constraints of pixels are introduced to avoid noise interference with the search of local sub-regions and the computation of local characteristics. Moreover, edge information is also taken into account to avoid false peak and trough labeling. Finally, a global method based on intuitionistic fuzzy entropy is employed on the wave transformation image to obtain the segmented result. Experiments on several test images show that the proposed method has excellent capability of decreasing the influence of uneven illumination on images and noise injection and behaves more robustly than several classical global and local thresholding methods.

  10. Switching non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  11. Nonlocal Regularized Algebraic Reconstruction Techniques for MRI: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Xin Li

    2013-01-01

    Full Text Available We attempt to revitalize researchers' interest in algebraic reconstruction techniques (ART by expanding their capabilities and demonstrating their potential in speeding up the process of MRI acquisition. Using a continuous-to-discrete model, we experimentally study the application of ART into MRI reconstruction which unifies previous nonuniform-fast-Fourier-transform- (NUFFT- based and gridding-based approaches. Under the framework of ART, we advocate the use of nonlocal regularization techniques which are leveraged from our previous research on modeling photographic images. It is experimentally shown that nonlocal regularization ART (NR-ART can often outperform their local counterparts in terms of both subjective and objective qualities of reconstructed images. On one real-world k-space data set, we find that nonlocal regularization can achieve satisfactory reconstruction from as few as one-third of samples. We also address an issue related to image reconstruction from real-world k-space data but overlooked in the open literature: the consistency of reconstructed images across different resolutions. A resolution-consistent extension of NR-ART is developed and shown to effectively suppress the artifacts arising from frequency extrapolation. Both source codes and experimental results of this work are made fully reproducible.

  12. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  13. A Non-local Model for Transient Moisture Flow in Unsaturated Soils Based on the Peridynamic Theory

    Science.gov (United States)

    Jabakhanji, R.; Mohtar, R. H.

    2012-12-01

    A non-local, gradient free, formulation of the porous media flow problem in unsaturated soils was derived. It parallels the peridynamic theory, a non-local reformulation of solid mechanics presented by Silling. In the proposed model, the evolution of the state of a material point is driven by pairwise interactions with other points across finite distances. Flow and changes in moisture are the result of these interactions. Instead of featuring local gradients, the proposed model expresses the flow as a functional integral of the hydraulic potential field. The absence of spatial gradients, undefined at or on discontinuities, makes the model a good candidate for flow simulations in fractured soils. It also lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, slope stability and integrity of clay barriers. A description of the concept and an outline of the derivation and numerical implementation are presented. Simulation results of infiltration and drainage for 1D, single and two-layers soil columns, for three different soil types are also presented. The same simulations are repeated using HYDRUS-1D, a computer model using the classic local flow equation. We show that the proposed non-local formulation successfully reproduces the results from HYDRUS-1D. S.A. Silling, "Reformulation of Elasticity Theory for Discontinuities and Long-range Forces," Journal of the Mechanics and Physics of Solids 48, no. 1 (January 2000): 175-209. J. Simunek, M. Sejna, and M.T. Van Genuchten, "The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media," University of California, Riverside, Research Reports 240 (2005).

  14. Nonlocal N=1 supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tetsuji [Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University,Lancaster LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands); Noumi, Toshifumi [Institute for Advanced Study, Hong Kong University of Science and Technology,Clear Water Bay (Hong Kong); Department of Physics, Kobe University,Kobe 657-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan)

    2016-10-05

    We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  15. The statistical strength of nonlocality proofs

    NARCIS (Netherlands)

    Dam, van W.; Gill, R.D.; Grünwald, P.D.

    2005-01-01

    There exist numerous proofs of Bell's theorem, stating that quantum mechanics is incompatible with local realistic theories of nature. Here the strength of such nonlocality proofs is defined in terms of the amount of evidence against local realism provided by the corresponding experiments.

  16. The Robin Hood method - A novel numerical method for electrostatic problems based on a non-local charge transfer

    International Nuclear Information System (INIS)

    Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje

    2006-01-01

    We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problem with N surface elements, the computational complexity of the method essentially scales with N α , where α < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed

  17. Nonlinear static analysis of single layer annular/circular graphene sheets embedded in Winkler–Pasternak elastic matrix based on non-local theory of Eringen

    Directory of Open Access Journals (Sweden)

    Shahriar Dastjerdi

    2016-06-01

    Full Text Available Nonlinear bending analysis of orthotropic annular/circular graphene sheets has been studied based on the non-local elasticity theory. The first order shear deformation theory (FSDT is applied in combination with the nonlinear Von-Karman strain field. The obtained differential equations are solved by using two methods, first the differential quadrature method (DQM and a new semi-analytical polynomial method (SAPM which is innovated by the authors. Applying the DQM or SAPM, the differential equations are transformed to nonlinear algebraic equations system. Then the Newton–Raphson iterative scheme is used. First, the obtained results from DQM and SAPM are compared and it is concluded that although the SAPM’s formulation is considerably simpler than DQM, however, the SAPM’s results are so close to DQM. The results are validated with available papers. Finally, the effects of small scale parameter on the results, the comparison between local and non-local theories, and linear to nonlinear analyses are investigated.

  18. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  19. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  20. Discussion record of the workshop on nonlocal transport

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Stroth, U.; Iwasaki, T.; Yagi, M.; Fukuyama, A.

    1997-06-01

    The discussion on the problem of the transient response and nonlocal transport is reported. Problem of the transient response is surveyed, and several approaches are reviewed. The formulation based on the nonlocal transport is discussed. Example of the analysis is presented. Future study is identified. (author)

  1. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  2. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  3. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load

    International Nuclear Information System (INIS)

    Li, C; Yu, J L; Lim, C W

    2011-01-01

    This paper investigates the natural frequency, steady-state resonance and stability for the transverse vibrations of a nanobeam subjected to a variable initial axial force, including axial tension and axial compression, based on nonlocal elasticity theory. It is reported that the nonlocal nanoscale has significant effects on vibration behavior, which results in a new effective nonlocal bending moment different to but dependent on the corresponding nonlocal bending moment. The effects of nonlocal nanoscale and the variation of initial axial force on the natural frequency as well as the instability regions are analyzed by the perturbation method. It concludes that both the nonlocal nanoscale and the initial tension, including static and dynamic tensions, cause an increase in natural frequency, while an initial compression causes the natural frequency to decrease. Instability regions are also greatly influenced by the nonlocal nanoscale and initial tension and they become smaller with stronger nonlocal effects or larger initial tension

  4. Nonlocal gravity. Conceptual aspects and cosmological predictions

    Science.gov (United States)

    Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele

    2018-03-01

    Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free

  5. Nonlocal quantum field theory

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1976-01-01

    The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version

  6. Nonlocal gauge theories

    International Nuclear Information System (INIS)

    Partovi, M.H.

    1982-01-01

    From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories

  7. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  8. Bell's theorem, accountability and nonlocality

    International Nuclear Information System (INIS)

    Vona, Nicola; Liang, Yeong-Cherng

    2014-01-01

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  9. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing.

    Science.gov (United States)

    Elmoataz, Abderrahim; Lezoray, Olivier; Bougleux, Sébastien

    2008-07-01

    We introduce a nonlocal discrete regularization framework on weighted graphs of the arbitrary topologies for image and manifold processing. The approach considers the problem as a variational one, which consists of minimizing a weighted sum of two energy terms: a regularization one that uses a discrete weighted p-Dirichlet energy and an approximation one. This is the discrete analogue of recent continuous Euclidean nonlocal regularization functionals. The proposed formulation leads to a family of simple and fast nonlinear processing methods based on the weighted p-Laplace operator, parameterized by the degree p of regularity, the graph structure and the graph weight function. These discrete processing methods provide a graph-based version of recently proposed semi-local or nonlocal processing methods used in image and mesh processing, such as the bilateral filter, the TV digital filter or the nonlocal means filter. It works with equal ease on regular 2-D and 3-D images, manifolds or any data. We illustrate the abilities of the approach by applying it to various types of images, meshes, manifolds, and data represented as graphs.

  10. Multipartite fully nonlocal quantum states

    International Nuclear Information System (INIS)

    Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio

    2010-01-01

    We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.

  11. Mathematical model of the heat transfer process taking into account the consequences of nonlocality in structurally sensitive materials

    Science.gov (United States)

    Kuvyrkin, G. N.; Savelyeva, I. Y.; Kuvshynnikova, D. A.

    2018-04-01

    Creation of new materials based on nanotechnology is an important direction of modern materials science development. Materials obtained using nanotechnology can possess unique physical-mechanical and thermophysical properties, allowing their effective use in structures exposed to high-intensity thermomechanical effects. An important step in creation and use of new materials is the construction of mathematical models to describe the behavior of these materials in a wide range of changes under external effects. The model of heat conduction of structural-sensitive materials is considered with regard to the medium nonlocality effects. The relations of the mathematical model include an integral term describing the spatial nonlocality of the medium. A difference scheme, which makes it possible to obtain a numerical solution of the problem of nonstationary heat conduction with regard to the influence of the medium nonlocality on space, has been developed. The influence of the model parameters on the temperature distributions is analyzed.

  12. An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal

    Science.gov (United States)

    Chen, Yong-fei; Gao, Hong-xia; Wu, Zi-ling; Kang, Hui

    2018-01-01

    Compressed sensing (CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR), in terms of both visual results and quantitative measures.

  13. Entanglement without nonlocality

    International Nuclear Information System (INIS)

    Hewitt-Horsman, C.; Vedral, V.

    2007-01-01

    We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases

  14. A single variable shear deformable nonlocal theory for transversely ...

    Indian Academy of Sciences (India)

    Rameshchandra P Shimpi

    2018-05-11

    May 11, 2018 ... Abstract. In this paper, a simple single variable shear deformable nonlocal theory for bending of micro- and ... the models based upon continuum mechanics are widely .... of the body. ...... Elsevier Science Ltd, Oxford, UK. pp.

  15. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.; Schö nlieb, Carola-Bibiane

    2010-01-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove

  16. Extent of multiparticle quantum nonlocality

    International Nuclear Information System (INIS)

    Jones, Nick S.; Linden, Noah; Massar, Serge

    2005-01-01

    It is well known that entangled quantum states are nonlocal: the corrrelations between local measurements carried out on these states cannot be reproduced by local hidden variable models. Svetlichny, followed by others, showed that multipartite quantum states are more nonlocal than bipartite ones in the sense that even some nonlocal classical models with (super-luminal) communication between some of the parties cannot reproduce the quantum correlations. Here we study in detail the kinds of nonlocality present in quantum states. More precisely, we enquire what kinds of classical communication patterns cannot reproduce quantum correlations. By studying the extremal points of the space of all multiparty probability distributions, in which all parties can make one of a pair of measurements each with two possible outcomes, we find a necessary condition for classical nonlocal models to reproduce the statistics of all quantum states. This condition extends and generalizes work of Svetlichny and others in which it was showed that a particular class of classical nonlocal models, the 'separable' models, cannot reproduce the statistics of all multiparticle quantum states. Our condition shows that the nonlocality present in some entangled multiparticle quantum states is much stronger than previously thought. We also study the sufficiency of our condition

  17. The sheaf-theoretic structure of non-locality and contextuality

    International Nuclear Information System (INIS)

    Abramsky, Samson; Brandenburger, Adam

    2011-01-01

    We use the mathematical language of sheaf theory to give a unified treatment of non-locality and contextuality, in a setting that generalizes the familiar probability tables used in non-locality theory to arbitrary measurement covers; this includes Kochen-Specker configurations and more. We show that contextuality, and non-locality as a special case, correspond exactly to obstructions to the existence of global sections. We describe a linear algebraic approach to computing these obstructions, which allows a systematic treatment of arguments for non-locality and contextuality. We distinguish a proper hierarchy of strengths of no-go theorems, and show that three leading examples—due to Bell, Hardy and Greenberger, Horne and Zeilinger, respectively—occupy successively higher levels of this hierarchy. A general correspondence is shown between the existence of local hidden-variable realizations using negative probabilities, and no-signalling; this is based on a result showing that the linear subspaces generated by the non-contextual and no-signalling models, over an arbitrary measurement cover, coincide. Maximal non-locality is generalized to maximal contextuality, and characterized in purely qualitative terms, as the non-existence of global sections in the support. A general setting is developed for the Kochen-Specker-type results, as generic, model-independent proofs of maximal contextuality, and a new combinatorial condition is given, which generalizes the ‘parity proofs’ commonly found in the literature. We also show how our abstract setting can be represented in quantum mechanics. This leads to a strengthening of the usual no-signalling theorem, which shows that quantum mechanics obeys no-signalling for arbitrary families of commuting observables, not just those represented on different factors of a tensor product. (paper)

  18. Hyper- and hybrid nonlocality

    Science.gov (United States)

    Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto

    2018-02-01

    The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.

  19. A Systems-Theoretical Generalization of Non-Local Correlations

    Science.gov (United States)

    von Stillfried, Nikolaus

    Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.

  20. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    International Nuclear Information System (INIS)

    Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan

    2011-01-01

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  1. Nonlocal heat transfer in nanostructures

    International Nuclear Information System (INIS)

    Kanavin, A.P.; Uryupin, S.A.

    2008-01-01

    Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted

  2. Dynamic analysis of isotropic nanoplates subjected to moving load using state-space method based on nonlocal second order plate theory

    Energy Technology Data Exchange (ETDEWEB)

    Nami, Mohammad Rahim [Shiraz University, Shiraz, Iran (Iran, Islamic Republic of); Janghorban, Maziar [Islamic Azad University, Marvdash (Iran, Islamic Republic of)

    2015-06-15

    In this work, dynamic analysis of rectangular nanoplates subjected to moving load is presented. In order to derive the governing equations of motion, second order plate theory is used. To capture the small scale effects, the nonlocal elasticity theory is adopted. It is assumed that the nanoplate is subjected to a moving concentrated load with the constant velocity V in the x direction. To solve the governing equations, state-space method is used to find the deflections of rectangular nanoplate under moving load. The results obtained here reveal that the nonlocality has significant effect on the deflection of rectangular nanoplate subjected to moving load.

  3. Nonlocal gravity simulates dark matter

    OpenAIRE

    Hehl, Friedrich W.; Mashhoon, Bahram

    2009-01-01

    A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.

  4. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  5. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  6. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  7. Experimental Greenberger-Horne-Zeilinger-Type Six-Photon Quantum Nonlocality.

    Science.gov (United States)

    Zhang, Chao; Huang, Yun-Feng; Wang, Zhao; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2015-12-31

    Quantum nonlocality gives us deeper insight into quantum physics. In addition, quantum nonlocality has been further recognized as an essential resource for device-independent quantum information processing in recent years. Most experiments of nonlocality are performed using a photonic system. However, until now, photonic experiments of nonlocality have involved at most four photons. Here, for the first time, we experimentally demonstrate the six-photon quantum nonlocality in an all-versus-nothing manner based on a high-fidelity (88.4%) six-photon Greenberger-Horne-Zeilinger state. Our experiment pushes multiphoton nonlocality studies forward to the six-photon region and might provide a larger photonic system for device-independent quantum information protocols.

  8. Towards LHC physics with nonlocal Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Tirthabir, E-mail: tbiswas@loyno.edu [Department of Physics, Loyola University, 6363 St. Charles Avenue, Box 92, New Orleans, LA 70118 (United States); Okada, Nobuchika, E-mail: okadan@ua.edu [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States)

    2015-09-15

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  9. On the Activation of Quantum Nonlocality

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Ducuara

    2016-05-01

    Full Text Available We report on some quantum properties of physical systems, namely, entanglement, nonlocality, k-copy nonlocality (superactivation of nonlocality, hidden nonlocality (activation of nonlocality through local filtering and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.

  10. Post-Newtonian parameter γ in generalized non-local gravity

    Science.gov (United States)

    Zhang, Xue; Wu, YaBo; Yang, WeiQiang; Zhang, ChengYuan; Chen, BoHai; Zhang, Nan

    2017-10-01

    We investigate the post-Newtonian parameter γ and derive its formalism in generalized non-local (GNL) gravity, which is the modified theory of general relativity (GR) obtained by adding a term m 2 n-2 R☐-n R to the Einstein-Hilbert action. Concretely, based on parametrizing the generalized non-local action in which gravity is described by a series of dynamical scalar fields ϕ i in addition to the metric tensor g μν, the post-Newtonian limit is computed, and the effective gravitational constant as well as the post-Newtonian parameters are directly obtained from the generalized non-local gravity. Moreover, by discussing the values of the parametrized post-Newtonian parameters γ, we can compare our expressions and results with those in Hohmann and Järv et al. (2016), as well as current observational constraints on the values of γ in Will (2006). Hence, we draw restrictions on the nonminimal coupling terms F̅ around their background values.

  11. Term Bases and Linguistic Linked Open Data

    DEFF Research Database (Denmark)

    for pursuing their work. The theme of this year’s TKE is ‘Term Bases and Linguistic Linked Open Data’. Mono- and multi-lingual term bases, which contain information about concepts (terms, definitions, examples of use, references, comments on equivalence etc.), have always made up valuable linguistic resources...

  12. Non-local currents in 2D QFT: an alternative To - the quantum inverse scattering method

    International Nuclear Information System (INIS)

    Bernard, D.; Leclair, A.; Cornell Univ., Ithaca, NY

    1990-01-01

    The formalism based on non-local charges that we propose provides an alternative to the quantum inverse scattering method for solving integrable quantum field theories in 2D. The content of the paper is: 1. Introduction: historical background. 2. The NLC approach to 2D QFT: a summary. 3 Exchange algebras and on-shell conservation laws: why non-local charges are useful. 4. The lattice construction: the geometrical origin of non-local conserved currents. 5. The continuum construction: how to deal with non-local conserved currents. 6. Examples: Yangian and quantum group currents. 7 Conclusions: open problems. 22 refs., 4 figs

  13. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  14. Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS

    International Nuclear Information System (INIS)

    Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.

    1999-01-01

    A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  15. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  16. Stable rotating dipole solitons in nonlocal media

    DEFF Research Database (Denmark)

    Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.

    2006-01-01

    We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons.......We present the first example of stable rotating two-soliton bound states in nonlinear optical media with nonlocal response. We show that, in contrast to media with local response, nonlocality opens possibilities to generate stable azimuthons....

  17. Certifying the absence of quantum nonlocality

    OpenAIRE

    Miller, Carl A.; Shi, Yaoyun

    2016-01-01

    Quantum nonlocality is an inherently non-classical feature of quantum mechanics and manifests itself through violation of Bell inequalities for nonlocal games. We show that in a fairly general setting, a simple extension of a nonlocal game can certify instead the absence of quantum nonlocality. Through contraposition, our result implies that a super-classical performance for such a game ensures that a player's output is unpredictable to the other player. Previously such output unpredictabilit...

  18. Bell inequality, nonlocality and analyticity

    International Nuclear Information System (INIS)

    Socolovsky, M.

    2003-01-01

    The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics

  19. Bell inequality, nonlocality and analyticity

    Energy Technology Data Exchange (ETDEWEB)

    Socolovsky, M

    2003-09-15

    The Bell and the Clauser-Horne-Shimony-Holt inequalities are shown to hold for both the cases of complex and real analytic nonlocality in the setting parameters of Einstein-Podolsky-Rosen-Bohm experiments for spin ((1)/(2)) particles and photons, in both the deterministic and stochastic cases. Therefore, the theoretical and experimental violation of the inequalities by quantum mechanics excludes all hidden variables theories with that kind of nonlocality. In particular, real analyticity leads to negative definite correlations, in contradiction with quantum mechanics.

  20. Closed sets of nonlocal correlations

    International Nuclear Information System (INIS)

    Allcock, Jonathan; Linden, Noah; Brunner, Nicolas; Popescu, Sandu; Skrzypczyk, Paul; Vertesi, Tamas

    2009-01-01

    We present a fundamental concept - closed sets of correlations - for studying nonlocal correlations. We argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of correlations gives insight into which information-theoretic principles are genuinely different, and which are ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is limited, and for finding constraints on physical theories beyond quantum mechanics.

  1. More nonlocality with less purity.

    Science.gov (United States)

    Bandyopadhyay, Somshubhro

    2011-05-27

    Quantum information is nonlocal in the sense that local measurements on a composite quantum system, prepared in one of many mutually orthogonal states, may not reveal in which state the system was prepared. It is shown that in the many copy limit this kind of nonlocality is fundamentally different for pure and mixed quantum states. In particular, orthogonal mixed states may not be distinguishable by local operations and classical communication, no matter how many copies are supplied, whereas any set of N orthogonal pure states can be perfectly discriminated with m copies, where miff the set is not conclusively locally distinguishable with multiple copies. © 2011 American Physical Society

  2. A non-local variable for general relativity

    International Nuclear Information System (INIS)

    Kozameh, C.N.; Newman, E.T.

    1983-01-01

    The usual description of differential geometry and general relativity is in terms of local fields, e.g. the metric, the curvature tensor, etc, which satisfy local differential equations. The authors introduce a new non-local field (Z) from which the local fields can be derived. Basically Z, though it is non-local, should be thought of as a function on the bundle of null directions on a space-time. The program can be divided into two parts; first the authors want to show the geometric meaning of and the relationship between Z and the local field. Then they want to provide field equations (non-local) for Z which will be equivalent to the vacuum Einstein equations for the local field. (Auth.)

  3. Non-locality of non-Abelian anyons

    International Nuclear Information System (INIS)

    Brennen, G K; Iblisdir, S; Pachos, J K; Slingerland, J K

    2009-01-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  4. Non-locality of non-Abelian anyons

    Science.gov (United States)

    Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.

    2009-10-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  5. Shape Changing Nonlocal Molecular Deformations in a Nematic Liquid Crystal

    International Nuclear Information System (INIS)

    Kavitha, L.; Venkatesh, M.; Gopi, D.

    2010-07-01

    The nature of nonlinear molecular deformations in a homeotropically aligned nematic liquid crystal (NLC) is presented. We start from the basic dynamical equation for the director axis of a NLC with elastic deformation mapped onto an integro-differential perturbed Nonlinear Schroedinger equation which includes the nonlocal term. By invoking the modified extended tangent hyperbolic function method aided with symbolic computation, we obtain a series of solitary wave solutions. Under the influence of the nonlocality induced by the reorientation nonlinearity due to fluctuations in the molecular orientation, the solitary wave exhibits shape changing property for different choices of parameters. This intriguing property, as a result of the relation between the coherence of the solitary deformation and the nonlocality, reveals a strong need for deeper understanding in the theory of self-localization in NLC systems. (author)

  6. Modulational instability in nonlocal nonlinear Kerr media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens

    2001-01-01

    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defoc...

  7. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  8. Effect of nonlocal dispersion on self-interacting excitations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Gaididei, Yu.B.

    1996-01-01

    The dynamics of self-interacting quasiparticles in 1Dsystems with long-range dispersive interactions isexpressed in terms of a nonlocal nonlinear Schrödingerequation. Two branches of stationary solutions are found.The new branch which contains a cusp soliton is shown to beunstable and blowup...

  9. Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2013-01-01

    . Without specifying further details of the underlying physical mechanism we show how this leads to a Laplacian correction term in the electromagnetic wave equation. Within the hydrodynamic model we demonstrate this explicitly and we identify the characteristic nonlocal range to be ξNL∼vF/ω where v...

  10. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  11. OCT despeckling via weighted nuclear norm constrained non-local low-rank representation

    Science.gov (United States)

    Tang, Chang; Zheng, Xiao; Cao, Lijuan

    2017-10-01

    As a non-invasive imaging modality, optical coherence tomography (OCT) plays an important role in medical sciences. However, OCT images are always corrupted by speckle noise, which can mask image features and pose significant challenges for medical analysis. In this work, we propose an OCT despeckling method by using non-local, low-rank representation with weighted nuclear norm constraint. Unlike previous non-local low-rank representation based OCT despeckling methods, we first generate a guidance image to improve the non-local group patches selection quality, then a low-rank optimization model with a weighted nuclear norm constraint is formulated to process the selected group patches. The corrupted probability of each pixel is also integrated into the model as a weight to regularize the representation error term. Note that each single patch might belong to several groups, hence different estimates of each patch are aggregated to obtain its final despeckled result. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the proposed method compared with other state-of-the-art speckle removal techniques.

  12. Nonlocal quasilinear damped differential inclusions

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2002-01-01

    Full Text Available In this paper we investigate the existence of mild solutions to second order initial value problems for a class of damped differential inclusions with nonlocal conditions. By using suitable fixed point theorems, we study the case when the multivalued map has convex and nonconvex values.

  13. Nonlocal interactions and Bell's inequality

    International Nuclear Information System (INIS)

    Garuccio, A.; Selleri, F.

    1976-01-01

    It is shown that natural extensions of the local hidden variable theories to include nonlocal effects still lead to a full validity of Bell's inequality. It is conjectured that the essential point expressed by this inequality is not locality, but the wave-particle dualism

  14. Extreme nonlocality with one photon

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)

    2011-05-15

    Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.

  15. Nonlocal Free Energy of a Spatially Inhomogeneous Superconductor

    International Nuclear Information System (INIS)

    Grigorishin, K.V.; Lev, B.I.

    2012-01-01

    The microscopic approach is developed for obtaining of the free energy of a superconductor based on direct calculation of the vacuum amplitude. The free energy functional of the spatially inhomogeneous superconductor in a magnetic field is obtained with help of the developed approach. The obtained functional is generalization of Ginzburg-Landau functionals for any temperature, for arbitrary spatial variations of the order parameter and for the nonlocality of a magnetic response and the order parameter. Moreover, the nonlocality of the magnetic response is the consequence of order parameter's nonlocality. The extremals of this functional are considered in the explicit form in the low- and high-temperature limit at the condition of slowness of spatial variations of the order parameter. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  17. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  18. Non-local quantal Noether identities and their applications

    International Nuclear Information System (INIS)

    Li Ziping

    2002-01-01

    Based on the phase-space generating functional for a system with a singular high-order Lagrangian, the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived. For a gauge-invariant system with a higher-order Lagrangian, the quantal Noether identities under the local and non-local transformation in configuration space have also been derived. it has been pointed out that in certain cases the quantal Noether identities may be converted to the conservation laws at the quantum level. This algorithm to derive the quantal conservation laws is significantly different from the first quantal Noether theorem. The applications to the non-Abelian CS theories with higher-order derivatives are given. The conserved quantities at the quantum level for some local and non-local transformation are found respectively

  19. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  20. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  1. Non-local deformation of a supersymmetric field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)

    2017-09-15

    In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)

  2. Combinatorics and quantum nonlocality

    NARCIS (Netherlands)

    H. Buhrman (Harry); P. Høyer (Peter); S. Massar (Serge); H. Röhrig (Hein)

    2003-01-01

    htmlabstractWe use techniques for lower bounds on communication to derive necessary conditions (in terms of detector efficiency or amount of superluminal communication) for being able to reproduce the quantum correlations occurring in Einstein-Podolsky-Rosen–type experiments with classical local

  3. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  4. Temporal nonlocality in bistable perception

    Science.gov (United States)

    Atmanspacher, Harald; Filk, Thomas

    2012-12-01

    A novel conceptual framework for theoretical psychology is presented and illustrated for the example of bistable perception. A basic formal feature of this framework is the non-commutativity of operations acting on mental states. A corresponding model for the bistable perception of ambiguous stimuli, the Necker-Zeno model, is sketched and some empirical evidence for it so far is described. It is discussed how a temporal nonlocality of mental states, predicted by the model, can be understood and tested.

  5. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger

    2018-01-01

    separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalized nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations...... architectures with ultrafine geometrical details....

  6. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    OpenAIRE

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion cu...

  7. A nonlocal spatial model for Lyme disease

    Science.gov (United States)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  8. Robustness of multiparty nonlocality to local decoherence

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Cheong, Yong Wook; Kim, Jaewan; Lee, Hai-Woong

    2006-01-01

    We investigate the robustness of multiparty nonlocality under local decoherence, acting independently and equally on each subsystem. To be specific, we consider an N-qubit Greenberger-Horne-Zeilinger (GHZ) state under a depolarization, dephasing, or dissipation channel, and examine nonlocality by testing violation of the Mermin-Klyshko inequality, which is one of Bell's inequalities for multiqubit systems. The results show that the robustness of nonlocality increases with the number of qubits, and that the nonlocality of an N-qubit GHZ state with even N is extremely persistent against dephasing

  9. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    Science.gov (United States)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  10. Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions

    Science.gov (United States)

    Ablowitz, Mark J.

    2009-09-01

    Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.

  11. Patterning in systems driven by nonlocal external forces.

    Science.gov (United States)

    Luneville, L; Mallick, K; Pontikis, V; Simeone, D

    2016-11-01

    This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.

  12. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    Science.gov (United States)

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  13. Nonlocal transport in the presence of transport barriers

    Science.gov (United States)

    Del-Castillo-Negrete, D.

    2013-10-01

    There is experimental, numerical, and theoretical evidence that transport in plasmas can, under certain circumstances, depart from the standard local, diffusive description. Examples include fast pulse propagation phenomena in perturbative experiments, non-diffusive scaling in L-mode plasmas, and non-Gaussian statistics of fluctuations. From the theoretical perspective, non-diffusive transport descriptions follow from the relaxation of the restrictive assumptions (locality, scale separation, and Gaussian/Markovian statistics) at the foundation of diffusive models. We discuss an alternative class of models able to capture some of the observed non-diffusive transport phenomenology. The models are based on a class of nonlocal, integro-differential operators that provide a unifying framework to describe non- Fickian scale-free transport, and non-Markovian (memory) effects. We study the interplay between nonlocality and internal transport barriers (ITBs) in perturbative transport including cold edge pulses and power modulation. Of particular interest in the nonlocal ``tunnelling'' of perturbations through ITBs. Also, flux-gradient diagrams are discussed as diagnostics to detect nonlocal transport processes in numerical simulations and experiments. Work supported by the US Department of Energy.

  14. Quantifying multipartite nonlocality via the size of the resource

    Science.gov (United States)

    Curchod, Florian John; Gisin, Nicolas; Liang, Yeong-Cherng

    2015-01-01

    The generation of (Bell-)nonlocal correlations, i.e., correlations leading to the violation of a Bell-like inequality, requires the usage of a nonlocal resource, such as an entangled state. When given a correlation (a collection of conditional probability distributions) from an experiment or from a theory, it is desirable to determine the extent to which the participating parties would need to collaborate nonlocally for its (re)production. Here, we propose to achieve this via the minimal group size (MGS) of the resource, i.e., the smallest number of parties that need to share a given type of nonlocal resource for the above-mentioned purpose. In addition, we provide a general recipe—based on the lifting of Bell-like inequalities—to construct MGS witnesses for nonsignaling resources starting from any given ones. En route to illustrating the applicability of this recipe, we also show that when restricted to the space of full-correlation functions, nonsignaling resources are as powerful as unconstrained signaling resources. Explicit examples of correlations where their MGS can be determined using this recipe and other numerical techniques are provided.

  15. A nonlocal inhomogeneous dispersal process

    Science.gov (United States)

    Cortázar, C.; Coville, J.; Elgueta, M.; Martínez, S.

    This article in devoted to the study of the nonlocal dispersal equation u(x,t)=∫R J({x-y}/{g(y)}){u(y,t)}/{g(y)} dy-u(x,t) in R×[0,∞), and its stationary counterpart. We prove global existence for the initial value problem, and under suitable hypothesis on g and J, we prove that positive bounded stationary solutions exist. We also analyze the asymptotic behavior of the finite mass solutions as t→∞, showing that they converge locally to zero.

  16. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...

  17. Numerically robust and efficient nonlocal electron transport in 2D DRACO simulations

    Science.gov (United States)

    Cao, Duc; Chenhall, Jeff; Moses, Greg; Delettrez, Jacques; Collins, Tim

    2013-10-01

    An improved implicit algorithm based on Schurtz, Nicolai and Busquet (SNB) algorithm for nonlocal electron transport is presented. Validation with direct drive shock timing experiments and verification with the Goncharov nonlocal model in 1D LILAC simulations demonstrate the viability of this efficient algorithm for producing 2D lagrangian radiation hydrodynamics direct drive simulations. Additionally, simulations provide strong incentive to further modify key parameters within the SNB theory, namely the ``mean free path.'' An example 2D polar drive simulation to study 2D effects of the nonlocal flux as well as mean free path modifications will also be presented. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  18. Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications

    International Nuclear Information System (INIS)

    Du, Qiang; Yang, Jiang

    2017-01-01

    This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.

  19. Nonlocality and localizability in quantum mechanics

    International Nuclear Information System (INIS)

    Matsuno, K.

    1989-01-01

    Nonlocality of simultaneous spatial correlation of a quantum phenomenon as demonstrated in various versions of Einstein-Podolsky-Rosen type experiment reduces to nonlocality of the measurement apparatus in the sense that the eigen-wavefunctions for the apparatus are completely specified in a manner of being independent of whatever object it may measure. Nonlocality of the measurement apparatus however serves as no more than a good approximation to reality at best. The theoretical imposition of nonlocality of the measurement apparatus as an approximation is compatible with the actual locality of quantum mechanics that dispenses with an agent claiming globally simultaneous specifiability of boundary conditions, though the genuine locality of quantum mechanics has to be examined without employing the nonlocality of the measurement apparatus. The actual locality of quantum mechanics is intrinsically irreversible in its development

  20. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...... in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we...

  1. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  2. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  3. Certainty relations between local and nonlocal observables

    International Nuclear Information System (INIS)

    Diaz, R Garcia; Romero, J L; Bjoerk, G; Bourennane, M

    2005-01-01

    We point out that for an arbitrary number of identical particles, each defined on a Hilbert space of arbitrary dimension, there exists a whole ladder of relations of complementarity between certain local and nonlocal measurements corresponding to every conceivable grouping of the particles, e.g., the more accurately we can know (by a measurement) some joint property of three qubits (projecting the state onto a tripartite-entangled state), the less accurate some other property, local to the three qubits, becomes. We investigate the relation between these complementarity relations and a similar relation based on interference visibilities. We also show that the complementarity relations are particularly tight for particles defined on prime dimensional Hilbert spaces

  4. Nonlocal Quantum Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Yurii V. Dumin

    2014-01-01

    Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.

  5. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  6. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Science.gov (United States)

    Ongonwou, F.; Tetchou Nganso, H. M.; Ekogo, T. B.; Kwato Njock, M. G.

    2016-12-01

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  7. Dynamics of atoms in strong laser fields I: A quasi analytical model in momentum space based on a Sturmian expansion of the interacting nonlocal Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Ongonwou, F., E-mail: fred.ongonwou@gmail.com [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Tetchou Nganso, H.M., E-mail: htetchou@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon); Ekogo, T.B., E-mail: tekogo@yahoo.fr [Département de Physique, Faculté des Sciences, Université des Sciences et Techniques de Masuku, B.P. 943 Franceville (Gabon); Kwato Njock, M.G., E-mail: mkwato@yahoo.com [Atoms and Molecules Laboratory, Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580, Douala (Cameroon)

    2016-12-15

    In this study we present a model that we have formulated in the momentum space to describe atoms interacting with intense laser fields. As a further step, it follows our recent theoretical approach in which the kernel of the reciprocal-space time-dependent Schrödinger equation (TDSE) is replaced by a finite sum of separable potentials, each of them supporting one bound state of atomic hydrogen (Tetchou Nganso et al. 2013). The key point of the model is that the nonlocal interacting Coulomb potential is expanded in a Coulomb Sturmian basis set derived itself from a Sturmian representation of Bessel functions of the first kind in the position space. As a result, this decomposition allows a simple spectral treatment of the TDSE in the momentum space. In order to illustrate the credibility of the model, we have considered the test case of atomic hydrogen driven by a linearly polarized laser pulse, and have evaluated analytically matrix elements of the atomic Hamiltonian and dipole coupling interaction. For various regimes of the laser parameters used in computations our results are in very good agreement with data obtained from other time-dependent calculations.

  8. A Fast Alternating Minimization Algorithm for Nonlocal Vectorial Total Variational Multichannel Image Denoising

    Directory of Open Access Journals (Sweden)

    Rubing Xi

    2014-01-01

    Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.

  9. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-03-11

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  10. One-dimensional, non-local, first-order, stationary mean-field games with congestion: a Fourier approach

    KAUST Repository

    Nurbekyan, Levon

    2017-01-01

    Here, we study a one-dimensional, non-local mean-field game model with congestion. When the kernel in the non-local coupling is a trigonometric polynomial we reduce the problem to a finite dimensional system. Furthermore, we treat the general case by approximating the kernel with trigonometric polynomials. Our technique is based on Fourier expansion methods.

  11. Optimal Robust Self-Testing by Binary Nonlocal XOR Games

    OpenAIRE

    Miller, Carl A.; Shi, Yaoyun

    2013-01-01

    Self-testing a quantum apparatus means verifying the existence of a certain quantum state as well as the effect of the associated measuring devices based only on the statistics of the measurement outcomes. Robust (i.e., error-tolerant) self-testing quantum apparatuses are critical building blocks for quantum cryptographic protocols that rely on imperfect or untrusted devices. We devise a general scheme for proving optimal robust self-testing properties for tests based on nonlocal binary XOR g...

  12. Can EPR non-locality be geometrical?

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1995-01-01

    The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3

  13. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  14. Ring vortex solitons in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Briedis, D.; Petersen, D.E.; Edmundson, D.

    2005-01-01

    We study the formation and propagation of two-dimensional vortex solitons, i.e. solitons with a phase singularity, in optical materials with a nonlocal focusing nonlinearity. We show that nonlocality stabilizes the dynamics of an otherwise unstable vortex beam. This occurs for either single...... or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....

  15. Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA

    Science.gov (United States)

    Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.

    2018-01-01

    Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.

  16. A practical nonlocal model for heat transport in magnetized laser plasmas

    International Nuclear Information System (INIS)

    Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.

    2006-01-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case

  17. A practical nonlocal model for heat transport in magnetized laser plasmas

    Science.gov (United States)

    Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.

    2006-03-01

    A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.

  18. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    CERN Document Server

    Barvinsky, A O

    2015-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining the nonlocal effective equations of motion for the mean quantum field from the Euclidean effective action. This rule is applied to a new model of ghost free nonlocal cosmology which can generate the de Sitter stage of cosmological evolution at an arbitrary value of $\\varLambda$ -- a model of dark energy with its scale played by the dynamical variable that can be fixed by a kind of a scaling symmetry breaking mechanism. This model is shown to interpolate between the superhorizon phase of gravity theory mediated by a scala...

  19. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    OpenAIRE

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2014-01-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguo...

  20. Extraordinary optical transmission through nonlocal holey metal films

    DEFF Research Database (Denmark)

    David, Christin; Christensen, Johan

    2017-01-01

    We investigate nonlocal electrodynamics based on the generalized hydrodynamic approach including electron diffusion in holey gold films, showing extraordinary optical transmission (EOT). Dramatic changes with respect to the local approximation for rather large film thicknesses t less than...... or similar to 100 nm impact both reflectance and absorbance at normal incidence. Beyond the familiar resonance blueshift with the decreasing film thickness, the interference of longitudinal pressure waves in the holey structure generates an unexpected oscillatory response with geometrical parameters...

  1. Chiral phase transition in a covariant nonlocal NJL model

    International Nuclear Information System (INIS)

    General, I.; Scoccola, N.N.

    2001-01-01

    The properties of the chiral phase transition at finite temperature and chemical potential are investigated within a nonlocal covariant extension of the NJL model based on a separable quark-quark interaction. We find that for low values of T the chiral transition is always of first order and, for finite quark masses, at certain end point the transition turns into a smooth crossover. Our predictions for the position of this point is similar, although somewhat smaller, than previous estimates. (author)

  2. Reassessment of the nonlocality of correlation boxes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A.P.; Parisio, Fernando, E-mail: parisio@df.ufpe.br

    2017-01-15

    Correlation boxes are hypothetical systems usually designed to produce the maximal algebraic violation of a Bell inequality, beyond the quantum bound and without superluminal signalling. The fact that these systems show stronger correlations than those presented by maximally entangled quantum states, as the spin singlet, has been regarded as a demonstration that the former are more nonlocal than the latter. By applying an alternative, consistent measure of nonlocality to a family of correlation boxes, we show that this conclusion is not necessarily true. Complementarily, we define a class of systems displaying subquantum correlations which, nevertheless, are more nonlocal than the singlet state, showing that the extent of the numeric violation of an inequality may have little to do with the degree of nonlocality, especially in the case of correlation boxes.

  3. Nanoplasmonics: Exploring nonlocal and quantum effects

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2016-01-01

    Plasmonics is commonly understood within classical electrodynamics with local-response constitutive relations. However, possibilities for nonlocal dynamics and quantum effects emerge with strong spatial confinement in plasmonic nanostructures. This talks reviews recent theory and experiments...

  4. Some generalizations of the nonlocal transformations approach

    Directory of Open Access Journals (Sweden)

    V. A. Tychynin

    2015-02-01

    Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a con­nection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transforma­tion with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and for­mulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.

  5. Employee Travel Data (Non-Local)

    Data.gov (United States)

    Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...

  6. Black hole information, unitarity, and nonlocality

    OpenAIRE

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arises from ultra-planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simul...

  7. Gauging Non-local Quark Models

    International Nuclear Information System (INIS)

    Broniowski, W.

    1999-09-01

    The gauge effective quark model with non-local interactions is considered. It is shown how this approach regularize the theory in such a way that the anomalies are preserved and charges are properly quantized. With non-local interactions the effective action is finite to all orders in the loop expansion and there is no need to introduce the quark momentum cut-off parameter

  8. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    Science.gov (United States)

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-03-15

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes

  9. More about the comparison of local and non-local NN interaction models

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2003-01-01

    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p 2 . It includes both scalar and tensor components. The most recent 'high accuracy' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure

  10. Nonlocal transformation of the internal quantum particle structure

    Directory of Open Access Journals (Sweden)

    Alexey Yu. Samarin

    2016-09-01

    Full Text Available The analysis of the integral wave equation, having path integral kernel, has resulted, that collapse phenomenon is based on the nonlocal transformation of the internal structure of a quantum particle, considering in the form of the matter fields collection. This nonlocality allows to escape the contradiction between the reduction quantum mechanics postulate and special relativity. It is shown, that the wave function transformation, corresponding to von Neumann's reduction, has the deterministic nature and the quantum mechanics stochasticity is a consequence of a macroscopic measurer presence in the measuring process. Besides it is demonstrated, that the decogerence phenomenon has the same mechanism of the wave function transformation. EPR-type experiment is described in detail and the possibility of the faster-then light communication is proved, as well the possible rules of thumb of this communication are proposed.

  11. Nonlocality of the original Einstein-Podolsky-Rosen state

    Science.gov (United States)

    Cohen, O.

    1997-11-01

    We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.

  12. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media

    Science.gov (United States)

    Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai

    2018-01-01

    Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.

  13. Generalized ward identities for non-local transformation

    International Nuclear Information System (INIS)

    Li Ziping; Li Ruijie

    2002-01-01

    Based on the phase-space generating functional of Green function for a system with a singular higher-order Lagrangian, the generalized canonical Ward identities under the local and non-local transformation in phase space for such a system have been derived. Starting from the configuration-space generating functional for a gauge-invariant system, the generalized Ward identities were deduced under the local, non-local and global transformation, respectively. The applications to the non-Abelian Chern-Simons theories with higher derivatives were given. Some relationships among the proper vertices have been deduced, in which one does not need to carry out the integration over canonical momenta in phase-space generating functional. The Ward-Takahashi identities for BRS transformation are also obtained

  14. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  15. Maximum nonlocality and minimum uncertainty using magic states

    Science.gov (United States)

    Howard, Mark

    2015-04-01

    We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.

  16. On the compatible weakly nonlocal Poisson brackets of hydrodynamic type

    Directory of Open Access Journals (Sweden)

    Andrei Ya. Maltsev

    2002-01-01

    of hydrodynamic type (Ferapontov brackets and the corresponding integrable hierarchies. We show that, under the requirement of the nondegeneracy of the corresponding “first” pseudo-Riemannian metric g(0 νμ and also some nondegeneracy requirement for the nonlocal part, it is possible to introduce a “canonical” set of “integrable hierarchies” based on the Casimirs, momentum functional and some “canonical Hamiltonian functions.” We prove also that all the “higher” “positive” Hamiltonian operators and the “negative” symplectic forms have the weakly nonlocal form in this case. The same result is also true for “negative” Hamiltonian operators and “positive” symplectic structures in the case when both pseudo-Riemannian metrics g(0 νμ and g(1 νμ are nondegenerate.

  17. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  18. Non-local means denoising of dynamic PET images.

    Directory of Open Access Journals (Sweden)

    Joyita Dutta

    Full Text Available Dynamic positron emission tomography (PET, which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM.NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch.To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches.The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high

  19. Non-local means denoising of dynamic PET images.

    Science.gov (United States)

    Dutta, Joyita; Leahy, Richard M; Li, Quanzheng

    2013-01-01

    Dynamic positron emission tomography (PET), which reveals information about both the spatial distribution and temporal kinetics of a radiotracer, enables quantitative interpretation of PET data. Model-based interpretation of dynamic PET images by means of parametric fitting, however, is often a challenging task due to high levels of noise, thus necessitating a denoising step. The objective of this paper is to develop and characterize a denoising framework for dynamic PET based on non-local means (NLM). NLM denoising computes weighted averages of voxel intensities assigning larger weights to voxels that are similar to a given voxel in terms of their local neighborhoods or patches. We introduce three key modifications to tailor the original NLM framework to dynamic PET. Firstly, we derive similarities from less noisy later time points in a typical PET acquisition to denoise the entire time series. Secondly, we use spatiotemporal patches for robust similarity computation. Finally, we use a spatially varying smoothing parameter based on a local variance approximation over each spatiotemporal patch. To assess the performance of our denoising technique, we performed a realistic simulation on a dynamic digital phantom based on the Digimouse atlas. For experimental validation, we denoised [Formula: see text] PET images from a mouse study and a hepatocellular carcinoma patient study. We compared the performance of NLM denoising with four other denoising approaches - Gaussian filtering, PCA, HYPR, and conventional NLM based on spatial patches. The simulation study revealed significant improvement in bias-variance performance achieved using our NLM technique relative to all the other methods. The experimental data analysis revealed that our technique leads to clear improvement in contrast-to-noise ratio in Patlak parametric images generated from denoised preclinical and clinical dynamic images, indicating its ability to preserve image contrast and high intensity details while

  20. Critical thresholds in flocking hydrodynamics with non-local alignment.

    Science.gov (United States)

    Tadmor, Eitan; Tan, Changhui

    2014-11-13

    We study the large-time behaviour of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852-862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923-947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, in analogy with the agent-based models, the presence of non-local alignment enforces strong solutions to self-organize into a macroscopic flock. This then raises the question of existence of such strong solutions. We address this question in one- and two-dimensional set-ups, proving global regularity for subcritical initial data. Indeed, we show that there exist critical thresholds in the phase space of the initial configuration which dictate the global regularity versus a finite-time blow-up. In particular, we explore the regularity of non-local alignment in the presence of vacuum. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality

    International Nuclear Information System (INIS)

    Dai, Zhiping; Yang, Zhenjun; Ling, Xiaohui; Zhang, Shumin; Pang, Zhaoguang

    2016-01-01

    The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and the oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.

  2. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  3. PET reconstruction via nonlocal means induced prior.

    Science.gov (United States)

    Hou, Qingfeng; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Ma, Jianhua

    2015-01-01

    The traditional Bayesian priors for maximum a posteriori (MAP) reconstruction methods usually incorporate local neighborhood interactions that penalize large deviations in parameter estimates for adjacent pixels; therefore, only local pixel differences are utilized. This limits their abilities of penalizing the image roughness. To achieve high-quality PET image reconstruction, this study investigates a MAP reconstruction strategy by incorporating a nonlocal means induced (NLMi) prior (NLMi-MAP) which enables utilizing global similarity information of image. The present NLMi prior approximates the derivative of Gibbs energy function by an NLM filtering process. Specially, the NLMi prior is obtained by subtracting the current image estimation from its NLM filtered version and feeding the residual error back to the reconstruction filter to yield the new image estimation. We tested the present NLMi-MAP method with simulated and real PET datasets. Comparison studies with conventional filtered backprojection (FBP) and a few iterative reconstruction methods clearly demonstrate that the present NLMi-MAP method performs better in lowering noise, preserving image edge and in higher signal to noise ratio (SNR). Extensive experimental results show that the NLMi-MAP method outperforms the existing methods in terms of cross profile, noise reduction, SNR, root mean square error (RMSE) and correlation coefficient (CORR).

  4. BSLIC: SLIC Superpixels Based on Boundary Term

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2017-02-01

    Full Text Available A modified method for better superpixel generation based on simple linear iterative clustering (SLIC is presented and named BSLIC in this paper. By initializing cluster centers in hexagon distribution and performing k-means clustering in a limited region, the generated superpixels are shaped into regular and compact hexagons. The additional cluster centers are initialized as edge pixels to improve boundary adherence, which is further promoted by incorporating the boundary term into the distance calculation of the k-means clustering. Berkeley Segmentation Dataset BSDS500 is used to qualitatively and quantitatively evaluate the proposed BSLIC method. Experimental results show that BSLIC achieves an excellent compromise between boundary adherence and regularity of size and shape. In comparison with SLIC, the boundary adherence of BSLIC is increased by at most 12.43% for boundary recall and 3.51% for under segmentation error.

  5. Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity

    DEFF Research Database (Denmark)

    Raza, Søren; Christensen, Thomas; Wubs, Martijn

    2013-01-01

    the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses...

  6. Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type

    International Nuclear Information System (INIS)

    Maltsev, A Ya

    2005-01-01

    We consider the special type of field-theoretical symplectic structures called weakly nonlocal. The structures of this type are, in particular, very common for integrable systems such as KdV or NLS. We introduce here the special class of weakly nonlocal symplectic structures which we call weakly nonlocal symplectic structures of hydrodynamic type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of 'averaging' the weakly nonlocal symplectic structures. The averaging procedure gives the weakly nonlocal symplectic structure of hydrodynamic type for the corresponding Whitham system. The procedure also gives 'action variables' corresponding to the wave numbers of m-phase solutions of the initial system which give the additional conservation laws for the Whitham system

  7. Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems

    International Nuclear Information System (INIS)

    Arsie, Alessandro; Lorenzoni, Paolo

    2014-01-01

    In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones

  8. Comparative Assessment of Nonlocal Continuum Solvent Models Exhibiting Overscreening

    Directory of Open Access Journals (Sweden)

    Ren Baihua

    2017-01-01

    Full Text Available Nonlocal continua have been proposed to offer a more realistic model for the electrostatic response of solutions such as the electrolyte solvents prominent in biology and electrochemistry. In this work, we review three nonlocal models based on the Landau-Ginzburg framework which have been proposed but not directly compared previously, due to different expressions of the nonlocal constitutive relationship. To understand the relationships between these models and the underlying physical insights from which they are derive, we situate these models into a single, unified Landau-Ginzburg framework. One of the models offers the capacity to interpret how temperature changes affect dielectric response, and we note that the variations with temperature are qualitatively reasonable even though predictions at ambient temperatures are not quantitatively in agreement with experiment. Two of these models correctly reproduce overscreening (oscillations between positive and negative polarization charge densities, and we observe small differences between them when we simulate the potential between parallel plates held at constant potential. These computations require reformulating the two models as coupled systems of local partial differential equations (PDEs, and we use spectral methods to discretize both problems. We propose further assessments to discriminate between the models, particularly in regards to establishing boundary conditions and comparing to explicit-solvent molecular dynamics simulations.

  9. Subquantum nonlocal correlations induced by the background random field

    Energy Technology Data Exchange (ETDEWEB)

    Khrennikov, Andrei, E-mail: Andrei.Khrennikov@lnu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Vaexjoe (Sweden); Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)

    2011-10-15

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  10. Subquantum nonlocal correlations induced by the background random field

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2011-01-01

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  11. Conformal symmetry and nonlinear extensions of nonlocal gravity

    CERN Document Server

    Cusin, Giulia; Maggiore, Michele; Mancarella, Michele

    2016-01-01

    We study two nonlinear extensions of the nonlocal $R\\,\\Box^{-2}R$ gravity theory. We extend this theory in two different ways suggested by conformal symmetry, either replacing $\\Box^{-2}$ with $(-\\Box + R/6)^{-2}$, which is the operator that enters the action for a conformally-coupled scalar field, or replacing $\\Box^{-2}$ with the inverse of the Paneitz operator, which is a four-derivative operator that enters in the effective action induced by the conformal anomaly. We show that the former modification gives an interesting and viable cosmological model, with a dark energy equation of state today $w_{\\rm DE}\\simeq -1.01$, which very closely mimics $\\Lambda$CDM and evolves asymptotically into a de Sitter solution. The model based on the Paneitz operator seems instead excluded by the comparison with observations. We also review some issues about the causality of nonlocal theories, and we point out that these nonlocal models can be modified so to nicely interpolate between Starobinski inflation in the primordia...

  12. A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics

    OpenAIRE

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2014-01-01

    A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...

  13. Causality and local determinism versus quantum nonlocality

    International Nuclear Information System (INIS)

    Kupczynski, M

    2014-01-01

    The entanglement and the violation of Bell and CHSH inequalities in spin polarization correlation experiments (SPCE) is considered to be one of the biggest mysteries of Nature and is called quantum nonlocality. In this paper we show once again that this conclusion is based on imprecise terminology and on the lack of understanding of probabilistic models used in various proofs of Bell and CHSH theorems. These models are inconsistent with experimental protocols used in SPCE. This is the only reason why Bell and CHSH inequalities are violated. A probabilistic non-signalling description of SPCE, consistent with quantum predictions, is possible and it depends explicitly on the context of each experiment. It is also deterministic in the sense that the outcome is determined by supplementary local parameters describing both physical signals and measuring instruments. The existence of such description gives additional arguments that quantum theory is emergent from some more detailed theory respecting causality and local determinism. If quantum theory is emergent then there exist perhaps some fine structures in time-series of experimental data which were not predicted by quantum theory. In this paper we explain how a systematic search for such fine structures can be done. If such reproducible fine structures were found it would show that quantum theory is not predictably complete, which would be a major discovery.

  14. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei; Lubineau, Gilles

    2011-01-01

    for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can

  15. Accurate nonlocal theory for cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey

    2007-01-01

    We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  16. Black hole information, unitarity, and nonlocality

    International Nuclear Information System (INIS)

    Giddings, Steven B.

    2006-01-01

    The black hole information paradox apparently indicates the need for a fundamentally new ingredient in physics. The leading contender is nonlocality. Possible mechanisms for the nonlocality needed to restore unitarity to black hole evolution are investigated. Suggestions that such dynamics arise from ultra-Planckian modes in Hawking's derivation are investigated and found not to be relevant, in a picture using smooth slices spanning the exterior and interior of the horizon. However, no simultaneous description of modes that have fallen into the black hole and outgoing Hawking modes can be given without appearance of a large kinematic invariant, or other dependence on ultra-Planckian physics. This indicates that a reliable argument for information loss has not been constructed, and that strong gravitational dynamics is important. Such dynamics has been argued to be fundamentally nonlocal in extreme situations, such as those required to investigate the fate of information

  17. Spiraling solitons and multipole localized modes in nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan; Desyatnikov, Anton S.; Bang, Ole; Krolikowski, Wieslaw; Kivshar, Yuri S.

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form

  18. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form....

  19. Reversed rainbow with a nonlocal metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2014-12-29

    One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.

  20. On nonlocal modeling in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2018-01-01

    Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

  1. Hyperbolic metamaterials: Nonlocal response regularizes broadband supersingularity

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2012-01-01

    We study metamaterials known as hyperbolic media that in the usual local-response approximation exhibit hyperbolic dispersion and an associated broadband singularity in the density of states. Instead, from the more microscopic hydrodynamic Drude theory we derive qualitatively different optical...... properties of these metamaterials, due to the free-electron nonlocal optical response of their metal constituents. We demonstrate that nonlocal response gives rise to a large-wavevector cutoff in the dispersion that is inversely proportional to the Fermi velocity of the electron gas, but also for small...

  2. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  3. Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws.

    Science.gov (United States)

    Lehoucq, R B; Sears, Mark P

    2011-09-01

    The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.

  4. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  5. Bell-Nonlocality Dynamics of Three Remote Atoms in Tavis—Cummings and Jaynes—Cummings Models

    International Nuclear Information System (INIS)

    Zhen Xiu-Lan; Yang Qing; Yang Ming; Cao Zhuo-Liang

    2014-01-01

    We study the Bell-nonlocality dynamics of three remote atoms, two of which are trapped in one single-mode cavity and the third atom is trapped in another remote single-mode cavity. The interactions between the atoms and the cavity modes are studied via Tavis Cummings and Jaynes Cummings models. Here, the two single-mode cavities are introduced to simulate two different enviroments of the three atoms. The tripartite nonlocal correlations are studied in terms of the Svetlichny inequality and the WWZB inequality, respectively. The results show that the tripartite Bell-nonlocality sudden death will occur for the W state and GHZ state initial conditions. The detailed results demonstrate that the tripartite nonlocality of GHZ state is more robust than that of W state when suffering from the effect of environments. (general)

  6. A model of the extended electron and its nonlocal electromagnetic interaction: Gauge invariance of the nonlocal theory

    International Nuclear Information System (INIS)

    Namsrai, Kh.; Nyamtseren, N.

    1994-09-01

    A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs

  7. Classification of scalar and dyadic nonlocal optical response models

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2015-01-01

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...

  8. Collapse arrest and soliton stabilization in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Bang, Ole; Krolikowski, Wieslaw; Wyller, John

    2002-01-01

    that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can otherwise be of completely arbitrary shape and degree of nonlocality...

  9. Nonlocal rheological properties of granular flows near a jamming limit.

    Science.gov (United States)

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  10. The term 'risk' and its evaluation bases

    International Nuclear Information System (INIS)

    Brueckner, R.

    1976-01-01

    The term risk, the risk itself and its application for radiation exposure in practised medicine is presented from the following points of view: Life expectation, susceptibility to sickness and permanent inability to work, impaired professional and earning capacity, work accident and sickness. (HP) [de

  11. Nonlocality, Entanglement Witnesses and Supra-correlations

    Science.gov (United States)

    2012-04-01

    quantum non-locality, non-signaling theories, Popescu-Rohrlich boxes, EPR 1. INTRODUCTION Physics imposes limits on the correlations that can be...References [1] J.S. Bell, “On the Einstein Podolsky Rosen paradox ,” Physics 1, 195 (1964). [2] B. Tsirelson, “Quantum Generalizations of Bell’s

  12. Energy dependence of nonlocal optical potentials

    Science.gov (United States)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  13. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation...

  14. Quantum Nonlocality with Spins in Diamond

    NARCIS (Netherlands)

    Hensen, B.J.

    2016-01-01

    In this thesis we experimentally investigate quantum nonlocality: entangled states of spatially separated objects. Entanglement is one of the most striking consequences of the quantum formalism developed in the 1920's; the predicted outcomes of independent measurements on entangled objects reveal

  15. Testing nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Paternostro, Mauro; Jeong, Hyunseok

    2010-01-01

    We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.

  16. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L. [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland)

    2015-07-01

    Based on the Bardeen Cooper Schrieffer (BCS) theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the produced photon pairs can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  17. Detecting nonlocal Cooper pair entanglement by optical Bell inequality violation

    Science.gov (United States)

    Nigg, Simon E.; Tiwari, Rakesh P.; Walter, Stefan; Schmidt, Thomas L.

    2015-03-01

    Based on the Bardeen-Cooper-Schrieffer theory of superconductivity, the coherent splitting of Cooper pairs from a superconductor to two spatially separated quantum dots has been predicted to generate nonlocal pairs of entangled electrons. In order to test this hypothesis, we propose a scheme to transfer the spin state of a split Cooper pair onto the polarization state of a pair of optical photons. We show that the photon pairs produced can be used to violate a Bell inequality, unambiguously demonstrating the entanglement of the split Cooper pairs.

  18. Optimizing plasmon-enhanced fluorescence with nonlocal metallic nanospheres

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn

    , through the recent Generalized Nonlocal Optical Response (GNOR) theory, the concurrent contribution of modal shifts and nonradiative losses, together with a reduced emitter excitation rate due to the decreased field intensity, lead always to a strong reduction of fluorescence (see Fig. 1). Finally, we...... identify situations where the common, intuitive recipe of tuning the NP modes to match λem can in fact lead to strong fluorescence quenching, instead of the anticipated enhancement. Our results highlight the necessity for careful modeling and design of plasmon-field-enhancement based applications....

  19. Tight Bell Inequalities and Nonlocality in Weak Measurement

    Science.gov (United States)

    Waegell, Mordecai

    A general class of Bell inequalities is derived based on strict adherence to probabilistic entanglement correlations observed in nature. This derivation gives significantly tighter bounds on local hidden variable theories for the well-known Clauser-Horne-Shimony-Holt (CHSH) inequality, and also leads to new proofs of the Greenberger-Horne-Zeilinger (GHZ) theorem. This method is applied to weak measurements and reveals nonlocal correlations between the weak value and the post-selection, which rules out various classical models of weak measurement. Implications of these results are discussed. Fetzer-Franklin Fund of the John E. Fetzer Memorial Trust.

  20. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  1. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  2. Nonlocal conductivity in type-II superconductors

    International Nuclear Information System (INIS)

    Mou, C.; Wortis, R.; Dorsey, A.T.; Huse, D.A.

    1995-01-01

    Multiterminal transport measurements on YBa 2 Cu 2 O 7 crystals in the vortex liquid regime have shown nonlocal conductivity on length scales up to 50 microns. Motivated by these results we explore the wave vector (k) dependence of the dc conductivity tensor, σ μν (k), in the Meissner, vortex lattice, and disordered phases of a type-II superconductor. Our results are based on time-dependent Ginzburg-Landau (TDGL) theory and on phenomenological arguments. We find four qualitatively different types of behavior. First, in the Meissner phase, the conductivity is infinite at k=0 and is a continuous function of k, monotonically decreasing with increasing k. Second, in the vortex-lattice phase, in the absence of pinning, the conductivity is finite (due to flux flow) at k=0; it is discontinuous there and remains qualitatively like the Meissner phase for k>0. Third, in the vortex liquid regime in a magnetic field and at low temperature, the conductivity is finite, smooth and nonmonotonic, first increasing with k at small k and then decreasing at larger k. This third behavior is expected to apply at temperatures just above the melting transition of the vortex lattice, where the vortex liquid shows strong short-range order and a large viscosity. Finally, at higher temperatures in the disordered phase, the conductivity is finite, smooth and again monotonically decreasing with k. This last, monotonic behavior applies in zero magnetic field for the entire disordered phase, i.e., at all temperatures above T c , while in a field the nonmonotonic behavior may occur in a low-temperature portion of the disordered phase

  3. Random access codes and nonlocal resources

    Science.gov (United States)

    Chaturvedi, Anubhav; Pawlowski, Marcin; Horodecki, Karol

    2017-08-01

    This work explores the notion of inter-convertibility between a cryptographic primitive: the random access code (RAC) and bipartite no-signaling nonlocal resources. To this end we introduce two generalizations of the Popescu-Rohrlich box (PR) and investigate their relation with the corresponding RACs. The first generalization is based on the number of Alice's input bits; we refer to it as the Bn-box. We show that the no-signaling condition imposes an equivalence between the Bn-box and the (n →1 ) RAC (encoding of n input bits to 1 bit of message). As an application we show that (n -1 ) PRs supplemented with one bit communication are necessary and sufficient to win a (n →1 ) RAC with certainty. Furthermore, we present a signaling instant of a perfectly working (n →1 ) RAC which cannot simulate the Bn-box, thus showing that it is weaker than its no-signaling counterpart. For the second generalization we replace Alice's input bits with d its (d -leveled classical systems); we call this the Bnd-box. In this case the no-signaling condition is not enough to enforce an equivalence between the Bnd-box and (n →1 ,d ) RAC (encoding of n input d its to 1 d it of message); i.e., while the Bnd-box can win a (n →1 ,d ) RAC with certainty, not all no-signaling instances of a (n →1 ,d ) RAC can simulate the Bnd-box. We use resource inequalities to quantitatively capture these results.

  4. Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    DEFF Research Database (Denmark)

    Speelman, Florian

    2016-01-01

    -depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication......Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural...... applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient...

  5. Deriving appropriate boundary conditions, and accelerating position-jump simulations, of diffusion using non-local jumping

    International Nuclear Information System (INIS)

    Taylor, P R; Baker, R E; Yates, C A

    2015-01-01

    In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. (paper)

  6. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  7. Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response

    International Nuclear Information System (INIS)

    Han, Renji; Dai, Binxiang

    2017-01-01

    Highlights: • We model general two-dimensional reaction-diffusion with nonlocal delay. • The existence of unique positive steady state is studied. • The bilinear form for the proposed system is given. • The existence, direction of Hopf bifurcation are given by symmetry method. - Abstract: A nonlocal delayed reaction-diffusive two-species model with Dirichlet boundary condition and general functional response is investigated in this paper. Based on the Lyapunov–Schmidt reduction, the existence, bifurcation direction and stability of Hopf bifurcating periodic orbits near the positive spatially nonhomogeneous steady-state solution are obtained, where the time delay is taken as the bifurcation parameter. Moreover, the general results are applied to a diffusive Lotka–Volterra type food-limited population model with nonlocal delay effect, and it is found that diffusion and nonlocal delay can also affect the other dynamic behavior of the system by numerical experiments.

  8. Berry Curvature and Nonlocal Transport Characteristics of Antidot Graphene

    Directory of Open Access Journals (Sweden)

    Jie Pan

    2017-09-01

    Full Text Available Antidot graphene denotes a monolayer of graphene structured by a periodic array of holes. Its energy dispersion is known to display a gap at the Dirac point. However, since the degeneracy between the A and B sites is preserved, antidot graphene cannot be described by the 2D massive Dirac equation, which is suitable for systems with an inherent A/B asymmetry. From inversion and time-reversal-symmetry considerations, antidot graphene should therefore have zero Berry curvature. In this work, we derive the effective Hamiltonian of antidot graphene from its tight-binding wave functions. The resulting Hamiltonian is a 4×4 matrix with a nonzero intervalley scattering term, which is responsible for the gap at the Dirac point. Furthermore, nonzero Berry curvature is obtained from the effective Hamiltonian, owing to the double degeneracy of the eigenfunctions. The topological manifestation is shown to be robust against randomness perturbations. Since the Berry curvature is expected to induce a transverse conductance, we have experimentally verified this feature through nonlocal transport measurements, by fabricating three antidot graphene samples with a triangular array of holes, a fixed periodicity of 150 nm, and hole diameters of 100, 80, and 60 nm. All three samples display topological nonlocal conductance, with excellent agreement with the theory predictions.

  9. Gauge unification, non-local breaking, open strings

    International Nuclear Information System (INIS)

    Trapletti, M.

    2005-01-01

    The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1

  10. Notes on nonlocal projective measurements in relativistic systems

    International Nuclear Information System (INIS)

    Lin, Shih-Yuin

    2014-01-01

    In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal

  11. Nonlocal symmetry and explicit solutions from the CRE method of the Boussinesq equation

    Science.gov (United States)

    Zhao, Zhonglong; Han, Bo

    2018-04-01

    In this paper, we analyze the integrability of the Boussinesq equation by using the truncated Painlevé expansion and the CRE method. Based on the truncated Painlevé expansion, the nonlocal symmetry and Bäcklund transformation of this equation are obtained. A prolonged system is introduced to localize the nonlocal symmetry to the local Lie point symmetry. It is proved that the Boussinesq equation is CRE solvable. The two-solitary-wave fusion solutions, single soliton solutions and soliton-cnoidal wave solutions are presented by means of the Bäcklund transformations.

  12. Chimera states and the interplay between initial conditions and non-local coupling

    Science.gov (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  13. A nonlocal application of the dispersive optical model to 208Pb

    Science.gov (United States)

    Keim, M. A.; Mahzoon, M. H.; Atkinson, M. C.; Charity, R. J.; Dickhoff, W. H.

    2017-09-01

    A nonlocal application of the dispersive optical model to neutrons and protons in 208Pb is presented. A nucleon self-energy is described by parametrized real and imaginary parts connected through a dispersion relation. This parametrization includes nonlocal Hartree-Fock and local Coulomb and spin-orbit real terms, and nonlocal volume and surface and local spin-orbit imaginary terms. A simple Gaussian nonlocality is employed, and appropriate asymmetry parameters are included to describe the N-Z dependence of the nucleus. These parameters are constrained by fitting to experimental data, including particle numbers, energy levels, the charge density, elastic-scattering angular distributions, reaction cross sections, and the neutron total reaction cross section. From the resulting nucleon self-energy, the neutron matter distribution and neutron skin are deduced. This work was supported by the US Department of Energy, Division of Nuclear Physics under Grant DE-FG02-87ER-40316, the US National Science Foundation under Grants PHY-1304242 and PHY-1613362, and the Washington University Office of Undergraduate Research.

  14. Intuitive understanding of nonlocality as implied by quantum theory

    International Nuclear Information System (INIS)

    Bohm, D.G.; Hiley, B.J.

    1975-01-01

    The fact is brought out that the essential new quality implied by the quantum theory is nonlocality; i.e., that a system cannot be analyzed into parts whose basic properties do not depend on the state of the whole system. This is done in terms of the causal interpretation of the quantum theory, proposed by one of us (D.B.) in 2952, involving the introduction of the ''quantum potential.'' It is shown that this approach implies a new universal type of description, in which the standard or canonical form is always supersystem-system-subsystem; and this leads to the radically new notion of unbroken wholeness of the entire universe. Finally, some of the implications of extending these notions to the relativity domain, and in so doing, a novel concept of time, in terms of which relativity and quantum theory may eventually be brought together, is indicated

  15. Instantaneous equations for multiphase flow in porous media without length-scale restrictions using a non-local averaging volume

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto

    2010-01-01

    The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.

  16. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1994-01-01

    It is derived the complete Dirac algebra satisfied by non-local charges conserved in non-linear sigma models. Some examples of calculation are given for the O(N) symmetry group. The resulting algebra corresponds to a saturated cubic deformation (with only maximum order terms) of the Kac-Moody algebra. The results are generalized for when a Wess-Zumino term be present. In that case the algebra contains a minor order correction (sub-saturation). (author). 1 ref

  17. Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.

    Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... metallic nanoparticles (NPs) or NP dimers, the possibility of inhomogeneous resonance broadening due to size variation in a large NP collection and the resulting spectral overlap of modes (as depicted in Fig. 1), has been so far overlooked. Here we study theoretically the effect of nonlocality on ensemble...

  18. Nonlocal synchronization in nearest neighbour coupled oscillators

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.

    2002-02-01

    We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)

  19. Evidence and concepts for nonlocal transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Kissick, M.W.

    1997-08-01

    Up until a few years ago, most transient transport studies observed primarily diffusive plasma transport responses to fast, localized perturbations. Recently, a number of experiments have, in addition, observed nonlocal electron heat responses. Most remarkably, in cold pulse experiments the abrupt edge cooling via radiative processes can induce both a diffusive cooling response moving in from the edge, and simultaneously a rising electron temperature in the central core of tokamak plasmas--an opposite response even before the diffusive cooling from the edge reaches the center. These and other nonlocal electron heat transport conundrums from recent experiments are reviewed. Also, models and physical processes being advanced to explain these puzzling phenomena are discussed. The importance of resolving this transport enigma is emphasized

  20. Nonlocal transport in hot plasma. Part I

    International Nuclear Information System (INIS)

    Brantov, A. V.; Bychenkov, V. Yu.

    2013-01-01

    The problem of describing charged particle transport in hot plasma under the conditions in which the ratio of the electron mean free path to the gradient length is not too small is one of the key problems of plasma physics. However, up to now, there was a deficit of the systematic interpretation of the current state of this problem, which, in most studies, is formulated as the problem of nonlocal transport. In this review, we fill this gap by presenting a self-consistent linear theory of nonlocal transport for small plasma perturbations and an arbitrary collisionality from the classical highly collisional hydrodynamic regime to the collisionless regime. We describe a number of nonlinear transport models and demonstrate the application of the nonclassical transport theory to the solution of some problems of plasma physics, first of all for plasmas produced by nanosecond laser pulses with intensities of 10 13 –10 16 W/cm 2

  1. Nonlocal Operational Calculi for Dunkl Operators

    Directory of Open Access Journals (Sweden)

    Ivan H. Dimovski

    2009-03-01

    Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.

  2. Nonlocality and short-range wetting phenomena.

    Science.gov (United States)

    Parry, A O; Romero-Enrique, J M; Lazarides, A

    2004-08-20

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  3. Nonlocality and Short-Range Wetting Phenomena

    Science.gov (United States)

    Parry, A. O.; Romero-Enrique, J. M.; Lazarides, A.

    2004-08-01

    We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.

  4. EPR paradox, quantum nonlocality and physical reality

    International Nuclear Information System (INIS)

    Kupczynski, M

    2016-01-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are

  5. EPR paradox, quantum nonlocality and physical reality

    Science.gov (United States)

    Kupczynski, M.

    2016-03-01

    Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced

  6. Boundary fluxes for non-local diffusion

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.

    2006-01-01

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  7. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  8. Nonlocal Boltzmann theory of plasma channels

    International Nuclear Information System (INIS)

    Yu, S.S.; Melendez, R.E.

    1983-01-01

    The mathematical framework for the LLNL code NUTS is developed. This code is designed to study the evolution of an electron-beam-generated plasma channel at all pressures. The Boltzmann treatment of the secondary electrons presented include all inertial, nonlocal, electric and magnetic effects, as well as effects of atomic collisions. Field equations are advanced simultaneously and self-consistently with the evolving plasma currents

  9. Hartman effect and nonlocality in quantum networks

    International Nuclear Information System (INIS)

    Bandopadhyay, Swarnali; Jayannavar, A.M.

    2005-01-01

    We study the phase time for various quantum mechanical networks having potential barriers in their arms to find the generic presence of Hartman effect. In such systems it is possible to control the 'super arrival' time in one of the arms by changing parameters on another, spatially separated from it. This is yet another quantum nonlocal effect. Negative time delays (time advancement) and 'ultra Hartman effect' with negative saturation times have been observed in some parameter regimes

  10. Switching non-local vector median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  11. Nonlocal Gravity and Structure in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC

    2014-08-26

    The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.

  12. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.

    Science.gov (United States)

    Sahmani, S; Fattahi, A M

    2017-08-01

    New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Existence and uniqueness of positive solutions for a nonlocal dispersal population model

    Directory of Open Access Journals (Sweden)

    Jian-Wen Sun

    2014-06-01

    Full Text Available In this article, we study the solutions of a nonlocal dispersal equation with a spatial weight representing competitions and aggregation. To overcome the limitations of comparison principles, we introduce new definitions of upper-lower solutions. The proof of existence and uniqueness of positive solutions is based on the method of monotone iteration sequences.

  14. On a nonlinear integrodifferential evolution inclusion with nonlocal initial conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zuomao Yan

    2012-01-01

    Full Text Available In this paper, we discuss the existence results for a class of nnlinear integrodifferential evolution inclusions with nonlocal initial conditions in Banach spaces. Our results are based on a fixed point theorem for condensing maps due to Martelli and the resolvent operators combined with approximation techniques.

  15. Numerical fluid solutions for nonlocal electron transport in hot plasmas: Equivalent diffusion versus nonlocal source

    International Nuclear Information System (INIS)

    Colombant, Denis; Manheimer, Wallace

    2010-01-01

    Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.

  16. Theory of Nonlocal Point Transformations in General Relativity

    Directory of Open Access Journals (Sweden)

    Massimo Tessarotto

    2016-01-01

    Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.

  17. Experimental demonstration of conflicting interest nonlocal games using superconducting qubits

    Science.gov (United States)

    Situ, Haozhen; Li, Lvzhou; Huang, Zhiming; He, Zhimin; Zhang, Cai

    2018-06-01

    Conflicting interest nonlocal games are special Bayesian games played by noncooperative players without communication. In recent years, some conflicting interest nonlocal games have been proposed where quantum advice can help players to obtain higher payoffs. In this work we perform an experiment of six conflicting interest nonlocal games using the IBM quantum computer made up of five superconducting qubits. The experimental results demonstrate quantum advantage in four of these games, whereas the other two games fail to showcase quantum advantage in the experiment.

  18. Modulational instability and nonlocality management in coupled NLS systems

    International Nuclear Information System (INIS)

    Doktorov, Evgeny V; Molchan, Maxim A

    2007-01-01

    The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium

  19. Sign-changing solutions for non-local elliptic equations

    Directory of Open Access Journals (Sweden)

    Huxiao Luo

    2017-07-01

    Full Text Available This article concerns the existence of sign-changing solutions for equations driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions, $$\\displaylines{ -\\mathcal{L}_Ku=f(x,u,\\quad x\\in \\Omega, \\cr u=0,\\quad x\\in \\mathbb{R}^n\\setminus\\Omega, }$$ where $\\Omega\\subset\\mathbb{R}^n\\; (n\\geq2$ is a bounded, smooth domain and the nonlinear term f satisfies suitable growth assumptions. By using Brouwer's degree theory and Deformation Lemma and arguing as in [2], we prove that there exists a least energy sign-changing solution. Our results generalize and improve some results obtained in [27

  20. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... are used in most computations. The effect of the material characteristic length on the crack growth behavior and on the mesh sensitivity of the results is considered. For comparison purposes, results are also obtained For the corresponding local constitutive relation. The crack growth resistance is found...

  1. Survey on nonlocal games and operator space theory

    International Nuclear Information System (INIS)

    Palazuelos, Carlos; Vidick, Thomas

    2016-01-01

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states

  2. Survey on nonlocal games and operator space theory

    Energy Technology Data Exchange (ETDEWEB)

    Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)

    2016-01-15

    This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.

  3. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    KAUST Repository

    Yi, Yuanping

    2012-01-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.

  4. Nonlocal Effects of Crack Curving.

    Science.gov (United States)

    1982-07-01

    close vTcinity of the crack tip. Supported by the Office of Naval Research. 2 For brittle solids, a fracture criterion based on the maximum tensile...Reidel Pubi. Co. Dordrecht. Holland. pp. 271-318, 1978. [13] A.S. Jayatilaka, Fracture of Engineering Brittle Materials, Appl. Sci. Publishers, London...Crescent leach Road, Glen Cove * Long Island, New Tork 11542 Commanding Officer (2) U.s Amy Research Office PO, Sax 12211 Research Triangle Park. C 27709 8

  5. Nonlocal effective actions in semiclassical gravity: Thermal effects in stationary geometries

    Science.gov (United States)

    Elías, M.; Mazzitelli, F. D.; Trombetta, L. G.

    2017-11-01

    We compute the gravitational effective action by integrating out quantum matter fields in a weak gravitational field, using the Schwinger-Keldysh (in-in) formalism. We pay particular attention to the role of the initial quantum state in the structure of the nonlocal terms in the effective action, with an eye to nonlinear completions of the theory that may be relevant in astrophysics and cosmology. In this first paper we consider a quantum scalar field in thermal equilibrium, in a stationary gravitational field. We obtain a covariant expression for the nonlocal effective action, which can be expressed in terms of the curvature tensor, the four-velocity of the thermal bath, and the local Tolman temperature. We discuss the connection between the results for ultrastatic and static metrics through conformal transformations, and the main features of the thermal corrections to the semiclassical Einstein equations.

  6. Viscoelastic optical nonlocality of doped cadmium oxide epsilon-near-zero thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luk, Ting S.; De Ceglia, Domenico; Scalora, Michael; Vincenti, Maria A.; Campione, Salvatore; Kelley, Kyle; Maria, Jon-Paul; Keeler, Gordon A.

    2017-08-01

    Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we experimentally observe and theoretically model viscoelastic nonlocalities in the infrared optical response of a doped, cadmium oxide epsilon-near-zero thin film. The nonlocality is clearly detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onset of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.

  7. 2-3D nonlocal transport model in magnetized laser plasmas.

    Science.gov (United States)

    Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy

    2004-11-01

    We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.

  8. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    International Nuclear Information System (INIS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-01-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester

  9. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  10. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Science.gov (United States)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  11. The nonlocal elastomagnetoelectrostatics of disordered micropolar media

    International Nuclear Information System (INIS)

    Kabychenkov, A. F.; Lisiovskii, F. V.

    2016-01-01

    The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.

  12. Some loopholes to save quantum nonlocality

    Science.gov (United States)

    Accardi, Luigi

    2005-02-01

    The EPR-chameleon experiment has closed a long standing debate between the supporters of quantum nonlocality and the thesis of quantum probability according to which the essence of the quantum pecularity is non Kolmogorovianity rather than non locality. The theory of adaptive systems (symbolized by the chameleon effect) provides a natural intuition for the emergence of non-Kolmogorovian statistics from classical deterministic dynamical systems. These developments are quickly reviewed and in conclusion some comments are introduced on recent attempts to "reconstruct history" on the lines described by Orwell in "1984".

  13. Pion polarizability in nonlocal quark model

    International Nuclear Information System (INIS)

    Efimov, G.V.; Okhlopkova, V.A.

    1978-01-01

    The γγ→ππ amplitude was calculated in nonlocal quark model in the fourth order on the perturbation theory. The coefficients of electric[a) and magnetic polarizability (β) determined are equal in magnitude and opposite in sign αsub(π+-)=βsub(π+-)=+0.014α/msub(π)sup(3), αsub(πsup(0))=-βsub(πsup(0))=-0.07α/msub(π)sup(3). The results have been compared with calculations in other models

  14. Non-local Effects of Conformal Anomaly

    Science.gov (United States)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  15. Spectral tunneling of lattice nonlocal solitons

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2010-01-01

    We address spectral tunneling of walking spatial solitons in photorefractive media with nonlocal diffusion component of the nonlinear response and an imprinted shallow optical lattice. In contrast to materials with local nonlinearities, where solitons traveling across the lattice close to the Bragg angle suffer large radiative losses, in photorefractive media with diffusion nonlinearity resulting in self-bending, solitons survive when their propagation angle approaches and even exceeds the Bragg angle. In the spatial frequency domain this effect can be considered as tunneling through the band of spatial frequencies centered around the Bragg frequency where the spatial group velocity dispersion is positive.

  16. Hyperspherical effective interaction for nonlocal potentials

    International Nuclear Information System (INIS)

    Barnea, N.; Leidemann, W.; Orlandini, G.

    2010-01-01

    The effective interaction hyperspherical-harmonics method, formulated for local forces, is generalized to accommodate nonlocal interactions. As for local potentials this formulation retains the separation of the hyper-radial part leading solely to a hyperspherical effective interaction. By applying the method to study ground-state properties of 4 He with a modern effective-field-theory nucleon-nucleon potential model (Idaho-N3LO), one finds a substantial acceleration in the convergence rate of the hyperspherical-harmonics series. Also studied are the binding energies of the six-body nuclei 6 He and 6 Li with the JISP16 nuclear force. Again an excellent convergence is observed.

  17. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  18. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    Science.gov (United States)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  19. Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    OpenAIRE

    Shi, Yaoyun; Zhu, Yufan

    2005-01-01

    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of funct...

  20. Greenberger-Horne-Zeilinger nonlocality in arbitrary even dimensions

    International Nuclear Information System (INIS)

    Lee, Jinhyoung; Lee, Seung-Woo; Kim, M. S.

    2006-01-01

    We generalize Greenberger-Horne-Zeilinger (GHZ) nonlocality to every even-dimensional and odd-partite system. For the purpose we employ concurrent observables that are incompatible and nevertheless have a common eigenstate. It is remarkable that a tripartite system can exhibit the genuinely high-dimensional GHZ nonlocality

  1. On nonlocal symmetries of some shallow water equations

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)

    2007-04-27

    A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.

  2. Non-local matrix generalizations of W-algebras

    International Nuclear Information System (INIS)

    Bilal, A.

    1995-01-01

    There is a standard way to define two symplectic (hamiltonian) structures, the first and second Gelfand-Dikii brackets, on the space of ordinary m th -order linear differential operators L=-d m +U 1 d m-1 +U 2 d m-2 +..+U m . In this paper, I consider in detail the case where the U k are nxn-matrix-valued functions, with particular emphasis on the (more interesting) second Gelfand-Dikii bracket. Of particular interest is the reduction to the symplectic submanifold U 1 =0. This reduction gives rise to matrix generalizations of (the classical version of) the non-linear W m -algebras, called V n,m -algebras. The non-commutativity of the matrices leads to non-local terms in these V n,m -algebras. I show that these algebras contain a conformal Virasoro subalgebra and that combinations W k of the U k can be formed that are nxn-matrices of conformally primary fields of spin k, in analogy with the scalar case n=1. In general however, the V m,n -algebras have a much richer structure than the W m -algebras as can be seen on the examples of the non-linear and non-local Poisson brackets {(U 2 ) ab (σ),(U 2 ) cd (σ')}, {(U 2 ) ab (σ),(W 3 ) cd (σ')} and {(W 3 ) ab (σ),(W 3 ) cd (σ')} which I work out explicitly for all m and n. A matrix Miura transformation is derived, mapping these complicated (second Gelfand-Dikii) brackets of the U k to a set of much simpler Poisson brackets, providing the analogue of the free-field representation of the W m -algebras. (orig.)

  3. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics: II. Noether's theorems and Casimirs

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler–Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem. (paper)

  4. Assimilation of GPS Refractivity from FORMOSAT-3/COSMIC Using a Nonlocal Operator with WRF 3DVAR and Its Impact on the Prediction of a Typhoon Event

    Directory of Open Access Journals (Sweden)

    Shu-Ya Chen

    2009-01-01

    Full Text Available A nonlocal observation operator has been developed to assimilate GPS radio occultation (RO refractivity with WRF 3DVAR. For simplicity, in the past GPS RO refractivity was often assimilated using a local observation operator with the assumption that the GPS RO observation was representative of amodel local point. Such an operator did not take into account the effects of horizontal inhomogeneity on the derived GPS RO refractivity. In order to more accurately model the observables, Sokolovskiy et al. (2005a developed a nonlocal observation operator, which would take into account the effects of horizontal inhomogeneity on GPS RO measurements. This nonlocal observation operator calculates the integrated amount of the model refractivity along the ray paths centered at the perigee points. For comparative purposes, the nonlocal observation operator can be simplified by limiting the length of integration near the RO point. This is called the "local operator variant", which is equivalent to the original local operator except that the original one is performed with fixed tangent points at observation levels. For computational efficiency, assimilation using both the nonlocal operator and local operator variant now is performed with smear tangent points at the mean height of each model vertical level. In this study, the statistics of observation errors using both local and nonlocal operators were estimated based on WRF simulations. The observation errors produced by the nonlocal operator are about two times smaller than those generated by the local operator and in agreement with Sokolovskiy et al. (2005b.

  5. Effect of impurity scattering on the low temperature magnetic penetration depth of a nonlocal and nonlinear d-wave superconductor

    International Nuclear Information System (INIS)

    Yavary, H.

    2006-01-01

    The magnetic penetration depth of a quasi-two dimensional d-wave superconductor in the presence of nonlineary, nonlocality, and impurity effects is investigated by using Green's function method. It is shown that a d-wave superconductor would inevitably avoid the violation of the Nernst theorem by creating a T 2 term in its penetration depth through a competition of nonlinear, nonlocal, and impurity effects and this system may be stable at low temperatures. I also show that in the impure sample at low temperatures, T < T * ∝ γ the impurity effect determines the temperature dependence of the penetration depth, i.e., nonlocal and nonlinear effects are completely masked by impurities

  6. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  7. Protecting nonlocality of multipartite states by feed-forward control

    Science.gov (United States)

    Li, Xiao-Gang; Zou, Jian; Shao, Bin

    2018-06-01

    Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.

  8. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  9. Fundamental length, bubble electrons and non-local quantum electrodynamics

    International Nuclear Information System (INIS)

    Hsu, J.P.; Mac, E.

    1977-06-01

    Based on the concept of a bubble electron and the approach of Pais and Uhlenbeck, one constructs a finite quantum electrodynamics which is relativistically invariant, macro-causal and unitary. In this model, fields and their interaction are local, but the action function of free fields is nonlocal. The propagators are modified so that a fundamental length L is naturally introduced to physics. The modified static potential is given by V(r) = e/r for r greater than L and V(r) = 0 for r less than L, which is produced by the bubble source r -1 ddelta(r-L)/dr rather than a point source. It is found that L less than 4 x 10 -15 cm. Experimental consequences and modifications of strict causality at short distances, vertical bars 2 vertical bar approximately L 2 , are discussed

  10. Greenberger-Horne-Zeilinger nonlocality for continuous-variable systems

    International Nuclear Information System (INIS)

    Chen Zengbing; Zhang Yongde

    2002-01-01

    As a development of our previous work, this paper is concerned with the Greenberger-Horne-Zeilinger (GHZ) nonlocality for continuous-variable cases. The discussion is based on the introduction of a pseudospin operator, which has the same algebra as the Pauli operator, for each of the N modes of a light field. Then the Bell-Clauser-Horne-Shimony-Holt inequality is presented for the N modes, each of which has a continuous degree of freedom. Following Mermin's argument, it is demonstrated that for N-mode parity-entangled GHZ states (in an infinite-dimensional Hilbert space) of the light field, the contradictions between quantum mechanics and local realism grow exponentially with N, similarly to the usual N-spin cases

  11. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  12. Buonomano against Bell: Nonergodicity or nonlocality?

    Science.gov (United States)

    Khrennikov, Andrei

    The aim of this note is to attract attention of the quantum foundational community to the fact that in Bell’s arguments, one cannot distinguish two hypotheses: (a) quantum mechanics is nonlocal, (b) quantum mechanics is nonergodic. Therefore, experimental violations of Bell’s inequality can be as well interpreted as supporting the hypothesis that stochastic processes induced by quantum measurements are nonergodic. The latter hypothesis was discussed actively by Buonomano since 1980. However, in contrast to Bell’s hypothesis on nonlocality, it did not attract so much attention. The only experiment testing the hypothesis on nonergodicity was performed in neutron interferometry (by Summhammer, in 1989). This experiment can be considered as rejecting this hypothesis. However, it cannot be considered as a decisive experiment. New experiments are badly needed. We point out that a nonergodic model can be realistic, i.e. the distribution of hidden (local!) variables is well-defined. We also discuss coupling of violation of the Bell inequality with violation of the condition of weak mixing for ergodic dynamical systems.

  13. On the application of the partition of unity method for nonlocal response of low-dimensional structures

    Science.gov (United States)

    Natarajan, Sundararajan

    2014-12-01

    The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.

  14. Quenching rate for a nonlocal problem arising in the micro-electro mechanical system

    Science.gov (United States)

    Guo, Jong-Shenq; Hu, Bei

    2018-03-01

    In this paper, we study the quenching rate of the solution for a nonlocal parabolic problem which arises in the study of the micro-electro mechanical system. This question is equivalent to the stabilization of the solution to the transformed problem in self-similar variables. First, some a priori estimates are provided. In order to construct a Lyapunov function, due to the lack of time monotonicity property, we then derive some very useful and challenging estimates by a delicate analysis. Finally, with this Lyapunov function, we prove that the quenching rate is self-similar which is the same as the problem without the nonlocal term, except the constant limit depends on the solution itself.

  15. Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe

    International Nuclear Information System (INIS)

    Girard, C.

    1991-01-01

    The interaction force between a metallic tip and a nonplanar dielectric surface is derived from a nonlocal formalism. A general formulation is given for the case of a spherical tip of nanometer size and for surfaces of arbitrary shapes (stepped surfaces and single crystals adsorbed on a planar surface). The dispersion part of the attractive force is obtained from a nonlocal theory expressed in terms of generalized electric susceptibilities of the two constituents. Implications for atomic force microscopy in attractive modes are discussed. In this context, the present model indicates two different forms of corrugation: those due to the protuberance present on the tip leading to atomic corrugations; nanometer-sized corrugations detected in the attractive region by the spherical part of the tip

  16. Li-Yorke chaos and synchronous chaos in a globally nonlocal coupled map lattice

    International Nuclear Information System (INIS)

    Khellat, Farhad; Ghaderi, Akashe; Vasegh, Nastaran

    2011-01-01

    Highlights: → A globally nonlocal coupled map lattice is introduced. → A sufficient condition for the existence of Li-Yorke chaos is determined. → A sufficient condition for synchronous behaviors is obtained. - Abstract: This paper investigates a globally nonlocal coupled map lattice. A rigorous proof to the existence of chaos in the scene of Li-Yorke in that system is presented in terms of the Marotto theorem. Analytical sufficient conditions under which the system is chaotic, and has synchronous behaviors are determined, respectively. The wider regions associated with chaos and synchronous behaviors are shown by simulations. Spatiotemporal chaos, synchronous chaos and some other synchronous behaviors such as fixed points, 2-cycles and 2 2 -cycles are also shown by simulations for some values of the parameters.

  17. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  18. Nonlocal microstructure-dependent dynamic stability of refined porous FG nanoplates in hygro-thermal environments

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-10-01

    Based on the generalized nonlocal strain gradient theory (NSGT), dynamic modeling and analysis of nanoporous inhomogeneous nanoplates is presented. Therefore, it is possible to capture both stiffness-softening and stiffness-hardening effects for a more accurate dynamic analysis of nanoplates. The nanoplate is in hygro-thermal environments and is subjected to an in-plane harmonic load. Porosities are incorporated to the model based on a modified rule of mixture. Modeling of the porous nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than in the first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, moisture rise, temperature rise, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and uniform dynamic load have a remarkable influence on the dynamic behavior of nanoscale plates.

  19. Mermin Non-Locality in Abstract Process Theories

    Directory of Open Access Journals (Sweden)

    Stefano Gogioso

    2015-11-01

    Full Text Available The study of non-locality is fundamental to the understanding of quantum mechanics. The past 50 years have seen a number of non-locality proofs, but its fundamental building blocks, and the exact role it plays in quantum protocols, has remained elusive. In this paper, we focus on a particular flavour of non-locality, generalising Mermin's argument on the GHZ state. Using strongly complementary observables, we provide necessary and sufficient conditions for Mermin non-locality in abstract process theories. We show that the existence of more phases than classical points (aka eigenstates is not sufficient, and that the key to Mermin non-locality lies in the presence of certain algebraically non-trivial phases. This allows us to show that fRel, a favourite toy model for categorical quantum mechanics, is Mermin local. We show Mermin non-locality to be the key resource ensuring the device-independent security of the HBB CQ (N,N family of Quantum Secret Sharing protocols. Finally, we challenge the unspoken assumption that the measurements involved in Mermin-type scenarios should be complementary (like the pair X,Y, opening the doors to a much wider class of potential experimental setups than currently employed. In short, we give conditions for Mermin non-locality tests on any number of systems, where each party has an arbitrary number of measurement choices, where each measurement has an arbitrary number of outcomes and further, that works in any abstract process theory.

  20. Nonlocal kinetic-energy-density functionals

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    In this paper we present nonlocal kinetic-energy functionals T[n] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. copyright 1996 The American Physical Society

  1. Steering, Entanglement, Nonlocality, and the EPR Paradox

    Science.gov (United States)

    Wiseman, Howard; Jones, Steve; Andrew, Doherty

    2007-06-01

    The concept of steering was introduced by Schroedinger in 1935 as a generalization of the EPR paradox for arbitrary pure bipartite entangled states and arbitrary measurements by one party. Until now, it has never been rigorously defined, so it has not been known (for example) what mixed states are steerable (that is, can be used to exhibit steering). We provide an operational definition, from which we prove (by considering Werner states and Isotropic states) that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell-nonlocality. For arbitrary bipartite Gaussian states we derive a linear matrix inequality that decides the question of steerability via Gaussian measurements, and we relate this to the original EPR paradox.

  2. The quantum handshake entanglement, nonlocality and transactions

    CERN Document Server

    Cramer, John G

    2016-01-01

    This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.

  3. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  4. Graphene plasmons: Impurities and nonlocal effects

    Science.gov (United States)

    Viola, Giovanni; Wenger, Tobias; Kinaret, Jari; Fogelström, Mikael

    2018-02-01

    This work analyzes how impurities and vacancies on the surface of a graphene sample affect its optical conductivity and plasmon excitations. The disorder is analyzed in the self-consistent Green's function formulation and nonlocal effects are fully taken into account. It is shown that impurities modify the linear spectrum and give rise to an impurity band whose position and width depend on the two parameters of our model, the density and the strength of impurities. The presence of the impurity band strongly influences the electromagnetic response and the plasmon losses. Furthermore, we discuss how the impurity-band position can be obtained experimentally from the plasmon dispersion relation and discuss this in the context of sensing.

  5. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Science.gov (United States)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  6. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    Directory of Open Access Journals (Sweden)

    P.G.L. Leach

    2005-11-01

    Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  7. Torsion of cracked nanorods using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J

    2014-01-01

    This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)

  8. Nonlocal kinetic energy functionals by functional integration

    Science.gov (United States)

    Mi, Wenhui; Genova, Alessandro; Pavanello, Michele

    2018-05-01

    Since the seminal studies of Thomas and Fermi, researchers in the Density-Functional Theory (DFT) community are searching for accurate electron density functionals. Arguably, the toughest functional to approximate is the noninteracting kinetic energy, Ts[ρ], the subject of this work. The typical paradigm is to first approximate the energy functional and then take its functional derivative, δ/Ts[ρ ] δ ρ (r ) , yielding a potential that can be used in orbital-free DFT or subsystem DFT simulations. Here, this paradigm is challenged by constructing the potential from the second-functional derivative via functional integration. A new nonlocal functional for Ts[ρ] is prescribed [which we dub Mi-Genova-Pavanello (MGP)] having a density independent kernel. MGP is constructed to satisfy three exact conditions: (1) a nonzero "Kinetic electron" arising from a nonzero exchange hole; (2) the second functional derivative must reduce to the inverse Lindhard function in the limit of homogenous densities; (3) the potential is derived from functional integration of the second functional derivative. Pilot calculations show that MGP is capable of reproducing accurate equilibrium volumes, bulk moduli, total energy, and electron densities for metallic (body-centered cubic, face-centered cubic) and semiconducting (crystal diamond) phases of silicon as well as of III-V semiconductors. The MGP functional is found to be numerically stable typically reaching self-consistency within 12 iterations of a truncated Newton minimization algorithm. MGP's computational cost and memory requirements are low and comparable to the Wang-Teter nonlocal functional or any generalized gradient approximation functional.

  9. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects

    Science.gov (United States)

    Zhen, Ya-Xin

    2017-02-01

    In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.

  10. Non-Local Diffusion of Energetic Electrons during Solar Flares

    Science.gov (United States)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  11. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  12. Penetration depth and nonlocal manipulation of quantum spin hall edge states in chiral honeycomb nanoribbons.

    Science.gov (United States)

    Xu, Yong; Uddin, Salah; Wang, Jun; Wu, Jiansheng; Liu, Jun-Feng

    2017-08-08

    We have studied numerically the penetration depth of quantum spin hall edge states in chiral honeycomb nanoribbons based on the Green's function method. The changing of edge orientation from armchair to zigzag direction decreases the penetration depth drastically. The penetration depth is used to estimate the gap opened for the finite-size effect. Beside this, we also proposed a nonlocal transistor based on the zigzag-like chiral ribbons in which the current is carried at one edge and the manipulation is by the edge magnetization at the other edge. The difficulty that the edge magnetization is unstable in the presence of a ballistic current can be removed by this nonlocal manipulation.

  13. Solving Two -Dimensional Diffusion Equations with Nonlocal Boundary Conditions by a Special Class of Padé Approximants

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2010-08-01

    Full Text Available Parabolic partial differential equations with nonlocal boundary conditions arise in modeling of a wide range of important application areas such as chemical diffusion, thermoelasticity, heat conduction process, control theory and medicine science. In this paper, we present the implementation of positivity- preserving Padé numerical schemes to the two-dimensional diffusion equation with nonlocal time dependent boundary condition. We successfully implemented these numerical schemes for both Homogeneous and Inhomogeneous cases. The numerical results show that these Padé approximation based numerical schemes are quite accurate and easily implemented.

  14. Answer Extraction Based on Merging Score Strategy of Hot Terms

    Institute of Scientific and Technical Information of China (English)

    LE Juan; ZHANG Chunxia; NIU Zhendong

    2016-01-01

    Answer extraction (AE) is one of the key technologies in developing the open domain Question&an-swer (Q&A) system . Its task is to yield the highest score to the expected answer based on an effective answer score strategy. We introduce an answer extraction method by Merging score strategy (MSS) based on hot terms. The hot terms are defined according to their lexical and syn-tactic features to highlight the role of the question terms. To cope with the syntactic diversities of the corpus, we propose four improved candidate answer score algorithms. Each of them is based on the lexical function of hot terms and their syntactic relationships with the candidate an-swers. Two independent corpus score algorithms are pro-posed to tap the role of the corpus in ranking the candi-date answers. Six algorithms are adopted in MSS to tap the complementary action among the corpus, the candi-date answers and the questions. Experiments demonstrate the effectiveness of the proposed strategy.

  15. Optical Implementation of Non-locality with Coherent Light Fields for Quantum Communication

    OpenAIRE

    Lee, Kim Fook

    2008-01-01

    Polarization correlations of two distant observers are observed by using coherent light fields based on Stapp's formulation of nonlocality. Using a 50/50 beam splitter transformation, a vertically polarized coherent light field is found to be entangled with a horizontally polarized coherent noise field. The superposed light fields at each output port of the beam splitter are sent to two distant observers, where the fields are interfered and manipulated at each observer by using a quarter wave...

  16. A simple exposure-time theory for all time-nonlocal transport formulations and beyond.

    Science.gov (United States)

    Ginn, T. R.; Schreyer, L. G.

    2016-12-01

    Anomalous transport or better put, anomalous non-transport, of solutes or flowing water or suspended colloids or bacteria etc. has been the subject of intense analyses with multiple formulations appearing in scientific literature from hydrology to geomorphology to chemical engineering, to environmental microbiology to mathematical physics. Primary focus has recently been on time-nonlocal mass conservation formulations such as multirate mass transfer, fractional-time advection-dispersion, continuous-time random walks, and dual porosity modeling approaches, that employ a convolution with a memory function to reflect respective conceptual models of delays in transport. These approaches are effective or "proxy" ones that do not always distinguish transport from immobilzation delays, are generally without connection to measurable physicochemical properties, and involve variously fractional calculus, inverse Laplace or Fourier transformations, and/or complex stochastic notions including assumptions of stationarity or ergodicity at the observation scale. Here we show a much simpler approach to time-nonlocal (non-)transport that is free of all these things, and is based on expressing the memory function in terms of a rate of mobilization of immobilized mass that is a function of the continguous time immobilized. Our approach treats mass transfer completely independently from the transport process, and it allows specification of actual immobilization mechanisms or delays. To our surprize we found that for all practical purposes any memory function can be expressed this way, including all of those associated with the multi-rate mass transfer approaches, original powerlaw, different truncated powerlaws, fractional-derivative, etc. More intriguing is the fact that the exposure-time approach can be used to construct heretofore unseen memory functions, e.g., forms that generate oscillating tails of breakthrough curves such as may occur in sediment transport, forms for delay

  17. Size-dependent nonlocal effects in plasmonic semiconductor particles

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2017-01-01

    Localized surface plasmons (LSP) in semiconductor particles are expected to exhibit spatial nonlocal response effects as the geometry enters the nanometer scale. To investigate these nonlocal effects, we apply the hydrodynamic model to nanospheres of two different semiconductor materials: intrinsic...... InSb and n-doped GaAs. Our results show that the semiconductors indeed display nonlocal effects, and that these effects are even more pronounced than in metals. In a 150 nm InSb particle at 300 K, the LSP frequency is blueshifted 35%, which is orders of magnitude larger than the blueshift in a metal...... particle of the same size. This property, together with their tunability, makes semiconductors a promising platform for experiments in nonlocal effects. Copyright (C)EPLA, 2017...

  18. Entanglement and nonlocality in multi-particle systems

    Science.gov (United States)

    Reid, Margaret D.; He, Qiong-Yi; Drummond, Peter D.

    2012-02-01

    Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hiddenvariable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.

  19. Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems

    Energy Technology Data Exchange (ETDEWEB)

    D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)

    2016-04-15

    The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.

  20. Non-local means filter for trim statics

    KAUST Repository

    Huang, Yunsong; Wang, Xin; Schuster, Gerard T.

    2014-01-01

    this problem, we propose a trim statics inspired by the non-local means algorithm originally developed for image denoising. This method differs from the conventional one in two fundamental respects. First, the trim statics are computed by comparing image

  1. Nonlocality versus complementarity: a conservative approach to the information problem

    International Nuclear Information System (INIS)

    Giddings, Steven B

    2011-01-01

    A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.

  2. Self-organization analysis for a nonlocal convective Fisher equation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)

    2009-02-02

    Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.

  3. Definition of current density in the presence of a non-local potential.

    Science.gov (United States)

    Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian

    2008-04-16

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.

  4. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models

    Science.gov (United States)

    Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng

    2017-02-01

    This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.

  5. Nonlocality and particle-clustering effects on the optical response of composite materials with metallic nanoparticles

    Science.gov (United States)

    Chen, C. W.; Chung, H. Y.; Chiang, H.-P.; Lu, J. Y.; Chang, R.; Tsai, D. P.; Leung, P. T.

    2010-10-01

    The optical properties of composites with metallic nanoparticles are studied, taking into account the effects due to the nonlocal dielectric response of the metal and the coalescing of the particles to form clusters. An approach based on various effective medium theories is followed, and the modeling results are compared with those from the cases with local response and particles randomly distributed through the host medium. Possible observations of our modeling results are illustrated via a calculation of the transmission of light through a thin film made of these materials. It is found that the nonlocal effects are particularly significant when the particles coalesce, leading to blue-shifted resonances and slightly lower values in the dielectric functions. The dependence of these effects on the volume fraction and fractal dimension of the metal clusters is studied in detail.

  6. Definition of current density in the presence of a non-local potential

    International Nuclear Information System (INIS)

    Li Changsheng; Wan Langhui; Wei Yadong; Wang Jian

    2008-01-01

    In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J c = (e/2m)([(p-eA)ψ]*ψ-ψ*[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., ∇ . J c ≠ 0 in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Buettiker formula. Examples are given to demonstrate our results

  7. The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, Ravishankar; Goddard, William A. [Joint Center for Artificial Photosynthesis, Pasadena, California 91125 (United States)

    2015-02-14

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With four parameters per solvent, this “CANDLE” model simultaneously reproduces solvation energies of large datasets of neutral molecules, cations, and anions with a mean absolute error of 1.8 kcal/mol in water and 3.0 kcal/mol in acetonitrile.

  8. How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems

    Science.gov (United States)

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time. PMID:25723154

  9. How volatilities nonlocal in time affect the price dynamics in complex financial systems.

    Directory of Open Access Journals (Sweden)

    Lei Tan

    Full Text Available What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.

  10. Nonlocality in many-body quantum systems detected with two-body correlators

    Energy Technology Data Exchange (ETDEWEB)

    Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)

    2015-11-15

    Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.

  11. Probing the Chiral Anomaly via Nonlocal Transport in Weyl Semimetals

    Science.gov (United States)

    Parameswaran, Siddharth; Grover, Tarun; Vishwanath, Ashvin

    2013-03-01

    Weyl semimetals are three-dimensional analogs of graphene in which a pair of bands touch at points in momentum space, known as Weyl nodes. Electrons originating from a single Weyl node possess a definite topological charge, the chirality. Consequently, they exhibit the Adler-Jackiw-Bell anomaly, which in this condensed matter realization implies that application of parallel electric (E) and magnetic fields (B) pumps electrons between nodes of opposite chirality at a rate proportional to E . B . We argue that this pumping is measurable via transport experiments, in the limit of weak internode scattering. Specifically, we show that injecting a current in a Weyl semimetal subject to an E . B term leads to nonlocal features in transport. We acknowledge support of the Simons Foundation, NSF Grant PHY-1066293 and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

  12. Cosmological evolution of generalized non-local gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xue; Wu, Ya-Bo; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang [Department of Physics, Liaoning Normal University, Dalian 116029 (China); Li, Song, E-mail: zxue0128@163.com, E-mail: ybwu61@163.com, E-mail: sli@cnu.edu.cn, E-mail: wuli11liuyuchen@163.com, E-mail: bchenphy@163.com, E-mail: chaiyuntian1881@sina.com, E-mail: sshu1230@163.com [Department of Physics, Capital Normal University, Beijing 100048 (China)

    2016-07-01

    We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m {sup 2} {sup n} {sup -2} R □{sup -} {sup n} R to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n . We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n =2.

  13. Front propagation and clustering in the stochastic nonlocal Fisher equation

    Science.gov (United States)

    Ganan, Yehuda A.; Kessler, David A.

    2018-04-01

    In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.

  14. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    Science.gov (United States)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  15. Perspectives on source terms based on early research and development

    International Nuclear Information System (INIS)

    Pressesky, A.J.

    1985-07-01

    This report presents an overview of the key documentation of the research and development programs relevant to the source term issue which were undertaken by the Atomic Energy Commission between 1950 and 1970. The source term is taken to be the amount, composition (physical and chemical), and timing of the projected release of radioactivity to the environment in the hypothetical event of a severe reactor accident in a light water reactor of the type currently being licensed, built and operated. The objective is to illuminate and provide perspectives on (a) the maturity of the technical data base and the analytical methodology, (b) the extent to which remaining conservatisms can be applied to compensate for uncertainties, (c) the purpose for which the technology and methodology will be used, and (d) the need to keep problems and uncertainties in proper perspective. Comments that can provide some context for the difficult programmatic choices to be made are included, and technical considerations that may be inadequately applied or neglected in some current source term calculations were studied. This review has not uncovered any significant technical considerations that have been omitted or are being inadequately treated in current source term analyses, except perhaps the contribution made to in-containment aerosols by coolant comminution upon escape at pressure from the reactor coolant system. 11 refs

  16. Glueball phenomenology within a nonlocal approach

    International Nuclear Information System (INIS)

    Giacosa, F.

    2005-01-01

    In this thesis we describe the properties of glueball phenomenology within a nonlocal covariant constituent approach. The search for glueballs, their theoretical description and the mixing with quarkonia mesons is an active and unsolved issue of hadronic QCD. Different models and assignments have been proposed, but up to now no certain statement about their existence can be done. After introducing the theoretical framework in which we will work in, the attention will be focused on the problem of the scalar glueball, which lattice QCD predicts to be the lightest gluonic state with a mass between 1.4-1.8 GeV. In the same mass region one encounters many scalar resonances; mixing between the bare glueball and quarkonia states is therefore likely. In a covariant constituent approach one cannot define rigorously a mixing matrix connecting the bare to physical fields. However, we propose a definition which satisfies the correct requirements and which can be compared to other phenomenological studies. The two-photon decay of isoscalar-scalar states is believed to be crucial to pin down the flavor content of the resonances between 1 and 2 GeV. We discuss and calculate the two-photon decay rates of the mixed states glueball-quarkonia, getting results which are consistent with the current experimental upper limits

  17. Exploring nonlocal observables in shock wave collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Christian; Grumiller, Daniel; Stanzer, Philipp; Stricker, Stefan A. [Institut für Theoretische Physik, Technische Universität Wien,Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Schee, Wilke van der [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2016-11-09

    We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: highly efficient initial growth of entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the black hole apparent horizon, while we did not find such cases for the entanglement entropy.

  18. Experimental nonlocal steering of Bohmian trajectories.

    Science.gov (United States)

    Xiao, Ya; Kedem, Yaron; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2017-06-26

    Interpretations of quantum mechanics (QM), or proposals for underlying theories, that attempt to present a definite realist picture, such as Bohmian mechanics, require strong non-local effects. Naively, these effects would violate causality and contradict special relativity. However if the theory agrees with QM the violation cannot be observed directly. Here, we demonstrate experimentally such an effect: we steer the velocity and trajectory of a Bohmian particle using a remote measurement. We use a pair of photons and entangle the spatial transverse position of one with the polarization of the other. The first photon is sent to a double-slit-like apparatus, where its trajectory is measured using the technique of Weak Measurements. The other photon is projected to a linear polarization state. The choice of polarization state, and the result, steer the first photon in the most intuitive sense of the word. The effect is indeed shown to be dramatic, while being easy to visualize. We discuss its strength and what are the conditions for it to occur.

  19. Understanding quantum interference in general nonlocality

    International Nuclear Information System (INIS)

    Wang Haijun

    2011-01-01

    In this paper we attempt to give a new understanding of quantum double-slit interference of fermions in the framework of general nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-(inter)action of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-action is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schroedinger current and Dirac current, respectively, both of which are relevant to topology. The gap between these two cases corresponds to the fermion magnetic moment, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and nonperturbative self-actions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all. And by comparison with the special formalism of Schroedinger current, the coupling strength of self-action in the limit is found to be ∞. In the perturbative case, the interference from self-action turns out to be the same as that from the standard approach of quantum theory. Then comparing the corresponding coefficients quantitatively we conclude that the coupling strength of self-action in this case falls in the interval [0, 1].

  20. Long term strain behavior of PMMA based polymer optical fibers

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Woyessa, Getinet

    2015-01-01

    We are reporting on the viscoelasticity of PMMA based Fiber Bragg Grating (FBG) strain sensors when exposed to repeated sequences of long term strain and relaxation with various duty-cycles. In terms of the FBG wavelength and how it follows the strain cycle, we have shown that in the small strain...... regime (up to 1%) an elastic-dominated fast relaxing range, which is followed by a mainly viscous relaxation, depends both on the strain level and on the strain duration. For a small ratio of the strain-relax durations, this fast relaxation range stays almost the same. However, with increasing strain...... duration, for the same relaxation time, this range will be shortened, which might influence the sensing capabilities of the fiber sensor....

  1. The right inferior frontal gyrus processes nested non-local dependencies in music.

    Science.gov (United States)

    Cheung, Vincent K M; Meyer, Lars; Friederici, Angela D; Koelsch, Stefan

    2018-02-28

    Complex auditory sequences known as music have often been described as hierarchically structured. This permits the existence of non-local dependencies, which relate elements of a sequence beyond their temporal sequential order. Previous studies in music have reported differential activity in the inferior frontal gyrus (IFG) when comparing regular and irregular chord-transitions based on theories in Western tonal harmony. However, it is unclear if the observed activity reflects the interpretation of hierarchical structure as the effects are confounded by local irregularity. Using functional magnetic resonance imaging (fMRI), we found that violations to non-local dependencies in nested sequences of three-tone musical motifs in musicians elicited increased activity in the right IFG. This is in contrast to similar studies in language which typically report the left IFG in processing grammatical syntax. Effects of increasing auditory working demands are moreover reflected by distributed activity in frontal and parietal regions. Our study therefore demonstrates the role of the right IFG in processing non-local dependencies in music, and suggests that hierarchical processing in different cognitive domains relies on similar mechanisms that are subserved by domain-selective neuronal subpopulations.

  2. Nonlocal electron kinetics and spectral line emission in the positive column of an argon glow discharge

    International Nuclear Information System (INIS)

    Golubovskii, Yu; Kalanov, D; Gorchakov, S; Uhrlandt, D

    2015-01-01

    Modern non-local electron kinetics theory predicts several interesting effects connected with spectral line emission from the positive column in the range of low and medium pressures and currents. Some theoretical works describe non-monotonic behavior of the radial profiles of line emission at intermediate pressures and currents between the validity ranges of the non-local and local approximation of the electron kinetics. Despite a great number of publications, there have been no systematic measurements attempting to confirm these theoretical predictions through experiments. In this work the radial profiles of the line emission from the positive column of an argon glow discharge have been measured with high spatial resolution and new effects caused by the narrowing and broadening of the spatial emission profiles with dependence on discharge conditions have been discovered. The effect of intensity maximum shift predicted by theory using a self-consistent model was not found in the experiment. The properties of the spectral line radiation are influenced by the peculiarities of the formation of the high-energy tail of the electron energy distribution function. An interpretation of the observed effects based on the non-local character of the electron kinetics in radially inhomogeneous fields is given. The obtained experimental data are compared with the results of calculations. (paper)

  3. Nonlocal plasmonic response of doped and optically pumped graphene, MoS2, and black phosphorus

    Science.gov (United States)

    Petersen, René; Pedersen, Thomas Garm; Javier García de Abajo, F.

    2017-11-01

    Plasmons in two-dimensional (2D) materials have emerged as a new source of physical phenomena and optoelectronic applications due in part to the relatively small number of charge carriers on which they are supported. Unlike conventional plasmonic materials, they possess a large Fermi wavelength, which can be comparable with the plasmon wavelength, thus leading to unusually strong nonlocal effects. Here, we study the optical response of a selection of 2D crystal layers (graphene, MoS2, and black phosphorus) with inclusion of nonlocal and thermal effects. We extensively analyze their plasmon dispersion relations and focus on the Purcell factor for the decay of an optical emitter in close proximity to the material as a way to probe nonlocal and thermal effects, with emphasis placed on the interplay between temperature and doping. The results are based on tight-binding modeling of the electronic structure combined with the random-phase approximation response function in which the temperature enters through the Fermi-Dirac electronic occupation distribution. Our study provides a route map for the exploration and exploitation of the ultrafast optical response of 2D materials.

  4. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Sarp Adali

    2012-01-01

    Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

  5. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  6. Controlling measurement-induced nonlocality in the Heisenberg XX model by three-spin interactions

    Science.gov (United States)

    Xie, Yu-Xia; Sun, Yu-Hang; Li, Zhao

    2018-01-01

    We investigate the well-defined measures of measurement-induced nonlocality (MIN) for thermal states of the transverse field XX model, with the addition of three-spin interaction terms being introduced. The results showed that the MINs are very sensitive to system parameters of the chain. The three-spin interactions can serve as flexible parameters for enhancing MINs of the boundary spins, and the maximum enhancement achievable by varying strengths of the three-spin interactions are different for the chain with different number of spins.

  7. Evidence of Non-local Chemical, Thermal and Gravitational Effects

    Directory of Open Access Journals (Sweden)

    Hu H.

    2007-04-01

    Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.

  8. On a non-local gas dynamics like integrable hierarchy

    International Nuclear Information System (INIS)

    Brunelli, Jose Carlos; Das, Ashok

    2004-01-01

    We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)

  9. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  10. Multiclustered chimeras in large semiconductor laser arrays with nonlocal interactions

    Science.gov (United States)

    Shena, J.; Hizanidis, J.; Hövel, P.; Tsironis, G. P.

    2017-09-01

    The dynamics of a large array of coupled semiconductor lasers is studied numerically for a nonlocal coupling scheme. Our focus is on chimera states, a self-organized spatiotemporal pattern of coexisting coherence and incoherence. In laser systems, such states have been previously found for global and nearest-neighbor coupling, mainly in small networks. The technological advantage of large arrays has motivated us to study a system of 200 nonlocally coupled lasers with respect to the emerging collective dynamics. Moreover, the nonlocal nature of the coupling allows us to obtain robust chimera states with multiple (in)coherent domains. The crucial parameters are the coupling strength, the coupling phase and the range of the nonlocal interaction. We find that multiclustered chimera states exist in a wide region of the parameter space and we provide quantitative characterization for the obtained spatiotemporal patterns. By proposing two different experimental setups for the realization of the nonlocal coupling scheme, we are confident that our results can be confirmed in the laboratory.

  11. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  12. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  13. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  14. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  15. Complete mechanical behavior analysis of FG Nano Beam under non-uniform loading using non-local theory

    Science.gov (United States)

    Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.

    2018-01-01

    The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.

  16. On an application of Tikhonov's fixed point theorem to a nonlocal Cahn-Hilliard type system modeling phase separation

    Science.gov (United States)

    Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen

    2016-06-01

    This paper investigates a nonlocal version of a model for phase separation on an atomic lattice that was introduced by P. Podio-Guidugli (2006) [36]. The model consists of an initial-boundary value problem for a nonlinearly coupled system of two partial differential equations governing the evolution of an order parameter ρ and the chemical potential μ. Singular contributions to the local free energy in the form of logarithmic or double-obstacle potentials are admitted. In contrast to the local model, which was studied by P. Podio-Guidugli and the present authors in a series of recent publications, in the nonlocal case the equation governing the evolution of the order parameter contains in place of the Laplacian a nonlocal expression that originates from nonlocal contributions to the free energy and accounts for possible long-range interactions between the atoms. It is shown that just as in the local case the model equations are well posed, where the technique of proving existence is entirely different: it is based on an application of Tikhonov's fixed point theorem in a rather unusual separable and reflexive Banach space.

  17. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  18. Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model

    Science.gov (United States)

    Ni, Wenjie; Shi, Junping; Wang, Mingxin

    2018-06-01

    A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.

  19. On nonlocally interacting metrics, and a simple proposal for cosmic acceleration

    Science.gov (United States)

    Vardanyan, Valeri; Akrami, Yashar; Amendola, Luca; Silvestri, Alessandra

    2018-03-01

    We propose a simple, nonlocal modification to general relativity (GR) on large scales, which provides a model of late-time cosmic acceleration in the absence of the cosmological constant and with the same number of free parameters as in standard cosmology. The model is motivated by adding to the gravity sector an extra spin-2 field interacting nonlocally with the physical metric coupled to matter. The form of the nonlocal interaction is inspired by the simplest form of the Deser-Woodard (DW) model, α R1/squareR, with one of the Ricci scalars being replaced by a constant m2, and gravity is therefore modified in the infrared by adding a simple term of the form m21/squareR to the Einstein-Hilbert term. We study cosmic expansion histories, and demonstrate that the new model can provide background expansions consistent with observations if m is of the order of the Hubble expansion rate today, in contrast to the simple DW model with no viable cosmology. The model is best fit by w0~‑1.075 and wa~0.045. We also compare the cosmology of the model to that of Maggiore and Mancarella (MM), m2R1/square2R, and demonstrate that the viable cosmic histories follow the standard-model evolution more closely compared to the MM model. We further demonstrate that the proposed model possesses the same number of physical degrees of freedom as in GR. Finally, we discuss the appearance of ghosts in the local formulation of the model, and argue that they are unphysical and harmless to the theory, keeping the physical degrees of freedom healthy.

  20. Revival of the Deser-Woodard nonlocal gravity model: Comparison of the original nonlocal form and a localized formulation

    Science.gov (United States)

    Park, Sohyun

    2018-02-01

    We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard (DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by localizing the model and found that the growth in their localized version is suppressed even compared to the one in GR. The question was whether the discrepancy originates from an intrinsic difference between the nonlocal and localized formulations or is due to their different implementations of the subhorizon limit. We show that the nonlocal and local formulations give the same solutions for the linear perturbations as long as the initial conditions are set the same. The different implementations of the subhorizon limit lead to different transient behaviors of some perturbation variables; however, they do not affect the growth of matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the numerical calculation code of the former group and verify that after fixing the error the nonlocal version also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective gravitational constant taken by the two groups and some open problems.

  1. Nonlocal superconducting correlations in graphene in the quantum Hall regime

    Science.gov (United States)

    Beconcini, Michael; Polini, Marco; Taddei, Fabio

    2018-05-01

    We study Andreev processes and nonlocal transport in a three-terminal graphene-superconductor hybrid system under a quantizing perpendicular magnetic field [G.-H. Lee et al., Nat. Phys. 13, 693 (2017), 10.1038/nphys4084]. We find that the amplitude of the crossed Andreev reflection (CAR) processes crucially depends on the orientation of the lattice. By employing Landauer-Büttiker scattering theory, we find that CAR is generally very small for a zigzag edge, while for an armchair edge it can be larger than the normal transmission, thereby resulting in a negative nonlocal resistance. In the case of an armchair edge and with a wide superconducting region (as compared to the superconducting coherence length), CAR exhibits large oscillations as a function of the magnetic field due to interference effects. This results in sign changes of the nonlocal resistance.

  2. Nonlocal surface plasmons by Poisson Green's function matching

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J

    2006-01-01

    The Poisson Green's function for all space is derived for the case in which an interface divides space into two separate semi-infinite media, using the Green's function matching method. Each of the separate semi-infinite constituent parts has its own dynamic, nonlocal polarizability, which is taken to be unaffected by the presence of the interface and is represented by the corresponding bulk response property. While this eliminates Friedel oscillatory phenomenology near the interface with p ∼ 2p F , it is nevertheless quite reasonable and useful for a broad range of lower (nonvanishing) wavenumbers, p F . The resulting full-space Poisson Green's function is dynamic, nonlocal and spatially inhomogeneous, and its frequency pole yields the surface plasmon dispersion relation, replete with dynamic and nonlocal features. It also accommodates an ambient magnetic field

  3. An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation

    Science.gov (United States)

    Shapovalov, A. V.; Trifonov, A. Yu.

    A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.

  4. Long-term monitoring FBG-based cable load sensor

    Science.gov (United States)

    Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping

    2006-03-01

    Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.

  5. Short-term Power Load Forecasting Based on Balanced KNN

    Science.gov (United States)

    Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei

    2018-03-01

    To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.

  6. Reflectance-based detection for long term environmental monitoring

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2017-06-01

    Full Text Available Here, the potential of colorimetric sensors utilizing porphyrin indicators for long term environmental monitoring is demonstrated. Prototype devices based on commercial color sensing chips (six per device were combined with in-house developed algorithms for data analysis. The devices are intended to provide real-time sensing of threats. An initial outdoor data set was collected using prototype devices with occasional spiked exposure to targets. This data was supported by similar data collected in a controlled indoor environment. Weaknesses in the noted performance of the devices during these experiments were addressed through altering device parameters, algorithm parameters, and array element composition. Additional outdoor data sets totaling 1,616 h and indoor data sets totaling 728 h were collected in support of assessing these changes to the system configuration. The optimized system provided receiver operating characteristics (ROC of specificity 0.97 and sensitivity 1.0. Keyword: Environmental science

  7. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  8. Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons

    Science.gov (United States)

    Ayral, Thomas; Kotliar, Gabriel

    The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.

  9. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  10. Local models and hidden nonlocality in Quantum Theory

    OpenAIRE

    Guerini, Leonardo

    2014-01-01

    This Master's thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werner's local model and the hidden nonlocality of some Werner states of dimension $d\\geq5$, the Gisin-Degorre's local model for a Werner state of dimension $d=2$ and the local model of Hirsch et al. for mixtures of the singlet state and noise, all of them f...

  11. Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)

    2012-07-01

    The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.

  12. To the non-local theory of cold nuclear fusion.

    Science.gov (United States)

    Alexeev, Boris V

    2014-10-01

    In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.

  13. Faithful test of nonlocal realism with entangled coherent states

    International Nuclear Information System (INIS)

    Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro

    2011-01-01

    We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.

  14. Bridge condition assessment based on long-term strain monitoring

    Science.gov (United States)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  15. Long term landslide monitoring with Ground Based SAR

    Science.gov (United States)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  16. A nonlocal potential form for s-wave α-α scattering

    International Nuclear Information System (INIS)

    Amos, K.; Bennett, M.T.

    1997-01-01

    Low energy s-wave α-α phase shifts that agree well with the measured set, have been extracted using a nonlocal interaction formed by folding (local real) nucleon -α particle interactions with density matrix elements of the (projectile) α particle. The resultant nonlocal s-wave α-α interaction is energy dependent and has a nonlocality range of about 2 fm

  17. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  18. Update Knowledge Base for Long-term Core Cooling Reliability

    International Nuclear Information System (INIS)

    Agrell, Maria; Sandervag, Oddbjoern; Amri, Abdallah; ); Bang, Young S.; Blomart, Philippe; Broecker, Annette; Pointner, Winfried; Ganzmann, Ingo; Lenogue, Bruno; Guzonas, David; Herer, Christophe; Mattei, Jean-Marie; Tricottet, Matthieu; Masaoka, Hideaki; Soltesz, Vojtech; Tarkiainen, Seppo; Ui, Atsushi; Villalba, Cristina; Zigler, Gilbert

    2013-11-01

    This revision of the Knowledge Base for Emergency Core Cooling System Recirculation Reliability (NEA/CSNI/R (95)11) describes the current status (late 2012) of the knowledge base on emergency core cooling system (ECCS) and containment spray system (CSS) suction strainer performance and long-term cooling in operating power reactors. New reactors, such as the AP1000, EPR and APR1400 that are under construction in some Organization for Economic Co-operation and Development (OECD) member countries, are not addressed in detail in this revision. The containment sump (also known as the emergency or recirculation sump in pressurized water reactors (PWRs) and pressurized heavy water reactors (PHWRs) or the suppression pools or wet wells in boiling water reactors (BWRs)) and associated ECCS strainers are parts of the ECCS in both reactor types. All nuclear power plants (NPPs) are required to have an ECCS that is capable of mitigating a design basis accident (DBA). The containment sump collects reactor coolant, ECCS injection water, and containment spray solutions, if applicable, after a loss-of-coolant accident (LOCA). The sump serves as the water source to support long-term recirculation for residual heat removal, emergency core cooling, and containment atmosphere clean-up. This water source, the related pump suction inlets, and the piping between the source and inlets are important safety-related components. In addition, if fibrous material is deposited at the fuel element spacers, core cooling can be endangered. The performance of ECCS/CSS strainers was recognized many years ago as an important regulatory and safety issue. One of the primary concerns is the potential for debris generated by a jet of high-pressure coolant during a LOCA to clog the strainer and obstruct core cooling. The issue was considered resolved for all reactor types in the mid-1990s and the OECD/NEA/CSNI published report NEA/CSNI/R(95)11 in 1996 to document the state of knowledge of ECCS performance

  19. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  20. Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms.

    Science.gov (United States)

    Maggioni, Matteo; Boracchi, Giacomo; Foi, Alessandro; Egiazarian, Karen

    2012-09-01

    We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.e., self-similarity) along the fourth dimension of the group. Collaborative filtering is then realized by transforming each group through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way, the collaborative filtering provides estimates for each volume stacked in the group, which are then returned and adaptively aggregated to their original positions in the video. The proposed filtering procedure addresses several video processing applications, such as denoising, deblocking, and enhancement of both grayscale and color data. Experimental results prove the effectiveness of our method in terms of both subjective and objective visual quality, and show that it outperforms the state of the art in video denoising.

  1. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  2. Three-body models of the 6ΛΛHe and 9ΛBe hypernuclei with non-local interactions

    International Nuclear Information System (INIS)

    Theeten, M.; Baye, D.; Descouvemont, P.

    2005-01-01

    A three-body model involving non-local interactions is developed in configuration space. It is based on a hyperspherical-harmonics expansion and the Lagrange-mesh method. The 6 ΛΛ He and 9 Λ Be hypernuclei are studied as three-body αΛΛ and ααΛ systems. Recently proposed quark-model based ΛN and ΛΛ interactions are used. A non-local Λα interaction is obtained by folding the ΛN interaction with a Gaussian α density. Various phenomenological αα interactions are employed. The results agree within 1 keV with recent Faddeev calculations in momentum space. Energies and radii of 6 ΛΛ He and 9 Λ Be are compared with a purely local model. The B(E2) between the 9 Λ Be bound states is also calculated. The role of non-locality is discussed

  3. On a nonlocal Cauchy problem for differential inclusions

    Directory of Open Access Journals (Sweden)

    Y. G. Sficas

    2004-05-01

    Full Text Available We establish sufficient conditions for the existence of solutions for semilinear differential inclusions, with nonlocal conditions. We rely on a fixed-point theorem for contraction multivalued maps due to Covitz and Nadler andon the Schaefer's fixed-point theorem combined with lower semicontinuous multivalued operators with decomposable values.

  4. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering

    International Nuclear Information System (INIS)

    Jones, S. J.; Wiseman, H. M.; Doherty, A. C.

    2007-01-01

    In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined 'steering', a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob's state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob's state was subsequently called steering by Schroedinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox

  5. Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering

    Science.gov (United States)

    Jones, S. J.; Wiseman, H. M.; Doherty, A. C.

    2007-11-01

    In a recent work [Phys. Rev. Lett. 98, 140402 (2007)] we defined “steering,” a type of quantum nonlocality that is logically distinct from both nonseparability and Bell nonlocality. In the bipartite setting, it hinges on the question of whether Alice can affect Bob’s state at a distance through her choice of measurement. More precisely and operationally, it hinges on the question of whether Alice, with classical communication, can convince Bob that they share an entangled state under the circumstances that Bob trusts nothing that Alice says. We argue that if she can, then this demonstrates the nonlocal effect first identified in the famous Einstein-Podolsky-Rosen paper [Phys. Rev. 47, 777 (1935)] as a universal effect for pure entangled states. This ability of Alice to remotely prepare Bob’s state was subsequently called steering by Schrödinger, whose terminology we adopt. The phenomenon of steering has been largely overlooked, and prior to our work had not even been given a rigorous definition that is applicable to mixed states as well as pure states. Armed with our rigorous definition, we proved that steerable states are a strict subset of the entangled states, and a strict superset of the states that can exhibit Bell nonlocality. In this work we expand on these results and provide further examples of steerable states. We also elaborate on the connection with the original EPR paradox.

  6. Nonlocal elasticity tensors in dislocation and disclination cores

    International Nuclear Information System (INIS)

    Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.

    2017-01-01

    We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.

  7. Tomograms and the quest for single particle nonlocality

    International Nuclear Information System (INIS)

    Anisimov, M A; Caponigro, M; Mancini, S; Man'ko, V I

    2007-01-01

    By using a tomographic approach to quantum states, we rise the problem of nonlocality within a single particle (single degree of freedom). We propose a possible way to look for such effects on a qubit. Although a conclusive answer is far from being reached, we provide some reflections on the foundational ground

  8. Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Wubs, Martijn; Mortensen, N. Asger

    2018-01-01

    , the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behavior can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide...

  9. Nonlocal ultrafast magnetization dynamics in the high fluence limit

    NARCIS (Netherlands)

    Kuiper, K.C.; Malinowski, G.; Dalla Longa, F.; Koopmans, B.

    2011-01-01

    In order to explain a number of recent experimental observations of laser-induced femtosecond demagnetization in the large fluence limit, we discuss the consequences of a recently proposed nonlocal approach. A microscopic description of spin flip scattering is implemented in an effective three

  10. Hard-type nonlocality proof for two maximally entangled particles

    International Nuclear Information System (INIS)

    Kalamidas, D.

    2005-01-01

    Full text: We present, for the first time, a Hardy-type proof of nonlocality for two maximally entangled particles in a four-dimensional total Hilbert space. Furthermore, the violation of local realistic predictions occurs for 25 % of trials, exceeding the 9 % maximum obtained by Hardy for nonmaximally entangled states. (author)

  11. Second Order Impulsive Retarded Differential Inclusions with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    Hernán R. Henríquez

    2014-01-01

    Full Text Available In this work we establish some existence results for abstract second order Cauchy problems modeled by a retarded differential inclusion involving nonlocal and impulsive conditions. Our results are obtained by using fixed point theory for the measure of noncompactness.

  12. Nonlocal response in plasmonic waveguiding with extreme light confinement

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei

    2013-01-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allo...

  13. Nonlocal symmetries of a class of scalar and coupled nonlinear ordinary differential equations of any order

    International Nuclear Information System (INIS)

    Pradeep, R Gladwin; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2011-01-01

    In this paper, we devise a systematic procedure to obtain nonlocal symmetries of a class of scalar nonlinear ordinary differential equations (ODEs) of arbitrary order related to linear ODEs through nonlocal relations. The procedure makes use of the Lie point symmetries of the linear ODEs and the nonlocal connection to deduce the nonlocal symmetries of the corresponding nonlinear ODEs. Using these nonlocal symmetries, we obtain reduction transformations and reduced equations to specific examples. We find that the reduced equations can be explicitly integrated to deduce the general solutions for these cases. We also extend this procedure to coupled higher order nonlinear ODEs with specific reference to second-order nonlinear ODEs. (paper)

  14. Effects of two-temperature parameter and thermal nonlocal parameter on transient responses of a half-space subjected to ramp-type heating

    Science.gov (United States)

    Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng

    2017-07-01

    Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.

  15. Effect of the nonlocal exchange on the performance of the orbital-dependent correlation functionals from second-order perturbation theory.

    Science.gov (United States)

    Schweigert, Igor V; Bartlett, Rodney J

    2008-09-28

    Adding a fraction of the nonlocal exchange operator to the local orbital-dependent exchange potential improves the many-body perturbation expansion based on the Kohn-Sham determinant. The effect of such a hybrid scheme on the performance of the orbital-dependent correlation functional from the second-order perturbation theory (PT2H) is investigated numerically. A small fraction of the nonlocal exchange is often sufficient to ensure the existence of the self-consistent solution for the PT2H potential. In the He and Be atoms, including 37% of the nonlocal exchange leads to the correlation energies and electronic densities that are very close to the exact ones. In molecules, varying the fraction of the nonlocal exchange may result in the PT2H energy closely reproducing the CCSD(T) value; however such a fraction depends on the system and does not always result in an accurate electronic density. We also numerically verify that the "semicanonical" perturbation series includes most of the beneficial effects of the nonlocal exchange without sacrificing the locality of the exchange potential.

  16. Investigating dynamic characteristics of porous double-layered FG nanoplates in elastic medium via generalized nonlocal strain gradient elasticity

    Science.gov (United States)

    Reza Barati, Mohammad

    2017-09-01

    For the first time, a vibrating porous double-nanoplate system under in-plane periodic loads is modeled via the generalized nonlocal strain gradient theory (NSGT). Based on the proposed theory, one can examine both stiffness-softening and stiffness-hardening effects for a more accurate analysis of nanoplates. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. Modeling of porous double-layered nanoplate is conducted according to a refined four-variable plate theory with fewer field variables than first-order plate theory. The governing equations and related classical and nonclassical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. It is shown that porosities, nonlocal parameter, strain gradient parameter, material gradation, interlayer stiffness, elastic foundation, side-to-thickness and aspect ratios have a notable impact on the vibration behavior of nanoporous materials.

  17. Nonlocality, no-signalling, and Bellʼs theorem investigated by Weyl conformal differential geometry

    Science.gov (United States)

    De Martini, Francesco; Santamato, Enrico

    2014-12-01

    The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-\\frac{1}{2} leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-\\frac{1}{2} in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality.

  18. Demonstrating nonlocality-induced teleportation through Majorana bound states in a semiconductor nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peiyue [Department of Physics, Beijing Normal University, Beijing 100875 (China); Cao, Yunshan [School of Physics, Peking University, Beijing 100871 (China); Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gong, Ming [Department of Physics and Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2014-02-01

    It was predicted by Tewari et al. (2008) [15] that a teleportation-like electron transfer phenomenon is one of the novel consequences of the existence of Majorana fermion, because of the inherently nonlocal nature. In this work we consider a concrete realization and measurement scheme for this interesting behavior, based on a setup consisting of a pair of quantum dots which are tunnel-coupled to a semiconductor nanowire and are jointly measured by two point-contact detectors. We analyze the teleportation dynamics in the presence of measurement back-action and discuss how the teleportation events can be identified from the current trajectories of strong response detectors.

  19. Nonlocality, no-signalling, and Bell's theorem investigated by Weyl conformal differential geometry

    International Nuclear Information System (INIS)

    Martini, Francesco De; Santamato, Enrico

    2014-01-01

    The principles and methods of conformal quantum geometrodynamics based on Weyl differential geometry are presented. The theory applied to the case of the relativistic single quantum spin-(1/2) leads to a novel and unconventional derivation of the Dirac equation. The further extension of the theory to the case of two-spins-(1/2) in the EPR entangled state and to the related violation of Bell inequalities leads, by an exact non-relativistic analysis, to an insightful resolution of all paradoxes implied by quantum nonlocality. (paper)

  20. Dimension-based attention in visual short-term memory.

    Science.gov (United States)

    Pilling, Michael; Barrett, Doug J K

    2016-07-01

    We investigated how dimension-based attention influences visual short-term memory (VSTM). This was done through examining the effects of cueing a feature dimension in two perceptual comparison tasks (change detection and sameness detection). In both tasks, a memory array and a test array consisting of a number of colored shapes were presented successively, interleaved by a blank interstimulus interval (ISI). In Experiment 1 (change detection), the critical event was a feature change in one item across the memory and test arrays. In Experiment 2 (sameness detection), the critical event was the absence of a feature change in one item across the two arrays. Auditory cues indicated the feature dimension (color or shape) of the critical event with 80 % validity; the cues were presented either prior to the memory array, during the ISI, or simultaneously with the test array. In Experiment 1, the cue validity influenced sensitivity only when the cue was given at the earliest position; in Experiment 2, the cue validity influenced sensitivity at all three cue positions. We attributed the greater effectiveness of top-down guidance by cues in the sameness detection task to the more active nature of the comparison process required to detect sameness events (Hyun, Woodman, Vogel, Hollingworth, & Luck, Journal of Experimental Psychology: Human Perception and Performance, 35; 1140-1160, 2009).

  1. An approach for quantitatively analyzing the genuine tripartite nonlocality of general three-qubit states

    Science.gov (United States)

    Su, Zhaofeng; Li, Lvzhou; Ling, Jie

    2018-04-01

    Nonlocality is an important resource for quantum information processing. Genuine tripartite nonlocality, which is sufficiently confirmed by the violation of Svetlichny inequality, is a kind of more precious resource than the standard one. The genuine tripartite nonlocality is usually quantified by the amount of maximal violation of Svetlichny inequality. The problem of detecting and quantifying the genuine tripartite nonlocality of quantum states is of practical significance but still open for the case of general three-qubit quantum states. In this paper, we quantitatively investigate the genuine nonlocality of three-qubit states, which not only include pure states but also include mixed states. Firstly, we derive a simplified formula for the genuine nonlocality of a general three-qubit state, which is a function of the corresponding three correlation matrices. Secondly, we develop three properties of the genuine nonlocality which can help us to analyze the genuine nonlocality of complex states and understand the nature of quantum nonlocality. Further, we get analytical results of genuine nonlocality for two classes of three-qubit states which have special correlation matrices. In particular, the genuine nonlocality of generalized three-qubit GHZ states, which is derived by Ghose et al. (Phys. Rev. Lett. 102, 250404, 2009), and that of three-qubit GHZ-symmetric states, which is derived by Paul et al. (Phys. Rev. A 94, 032101, 2016), can be easily derived by applying the strategy and properties developed in this paper.

  2. Rationale for switching to nonlocal functionals in density functional theory.

    Science.gov (United States)

    Lazić, P; Atodiresei, N; Caciuc, V; Brako, R; Gumhalter, B; Blügel, S

    2012-10-24

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  3. Rationale for switching to nonlocal functionals in density functional theory

    International Nuclear Information System (INIS)

    Lazić, P; Atodiresei, N; Caciuc, V; Blügel, S; Brako, R; Gumhalter, B

    2012-01-01

    Density functional theory (DFT) has been steadily improving over the past few decades, becoming the standard tool for electronic structure calculations. The early local functionals (LDA) were eventually replaced by more accurate semilocal functionals (GGA) which are in use today. A major persisting drawback is the lack of the nonlocal correlation which is at the core of dispersive (van der Waals) forces, so that a large and important class of systems remains outside the scope of DFT. The vdW-DF correlation functional of Langreth and Lundqvist, published in 2004, was the first nonlocal functional which could be easily implemented. Beyond expectations, the nonlocal functional has brought significant improvement to systems that were believed not to be sensitive to nonlocal correlations. In this paper, we use the example of graphene nanodomes growing on the Ir(111) surface, where with an increase of the size of the graphene islands the character of the bonding changes from strong chemisorption towards almost pure physisorption. We demonstrate how the seamless character of the vdW-DF functionals makes it possible to treat all regimes self-consistently, proving to be a systematic and consistent improvement of DFT regardless of the nature of bonding. We also discuss the typical surface science example of CO adsorption on (111) surfaces of metals, which shows that the nonlocal correlation may also be crucial for strongly chemisorbed systems. We briefly discuss open questions, in particular the choice of the most appropriate exchange part of the functional. As the vdW-DF begins to appear implemented self-consistently in a number of popular DFT codes, with numerical costs close to the GGA calculations, we draw the attention of the DFT community to the advantages and benefits of the adoption of this new class of functionals.

  4. Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....

  5. Non-Local Sparse Image Inpainting for Document Bleed-Through Removal

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif

    2018-05-01

    Full Text Available Bleed-through is a frequent, pervasive degradation in ancient manuscripts, which is caused by ink seeped from the opposite side of the sheet. Bleed-through, appearing as an extra interfering text, hinders document readability and makes it difficult to decipher the information contents. Digital image restoration techniques have been successfully employed to remove or significantly reduce this distortion. This paper proposes a two-step restoration method for documents affected by bleed-through, exploiting information from the recto and verso images. First, the bleed-through pixels are identified, based on a non-stationary, linear model of the two texts overlapped in the recto-verso pair. In the second step, a dictionary learning-based sparse image inpainting technique, with non-local patch grouping, is used to reconstruct the bleed-through-contaminated image information. An overcomplete sparse dictionary is learned from the bleed-through-free image patches, which is then used to estimate a befitting fill-in for the identified bleed-through pixels. The non-local patch similarity is employed in the sparse reconstruction of each patch, to enforce the local similarity. Thanks to the intrinsic image sparsity and non-local patch similarity, the natural texture of the background is well reproduced in the bleed-through areas, and even a possible overestimation of the bleed through pixels is effectively corrected, so that the original appearance of the document is preserved. We evaluate the performance of the proposed method on the images of a popular database of ancient documents, and the results validate the performance of the proposed method compared to the state of the art.

  6. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2011-07-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  7. Non-local ground-state functional for quantum spin chains with translational broken symmetry

    International Nuclear Information System (INIS)

    Libero, Valter L.; Penteado, Poliana H.; Veiga, Rodrigo S.

    2011-01-01

    Full text. Thanks to the development and use of new materials with special doping, it becomes relevant the study of Heisenberg spin-chains with broken translational symmetry, induced for instance by finite-size effects, bond defects or by impurity spin in the chain. The exact numerical results demands huge computational efforts, due to the size of the Hilbert space involved and the lack of symmetry to exploit. Density Functional Theory (DFT) has been considered a simple alternative to obtain ground-state properties for such systems. Usually, DFT starts with a uniform system to build the correlation energy and after implement a local approximation to construct local functionals. Based on our prove of the Hohenberg-Kohn theorem for Heisenberg models, and in order to describe more realistic models, we have recently developed a non-local exchange functional for the ground-state energy of quantum-spin chains. A alternating-bond chain is used to obtain the correlation energy and a local unit-cell approximation - LUCA, is defined in the context of DFT. The alternating chain is a good starting point to construct functionals since it is intrinsically non-homogeneous, therefore instead of the usual local approximation (like LDA for electronic systems) we need to introduce an approximation based upon a unit cell concept, that renders a non-local functional in the bond exchange interaction. The agreement with exact numerical data (obtained only for small chains, although the functional can be applied for chains with arbitrary size) is significantly better than in our previous local formulation, even for chains with several ferromagnetic or antiferromagnetic bond defects. These results encourage us to extend the concept of LUCA for chains with alternating-spin magnitudes. We also have constructed a non-local functional based on an alternating-spin chain, instead of a local alternating-bond, using spin-wave-theory. Because of its non-local nature, this functional is expected to

  8. Term Based Comparison Metrics for Controlled and Uncontrolled Indexing Languages

    Science.gov (United States)

    Good, B. M.; Tennis, J. T.

    2009-01-01

    Introduction: We define a collection of metrics for describing and comparing sets of terms in controlled and uncontrolled indexing languages and then show how these metrics can be used to characterize a set of languages spanning folksonomies, ontologies and thesauri. Method: Metrics for term set characterization and comparison were identified and…

  9. Nonlocal continuum analysis of a nonlinear uniaxial elastic lattice system under non-uniform axial load

    Science.gov (United States)

    Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud

    2016-09-01

    The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.

  10. Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids. 1. Algorithms and parallelization

    International Nuclear Information System (INIS)

    Frink, L.J.D.; Salinger, A.G.

    2000-01-01

    Fluids adsorbed near surfaces, near macromolecules, and in porous materials are inhomogeneous, exhibiting spatially varying density distributions. This inhomogeneity in the fluid plays an important role in controlling a wide variety of complex physical phenomena including wetting, self-assembly, corrosion, and molecular recognition. One of the key methods for studying the properties of inhomogeneous fluids in simple geometries has been density functional theory (DFT). However, there has been a conspicuous lack of calculations in complex two- and three-dimensional geometries. The computational difficulty arises from the need to perform nested integrals that are due to nonlocal terms in the free energy functional. These integral equations are expensive both in evaluation time and in memory requirements; however, the expense can be mitigated by intelligent algorithms and the use of parallel computers. This paper details the efforts to develop efficient numerical algorithms so that nonlocal DFT calculations in complex geometries that require two or three dimensions can be performed. The success of this implementation will enable the study of solvation effects at heterogeneous surfaces, in zeolites, in solvated (bio)polymers, and in colloidal suspensions

  11. Nonlocal String Theories on AdS3 x S3 and Stable Non-Supersymmetric Backgrounds

    International Nuclear Information System (INIS)

    Silverstein, Eva M

    2002-01-01

    We exhibit a simple class of exactly marginal ''double-trace'' deformations of two dimensional CFTs which have AdS 3 duals, in which the deformation is given by a product of left and right-moving U(1) currents. In this special case the deformation on AdS 3 is generated by a local boundary term in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the deformation is non-local in six dimensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due to the simplicity of the deformation we can explicitly make computations in the non-local string theory and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the deformation on closed strings and on D-branes. The examples we analyze include a supersymmetry-breaking but exactly marginal ''double-trace'' deformation, which is dual to a string theory in which no destabilizing tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We explain how this cancellation works on the gravity side in string perturbation theory, and also non-perturbatively at leading order in the deformation parameter. We also discuss possible flat space limits of our construction

  12. Generalized non-Local Resistance Expression and its Application in F/N/F Spintronic Structure with Graphene Channel

    Science.gov (United States)

    Wei, Huazhou; Fu, Shiwei

    We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.

  13. Nonlocal excitonic–mechanical interaction in a nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)

    2016-11-15

    The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.

  14. On a class of nonlocal wave equations from applications

    Science.gov (United States)

    Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih

    2016-06-01

    We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.

  15. Stability issues of black hole in non-local gravity

    Science.gov (United States)

    Myung, Yun Soo; Park, Young-Jai

    2018-04-01

    We discuss stability issues of Schwarzschild black hole in non-local gravity. It is shown that the stability analysis of black hole for the unitary and renormalizable non-local gravity with γ2 = - 2γ0 cannot be performed in the Lichnerowicz operator approach. On the other hand, for the unitary and non-renormalizable case with γ2 = 0, the black hole is stable against the metric perturbations. For non-unitary and renormalizable local gravity with γ2 = - 2γ0 = const (fourth-order gravity), the small black holes are unstable against the metric perturbations. This implies that what makes the problem difficult in stability analysis of black hole is the simultaneous requirement of unitarity and renormalizability around the Minkowski spacetime.

  16. Positive solutions for nonlocal dispersal equation with spatial degeneracy

    Science.gov (United States)

    Sun, Jian-Wen

    2018-02-01

    In this paper, we consider the positive solutions of the nonlocal dispersal equation \\int \\limits _{Ω }J(x,y)[u(y)-u(x)]dy=-λ m(x)u(x)+[c(x)+ɛ ]u^p(x) \\quad { in }\\bar{Ω }, where Ω \\subset R^N is a bounded domain, λ ,ɛ and p>1 are positive constants. The dispersal kernel J and the coefficient c( x) are nonnegative, but c( x) has a degeneracy in some subdomain of Ω . In order to study the influence of heterogeneous environment on the nonlocal system, we study the sharp spatial patterns of positive solutions as ɛ → 0. We obtain that the positive solutions always have blow-up asymptotic profiles in \\bar{Ω }. Meanwhile, we find that the profiles in degeneracy domain are different from the domain without degeneracy.

  17. Quantum nonlocality in two three-level systems

    International Nuclear Information System (INIS)

    Acin, A.; Durt, T.; Gisin, N.; Latorre, J.I.

    2002-01-01

    Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable

  18. Cosmological perturbations in non-local higher-derivative gravity

    International Nuclear Information System (INIS)

    Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S.

    2014-01-01

    We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model

  19. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.

    2014-06-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the \\'learning\\' processes.

  20. Observation of long term potentiation in papain-based memory devices

    KAUST Repository

    Bag, A.; Hota, Mrinal Kanti; Mallik, Sandipan B.; Maì ti, Chinmay Kumar

    2014-01-01

    Biological synaptic behavior in terms of long term potentiation has been observed in papain-based (plant protein) memory devices (memristors) for the first time. Improvement in long term potentiation depends on pulse amplitude and width (duration). Continuous/repetitive dc voltage sweep leads to an increase in memristor conductivity leading to a long term memory in the 'learning' processes.

  1. Genuinely high-dimensional nonlocality optimized by complementary measurements

    International Nuclear Information System (INIS)

    Lim, James; Ryu, Junghee; Yoo, Seokwon; Lee, Changhyoup; Bang, Jeongho; Lee, Jinhyoung

    2010-01-01

    Qubits exhibit extreme nonlocality when their state is maximally entangled and this is observed by mutually unbiased local measurements. This criterion does not hold for the Bell inequalities of high-dimensional systems (qudits), recently proposed by Collins-Gisin-Linden-Massar-Popescu and Son-Lee-Kim. Taking an alternative approach, called the quantum-to-classical approach, we derive a series of Bell inequalities for qudits that satisfy the criterion as for the qubits. In the derivation each d-dimensional subsystem is assumed to be measured by one of d possible measurements with d being a prime integer. By applying to two qubits (d=2), we find that a derived inequality is reduced to the Clauser-Horne-Shimony-Holt inequality when the degree of nonlocality is optimized over all the possible states and local observables. Further applying to two and three qutrits (d=3), we find Bell inequalities that are violated for the three-dimensionally entangled states but are not violated by any two-dimensionally entangled states. In other words, the inequalities discriminate three-dimensional (3D) entanglement from two-dimensional (2D) entanglement and in this sense they are genuinely 3D. In addition, for the two qutrits we give a quantitative description of the relations among the three degrees of complementarity, entanglement and nonlocality. It is shown that the degree of complementarity jumps abruptly to very close to its maximum as nonlocality starts appearing. These characteristics imply that complementarity plays a more significant role in the present inequality compared with the previously proposed inequality.

  2. Persistent chimera states in nonlocally coupled phase oscillators

    OpenAIRE

    Suda, Yusuke; Okuda, Koji

    2015-01-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that...

  3. Multiple-Trace Operators and Non-Local String Theories

    International Nuclear Information System (INIS)

    Silverstein, Eva M.

    2001-01-01

    We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal

  4. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  5. Stable solutions of nonlocal electron heat transport equations

    International Nuclear Information System (INIS)

    Prasad, M.K.; Kershaw, D.S.

    1991-01-01

    Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution

  6. Nonlinear degenerate cross-diffusion systems with nonlocal interaction

    OpenAIRE

    Di Francesco, M.; Esposito, A.; Fagioli, S.

    2017-01-01

    We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...

  7. Gender-Based Violence in India: Long-Term Trends

    Science.gov (United States)

    Simister, John; Mehta, Parnika S.

    2010-01-01

    This article examines long-term trends in Indian society regarding domestic violence between husband and wife, and attitudes to such violence. This article analyzes crime data and uses data from several Indian household surveys: "Work Attitudes and Spending" surveys (1992 to 2007); "World Values Survey" (1990, 1995, 2001, and…

  8. Extending Newton's law from nonlocal-in-time kinetic energy

    International Nuclear Information System (INIS)

    Suykens, J.A.K.

    2009-01-01

    We study a new equation of motion derived from a context of classical Newtonian mechanics by replacing the kinetic energy with a form of nonlocal-in-time kinetic energy. It leads to a hypothetical extension of Newton's second law of motion. In a first stage the obtainable solution form is studied by considering an unknown value for the nonlocality time extent. This is done in relation to higher-order Euler-Lagrange equations and a Hamiltonian framework. In a second stage the free particle case and harmonic oscillator case are studied and compared with quantum mechanical results. For a free particle it is shown that the solution form is a superposition of the classical straight line motion and a Fourier series. We discuss the link with quanta interpretations made in Pais-Uhlenbeck oscillators. The discrete nature emerges from the continuous time setting through application of the least action principle. The harmonic oscillator case leads to energy levels that approximately correspond to the quantum harmonic oscillator levels. The solution to the extended Newton equation also admits a quantization of the nonlocality time extent, which is determined by the classical oscillator frequency. The extended equation suggests a new possible way for understanding the relationship between classical and quantum mechanics

  9. Image fusion via nonlocal sparse K-SVD dictionary learning.

    Science.gov (United States)

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  10. Multiscale Hybrid Nonlocal Means Filtering Using Modified Similarity Measure

    Directory of Open Access Journals (Sweden)

    Zahid Hussain Shamsi

    2015-01-01

    Full Text Available A new multiscale implementation of nonlocal means filtering (MHNLM for image denoising is proposed. The proposed algorithm also introduces a modification of the similarity measure for patch comparison. Assuming the patch as an oriented surface, the notion of a normal vectors patch is introduced. The inner product of these normal vectors patches is defined and then used in the weighted Euclidean distance of intensity patches as the weight factor. The algorithm involves two steps: the first step is a multiscale implementation of an accelerated nonlocal means filtering in the discrete stationary wavelet domain to obtain a refined version of the noisy patches for later comparison. The next step is to apply the proposed modification of standard nonlocal means filtering to the noisy image using the reference patches obtained in the first step. These refined patches contain less noise, and consequently the computation of normal vectors and partial derivatives is more precise. Experimental results show equivalent or better performance of the proposed algorithm compared to various state-of-the-art algorithms.

  11. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    International Nuclear Information System (INIS)

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-01-01

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge

  12. Dissipation and nonlocality in a general expanding braneworld universe

    International Nuclear Information System (INIS)

    Remazeilles, Mathieu

    2009-01-01

    We study the evolution of both scalar and tensor cosmological perturbations in a Randall-Sundrum braneworld having an arbitrary expansion history. We adopt a four dimensional point of view where the degrees of freedom on the brane constitute an open quantum system coupled to an environment composed of the bulk gravitons. Because of the expansion of the universe, the brane degrees of freedom and the bulk degrees of freedom interact as they propagate forward in time. Brane excitations may decay through the emission of bulk gravitons which may escape to future infinity, leading to a sort of dissipation from the four dimensional point of view of an observer on the brane. Bulk gravitons may also be reflected off of the curved bulk and reabsorbed by the brane, thereby transformed into quanta on the brane, leading to a sort of nonlocality from the four dimensional point of view. The dissipation and the nonlocality are encoded into the retarded bulk propagator. We estimate the dissipation rates of the bound state as well as of the matter degrees of freedom at different cosmological epochs and for different sources of matter on the brane. We use a near-brane limit of the bulk geometry for the study when purely nonlocal bulk effects are encountered.

  13. Feature-based and object-based attention orientation during short-term memory maintenance.

    Science.gov (United States)

    Ku, Yixuan

    2015-12-01

    Top-down attention biases the short-term memory (STM) processing at multiple stages. Orienting attention during the maintenance period of STM by a retrospective cue (retro-cue) strengthens the representation of the cued item and improves the subsequent STM performance. In a recent article, Backer et al. (Backer KC, Binns MA, Alain C. J Neurosci 35: 1307-1318, 2015) extended these findings from the visual to the auditory domain and combined electroencephalography to dissociate neural mechanisms underlying feature-based and object-based attention orientation. Both event-related potentials and neural oscillations explained the behavioral benefits of retro-cues and favored the theory that feature-based and object-based attention orientation were independent. Copyright © 2015 the American Physiological Society.

  14. Multipole surface solitons supported by the interface between linear media and nonlocal nonlinear media

    International Nuclear Information System (INIS)

    Shi, Zhiwei; Li, Huagang; Guo, Qi

    2012-01-01

    We address multipole surface solitons occurring at the interface between a linear medium and a nonlocal nonlinear medium. We show the impact of nonlocality, the propagation constant, and the linear index difference of two media on the properties of the surface solitons. We find that there exist a threshold value of the degree of the nonlocality at the same linear index difference of two media, only when the degree of the nonlocality goes beyond the value, the multipole surface solitons can be stable. -- Highlights: ► We show the impact of nonlocality and the linear index difference of two media on the properties of the surface solitons. ► For the surface solitons, only when the degree of the nonlocality goes beyond a threshold value, they can be stable. ► The number of poles and the index difference of two media can all influence the threshold value.

  15. Nonlocal thermoelectric effects and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet device

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2013-07-01

    We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.

  16. Nonlocal electrodynamics and low-temperature magnetization of clean high-κ superconductors

    International Nuclear Information System (INIS)

    Kogan, V.G.; Gurevich, A.; Cho, J.H.; Johnston, D.C.; Xu, M.; Thompson, J.R.; Martynovich, A.

    1996-01-01

    We show that magnetic properties of clean superconductors with a large Ginzburg-Landau parameter κ at low temperatures are affected by the nonlocality of the microscopic current-field relation and can be described by modified London equations. We argue that for clean materials at low temperatures, the standard London formula for the reversible magnetization in intermediate fields, M∼ln(H c2 /B), should contain the field H 0 ∼φ 0 /ρ 2 instead of H c2 ∼φ 0 /ξ 2 (T), with ρ being the nonlocality range on the order of ξ 0 , the zero-T coherence length. Since ρ depends weakly on T, the magnetization should exhibit an approximate scaling M(T,B)=X(T)Y(B) as observed in Bi- and Tl-based compounds in a broad temperature domain well below T c . Our expression for the magnetization reduces to the standard London result near T c and at any temperature for the dirty case. Implications of our results for interpretation of neutron scattering data and for procedures of extracting the penetration depth are discussed. copyright 1996 The American Physical Society

  17. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)

  18. How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems

    OpenAIRE

    Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.

    2006-01-01

    We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.

  19. Nonlocal symmetry generators and explicit solutions of some partial differential equations

    International Nuclear Information System (INIS)

    Qin Maochang

    2007-01-01

    The nonlocal symmetry of a partial differential equation is studied in this paper. The partial differential equation written as a conservation law can be transformed into an equivalent system by introducing a suitable potential. The nonlocal symmetry group generators of original partial differential equations can be obtained through their equivalent system. Further, new explicit solutions can be constructed from the newly obtained symmetry generators. The Burgers equation is chosen as an example; many new valuable explicit solutions and nonlocal symmetry generators are presented

  20. The Havriliak-Negami susceptibility as a nonlinear and nonlocal process

    International Nuclear Information System (INIS)

    Miskinis, Paulius

    2009-01-01

    A theoretical substantiation of the Cole-Cole, Cole-Davidson and Havriliak-Negami types of susceptibilities is presented. These types of susceptibility are shown to be a manifestation of weak nonlocality and nonlinearity. The Debye susceptibility corresponds to linear and local relaxation, the Cole-Cole susceptibility being linear and nonlocal; the Cole-Davidson susceptibility is nonlinear and local and the Havriliak-Negami susceptibility corresponds to nonlinear and nonlocal relaxation.

  1. Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol.

    Science.gov (United States)

    Branciard, Cyril; Gisin, Nicolas

    2011-07-08

    The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.

  2. A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis.

    Science.gov (United States)

    Buttenschön, Andreas; Hillen, Thomas; Gerisch, Alf; Painter, Kevin J

    2018-01-01

    Cellular adhesion provides one of the fundamental forms of biological interaction between cells and their surroundings, yet the continuum modelling of cellular adhesion has remained mathematically challenging. In 2006, Armstrong et al. proposed a mathematical model in the form of an integro-partial differential equation. Although successful in applications, a derivation from an underlying stochastic random walk has remained elusive. In this work we develop a framework by which non-local models can be derived from a space-jump process. We show how the notions of motility and a cell polarization vector can be naturally included. With this derivation we are able to include microscopic biological properties into the model. We show that particular choices yield the original Armstrong model, while others lead to more general models, including a doubly non-local adhesion model and non-local chemotaxis models. Finally, we use random walk simulations to confirm that the corresponding continuum model represents the mean field behaviour of the stochastic random walk.

  3. Tug-of-war model for the two-bandit problem: nonlocally-correlated parallel exploration via resource conservation.

    Science.gov (United States)

    Kim, Song-Ju; Aono, Masashi; Hara, Masahiko

    2010-07-01

    We propose a model - the "tug-of-war (TOW) model" - to conduct unique parallel searches using many nonlocally-correlated search agents. The model is based on the property of a single-celled amoeba, the true slime mold Physarum, which maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a "nonlocal correlation" among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). This nonlocal correlation was shown to be useful for decision making in the case of a dilemma. The multi-armed bandit problem is to determine the optimal strategy for maximizing the total reward sum with incompatible demands, by either exploiting the rewards obtained using the already collected information or exploring new information for acquiring higher payoffs involving risks. Our model can efficiently manage the "exploration-exploitation dilemma" and exhibits good performances. The average accuracy rate of our model is higher than those of well-known algorithms such as the modified -greedy algorithm and modified softmax algorithm, especially, for solving relatively difficult problems. Moreover, our model flexibly adapts to changing environments, a property essential for living organisms surviving in uncertain environments.

  4. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  5. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    Science.gov (United States)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  6. Dynamics of embedded curves by doubly-nonlocal reaction-diffusion systems

    Science.gov (United States)

    von Brecht, James H.; Blair, Ryan

    2017-11-01

    We study a class of nonlocal, energy-driven dynamical models that govern the motion of closed, embedded curves from both an energetic and dynamical perspective. Our energetic results provide a variety of ways to understand physically motivated energetic models in terms of more classical, combinatorial measures of complexity for embedded curves. This line of investigation culminates in a family of complexity bounds that relate a rather broad class of models to a generalized, or weighted, variant of the crossing number. Our dynamic results include global well-posedness of the associated partial differential equations, regularity of equilibria for these flows as well as a more detailed investigation of dynamics near such equilibria. Finally, we explore a few global dynamical properties of these models numerically.

  7. Nonlocality of a free atomic wave packet

    International Nuclear Information System (INIS)

    Haug, F.; Freyberger, M.; Wodkiewicz, K.

    2004-01-01

    A simple model allows us to study the nonclassical behavior of slowly moving atoms interacting with a quantized field. Atom and field become entangled and their joint state can be identified as a mesoscopic 'Schroedinger cat'. By introducing appropriate observables for atom and field and by analyzing correlations between them based on a Bell-type inequality we can show the corresponding nonclassical behavior

  8. Locality or non-locality in quantum mechanics: hidden variables without ''spooky action-at-a-distance''

    International Nuclear Information System (INIS)

    Aharonov, Y.; Scully, M.

    2001-01-01

    The folklore notion of the ''Non-Locality of Quantum Mechanics'' is examined from the point of view of hidden-variables theories according to Belinfante's classification in his Survey of Hidden Variables Theories. It is here shown that in the case of EPR, there exist hidden variables theories that successfully reproduce quantum-mechanical predictions, but which are explicitly local. Since such theories do not fall into Belinfante's classification, we propose an expanded classification which includes similar theories, which we term as theories of the ''third'' kind. Causal implications of such theories are explored. (orig.)

  9. An entropic approach to magnetized nonlocal transport and other kinetic phenomena in high-energy-density plasmas

    International Nuclear Information System (INIS)

    Del-Sorbo, Dario

    2015-01-01

    Hydrodynamic simulations in high-energy-density physics and inertial confinement fusion require a detailed description of energy fluxes. The leading mechanism is the electron transport, which can be a nonlocal phenomenon that needs to be described with quasistationary and simplified Fokker-Planck models in large scale hydrodynamic codes. My thesis is dedicated to the development of a new nonlocal transport model based on a fast-moving-particles collision operator and on a first moment Fokker-Planck equation, simplified with an entropic closure relation. Such a closure enables a better description of the electron distribution function in the limit of high anisotropies, where small scale electrostatic instabilities could be excited. This new model, so called M1, is successfully compared with the well known nonlocal electron transport model proposed by Schurtz, Nicolai and Busquet, using different collision operators, and with the reduced Fokker-Planck model, based on a small-anisotropies polynomial closure relation (P1). Several typical configurations of heat transport are considered. We show that the M1 entropic model may operate in two and three dimensions and is able to account for electron transport modifications in external magnetic fields. Moreover, our model enables to compute realistic electron distribution functions, which can be used for kinetic studies, as for the plasma stability in the transport zone. It is demonstrated that the electron energy transport may strongly modify damping of Langmuir and ion acoustic waves, while the simplified nonlocal transport models are not able to describe accurately the modifications of the distribution function and plasma wave damping. The structure of the M1 model allows to naturally take into account self-generated magnetic fields, which play a crucial role in multidimensional simulations. Moreover, magnetic fields could also be used for the focusing of energetic particles in alternative ignition schemes. The M1 model

  10. A new Expert Finding model based on Term Correlation Matrix

    Directory of Open Access Journals (Sweden)

    Ehsan Pornour

    2015-09-01

    Full Text Available Due to the enormous volume of unstructured information available on the Web and inside organization, finding an answer to the knowledge need in a short time is difficult. For this reason, beside Search Engines which don’t consider users individual characteristics, Recommender systems were created which use user’s previous activities and other individual characteristics to help users find needed knowledge. Recommender systems usage is increasing every day. Expert finder systems also by introducing expert people instead of recommending information to users have provided this facility for users to ask their questions form experts. Having relation with experts not only causes information transition, but also with transferring experiences and inception causes knowledge transition. In this paper we used university professors academic resume as expert people profile and then proposed a new expert finding model that recommends experts to users query. We used Term Correlation Matrix, Vector Space Model and PageRank algorithm and proposed a new hybrid model which outperforms conventional methods. This model can be used in internet environment, organizations and universities that experts have resume dataset.

  11. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2011-09-14

    We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity. © 2011 American Institute of Physics

  12. Specker's parable of the overprotective seer: A road to contextuality, nonlocality and complementarity

    International Nuclear Information System (INIS)

    Liang, Yeong-Cherng; Spekkens, Robert W.; Wiseman, Howard M.

    2011-01-01

    In 1960, the mathematician Ernst Specker described a simple example of nonclassical correlations, the counter-intuitive features of which he dramatized using a parable about a seer, who sets an impossible prediction task to his daughter's suitors. We revisit this example here, using it as an entree to three central concepts in quantum foundations: contextuality, Bell-nonlocality, and complementarity. Specifically, we show that Specker's parable offers a narrative thread that weaves together a large number of results, including the following: the impossibility of measurement-noncontextual and outcome-deterministic ontological models of quantum theory (the 1967 Kochen-Specker theorem), in particular, the recent state-specific pentagram proof of Klyachko; the impossibility of Bell-local models of quantum theory (Bell's theorem), especially the proofs by Mermin and Hardy and extensions thereof; the impossibility of a preparation-noncontextual ontological model of quantum theory; the existence of triples of positive operator valued measures (POVMs) that can be measured jointly pairwise but not triplewise. Along the way, several novel results are presented: a generalization of a theorem by Fine connecting the existence of a joint distribution over outcomes of counterfactual measurements to the existence of a measurement-noncontextual and outcome-deterministic ontological model; a generalization of Klyachko's proof of the Kochen-Specker theorem from pentagrams to a family of star polygons; a proof of the Kochen-Specker theorem in the style of Hardy's proof of Bell's theorem (i.e., one that makes use of the failure of the transitivity of implication for counterfactual statements); a categorization of contextual and Bell-nonlocal correlations in terms of frustrated networks; a derivation of a new inequality testing preparation noncontextuality; some novel results on the joint measurability of POVMs and the question of whether these can be modeled noncontextually. Finally

  13. Variational Framework for Non-Local Inpainting

    Directory of Open Access Journals (Sweden)

    Vadim Fedorov

    2015-12-01

    Full Text Available Image inpainting aims to obtain a visually plausible image interpolation in a region of the image in which data is missing due to damage or occlusion. Usually, the only available information is the portion of the image outside the inpainting domain. Besides its numerous applications,the inpainting problem is of theoretical interest since its analysis involves an understanding of the self-similarity present in natural images. In this work, we present a detailed description and implementation of three exemplar-based inpainting methods derived from the variational framework introduced by Arias et al.

  14. Smartphone based monitoring system for long-term sleep assessment.

    Science.gov (United States)

    Domingues, Alexandre

    2015-01-01

    The diagnosis of sleep disorders, highly prevalent in Western countries, typically involves sophisticated procedures and equipment that are highly intrusive to the patient. The high processing capabilities and storage capacity of current portable devices, together with a big range of available sensors, many of them with wireless capabilities, create new opportunities and change the paradigms in sleep studies. In this work, a smartphone based sleep monitoring system is presented along with the details of the hardware, software and algorithm implementation. The aim of this system is to provide a way for subjects, with no pre-diagnosed sleep disorders, to monitor their sleep habits, and on the initial screening of abnormal sleep patterns.

  15. What is the link between nonlocalizing sestamibi scans, multigland disease, and persistent hypercalcemia? A study of 401 consecutive patients undergoing parathyroidectomy.

    Science.gov (United States)

    Chiu, Bill; Sturgeon, Cord; Angelos, Peter

    2006-09-01

    We hypothesized that nonlocalizing sestamibi scans would correlate with multigland disease and persistent primary hyperparathyroidism. We reviewed records for 401 consecutive patients who underwent parathyroidectomy from 1999 to 2004. Gender, age, preoperative imaging, surgical findings, gland weight and volume, and 6-month calcium levels (Ca) were examined. We identified 289 women and 112 men, 297 of whom had a preoperative sestamibi scan localized to a single gland (localized group; LG). Ninety-six percent of the LG were found to have single-gland disease, and 4% had multigland disease (MGD). In the nonlocalized group (NLG), 76% had single-gland disease and 24% MGD. Mean gland weight was greater in the LG than in the NLG (1128 mg vs 699 mg; P localizing sestamibi scan had a positive predictive value (PPV) of 96% and a likelihood ratio of 2.29 for predicting "curative" intraoperative parathyroid hormone drop after removal of a single abnormal gland. Patients were stratified into normocalcemic (NCa) and hypercalcemic (HCa) groups based on 6-month postoperative serum calcium data (n = 328). HCa incidence at 6 months did not differ significantly between the LG (5%) and NLG (3%). A localizing scan had a PPV of 95% for normocalcemia at 6 months. A nonlocalizing scan had a PPV of 21% for HCa at 6 months. Nonlocalizing sestamibi scans were more common in primary hyperparathyroidism with MGD and were associated with smaller-volume abnormal glands found at operation. Preoperative sestamibi scan-results did not predict HCa at 6 months.

  16. Nonlocal nature of the resistance in classical ballistic transport

    International Nuclear Information System (INIS)

    Sukhorukov, E.V.; Levinson, I.B.

    1990-01-01

    An investigation is made of the resistance of ballistic microstructures formed in the two-dimensional electron gas of a GaAs/AlGaAs heterojunction representing combinations of long channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement method) is unrelated to the quantum nature of the electron behavior, but is solely due to the ballistic nature of microstructures and does not disappear in the classical limit. An analog of the Landauer equation is obtained for the resistance measured by the four-probe method allowing for the geometry of the measuring probes

  17. Plasmon-enhanced fluorescence near nonlocal metallic nanospheres

    DEFF Research Database (Denmark)

    Tserkezis, Christos; Stefanou, N.; Wubs, Martijn

    Spontaneous emission and fluorescence of organic molecules are known to strongly depend on the local electromagnetic environment. Plasmonic nanoparticles are widely explored as templates for controlling light-matter interactions, and can be tailored to optimize the fluorescence rate (Ȗem......) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces...

  18. Nonlocal quantum field theory and stochastic quantum mechanics

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    This volume presents a systematic development of the implications to both quantum mechanics and quantum field theory of the hypothesis of a stochastic structure of space-time. Some applications to elementary particle physics are also considered. Part 1 is concerned with nonlocal quantum field theory and, among other topics, deals with quantized fields, electromagnetic and weak processes, the Schroedinger equation, and functional methods and their applications. Part 2 presents an introduction to stochastic mechanics and many specific problems of interest are discussed. (Auth.)

  19. Media psychology: Modern man and nonlocality of psyche.

    Directory of Open Access Journals (Sweden)

    Pronina E.E.

    2014-12-01

    Full Text Available The development of modern information technologies is causing changes in the structure of the human psyche, bringing about a new psychotype. The transition to a new level of evolution is accompanied by the growing manifestation of the psyche’s ontological features — nonlocality and self-determination. From a sample of more than 300 people, it was demonstrated that active Internet users are significantly different in a number of parameters from those who mostly use traditional media. This article examines the resources of media psychology as a new paradigm in the study of mass communication phenomena and the laws of the development of psyche.

  20. Rhetoric, logic, and experiment in the quantum nonlocality debate

    Directory of Open Access Journals (Sweden)

    Graft Donald A.

    2017-09-01

    Full Text Available This paper argues that quantum nonlocality (QNL has not been rigorously proven, despite the existence of recent Einstein-Podolsky-Rosen-Bohm (EPRB experiments that are claimed to be ‘loophole-free’. First, readers are alerted to rhetorical arguments, which are unfortunately often appealed to in the QNL debate, to empower readers to identify and reject such arguments. Second, logical problems in QNL proofs are described and exemplified by a discussion of the projection postulate problem. Third, experimental issues are described and exemplified by a discussion of the postselection problem. The paper concludes that QNL has not been proven and that locality cannot be excluded.