A nonlocal spatial model for Lyme disease
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Siebert, Julien; Alonso, Sergio; Bär, Markus; Schöll, Eckehard
2014-05-01
A one-component bistable reaction-diffusion system with asymmetric nonlocal coupling is derived as a limiting case of a two-component activator-inhibitor reaction-diffusion model with differential advection. The effects of asymmetric nonlocal couplings in such a bistable reaction-diffusion system are then compared to the previously studied case of a system with symmetric nonlocal coupling. We carry out a linear stability analysis of the spatially homogeneous steady states of the model and numerical simulations of the model to show how the asymmetric nonlocal coupling controls and alters the steady states and the front dynamics in the system. In a second step, a third fast reaction-diffusion equation is included which induces the formation of more complex patterns. A linear stability analysis predicts traveling waves for asymmetric nonlocal coupling, in contrast to a stationary Turing patterns for a system with symmetric nonlocal coupling. These findings are verified by direct numerical integration of the full equations with nonlocal coupling.
Deterministic error correction for nonlocal spatial-polarization hyperentanglement.
Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu
2016-02-10
Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.
Nonlocality and purity in atom-field coupling system
Institute of Scientific and Technical Information of China (English)
Cai Xin; Huang Guang-Ming; Li Gao-Xiang
2005-01-01
The effects of initial field state and thermal environment on quantum nonlocality and linear entropy in an atomfield coupling system are investigated. We found that if the cavity is lossless and the reservoir is in vacuum, the atom-field state can exhibit quantum nonlocality periodically and the linear entropies of the atom and the field also oscillate periodically with a period the same as that of quantum nonlocality. And if the cavity dissipation is very weak and the average photon number of the reservoir is very small, the quantum nonlocality will be lost and the linear entropies of the atom and the field oscillate with a decreasing amplitude. The rapidity of the loss of the quantum nonlocality depends on the amplitude of the initial squeezed coherent state, the cavity damping constant κ and the average photon number N of the thermal reservoir. The stronger the field and the larger the constant κ and the average photon number N could be, the more rapidly the nonlocality decreases.
Vortex stabilization by means of spatial solitons in nonlocal media
Izdebskaya, Yana; Krolikowski, Wieslaw; Smyth, Noel F.; Assanto, Gaetano
2016-05-01
We investigate how optical vortices, which tend to be azimuthally unstable in local nonlinear materials, can be stabilized by a copropagating coaxial spatial solitary wave in nonlocal, nonlinear media. We focus on the formation of nonlinear vortex-soliton vector beams in reorientational soft matter, namely nematic liquid crystals, and report on experimental results, as well as numerical simulations.
Institute of Scientific and Technical Information of China (English)
Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun
2007-01-01
The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Semenova, N.; Anishchenko, V. [Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov (Russian Federation); Zakharova, A.; Schöll, E. [Institut für Theoretische Physik, TU Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.
Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M
2013-04-26
We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.
A Morphing framework to couple non-local and local anisotropic continua
Azdoud, Yan
2013-05-01
In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.
Nonlocal electron-phonon coupling: Consequences for the nature of polaron states
Stojanović, Vladimir M.; Bobbert, P. A.; Michels, M. A.
2004-04-01
We develop a variational approach to an extended Holstein model, comprising both local and nonlocal electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the Helmholtz free energy. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is clearly observed. Furthermore, a salient feature of our results is that the local and nonlocal couplings can compensate each other, leading to a reduction of polaronic effects and a quasi-free character of the excitation. Our findings have implications for organic crystals of π-conjugated molecules, where this electron-phonon coupling mechanism plays an important role.
Nonlocal electron-phonon coupling: influence on the nature of polarons
Stojanovi, V. M.; Bobbert, P. A.; Michels, M. A. J.
2004-01-01
We present a variational approach to an extended Holstein model, comprising both local and nonlocal electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the free energy of the coupled electron-phonon system, and is implemented for a one-dimensional nearest-neighbor model, with Einstein phonons. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is clearly observed. A salient feature of our results is that the local and nonlocal couplings can compensate each other, leading to a supression of polaronic effects.
Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Nikolov, Nikola Ivanov
2004-01-01
We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction...
Large Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum
Altman, A; Corndorf, E; Kumar, P; Barbosa, G A; Altman, Adam R.; K\\"{o}pr\\"{u}l\\"{u}, Kahraman G.; Corndorf, Eric; Kumar, Prem; Barbosa, Geraldo A.
2004-01-01
Through scanned coincidence counting, we probe the quantum image produced by parametric down conversion with a pump beam carrying orbital angular momentum. Nonlocal spatial correlations are manifested through splitting of the coincidence spot into two.
Directory of Open Access Journals (Sweden)
Shuo Yang
2015-01-01
Full Text Available Filters of the Spatial-Variant amoeba morphology can preserve edges better, but with too much noise being left. For better denoising, this paper presents a new method to generate structuring elements for Spatially-Variant amoeba morphology. The amoeba kernel in the proposed strategy is divided into two parts: one is the patch distance based amoeba center, and another is the geodesic distance based amoeba boundary, by which the nonlocal patch distance and local geodesic distance are both taken into consideration. Compared to traditional amoeba kernel, the new one has more stable center and its shape can be less influenced by noise in pilot image. What’s more important is that the nonlocal processing approach can induce a couple of adjoint dilation and erosion, and combinations of them can construct adaptive opening, closing, alternating sequential filters, etc. By designing the new amoeba kernel, a family of morphological filters therefore is derived. Finally, this paper presents a series of results on both synthetic and real images along with comparisons with current state-of-the-art techniques, including novel applications to medical image processing and noisy SAR image restoration.
A morphing strategy to couple non-local to local continuum mechanics
Lubineau, Gilles
2012-06-01
A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.
Spatially fractional-order viscoelasticity, non-locality and a new kind of anisotropy
Hanyga, Andrzej
2011-01-01
Spatial non-locality of space-fractional viscoelastic equations of motion is studied. Relaxation effects are accounted for by replacing second-order time derivatives by lower-order fractional derivatives and their generalizations. It is shown that space-fractional equations of motion of an order strictly less than 2 allow for a new kind anisotropy, associated with angular dependence of non-local interactions between stress and strain at different material points. Constitutive equations of such viscoelastic media are determined. Explicit fundamental solutions of the Cauchy problem are constructed for some cases isotropic and anisotropic non-locality.
Chimera states and the interplay between initial conditions and non-local coupling
Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard
2017-03-01
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
Maurits, N.M; Fraaije, J.G E M
1997-01-01
In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap
Maurits, NM; Fraaije, JGEM
1997-01-01
In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap
Stability of two-dimensional spatial solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Skupin, S.; Bang, Ole; Edmundson, D.;
2006-01-01
We discuss the existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear response. We show that such systems, which include thermal nonlinearity and dipolar Bose-Einstein condensates, may support a variety of stationary localized structures, including rotating...
Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation
Yi, Yuanping
2012-01-01
There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing. © 2012 American Institute of Physics.
An approach for the modeling of interface-body coupled nonlocal damage
Directory of Open Access Journals (Sweden)
J. Toti
2010-04-01
Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.
Propagations of singularities in a parabolic system with coupling nonlocal sources
Institute of Scientific and Technical Information of China (English)
ZHANG He; KONG LingHua; ZHENG SiNing
2009-01-01
This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources.The estimates for the four possible blow-up rates as well as the boundary layer profiles are established.The critical exponent of the system is determined also.
Propagations of singularities in a parabolic system with coupling nonlocal sources
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
This paper deals with propagations of singularities in solutions to a parabolic system coupled with nonlocal nonlinear sources. The estimates for the four possible blow-up rates as well as the boundary layer profiles are established. The critical exponent of the system is determined also.
Stability and pattern formation for competing populations with asymmetric nonlocal coupling.
Tanzy, M C; Volpert, V A; Bayliss, A; Nehrkorn, M E
2013-11-01
We consider a model of two competing species with asymmetric nonlocal coupling in a competition for resources. The nonlocal coupling is via convolution integrals and the asymmetry is via convolution kernel functions which are not even functions of their arguments. The nonlocality is due to species mobility, so that at any fixed point in space the competition for resources depends not just on the populations at that point but on a suitably weighted average of the populations. We introduce two parameters, δ, describing the extent of the coupling, with δ=0 corresponding to local coupling, and α, describing the extent of the asymmetry, with α=0 corresponding to symmetric nonlocal interactions. We consider the case where the model admits a stable coexistence equilibrium solution. We perform a linear stability analysis and show that this solution can be destabilized by sufficient nonlocality, i.e., when δ increases beyond a critical value. We consider two specific kernel functions, (i) an asymmetric Gaussian and (ii) an asymmetric stepfunction. We compute the stability boundary as a function of α, and for δ beyond the stability boundary we determine unstable wavenumber bands. We compute nonlinear patterns for δ significantly beyond the stability boundary. Patterns consist of arrays of islands, regions of nonzero population, separated by either near-deadzones where the populations are small, but nonzero, or by deadzones where populations are exponentially small and essentially extinct. We find solutions consisting of propagating traveling waves of islands, solutions exhibiting colony formation, where a colony is formed just ahead of an island and eventually grows as the parent island decays, and modulated traveling waves, where competition between the two species allows propagation and inhibits colony formation. We explain colony formation and the modulated traveling waves as due to a positive feedback mechanism associated with small variations in the amplitude of
Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.
2017-02-01
We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2014-01-01
Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.
A Nagumo-type model for competing populations with nonlocal coupling.
Tanzy, M C; Volpert, V A; Bayliss, A; Nehrkorn, M E
2015-05-01
We consider a model of two competing species with nonlocal competition for resources. The net birthrate is cubic, so that the model allows simulation of the Allee effect, whereby extinction is stable and intermediate populations promote growth, while saturation occurs via cubic competition terms. The model includes both interspecies and intraspecies nonlocal competition which enters via convolution integrals with a specified asymmetric competition kernel function. We introduce two parameters, δ, describing the extent of the coupling, with δ = 0 corresponding to local coupling, and α, describing the extent of the asymmetry, with α = 0 corresponding to symmetric nonlocal interactions. We consider the case where the local model admits a stable coexistence (populations of both species positive) equilibrium solution. We perform a linear stability analysis and show that this solution can be destabilized by sufficient nonlocality, i.e., when δ increases beyond a critical value. We then consider nonlinear patterns, far from the stability boundary. We show that nonlinear patterns consist of arrays of islands, regions of nonzero population, separated by deadzones, where the populations are essentially extinct, (with the array propagating in the case α ≠ 0). The predominant effect of the cubic model is that the islands for the two species are disjoint, so that each species lives in the deadzone of the other species. In addition, some patterns involve both hospitable and inhospitable deadzones, so that islands form in only some of the deadzones.
Multicluster and traveling chimera states in nonlocal phase-coupled oscillators.
Xie, Jianbo; Knobloch, Edgar; Kao, Hsien-Ching
2014-08-01
Chimera states consisting of domains of coherently and incoherently oscillating identical oscillators with nonlocal coupling are studied. These states usually coexist with the fully synchronized state and have a small basin of attraction. We propose a nonlocal phase-coupled model in which chimera states develop from random initial conditions. Several classes of chimera states have been found: (a) stationary multicluster states with evenly distributed coherent clusters, (b) stationary multicluster states with unevenly distributed clusters, and (c) a single cluster state traveling with a constant speed across the system. Traveling coherent states are also identified. A self-consistent continuum description of these states is provided and their stability properties analyzed through a combination of linear stability analysis and numerical simulation.
Spatial Nonlocality of the Small-Scale Solar Dynamo
Lamb, Derek A; DeForest, Craig E
2014-01-01
We explore the nature of the small-scale solar dynamo by tracking magnetic features. We investigate two previously-explored categories of the small-scale solar dynamo: shallow and deep. Recent modeling work on the shallow dynamo has produced a number of scenarios for how a strong network concentration can influence the formation and polarity of nearby small-scale magnetic features. These scenarios have measurable signatures, which we test for here using magnetograms from the Narrowband Filter Imager (NFI) on Hinode. We find no statistical tendency for newly-formed magnetic features to cluster around or away from network concentrations, nor do we find any statistical relationship between their polarities. We conclude that there is no shallow or "surface" dynamo on the spatial scales observable by Hinode/NFI. In light of these results, we offer a scenario in which the sub-surface field in a deep solar dynamo is stretched and distorted via turbulence, allowing the field to emerge at random locations on the photo...
Vadivasova, Tatiana E.; Strelkova, Galina I.; Bogomolov, Sergey A.; Anishchenko, Vadim S.
2016-09-01
We present numerical results for a set of bifurcations occurring at the transition from complete chaotic synchronization to spatio-temporal chaos in a ring of nonlocally coupled chaotic logistic maps. The regularities are established for the evolution of cross-correlations of oscillations in the network elements at the bifurcations related to the coupling strength variation. We reveal the distinctive features of cross-correlations for phase and amplitude chimera states. It is also shown that the effect of time intermittency between the amplitude and phase chimeras can be realized in the considered ensemble.
Energy Technology Data Exchange (ETDEWEB)
Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng, E-mail: tiansu@mail.xjtu.edu.cn
2016-01-08
To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition. - Highlights: • The dilemma of hyperbolic heat conduction is summarized. • Paradox of heat conduction from the cold to the hot. • Paradox of two temperature at one material point. • The dilemma is overcome with the aids of spatially nonlocal effect. • Heat flux boundary condition of non-classical models is discussed.
Institute of Scientific and Technical Information of China (English)
SHEN Xin-pu; SHEN Guo-xiao; CHEN Li-xin; YANG Lu
2005-01-01
Firstly, typical gradient-dependent nonlocal inelastic models were briefly gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme.
A convergent scheme for a non-local coupled system modelling dislocations densities dynamics
Hajj, A. El; Forcadel, N.
2008-06-01
In this paper, we study a non-local coupled system that arises in the theory of dislocations densities dynamics. Within the framework of viscosity solutions, we prove a long time existence and uniqueness result for the solution of this model. We also propose a convergent numerical scheme and we prove a Crandall-Lions type error estimate between the continuous solution and the numerical one. As far as we know, this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also provide some numerical simulations.
Non-local convergence coupling in a simple stochastic convection model
Brenowitz, N. D.; Frenkel, Y.; Majda, A. J.
2016-06-01
Observational studies show a strong correlation between large-scale wind convergence and precipitation. However, using this as a convective closure assumption to determine the total precipitation in a numerical model typically leads to deleterious wave-CISK behavior such as grid-scale noise. The quasi-equilibrium (QE) schemes ameliorate this issue and smooth the precipitation field, but still inadequately represent the intermittent and organized nature of tropical convection. However, recent observational evidence highlights that the large-scale convergence field primarily affects precipitation by increasing the overall convective cloud fraction rather than the energetics of individual convective elements. In this article, the dynamical consequences of this diagnostic observation are studied using a simple one baroclinic mode stochastic model for convectively coupled waves. A version of this model is implemented which couples the stochastic formation of convective elements to the wind convergence. Linearized analysis shows that using the local convergence results in a classic wave-CISK standing instability where the growth rate increases with the wavenumber. However, using a large-scale averaged convergence restricts the instability to physically plausible scales. Convergence coupling is interpreted as a surrogate for the non-local effects of gregarious convection. In nonlinear stochastic simulations with a non-uniform imposed sea surface temperature (SST) field, the non-local convergence coupling introduces desirable intermittent variability on intraseasonal time scales. Convergence coupling leads to a circulation with a similar mean but higher variability than the equivalent parameterization without convergence coupling. Finally, the model is shown to retain these features on fine and coarse mesh sizes.
Quantum Transfer Energy and Nonlocal Correlation in a Dimer with Time-Dependent Coupling Effect
El-Shishtawy, Reda M.; Berrada, K.; Haddon, Robert C.; Al-Hadeethi, Yas F.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.
2017-02-01
The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.
Energy Technology Data Exchange (ETDEWEB)
Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)
2013-07-01
We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.
Investigation of Coupling during the Non-Local Fast Extraction in the SPS
Alekou, A; Papaphilippou, Y
2014-01-01
The CENF (CERN Neutrino Facility) requires a high-intensity and high-energy beam (100 GeV) to be extracted in only one machine revolution from the Long Straight Section 2 (LSS2) of the SPS. However, since LSS2 has always been used for slow extraction, no kickers are installed in this straight section. The kickers already installed in another long straight section were used for a non-local fast extraction, to extract the beam in a single turn from LSS2. This note compares the trajectories obtained during the fast extraction feasibility studies (Sept 2012) with simulations performed using MAD-X and PTC in order to evaluate the magnitude of coupling in the SPS, as in the case of strong coupling the extraction would be aected.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
Institute of Scientific and Technical Information of China (English)
Kong Linghua; Wang Jinhuan; Zheng Sining
2012-01-01
This article deals with a nonlocal heat system subject to null Dirichlet boundary conditions,where the coupling nonlocal sources consist of mixed type asymmetric nonlinearities.We at first give the criterion for simultaneous blow-up of solutions,and then establish the uniform blow-up profiles of solutions near the blow-up time.It is observed that not only the simultaneous blow-up rates of the two components u and v are asymmetric,but also the blow-up rates of the same component u (or v) may be in different levels under different dominations.
Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten
2014-11-01
The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.
Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M
2016-07-01
We investigate the emergence of different kinds of imperfectly synchronized states and chimera states in two interacting populations of nonlocally coupled Stuart-Landau oscillators. We find that the complete synchronization in population I and existence of solitary oscillators which escape from the synchronized group in population II lead to imperfectly synchronized states for sufficiently small values of nonisochronicity parameter. Interestingly, upon increasing the strength of this parameter further there occurs an onset of mixed imperfectly synchronized states where the solitary oscillators occur from both the populations. Synchronized oscillators from both the populations are locked to a common average frequency. In both cases of imperfectly synchronized states, synchronized oscillators exhibit periodic motion while the solitary oscillators are quasiperiodic in nature. In this region, for spatially prepared initial conditions, we can observe the mixed chimera states where the coexistence of synchronized and desynchronized oscillations occur from both the populations. On the other hand, imperfectly synchronized states are not always stable, and they can drift aperiodically due to instability caused by an increase of nonisochronicity parameter. We observe that these states are robust to the introduction of frequency mismatch between the two populations.
The neglected nonlocal effects of deforestation
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation
Directory of Open Access Journals (Sweden)
J. Toti
2011-10-01
Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.
Synchronization and suppression of chaos in non-locally coupled map lattices
Indian Academy of Sciences (India)
R M Szmoski; S E De S Pinto; M T Van Kan; A M Batista; R L Viana; S R Lopes
2009-12-01
We considered coupled map lattices with long-range interactions to study the spatiotemporal behaviour of spatially extended dynamical systems. Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a coupling strength which varies with the lattice in a power-law fashion. Depending on the range of the interactions, complete chaos synchronization and chaos suppression may be attained. Furthermore, we also calculated the Lyapunov dimension and the transversal distance to the synchronization manifold.
Institute of Scientific and Technical Information of China (English)
LI Ke-Ping; YU Chao-Fan; GAO Zi-You; LIANG Guo-Dong; YU Xiao-Min
2008-01-01
Based on the picture of nonlinear and non-parabolic symmetry response, I.e., △n2( I) ≈ p(αo -α1x- α2x2), we propose a model for the transversal beam intensity distribution of the nonlocal spatial soliton. In this model, as a convolution response with non-parabolic symmetry, △n2( I) ≈ p(b0+b1 f - b2 f2 with b2/b1 > 0 is assumed. Furthermore, instead of the wave function Ψ, the high-order nonlinear equation for the beam intensity distribution f has been derived and the bell-shaped soliton solution with the envelope form has been obtained. The results demonstrate that, since the existence of the terms of non-parabolic response, the nonlocal spatial soliton has the bistable state solution. If thefrequency shift of wave number β satisfies 0 0 has been demonstrated.
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Spatially-Coupled Random Access on Graphs
Liva, Gianluigi; Lentmaier, Michael; Chiani, Marco
2012-01-01
In this paper we investigate the effect of spatial coupling applied to the recently-proposed coded slotted ALOHA (CSA) random access protocol. Thanks to the bridge between the graphical model describing the iterative interference cancelation process of CSA over the random access frame and the erasure recovery process of low-density parity-check (LDPC) codes over the binary erasure channel (BEC), we propose an access protocol which is inspired by the convolutional LDPC code construction. The proposed protocol exploits the terminations of its graphical model to achieve the spatial coupling effect, attaining performance close to the theoretical limits of CSA. As for the convolutional LDPC code case, large iterative decoding thresholds are obtained by simply increasing the density of the graph. We show that the threshold saturation effect takes place by defining a suitable counterpart of the maximum-a-posteriori decoding threshold of spatially-coupled LDPC code ensembles. In the asymptotic setting, the proposed s...
Tlidi, M.; Fernandez-Oto, C.; Clerc, M. G.; Escaff, D.; Kockaert, P.
2015-11-01
We investigate the formation of a localized plateau beam in the transverse section of a nonlinear optical ring cavity filled with a metamaterial and a nonlocal medium such as a nematic liquid crystal. We show that, far from the modulational instability regime, localized structures with a varying width may be stable in one and two-dimensional settings. The mechanism of stabilization is related with strong nonlocal coupling mediated by a Lorentzian type of kernel. We show that there exists stable bright and dark localized structures. A reduction of Lugiato-Lefever equation in the regime close to the nascent bistability allows us to analytically derive a simple formula for the width of localized structures in one-dimensional systems. Direct numerical simulations of the dynamical model agree with the analytical predictions.
Localized solutions for a nonlocal discrete NLS equation
Energy Technology Data Exchange (ETDEWEB)
Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)
2015-09-04
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Energy Technology Data Exchange (ETDEWEB)
Atabakhshian, V.; Shooshtari, A.; Karimi, M., E-mail: karimi_mh@yahoo.com
2015-01-01
In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler–Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.
Atabakhshian, V.; Shooshtari, A.; Karimi, M.
2015-01-01
In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler-Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.
Ciattoni, Alessandro
2015-01-01
We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with non-magnetic inclusions in the long wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that medium effective permittivity tensor and the first and second order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly-varying fields each satysifing electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achi...
Spatially indirect excitons in coupled quantum wells
Energy Technology Data Exchange (ETDEWEB)
Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)^{2} were
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2012-11-15
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.
Yiannakoulias, Nikolaos; Scott, Darren M
2013-03-01
In most places, motor-vehicle traffic volume is associated with increased risk of child pedestrian injury; however, the burden of risk is geographically complex. In some neighbourhoods, proportionally fewer drivers may be local, meaning that the moral and practical responsibility of risk to children is displaced from one place (e.g., the suburbs) to another (e.g., downtown). Using the City of Toronto, Canada, as a case study, this research asks two related questions: 1) what is the variation in traffic volume by neighbourhood of origin and socioeconomic status and 2) what is the relationship between the geographical origin of traffic and the risk of collisions involving child pedestrians and motor-vehicles? We find that low-income downtown neighbourhoods have the highest proportion of non-local traffic. We also find that while higher local traffic activity is associated with lower risk of collision, higher flow-through traffic activity (excluding traffic from major thoroughfares) is associated with higher risk of collision. We interpret the former as very likely a proxy of parents' frequency of chauffeuring children to school, and the latter an illustration of the spatial displacement of risk between Toronto neighbourhoods. Our results suggest that more attention needs to be paid to account for the externalization of harm experienced by children, particularly in low-income downtown neighbourhoods.
Coupling of spatially partially coherent beams into planar waveguides.
Partanen, Henri; Tervo, Jani; Turunen, Jari
2015-03-23
The second-order coherence theory of partially spatially coherent light and the overlap integral method are applied to study the end-coupling of stationary multimode light beams into planar waveguides. A method is presented for the determination of the cross-spectral density function of the guided field. Examples are given on the effects of spatial coherence, lateral shift, angular tilt, and defocusing of the incident beam on the coupling efficiency, spatial coherence, and propagation characteristics of the guided field.
Chaotic synchronization in coupled spatially extended beam-plasma systems
Filatov, Roman A.; Hramov, Alexander E.; ALEXEY A. KORONOVSKII
2006-01-01
The appearance of the chaotic synchronization regimes has been discovered for the coupled spatially extended beam-plasma Pierce systems. The coupling was introduced only on the right bound of each subsystem. It has been shown that with coupling increase the spatially extended beam-plasma systems show the transition from asynchronous behavior to the phase synchronization and then to the complete synchronization regime. For the consideration of the chaotic synchronization we used the concept of...
Observers in Spacetime and Nonlocality
Mashhoon, B
2012-01-01
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Nkomo, Simbarashe; Tinsley, Mark R.; Showalter, Kenneth
2016-09-01
Chimera and chimera-like states are characterized in populations of photochemically coupled Belousov-Zhabotinsky (BZ) oscillators. Simple chimeras and chimera states with multiple and traveling phase clusters, phase-slip behavior, and chimera-like states with phase waves are described. Simulations with a realistic model of the discrete BZ system of populations of homogeneous and heterogeneous oscillators are compared with each other and with experimental behavior.
Nonlocal-response diffusion model of holographic recording in photopolymer
Sheridan, John T.; Lawrence, Justin R.
2000-01-01
The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be completely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equation is then solved numerically, in low-harmonic approximation, to de...
Vector nematicons: Coupled spatial solitons in nematic liquid crystals
Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.
2016-11-01
Families of soliton pairs, namely vector solitons, are found within the context of a coupled nonlocal nonlinear Schrödinger system of equations, as appropriate for modeling beam propagation in nematic liquid crystals. In the focusing case, bright soliton pairs have been found to exist provided their amplitudes satisfy a specific condition. In our analytical approach, focused on the defocusing regime, we rely on a multiscale expansion methods, which reveals the existence of dark-dark and antidark-antidark solitons, obeying an effective Korteweg-de Vries equation, as well as dark-bright solitons, obeying an effective Mel'nikov system. These pairs are discriminated by the sign of a constant that links all physical parameters of the system to the amplitude of the stable continuous wave solutions, and, much like the focusing case, the solitons' amplitudes are linked, leading to mutual guiding.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Incoherently Coupled Grey Photovoltaic Spatial Soliton Families
Institute of Scientific and Technical Information of China (English)
WANG Hong-Cheng; SHE Wei-Long
2005-01-01
@@ A theory is developed for incoherently coupled grey photovoltaic soliton families in unbiased photovoltaic crystals.Both the properties and the forming conditions of these soliton families are discussed in detail The theory canalso be used to investigate the dark photovoltaic soliton families. Some relevant examples are presented, in which the photovoltaic-photorefractive crystal is of lithium niobate type.
Transport of quantum excitations coupled to spatially extended nonlinear many-body systems
Iubini, Stefano; Boada, Octavi; Omar, Yasser; Piazza, Francesco
2015-11-01
The role of noise in the transport properties of quantum excitations is a topic of great importance in many fields, from organic semiconductors for technological applications to light-harvesting complexes in photosynthesis. In this paper we study a semi-classical model where a tight-binding Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms. We show that the transport properties of a quantum excitation are subtly modulated by (i) the specific type (local versus non-local) of exciton-phonon coupling and by (ii) nonlinear effects of the underlying lattice. We report a non-monotonic dependence of the exciton diffusion coefficient on temperature, in agreement with earlier predictions, as a direct consequence of the lattice-induced fluctuations in the hopping rates due to long-wavelength vibrational modes. A standard measure of transport efficiency confirms that both nonlinearity in the underlying lattice and off-diagonal exciton-phonon coupling promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other models lacking an explicit noise-providing dynamical system.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Causality, Non-Locality and Negative Refraction
Forcella, Davide; Carminati, Rémi
2016-01-01
The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Spatially Coupled Ensembles Universally Achieve Capacity under Belief Propagation
Kudekar, Shrinivas; Urbanke, Ruediger
2012-01-01
We investigate spatially coupled code ensembles. For transmission over the binary erasure channel, it was recently shown that spatial coupling increases the belief propagation threshold of the ensemble to essentially the maximum a-priori threshold of the underlying component ensemble. This explains why convolutional LDPC ensembles, originally introduced by Felstrom and Zigangirov, perform so well over this channel. We show that the equivalent result holds true for transmission over general binary-input memoryless output-symmetric channels. More precisely, given a desired error probability and a gap to capacity, we can construct a spatially coupled ensemble which fulfills these constraints universally on this class of channels under belief propagation decoding. In fact, most codes in that ensemble have that property. The quantifier universal refers to the single ensemble/code which is good for all channels but we assume that the channel is known at the receiver. The key technical result is a proof that under b...
A Phenomenological Study on Threshold Improvement via Spatial Coupling
Takeuchi, Keigo; Kawabata, Tsutomu
2011-01-01
Kudekar et al. proved an interesting result in low-density parity-check (LDPC) convolutional codes: The belief-propagation (BP) threshold is boosted to the maximum-a-posteriori (MAP) threshold. Furthermore, the authors showed that the BP threshold for code-division multiple-access (CDMA) systems is improved up to a threshold below the optimal one via spatial coupling. In this letter, a phenomenological model for elucidating the essence of these phenomenon, called threshold improvement, is proposed. The main result implies that threshold improvement occurs for spatially-coupled general graphical models.
Institute of Scientific and Technical Information of China (English)
HAN Yin-Xia; LI Jing-Hui; ZHAO Ying-Kui; CHEN Shi-Gang
2005-01-01
In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current.
Coupling within Fluvial Geomorphic Systems:Spatial and Temporal Implications
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Coupling within fluvialsystems relates to the connectivity between the various components of the system. It can be viewed at several scales from local scales of hillslope-to-channel and reachto-reach coupling, to larger scales of zonai coupling between the major functional zones of the fluvial system, and to the scale of regional coupling. Coupling influences how the system responds toenvironmental change and how the effects of environmental change are propagated through the system. This paper provides a review, based largely on previously published work, of the couplingconcept, and how the effective temporal scales vary with the spatial scale of coupling. Local scalecoupling is considered through the hillslope-to-chiannel coupling in the Howgill Fells, northwestEngland, observed over a 30-year monitoring period, together with examples from badlands inSpain, and reach-to-reach coupling on the Rlver Dane, northwest England. At the zonal scale therelative influence of climatic and base-level chunge on coupling through dry-region alluvial fans isconsidered on fan systems in Spain, Nevada, and UAE/Oman. For large scale reg~nal coupling,the response of the Tabernas basih, southeast Spain to tectonic uplift, is examined. The factors in-fluencing coupling mechanisms vary with temporal and spatial scales. At the hillslope-to-channelscale the significant factors are the magnitude and frequency characteristics of sediment generationand removal mechanisms within the context of progressive morphological change. Effectivetimescales range from the individual event to decadal timescales. At the zonal scale, that of allu-vial fans, the significant factors are climatic change, and particularly in the appropriate morpho-logical setting, base-level change. Effective timescales are of the order of hundreds to thousands ofyears. At the regional scale, the response to tectonic uplift may take ＞100 ka to be transmitted4hcoughthe drainage basin.
Barnaby, Neil
2008-01-01
We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.
Study of Nonlocal Optical Potential
Institute of Scientific and Technical Information of China (English)
TIAN; Yuan
2013-01-01
It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form
Sheridan, J. T.; Kelly, J. V.; O'Brien, G.; Gleeson, M. R.; O'Neill, F. T.
2004-12-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is described as non-local as it is assumed that monomers are polymerized to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The material model is non-linear as a general non-linear material response to the incident light is included. Typically the numerical method of solution has involved retaining only up to four harmonics of the Fourier series of monomer concentration in the calculations. In this paper a general set of coupled first-order differential equations is derived which allow the inclusion of a higher number of harmonics. The resulting effect on the convergence of the algorithm, as the number of harmonics retained is increased, is investigated. Special care is taken to note the effect of physical parameters, i.e. the non-local material variance σ, the power-law degree k, and the rates of diffusion, D, and polymerization, F0.
Directory of Open Access Journals (Sweden)
M. Mohammadimehr
2013-12-01
Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.
Weak-coupling approach to the semi-infinite Hubbard model: Non-locality of the self-energy
Potthoff, M.; Nolting, W.
1997-01-01
The Hubbard model on a semi-infinite three-dimensional lattice is considered to investigate electron-correlation effects at single-crystal surfaces. The standard second-order perturbation theory in the interaction U is used to calculate the electronic self-energy and the quasi-particle density of states (QDOS) in the bulk as well as in the vicinity of the surface. Within a real-space representation we fully account for the non-locality of the self-energy and examine the quality of the local a...
The Coupling Effect of Spatial Reticulated Shell Structure with Cables
Institute of Scientific and Technical Information of China (English)
MA Jun; ZHOU Dai; FU Xu-chen
2005-01-01
The spatial reticulated shell structure with cables (RSC) is a kind of coupling working system, which consists of flexible cables, reticulated shell structure (RS) and tower columns. The dynamic analysis of RSC based on the coupling model was carried out. Three kinds of elements such as the spatial bar element, cable element and beam element were introduced to analyze the reticulated shell, cable and tower column respectively. Furthermore,such parameter influences as structural boundary conditions, grid configuration, the span-to-depth ratio and the arrangement of cable system upon structural dynamics were analyzed. The structural vibration modes can be divided into four groups based on some numerical examples. And the frequencies in the same group are very close while the frequencies in different groups are different from each other obviously. It is clear that the sequence of the appearance of the each mode group heavily depends on the comparative stiffness of the tower column system, RS and cables.
Giddings, Steven B
2012-01-01
If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...
Threshold Saturation on BMS Channels via Spatial Coupling
Kudekar, Shrinivas; Richardson, Tom; Urbanke, Ruediger
2010-01-01
We consider spatially coupled code ensembles. A particular instance are convolutional LDPC ensembles. It was recently shown that, for transmission over the binary erasure channel, this coupling increases the belief propagation threshold of the ensemble to the maximum a-priori threshold of the underlying component ensemble. We report on empirical evidence which suggest that the same phenomenon also occurs when transmission takes place over a general binary memoryless symmetric channel. This is confirmed both by simulations as well as by computing EBP GEXIT curves and by comparing the empirical BP thresholds of coupled ensembles to the empirically determined MAP thresholds of the underlying regular ensembles. We further consider ways of reducing the rate-loss incurred by such constructions.
Nonlocal Gravity in the Solar System
Chicone, C
2015-01-01
The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.
Nonlocal gravity in the solar system
Chicone, C.; Mashhoon, B.
2016-04-01
The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...
Multipole vector solitons in nonlocal nonlinear media.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru
2006-05-15
We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.
Nonlocal entanglement and noise between spin qubits induced by Majorana bound states
Energy Technology Data Exchange (ETDEWEB)
Ke, Sha-Sha [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Lü, Hai-Feng, E-mail: lvhf81@gmail.com [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Hua-Jun [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Guo, Yong [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Huai-Wu [State Key Laboratory of Electronic Thin Films and Integrated Devices and School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2015-01-23
We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states (MBSs). The spin qubits are based on the spins of electrons confined in quantum dots. It is shown that spin entanglement between two dots could be generated by the nonlocality of MBSs. We also demonstrate that in the transport regime, the current noise cross correlation can serve as a good indicator of spin entanglement. The Majorana-dot coupling not only induces an indirect interaction between qubits, but also produces spin localization in the strong coupling limit. These two competing effects lead to a nonmonotonic dependence of current cross-correlation and entanglement on the Majorana-qubit coupling strength. - Highlights: • We propose a scheme to create nonlocal entanglement between two spatially separated electron spin qubits by coupling them with a pair of Majorana bound states. • Spin entanglement between two dots could be generated by the nonlocality of MBSs. • The current noise cross correlation can serve as a good indicator of spin entanglement.
Human seizures couple across spatial scales through travelling wave dynamics
Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.
2017-04-01
Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.
Electric currents couple spatially separated biogeochemical processes in marine sediment
DEFF Research Database (Denmark)
Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik
2010-01-01
Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...
Hermite-elliptical Gaussian spatial optical soliton in strongly nonlocal media%强非局域介质中的厄米-椭圆高斯空间光孤子
Institute of Scientific and Technical Information of China (English)
王清; 王形华; 黎东波; 刘孟连; 罗兴垅
2012-01-01
研究了傍轴厄米-椭圆高斯光束在强非局域非线性介质中的传输特性.依据强非局域介质响应函数特征宽度远大于光束束宽,对非局域非线性薛定谔方程进行了近似简化,得到了介质响应函数为椭圆对称情形下的强非局域模型.在此基础上利用分离变量法得到了厄米-椭圆高斯空间光孤子解析解及其形成的条件.进一步研究发现,随着厄米-椭圆高斯空间光孤子阶数的增大,光束束宽增大,介质的非局域程度相对减弱；要获得高阶椭圆高斯空间光孤子,必须提高非局域介质的非局域程度.最低阶的厄米-椭圆高斯空间光孤子就是椭圆高斯空间光孤子.%The propagation properties of paraxial Hermite-elliptical Gaussian light beam in a strongly nonlocal nonlinear media are studied. As the characteristic width of response function is much bigger than the beam width, the nonlocal nonlinear Schrodinger equation is simplified and the strongly nonlocal model with elliptic-symmetry medium response function is obtained. Using method of separation of variables, the analytic solution of Hermite-elliptical Gaussian spatial optical soliton and the conditions in which it forms are also derived. Further investigation shows that with increasing of rank of Hermite- elliptical Gaussian spatial optical soliton, the light beam width increases, the degree of non-locality of medium relatively weakens. To obtain high-rank elliptical Gaussian spatial optical soliton, the degree of non-locality of nonlocal medium must be raised. The lowest-rank Hermite-elliptical Gaussian spatial optical soliton is just elliptical Gaussian spatial optical soliton.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Nonlocally Centralized Simultaneous Sparse Coding
Institute of Scientific and Technical Information of China (English)
雷阳; 宋占杰
2016-01-01
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.
Microcavity controlled coupling of excitonic qubits
Albert, F; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2012-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. The most relevant mechanism of coherent coupling of distant qubits is coupling via the electromagnetic field. Here, we demonstrate the controlled coherent coupling of spatially separated excitonic qubits via the photon mode of a solid state microresonator. This is revealed by two-dimensional spectroscopy of the sample's coherent response, a sensitive and selective probe of the coherent coupling. The experimental results are quantitatively described by a rigorous theory of the cavity mediated coupling within a cluster of quantum dots excitons. Having demonstrated this mechanism, it can be used in extended coupling channels - sculptured, for instance, in photonic crystal cavities - to enable a long-range, non-local wiring up of individual emitters in solids.
Extreme nonlocality with one photon
Energy Technology Data Exchange (ETDEWEB)
Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)
2011-05-15
Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.
DEFF Research Database (Denmark)
Tanner, Anne Nygaard
2014-01-01
a novel, biographical methodology, namely innovation biographies, which places the innovation event as its analytical focus and study the process as it unfolds over time (from idea-generation ? to problem-solving ? to implementation). The paper presents three innovation biographies from suppliers...... to the wind turbine industry. Results suggest that local linkages (buzz) are crucial in the early stages of generating new ideas, whereas in other phases (problem-solving and implementation) geographical co-location does not play an important role, although these processes are highly dominated by collective...... learning processes and require face-to-face contact. In sum, the innovation biography method contributes in uncovering innovation processes and how these rely on many different configurations of spatial knowledge dynamics, including buzz, local ties and global pipelines. The findings imply that policy...
Shi, L; Rekola, H T; Martikainen, J -P; Moerland, R J; Törmä, P
2014-01-01
We study spatial coherence properties of a system composed of periodic silver nanoparticle arrays covered with a fluorescent organic molecule (DiD) film. The evolution of spatial coherence of this composite structure from the weak to the strong coupling regime is investigated by systematically varying the coupling strength between the localized DiD excitons and the collective, delocalized modes of the nanoparticle array known as surface lattice resonances. A gradual evolution of coherence from the weak to the strong coupling regime is observed, with the strong coupling features clearly visible in interference fringes. A high degree of spatial coherence is demonstrated in the strong coupling regime, even when the mode is very excitonlike (80%), in contrast to the purely localized nature of molecular excitons. We show that coherence appears in proportion to the weight of the plasmonic component of the mode throughout the weak-to-strong coupling crossover, providing evidence for the hybrid nature of the normal m...
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
Improvement of BP-Based CDMA Multiuser Detection by Spatial Coupling
Takeuchi, Keigo; Kawabata, Tsutomu
2011-01-01
Kudekar et al. proved that the belief-propagation (BP) threshold for low-density parity-check (LDPC) codes can be boosted up to the maximum-a-posteriori (MAP) threshold by spatial coupling. In this paper, spatial coupling is applied to randomly-spread code-division multiple-access (CDMA) systems in order to improve the performance of BP-based multiuser detection (MUD). Spatially-coupled CDMA systems can be regarded as multi-code CDMA systems with two transmission phases. The large-system analysis shows that spatial coupling can improve the BP performance, while there is a gap between the BP performance and the optimal performance.
NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.
Orbital effects of spatial variations of fundamental coupling constants
Iorio, Lorenzo
2011-01-01
We deal with the effects induced on the orbit of a test particle revolving around a central body by putative spatial variations of fundamental coupling constants $\\zeta$. In particular, we assume a dipole gradient for $\\zeta(\\bds r)/\\bar{\\zeta}$ along a generic direction $\\bds{\\hat{k}}$ in space. We analytically work out the long-term variations of all the six standard Keplerian orbital elements parameterizing the orbit of a test particle in a gravitationally bound two-body system. It turns out that, apart from the semi-major axis $a$, the eccentricity $e$, the inclination $I$, the longitude of the ascending node $\\Omega$, the longitude of pericenter $\\pi$ and the mean anomaly $\\mathcal{M}$ undergo non-zero long-term changes. By using the usual decomposition along the radial ($R$), transverse ($T$) and normal ($N$) directions, we also analytically work out the long-term changes $\\Delta R,\\Delta T,\\Delta N$ and $\\Delta v_R,\\Delta v_T,\\Delta v_N$ experienced by the position and the velocity vectors $\\bds r$ and...
Can EPR non-locality be geometrical?
Energy Technology Data Exchange (ETDEWEB)
Ne`eman, Y. [Tel-Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics; Botero, A. [Texas Univ., Austin, TX (United States)
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Modulation properties of spatial three-waveguide system using weakly coupled mode theory
Institute of Scientific and Technical Information of China (English)
Yiling Sun; Jianxia Pan
2007-01-01
Based on the weakly coupled mode theory, the modulation properties of three-waveguide system are analyzed in general. We examine the modulation behavior for two cases that a voltage is applied on the beamlaunched waveguide or non-beam-launched waveguide. The analytical intensity distributions in both cases are given. Applications of the spatial multi-waveguide coupling systems include spatial light modulators,optical switches, optical interconnection, and spatial optical signal processing.
Nonlocal response of hyperbolic metasurfaces.
Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A
2015-11-16
We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.
Fully nonlocal quantum correlations
Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán
2011-01-01
Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.
Implementation of nonlocal quantum swap operation on two entangled pairs
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 陈立冰; 郭光灿
2002-01-01
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs. We discuss the resourcesof the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation. We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel. The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.
Nonlocal thin films in calculations of the Casimir force
Esquivel-Sirvent, R.; Svetovoy, V.B.
2005-01-01
The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Mashhoon, B
2014-01-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
The spatial light receiver and its coupling characteristics
Hu, Qinggui; Li, Chengzhong
2017-07-01
The effective couple of the space light into the optical fiber is the key point of the free-space optical communication. In order to solve this problem, the novel tapered optical fiber head is proposed. The special tapered structure could improve coupling efficiency through expanding the light receiving area. In order to study its coupling characteristics, the longitudinal propagation constant of the connector is expanded by Taylor series according to the wave theory. And the approximate solution of the power distribution is obtained. Then, the coupling efficiency measurement experiment with the tapered connectors and the conmmon connector is finished. The experimental result is consistent with the theoretical analysis basically. This work provides a theoretical reference for the design of the new tapered connector, which could be adopted in the free-space optical communication.
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Flux for a System with Infinite Globally Coupled Oscillators Driven by Temporal-Spatial Noises
Institute of Scientific and Technical Information of China (English)
HAN Yin-Xia; LI Jing-Hui; CHEN Shi-Gang
2003-01-01
The transport of a spatially periodic system with infinite globally coupled oscillators driven by temporalspatial noises is investigated. The probability current shows that the correlation of the multiplicative noises with the space, the spatial asymmetry, and the coupling among the different oscillators are ingredients for the transport of particles. It is a new phenomenon that the correlation of the multiplicative noises with the space can induce the nonzero flux.
Coupled spatial multi-mode solitons in microcavity wires
Slavcheva, G; Pimenov, A
2016-01-01
A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism behind the multistability and formation of coupled multi-mode polariton solitons in microcavity wires. With pump switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our model predicts two distinct coupled soliton branches: stable and ustable. Modulational stability of the homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence domain upon variation of pump amplitude and the onset of multistability.
Detrimental nonlocality in luminescence measurements
Pluska, Mariusz; Czerwinski, Andrzej
2017-08-01
Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.
Electric currents couple spatially separated biogeochemical processes in marine sediment
DEFF Research Database (Denmark)
Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik;
2010-01-01
be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...... with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology....
Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner
Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2017-01-01
The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.
Nonlocality from Local Contextuality
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-01
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Nonlocality from Local Contextuality.
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-25
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Breather solitons in highly nonlocal media
Alberucci, Alessandro; Assanto, Gaetano
2016-01-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science \\textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Institute of Scientific and Technical Information of China (English)
谢溪庄
2012-01-01
In this paper, the author constructs a reaction-diffusion model with stage structure and nonlocal spatial effect, the models with the interaction between the two species and adult members in which are in competition. By using the method of upper-lower solutions due to Redlinger, dynamical behaviors of model are studied. Sharp global stability criteria are established for the coexistence equilibrium as well as the extinction equilibrium.%构造一类具有阶段结构和非局部空间效应影响的两种成年种群个体相互竞争的反应扩散模型.利用线性稳定化方法和Redlinger上下解方法得到该竞争模型的动力性态,并证明模型在边界平衡点和共存平衡点是全局渐近稳定的.
A Classical Framework for Nonlocality and Entanglement
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert
2012-01-01
Based on our model of quantum systems as emerging from the coupled dynamics between oscillating "bouncers" and the space-filling zero-point field, a sub-quantum account of nonlocal correlations is given. This is explicitly done for the example of the "double two-slit" variant of two-particle interferometry. However, it is also shown that the entanglement in two-particle interferometry is only a natural consequence of the fact that already a "single" two-slit experiment can be described on a sub-quantum level with the aid of "entangling currents" of a generally nonlocal nature.
Compressive Sensing via Nonlocal Smoothed Rank Function.
Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.
Low energy signatures of nonlocal field theories
Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi
2016-09-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
Millen, James
2016-04-01
George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Nonlocal Optics of Plasmonic Nanowire Metamaterials
Wells, Brian M; Podolskiy, Viktor A
2014-01-01
We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal electromagnetic modes supported by the composite and derive the nonlocal effective medium approximation for this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell's equations and discuss generalization of the developed formalism to other uniaxial metamaterials.
2016-01-01
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this art...
Les trajectoires spatiales d’activité des couples The spatial trajectories of couples’ activities
Directory of Open Access Journals (Sweden)
Eva Lelièvre
2010-07-01
Full Text Available Après avoir examiné les avancées récentes de l’observation et de l’analyse des contextes des parcours individuels en démographie, nous proposons ici de traiter le premier niveau interpersonnel des biographies liées : celui des deux membres d’un couple. Pour cela nous reconstituons la trajectoire de l’espace d’activité des deux conjoints formée des lieux de résidence et de travail qui se succèdent tout au long de leur union à partir des données de l’enquête Biographies et entourage de l’Ined. Puis nous présentons une approche holiste de ces trajectoires permettant d’en dégager une typologie grâce à la mise en œuvre d’une analyse qualitative harmonique dont nous détaillons les principes. La description de ces trajectoires éclaire les arbitrages des couples qui se jouent dans les stratégies de localisation, au confluent du travail, de la famille et du logement. Néanmoins, une discussion précise des limites et des pistes futures est proposée pour dépasser cette première application.After an overview of recent trends in data collection and of the different strategies applied to the demographic analysis of life courses embedded in their context, this paper presents the analysis of a specific level of interpersonal interaction : the intertwined dynamics of the life courses of both members of a couple. To this end, we reconstruct the dynamics of the activity space of couples defined as the territory covered by their place(s of residence and place(s of work since the beginning of their union, taking advantage of a rich data source, the INED Biographies et entourage survey. We then detail the principles of the data analysis method (Qualitative Harmonic Analysis. The description drawn from the typology obtained sheds light on the choices couples make for their residential moves, taking into account their family and occupational priorities. The limits of the method and future research paths are then discussed in
Nonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery
Directory of Open Access Journals (Sweden)
Ruyi Feng
2016-03-01
Full Text Available Subpixel mapping is a method of enhancing the spatial resolution of images, which involves dividing a mixed pixel into subpixels and assigning each subpixel to a definite land-cover class. Traditionally, subpixel mapping is based on the assumption of spatial dependence, and the spatial correlation information among pixels and subpixels is considered in the prediction of the spatial locations of land-cover classes within the mixed pixels. In this paper, a novel subpixel mapping method for hyperspectral remote sensing imagery based on a nonlocal method, namely nonlocal total variation subpixel mapping (NLTVSM, is proposed to use the nonlocal self-similarity prior to improve the performance of the subpixel mapping task. Differing from the existing spatial regularization subpixel mapping technique, in NLTVSM, the nonlocal total variation is used as a spatial regularizer to exploit the similar patterns and structures in the image. In this way, the proposed method can obtain an optimal subpixel mapping result and accuracy by considering the nonlocal spatial information. Compared with the classical and state-of-the-art subpixel mapping approaches, the experimental results using a simulated hyperspectral image, two synthetic hyperspectral remote sensing images, and a real hyperspectral image confirm that the proposed algorithm can obtain better results in both visual and quantitative evaluations.
Institute of Scientific and Technical Information of China (English)
海涛; 席志红
2016-01-01
为了提高偏微分方程放大算法对纹理细节的放大效果，利用改进的复扩散模型耦合均值滤波器，提出了一种图像放大算法。改进的非线性复扩散模型能够很好的定位图像边缘，通过冲激滤波器对边缘进行锐化，同时耦合非局部均值滤波器，保持图像内部的自相似特性，利用非局部信息重建高分辨率图像，提高小边缘、细节放大效果。算法结合非局部信息和局部信息对图像进行放大，增强纹理细节，使图像更加自然，同时减弱对边缘的过度增强，具有较好的放大效果，仿真实验验证了算法的优良性能。%In order to improve the zoomed effect of the method based on partial differential equation,combi-ning the improved complex diffusion model and the nonlocal means filter,the image enlargement method is pro-posed.Having the advantage of precision location of the edges,with the edges sharpened by the shock filter, the improved anisotropic complex diffusion couples to the nonlocal means filter to keep with the similarity of the diffused image,the high resolution image is reconstructed.Not only using the local information of the image but the image’s nonlocal information,the method makes the zoomed image more natural,at the same time,attenu-ates the edge’s over-sharpen,therefore the enlarged image has better visual effective.The simulations prove the prominent performance of the proposed method.
Han-Ming, Zhang; Lin-Yuan, Wang; Lei, Li; Bin, Yan; Ai-Long, Cai; Guo-En, Hu
2016-07-01
The additional sparse prior of images has been the subject of much research in problems of sparse-view computed tomography (CT) reconstruction. A method employing the image gradient sparsity is often used to reduce the sampling rate and is shown to remove the unwanted artifacts while preserve sharp edges, but may cause blocky or patchy artifacts. To eliminate this drawback, we propose a novel sparsity exploitation-based model for CT image reconstruction. In the presented model, the sparse representation and sparsity exploitation of both gradient and nonlocal gradient are investigated. The new model is shown to offer the potential for better results by introducing a similarity prior information of the image structure. Then, an effective alternating direction minimization algorithm is developed to optimize the objective function with a robust convergence result. Qualitative and quantitative evaluations have been carried out both on the simulation and real data in terms of accuracy and resolution properties. The results indicate that the proposed method can be applied for achieving better image-quality potential with the theoretically expected detailed feature preservation. Project supported by the National Natural Science Foundation of China (Grant No. 61372172).
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-01-01
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems. PMID:27444147
Pan, Bai Cao; Tang, Wen Xuan; Qi, Mei Qing; Ma, Hui Feng; Tao, Zui; Cui, Tie Jun
2016-07-22
Mutual coupling inside antenna array is usually caused by two routes: signal leakage via conducting currents on the metallic background or surface wave along substrates; radio leakage received from space between antenna elements. The former one can be depressed by changing the distribution of surface currents, as reported in literatures. But when it comes to the latter one, the radiation-leakage-caused coupling, traditional approaches using circuit manipulation may be inefficient. In this article, we propose and design a new type of decoupling module, which is composed of coupled metamaterial (MTM) slabs. Two classes of MTM particles, the interdigital structure (IS) and the split-ring resonators (SRRs), are adopted to provide the first and second modulations of signal. We validate its function to reduce the radiation leakage between two dual-polarized patch antennas. A prototype is fabricated in a volume with subwavelength scale (0.6λ × 0.3λ × 0.053λ) to provide 7dB improvement for both co-polarization and cross-polarization isolations from 1.95 to 2.2 GHz. The design has good potential for wireless communication and radar systems.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Theory of nonlocal soliton interaction in nematic liquid crystals
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw
2005-01-01
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....
Non-local thin films in Casimir force calculations
Esquivel, R
2005-01-01
he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.
A spatially indirect exciton in vertically coupled quantum dots : 1/Q-expansion
Lozovik, YE; Mur, VD; Narozhny, NB; Petrosyan, AN
2004-01-01
A spatially indirect exciton in vertically coupled quantum dots is considered with the use of 1/Q-expansion, where Q is the dimensionless quantum parameter determined by the ratio of characteristic Coulomb energy of electron-hole interaction to the energy of one-particle transition in a confining po
Self-adjoint integral operator for bounded nonlocal transport
Maggs, J. E.; Morales, G. J.
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Disentangling Nonlocality and Teleportation
Hardy, L
1999-01-01
Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.
Self-organization analysis for a nonlocal convective Fisher equation
Energy Technology Data Exchange (ETDEWEB)
Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)
2009-02-02
Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.
Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide
2016-01-01
We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...
Microcavity controlled coupling of excitonic qubits.
Albert, F; Sivalertporn, K; Kasprzak, J; Strauß, M; Schneider, C; Höfling, S; Kamp, M; Forchel, A; Reitzenstein, S; Muljarov, E A; Langbein, W
2013-01-01
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits--like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots--is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton-photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample's coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Pattern formation in a model of competing populations with nonlocal interactions
Segal, B. L.; Volpert, V. A.; Bayliss, A.
2013-06-01
We analyze and compute an extension of a previously developed population model based on the well-known diffusive logistic equation with nonlocal interaction, to a system involving competing species. Our model involves a system of nonlinear integro-differential equations, with the nonlocal interaction characterized by convolution integrals of the population densities against specified kernel functions. The extent of the nonlocal coupling is characterized by a parameter δ so that when δ→0 the problem becomes local. We consider critical points of the model, i.e., spatially homogeneous equilibrium solutions. There is generally one critical point in the first quadrant (i.e., both population densities positive), denoting coexistence of the two species. We show that this solution can be destabilized by the nonlocal coupling and obtain general conditions for stability of this critical point as a function of δ, the specific kernel function and parameters of the model. We study the nonlinear behavior of the model and show that the populations can evolve to localized cells, or islands. We find that the stability transition is supercritical. Near the stability boundary solutions are small amplitude, nearly sinusoidal oscillations, however, when δ increases large amplitude, nonlinear states are found. We find a multiplicity of stable, steady state patterns. We further show that with a stepfunction kernel function the structure of these islands, a highly nonlinear phenomenon, can be described analytically. Finally, we analyze the role of the kernel function and show that for some choices of kernel function the resulting population islands can exhibit tip-splitting behavior and island amplitude modulation.
Nonlocality in uniaxially polarizable media
Gorlach, Maxim A
2015-01-01
We reveal extraordinary electromagnetic properties for a general class of uniaxially polarizable media. Depending on parameters, such metamaterials may have wide range of nontrivial shapes of isofrequency contours including lemniscate, diamond and multiply connected curves with connectivity number reaching five. The possibility of the dispersion engineering paves a way to more flexible manipulation of electromagnetic waves. Employing first-principle considerations we prove that uniaxially polarizable media should be described in terms of the nonlocal permittivity tensor which by no means can be reduced to local permittivity and permeability even in the long-wavelength limit. We introduce an alternative set of local material parameters including quadrupole susceptibility capable to capture all of the second-order spatial dispersion effects.
Indian Academy of Sciences (India)
Aurelien Drezet
2007-03-01
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.
[Spatial coupling characteristics of eco-environment quality and economic poverty in Lüliang area].
Li, Jing-Yi; Wang, Yan-Hui
2014-06-01
It is one of the important strategies during the poverty alleviation to maintain a basic balance between the eco-environment and economic development in poor areas. Taking the whole 20 counties in Lüliang national contiguous special poverty-stricken areas and the surrounding 36 counties as multi-type and multi-scale typical study areas, the relationship between eco-environment quality and poverty in the poverty-stricken areas was explored in this paper. Firstly, the region's ecological poverty index system was systematically built, and by integrated use of the subjective and objective weighting method, the ecological environment quality was evaluated in the perspective of natural environment. Then, the coupling coordination degree was calculated by coupling the ecological environment quality index and the average disposable income. Finally, the spatial variation was analyzed in detail respectively at provincial, city and county scales. Results showed that as a whole, the spatial autocorrelation coefficient of coupling coordination degree was relatively higher in the study area, and the coupling coordination degree in the eastern part was higher than that in the western part; the whole coupling coordination degree in Shanxi Province was slightly higher than in Shaanxi Province; the national poverty counties presented a state of recession, and their coordinated development degrees were far lower than that of non-national poverty counties.
Institute of Scientific and Technical Information of China (English)
谢溪庄
2013-01-01
考虑并研究了一类具有分布时滞和非局部空间效应影响的合作系统的反应扩散模型.利用Wang,Li和Ruan[6]建立的非局部时滞反应扩散方程组波前解存在性的理论,证明了连接零平衡解和正平衡解的行波解的存在性.%In this paper,the author consider and study a reaction-diffusion model with distributed delays and nonlocal spatial effect,which models the interaction between the two species,the adult members of which are in cooperation.We established the existence of traveling wave fronts connecting the zero solution of this equation with the unique positive steady state.The approach used in thispaper is the upper-lower solutions technique and the monotone iteration developed by Wang,Li and Ruan for reaction-diffusion systems with spatio-temporal delays.
Institute of Scientific and Technical Information of China (English)
谢溪庄; 张映辉
2012-01-01
In this paper, the authors propose and consider a reaction-diffusion model with distributed delay and nonlocal spatial effect, which models the interaction between the two species, the adult members of which are in cooperation. By using the method of upperlower solutions due to Redlinger, dynamical behaviors of model are studied. The zero steady state and the boundary equilibria are linear unstable and the unique positive steady state is globally asymptotically stable.%构造并研究了一类具有分布时滞和非局部空间效应影响的两种群成年个体相互合作的反应扩散模型.利用线性稳定化方法和Redlinger上下解方法得到了该合作模型的动力性态,并证明了模型在零平衡点和边界平衡点是不稳定的,而在正平衡点是全局渐近稳定的.
Kudekar, Shrinivas; Urbanke, Ruediger
2010-01-01
Convolutional LDPC ensembles, introduced by Felstrom and Zigangirov, have excellent thresholds and these thresholds are rapidly increasing as a function of the average degree. Several variations on the basic theme have been proposed to date, all of which share the good performance characteristics of convolutional LDPC ensembles. We describe the fundamental mechanism which explains why "convolutional-like" or "spatially coupled" codes perform so well. In essence, the spatial coupling of the individual code structure has the effect of increasing the belief-propagation (BP) threshold of the new ensemble to its maximum possible value, namely the maximum-a-posteriori (MAP) threshold of the underlying ensemble. For this reason we call this phenomenon "threshold saturation." This gives an entirely new way of approaching capacity. One significant advantage of such a construction is that one can create capacity-approaching ensembles with an error correcting radius which is increasing in the blocklength. Our proof make...
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational
Extreme parameter sensitivity of transient persistence in spatially coupled ecological systems
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper investigates persistence of transient dynamics depending on parameters in spatially coupled ecological systems. We emphasis that the persistence time can be obtained by populations of species or Lyapunov exponents of transient dynamics. It is found that extreme sensitive dependence of persistence on parameters occurs commonly in ecological models. A non-zero uncertainty exponent is used to characterize the high sensitivity in a reasonable parameter region. The result of a small uncertainty expone...
Simulation of spatially coupling dynamic response of train-track time-variant system
Institute of Scientific and Technical Information of China (English)
向俊; 李德建; 曾庆元
2003-01-01
There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained.
Przysucha, Eryk P; Maraj, Brian K V
2013-07-01
The nature of intra- and interlimb (bimanual) coordination was examined in ten boys with (M = 10.5 years, SD = 1.0) and without DCD (M = 10.8 years, SD = .9) in a two-handed catching task. Children with developmental coordination disorder (DCD) caught significantly fewer balls (MDCD = 56%, SD = 17.6 vs. MnoDCD = 93%, SD = 7.5), and both groups solved the "degrees of freedom problem" differently at intralimb level of coordination. Typically developing children coupled and decoupled the respective spatial relations, whereas the majority of children with DCD segmented their actions. At interlimb level, both groups exhibited a comparable degree of spatial symmetry. However, individual profiles also showed that children with varying degrees of movement issues exhibited movement patterns that were qualitatively and functionally diverse. Overall, in the context of previous research on interlimb coordination it appears that spatial, in addition to temporal organization, may be jeopardized in at least some children with DCD.
Energy Technology Data Exchange (ETDEWEB)
Lin, H.T. [Department of Information Management, Cheng Shiu University, Kaoshuing, Taiwan (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ke, C.; Pan, M. [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)
2011-11-15
Mean field approach is a good way of dealing with chaos of vortex motion in a background of many vortices. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system. Vortex motion in the background of many vortices is investigated by a mean field approach. Effects of the vortex-vortex coupling, the driving frequency, and the vortex viscosity on the vortex motion have been studied to reveal the interaction between the spatial and temporal chaos. It is found that the mean-field approach is a good approximation to describe the vortex motion in one dimensional vortex system. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system.
Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators
Indian Academy of Sciences (India)
Awadesh Prasad; Leon D Iasemidis; Shivkumar Sabesan; Kostas Tsakalis
2005-04-01
We identify a novel phenomenon in distinct (namely non-identical) coupled chaotic systems, which we term dynamical hysteresis. This behavior, which appears to be universal, is defined in terms of the system dynamics (quantified for example through the Lyapunov exponents), and arises from the presence of at least two coexisting stable attractors over a finite range of coupling, with a change of stability outside this range. Further characterization via mutual synchronization indices reveals that one attractor corresponds to spatially synchronized oscillators, while the other corresponds to desynchronized oscillators. Dynamical hysteresis may thus help to understand critical aspects of the dynamical behavior of complex biological systems, e.g. seizures in the epileptic brain can be viewed as transitions between different dynamical phases caused by time dependence in the brain's internal coupling.
Spatial coupling analysis of regional economic development and environmental pollution in China
Institute of Scientific and Technical Information of China (English)
MA Li; JIN Fengjun; SONG Zhouying; LIU Yi
2013-01-01
Given the great number of studies focusing on the temporal interaction between economic and environmental subsystems,it is useful to perform a quantitative spatial assessment of these subsystems.In this paper,comprehensive assessment indicators for regional economic development and environmental pollution subsystems are constructed.Then,the degree of coupling and coordination of the regional economy-environment system is calculated for 350 prefectural units in China.It is found that the economic development and environmental pollution in most prefectural units is still at a low level of coupling and coordination.According to the coupling and coordination values,the Chinese territory can be divided into four types of area:economy-environment harmonious area,economy-environment gearing area,economy-environment rivaling area and low coupling degree of economy-environment area.Based on a structural analysis of the industrial sector in the four types of areas,there is a spatial relationship between the regional industrial sector structure and the coupling-coordination level.In the economy-environment harmonious area,the sectors of manufacturing of high-technology and high value-added products,such as communications,computer and electronic equipment,transport equipment and electrical machinery,account for a large proportion of the value of local industrial output.The industrial value of the economy-environment gearing area is concentrated on the manufacturing of machinery and equipment,and contains a few polluting sectors such as ferrous and non-ferrous metallurgy,chemical manufacturing and electricity generation.The economy--environment rivaling area is the type of area where polluting sectors concentrate,such as iron and steel,petrifaction,coal mining,building materials and electricity generation.In the low coupling degree of economy-environment area,its industry is concentrated on the production and processing of primary products.
Nonlocal transformation optics
Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader
2011-01-01
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
Nonlocality of quantum correlations
Streltsov, A; Roga, W; Bruß, D; Illuminati, F
2012-01-01
We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.
Entanglement without hidden nonlocality
Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas
2016-11-01
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
Acausality in Nonlocal Gravity Theory
Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo
2016-01-01
We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.
Aleutdinova, V. A.; Borisov, A. V.; Shaparev, V. É.; Shapovalov, A. V.
2011-09-01
Numerical solutions of the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated.
Measurement of scaling laws for shock waves in thermal nonlocal media
Ghofraniha, N; Folli, V; Trillo, S; DelRe, E; Conti, C
2012-01-01
We are able to detect the details of spatial optical collisionless wave-breaking through the high aperture imaging of a beam suffering shock in a fluorescent nonlinear nonlocal thermal medium. This allows us to directly measure how nonlocality and nonlinearity affect the point of shock formation and compare results with numerical simulations.
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Morfonios, C V; Diakonos, F K; Schmelcher, P
2016-01-01
A nonlocal discrete continuity formalism is developed which relates spatial symmetries in subparts of Hermitian or non-Hermitian lattice systems to the properties of adapted nonlocal currents. Broken local symmetries thereby act as current sources or sinks, and the time evolution of the associated nonlocal charge is governed by the nonlocal currents at the boundaries of domains with local symmetry. We apply the framework to locally inversion-(time-) and translation-(time-) symmetric one-dimensional photonic waveguide arrays effectively described by Schr\\"odinger's equation with a tight-binding Hamiltonian. The nonlocal currents of stationary states are shown to be translationally invariant within local symmetry domains for arbitrary wavefunction profiles, and cases of complete, overlapping, and gapped local symmetry are demonstrated for model setups. Two distinct versions of the nonlocal invariant currents enable a mapping between wave amplitudes of symmetry-related sites, thereby generalizing the global Bloc...
Evolution of Bell- nonlocality of two cavity fields in the double Jaynes-Cummings model
Institute of Scientific and Technical Information of China (English)
Long Miao; Yunkun Jiang
2011-01-01
The Bell-nonlocality of two initially entangled macroscopic fields in the double Jaynes-Cummings model is investigated.Moreover,the process by which detuning between the atomic transition frequency and the field frequency affects the evolution of the Bell-nonlocality of two macroscopic fields is studied.The effect of the disparity between the two coupling strengths is discussed.
Analytical theory of dark nonlocal solitons
DEFF Research Database (Denmark)
Kong, Qian; Wang, Qi; Bang, Ole;
2010-01-01
We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....
Nonlocal elasticity tensors in dislocation and disclination cores
Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.
2017-03-01
Nonlocal elastic constitutive laws are introduced for crystals containing defects such as dislocations and disclinations. In addition to pointwise elastic moduli tensors adequately reflecting the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. The convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.
Coupled-mode theory for photonic band-gap inhibition of spatial instabilities.
Gomila, Damià; Oppo, Gian-Luca
2005-07-01
We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals. We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical expressions for the new (higher) modulational thresholds and the size of the "band gap" as a function of the system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above threshold. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there is bistability between two spatially shifted patterns. In large systems stable wall defects between the two solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably compared with results obtained from the full system equations. Inhibition of pattern formation can be used to spatially control signal generation in the transverse plane.
Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma
Energy Technology Data Exchange (ETDEWEB)
Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)
2015-07-15
Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.
Lin, Alexander J.; Konecky, Soren D.; Rice, Tyler B.; Green, Kim N.; Choi, Bernard; Durkin, Anthony J.; Tromberg, Bruce J.
2012-02-01
Early neurovascular coupling (NVC) changes in Alzheimer's disease can potentially provide imaging biomarkers to assist with diagnosis and treatment. Previous efforts to quantify NVC with intrinsic signal imaging have required assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations during evoked stimuli. In this work, we present an economical spatial frequency domain imaging (SFDI) platform utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging dynamic optical properties. The fast acquisition platform described in this work is validated on silicone phantoms and demonstrated in neuroimaging of a mouse model.
Quantum Entanglement in a System of Two Spatially Separated Atoms Coupled to the Thermal Reservoir
Institute of Scientific and Technical Information of China (English)
LIAO Xiang-Ping; FANG Mao-Fa; ZHENG Xiao-Juan; CAI Jian-Wu
2006-01-01
We study quantum entanglement between two spatially separated atoms coupled to the thermal reservoir. The influences of the initial state of the system, the atomic frequency difference and the mean number of the thermal field on the entanglement are examined. The results show that the maximum of the entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms. The degree of entanglement is progressively decreased with the increase of the thermal noise. Interestingly, the two atoms can be easily entangled even when the two atoms are initially prepared in the most mixed states.
Lu, Yanfei; Lekszycki, Tomasz
2016-10-01
During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.
Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago
2016-07-01
The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...
Directory of Open Access Journals (Sweden)
Chifu Yang
2013-02-01
Full Text Available The workspace of a spatial 6‐DOF electro‐hydraulic parallel manipulator is strongly coupled, due to its multi‐closed‐loop kinematic structure and the coupling complicates motion planning and control of the parallel manipulator. This paper clearly analyses the strong dynamic coupling property in the workspace of a spatial 6‐DOF parallel manipulator, using modal decoupling theory and a frequency responses characteristics analysis method. The dynamic model of a spatial 6‐DOF electro‐hydraulic parallel manipulator is expressed with the Kane method and hydromechanics principles. The modal analysis method is used to establish the map between strong coupling workspace and decoupled modal space and the dynamic coupling relationship and coupling strength between workspaces are exactly revealed. The quantitative evaluation index of dynamic coupling is presented. Moreover, the relationship between dynamic coupling effects and input is discussed through applying frequency characteristics analysis. Experimental results show the workspace of the parallel manipulator is strongly coupled and the coupling property is coincident with theoretical results.
An operational framework for nonlocality
Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel
2011-01-01
Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Fisher, Charles K; Al-Hashimi, Hashim M
2009-05-07
NMR spectroscopy is one of the most powerful techniques for studying the internal dynamics of biomolecules. Current formalisms approximate the dynamics using simple continuous motional models or models involving discrete jumps between a small number of states. However, no approach currently exists for interpreting NMR data in terms of continuous spatially complex motional paths that may feature more than one distinct maneuver. Here, we present an approach for approximately reconstructing spatially complex continuous motions of chiral domains using NMR anisotropic interactions. The key is to express Wigner matrix elements, which can be determined experimentally using residual dipolar couplings, as a line integral over a curve in configuration space containing an ensemble of conformations and to approximate the curve using a series of geodesic segments. Using this approach and five sets of synthetic residual dipolar couplings computed for five linearly independent alignment conditions, we show that it is theoretically possible to reconstruct salient features of a multisegment interhelical motional trajectory obtained from a 65 ns molecular dynamics simulation of a stem-loop RNA. Our study shows that the 3-D atomic reconstruction of complex motions in biomolecules is within experimental reach.
Coupling NLDAS Model Output with MODIS Products for Improved Spatial Evapotranspiration Estimates
Kim, J.; Hogue, T.
2008-12-01
Given the growing concern over regional water supplies in much of the arid west, the quantification of water use by urban and agricultural landscapes is critically important. Water lost through evapotranspiration (ET) typically can not be recaptured or recycled, increasing the need for accurate accounting of ET in regional water management and planning. In this study, we investigate a method to better capture the spatial characteristics of ET by coupling operational North American Land Data Assimilation System (NLDAS) Noah Land Surface Model (LSM) outputs and a previously developed MODIS-based Potential Evapotranspiration (PET) product. The resultant product is higher resolution (1km) than the NLDAS model ET outputs (~12.5 km) and provides improved estimates within highly heterogeneous terrain and landscapes. We undertake this study in the Southern California region which provides an excellent case study for examining the developed product's ability to estimate vegetation dynamics over rapidly growing, and highly-irrigated, urban ecosystems. General trends in both products are similar; however the coupled MODIS-NLDAS ET product shows higher spatial variability, better capturing land surface heterogeneity than the NLDAS-based ET. Improved ET representation is especially obvious during the spring season, when precipitation is muted and evaporative flux is dominant. We also quantify seasonal landscape water demand over urban landscapes in several major counties (i.e. Los Angeles, San Diego and Riverside) using the MODIS-NLDAS ET model.
Lyubomirskiy, Mikhail; Snigireva, Irina; Snigirev, Anatoly
2016-06-13
We have implemented a modified Young's double slit experiment using pinholes with tunable separation distance coupled with compound refractive lens for hard X-ray spatial coherence characterization. Varying distance between the apertures provides a high sensitivity to the determination of spatial coherence across a wide range of experimental parameters. The use of refractive lenses as a Fourier transformer ensures far field registration conditions and allows the realization of a very compact experimental setup in comparison with the classical Young technique and its derivatives. The tunable double aperture interferometer was experimentally tested at the ESRF ID06 beamline in the energy range from 8 to 25 keV. The spatial coherence and the source size were measured by evaluating the visibility of the interference fringes at various separation distances between the apertures and this value agrees very well with the data obtained by other techniques. The proposed scheme can be used for comprehensive characterization of the coherence properties of the source on low emittance synchrotrons in the hard X-ray region.
Cervera, Javier; Manzanares, Jose Antonio; Mafe, Salvador
2015-02-19
We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also analyzed. The results suggest that simple coupling mechanisms can be significant for the biophysical chemistry of model biomolecular ensembles. In particular, the spatiotemporal map of single cell potentials should be relevant for the uptake and distribution of charged nanoparticles over model cell ensembles and the collective properties of droplet networks incorporating protein ion channels inserted in lipid bilayers.
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyun Jun [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun [R and D Center for PSK-INC Corporation, Hwaseong-si 445-170 (Korea, Republic of); Kim, Dong Hwan [Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)
2015-04-15
The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.
Meyerspeer, M.; Robinson, S.; Nabuurs, C.I.H.C.; Scheenen, T.W.; Schoisengeier, A.; Unger, E.; Kemp, G.J.; Moser, E.
2012-01-01
By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic (31) P magnetic resonance spectroscopy using a surface coil was compared during aerobic
Meyerspeer, M.; Robinson, S.; Nabuurs, C.I.H.C.; Scheenen, T.W.; Schoisengeier, A.; Unger, E.; Kemp, G.J.; Moser, E.
2012-01-01
By improving spatial and anatomical specificity, localized spectroscopy can enhance the power and accuracy of the quantitative analysis of cellular metabolism and bioenergetics. Localized and nonlocalized dynamic (31) P magnetic resonance spectroscopy using a surface coil was compared during aerobic
Numerical computation of a nonlocal double obstacle problem
Bhowmik, S.K.
2009-01-01
We consider a nonlocal double obstacle problem. This type of problems comes in various biological and physical situations, e.g., in phase transition models. We focus on numerical approximations and fast computation of such a model. We start with considering piece-wise basis functions for spatial app
Nonlocal response in plasmonic waveguiding with extreme light confinement
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, Søren; Yan, Wei;
2013-01-01
We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allo...... Purcell factors, and thus has important implications for quantum plasmonics....
Tague, C.
2007-12-01
One of the primary roles of modeling in critical zone research studies is to provide a framework for integrating field measurements and theory and for generalizing results across space and time. In the Southern Sierra Critical Zone Observatory (SCZO), significant spatial heterogeneity associated with mountainous terrain combined with high inter-annual and seasonal variation in climate, necessitates the use of spatial-temporal models for generating landscape scale understanding and predictions. Science questions related to coupled hydrologic and biogeochemical fluxes within the critical zone require a framework that can account for multiple and interacting processes. One of the core tools for the SCZO will be RHESSYs (Regional hydro-ecologic simulation system). RHESSys is an existing GIS-based model of hydrology and biogeochemical cycling. For the SCZO, we use RHESSys as an open-source, objected oriented model that can be extended to incorporate findings from field-based monitoring and analysis. We use the model as a framework for data assimilation, spatial-temporal interpolation, prediction, and scenario and hypothesis generation. Here we demonstrate the use of RHESSys as a hypothesis generation tool. We show how initial RHESSys predictions can be used to estimate when and where connectivity within the critical zone will lead to significant spatial or temporal gradients in vegetation carbon and moisture fluxes. We use the model to explore the potential implications of heterogeneity in critical zone controls on hydrologic processes at two scales: micro and macro. At the micro scale, we examine the role of preferential flowpaths. At the macro scale we consider the importance of upland-riparian zone connectivity. We show how the model can be used to design efficient field experiments by, a-priori providing quantitative estimate of uncertainty and highlighting when and where measurements might most effectively reduce that uncertainty.
Optimal measurements for nonlocal correlations
Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto
2016-08-01
A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.
The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics.
Aguilera, Miguel; Bedia, Manuel G; Santos, Bruno A; Barandiaran, Xabier E
2013-01-01
Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose "brain" is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy of
The Situated HKB Model: how sensorimotor spatial coupling can alter oscillatory brain dynamics
Directory of Open Access Journals (Sweden)
Miguel eAguilera
2013-08-01
Full Text Available Despite the increase both of dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the HKB model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose "brain" is modelled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain, finding different behavioural strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behaviour and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input.To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy
Towards LHC physics with nonlocal Standard Model
Tirthabir Biswas; Nobuchika Okada
2015-01-01
We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...
Non-locality in quantum field theory due to general relativity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; Croon, Djuna; Fritz, Christopher [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)
2015-12-15
We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background. (orig.)
Non-locality in quantum field theory due to general relativity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk; Croon, Djuna, E-mail: d.croon@sussex.ac.uk; Fritz, Christopher, E-mail: c.fritz@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, BN1 9QH, Brighton (United Kingdom)
2015-12-19
We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background.
Low-Energy Signatures of Nonlocal Field Theories
Belenchia, Alessio; Martin-Martinez, Eduardo; Saravani, Mehdi
2016-01-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by non-analytic functions of the d'Alembertian operator $\\Box$ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy non-locality scales. This allows us to suggest a nuclear physics experiment ($\\sim$ MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
Directory of Open Access Journals (Sweden)
Jianfeng Zheng
2012-01-01
Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.
Ohya, Yoshinobu; Ishikawa, Kenji; Komuro, Tatsuya; Yamaguchi, Tsuyoshi; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru
2017-04-01
We present experimentally determined spatial profiles of the interelectrode electron density (n e) in dual-frequency capacitively coupled plasmas in which the negative direct current (dc) bias voltage (V dc) is superposed; in the experiment, 13 MHz (P low) was applied to the lower electrode and 60 MHz (P high) to the upper electrode. The bulk n e increased substantially with increases in the external power, P high, P low, and with increases in V dc. When P low was insufficient, the bulk n e decreased as the V dc bias increased. The bulk n e increased due to its dependence on V dc, especially for |V dc| > 500 V. This may correspond to the sheath voltages (V s) of the lower electrode. The n e values in front of the upper electrode were coupled with the V dc: the V dc dependence first decreased and then increased. The dc currents (I dc) of the upper electrode were collected when a large P low was applied. The value of I dc at the threshold value of V dc ≈ V s (e.g. ‑500 V) increased with an increase in n e. When |V dc| exceeded the threshold, the spatial n e profile and the I dc dependence were changed relative to the electrical characteristics of the dc superposition; this led to a change in the location of the maximum n e, the width of the area of n e depletion in front of the electrodes, and a transition in the electron heating modes.
Directory of Open Access Journals (Sweden)
Sara M Szczepanski
2014-08-01
Full Text Available Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second and spatial (sub-centimeter scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8 performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG power (70-250 Hz time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2-5 Hz oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.
Near field radiative heat transfer between two nonlocal dielectrics
Singer, F; Joulain, Karl
2015-01-01
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...
Modelling population growth with delayed nonlocal reaction in 2-dimensions.
Liang, Dong; Wu, Jianhong; Zhang, Fan
2005-01-01
In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.
Solutions of Nonlocal -Laplacian Equations
Directory of Open Access Journals (Sweden)
Mustafa Avci
2013-01-01
Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.
Spontaneous Emission in Nonlocal Materials
Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V
2016-01-01
Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.
Classical and Quantum Nonlocal Supergravity
Giaccari, Stefano
2016-01-01
We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...
Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor
Energy Technology Data Exchange (ETDEWEB)
Miller, Paul A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Barnat, Edward V [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Hebner, Gregory A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Paterson, Alex M [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States); Holland, John P [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States)
2006-11-01
There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models.
Nonlocal dielectric effects in core-shell nanowires.
Energy Technology Data Exchange (ETDEWEB)
McMahon, J. M.; Gray, S. K.; Schatz, G. C. (Center for Nanoscale Materials); ( CSE); (Northwestern Univ.)
2010-01-01
We study the optical spectra and near fields of core-shell nanowires (nanoshells), using a recently developed finite-difference method that allows for a spatially nonlocal dielectric response. We first analyze the parameters of the nonlocal model by making comparisons with related experimental data and previous theoretical work. We then investigate how nonlocal effects are dependent on nanoshell features, such as shell thickness, overall size, and the ratio of core radius to shell radius. We demonstrate that the shell thickness along the longitudinal direction of the incident light is the primary controlling factor of nonlocal effects, which appear as anomalous absorption resonances and blueshifts in the localized surface plasmon resonance (LSPR) positions, relative to local theory. In addition, we show that the amount of blueshift depends on the order of the LSPR. The optical responses of nanoshells immersed in various refractive index (RI) environments are also studied. We show that the nonlocal anomalous absorption features are relatively insensitive to RI changes, but the blueshift of the dipolar LSPR varies nonlinearly.
Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo
2017-05-01
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.
Directory of Open Access Journals (Sweden)
Martin Ubertini
Full Text Available The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter and biological parameters (flora and fauna assemblages, chlorophyll were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher
Ebrahimi, Farzad; Reza Barati, Mohammad
2017-01-01
In this research, vibration characteristics of a flexoelectric nanobeam in contact with Winkler-Pasternak foundation is investigated based on the nonlocal elasticity theory considering surface effects. This nonclassical nanobeam model contains flexoelectric effect to capture coupling of strain gradients and electrical polarizations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, flexoelectric and surface effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Natural frequencies are verified with those of previous papers on nanobeams. It is illustrated that flexoelectricity, nonlocality, surface stresses, elastic foundation and boundary conditions affects considerably the vibration frequencies of piezoelectric nanobeams.
Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials
Sun, Lei; Yang, Xiaodong
2013-01-01
The giant optical nonlocality near the Dirac point in lossless metal-dielectric multilayer metamaterials is revealed and investigated through the analysis of the band structure of the multilayer stack in the three-dimensional omega-k space, according to the transfer-matrix method with the optical nonlocal effect. The position of the Dirac point is analytically located in the omega-k space. It is revealed that the emergence of the Dirac point is due to the degeneracy of the symmetric and the asymmetric eigenmodes of the coupled surface plasmon polaritons. The optical nonlocality induced epsilon-near-zero frequency shift for the multilayer stack compared to the effective medium is studied. Furthermore, the giant optical nonlocality around the Dirac point is explored with the iso-frequency contour analysis, while the beam splitting phenomenon at the Dirac point due to the optical nonlocal effect is also demonstrated.
Mackintosh, R S
2016-01-01
The consequences for direct reactions of the dynamical non-locality generated by the excitation of the target and projectile are much less studied than the effects of non-locality arising from exchange processes. Here we are concerned with the dynamical non-locality due to projectile excitation in deuteron induced reactions. The consequences of this non-locality can be studied by the comparison of deuteron induced direct reactions calculated with alternative representations of the elastic channel wave functions: (i) the elastic channel wave functions from coupled channel (CC) calculations involving specific reaction processes, and, (ii) elastic channel wave functions calculated from local potentials that exactly reproduce the elastic scattering $S$-matrix from the same CC calculations. In this work we produce the local equivalent deuteron potentials required for the study of direct reactions involving deuterons. These will enable the study of the effects of dynamical non-locality following a method previously...
Nonlocal optical response in metallic nanostructures.
Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N
2015-05-13
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.
Nonlocal optical response in metallic nanostructures
DEFF Research Database (Denmark)
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn
2015-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....
Institute of Scientific and Technical Information of China (English)
王靖; 郑一周; 周罗红; 杨振军; 陆大全; 郭旗; 胡巍
2012-01-01
对非局域自散焦克尔介质中的空间光暗孤子成丝进行了研究．理论上从非局域非线性理论模型出发，数值模拟研究了非局域程度和吸收系数对暗孤子成丝的影响．当入射背景光强一定时，非局域程度越大成丝起始点越远、成丝数量越少；而当入射背景光强与临界光强之比一定时，非局域程度基本不影响成丝起始点以及成丝数量，且非局域下的成丝数量与局域下一样．此外，当入射背景光强一定时，吸收系数越大成丝数量越少．实验上通过改变染料溶液的浓度以及背景光斑的椭圆率，分别研究了样品浓度和背景光斑椭圆率对暗孤子成丝的影响．当入射背景平均光强一定时，样品浓度越小成丝数量越少，背景光斑椭圆率越小成丝数量越少；而当入射背景平均光强与临界光强之比一定时，样品浓度基本不影响成丝数量．在实验中还观察到了光学冲击波现象．%In this paper, the spatial optical dark soliton filamentization in a nonlocal self-defocusing Kerr medium is investigated. Theoret- ically, starting from nonlocal nonlinear theoretical model, we examine the influences of the degree of nonlocality and the attenuation constant on the formation of dark soliton filaments by numerical simulation method. We find that when the input background optical intensity is determined, the greater the degree of nonlocality, the farther the initial poirit of the formation of dark filaments is and the less the number of dark filaments decreases with the increase of the degree of nonlocality; when the ratio of the background optical intensity to the critical optical intensity is fixed, the degree of nonlocality can hardly influence the number of dark filaments and the number of dark filaments under nonlocality is equal to that under locality. Besides, when the input background optical intensity is determined, the number of dark filaments decreases
Discrete Solitary Waves in Systems with Nonlocal Interactions and the Peierls-Nabarro Barrier
Jenkinson, M.; Weinstein, M. I.
2017-04-01
We study a class of discrete focusing nonlinear Schrödinger equations (DNLS) with general nonlocal interactions. We prove the existence of onsite and offsite discrete solitary waves, which bifurcate from the trivial solution at the endpoint frequency of the continuous spectrum of linear dispersive waves. We also prove exponential smallness, in the frequency-distance to the bifurcation point, of the Peierls-Nabarro energy barrier (PNB), as measured by the difference in Hamiltonian or mass functionals evaluated on the onsite and offsite states. These results extend those of the authors for the case of nearest neighbor interactions to a large class of nonlocal short-range and long-range interactions. The appearance of distinct onsite and offsite states is a consequence of the breaking of continuous spatial translation invariance. The PNB plays a role in the dynamics of energy transport in such nonlinear Hamiltonian lattice systems. Our class of nonlocal interactions is defined in terms of coupling coefficients, J m , where {min{Z}} is the lattice site index, with {J_m˜eq m^{-1-2s}, sin[1,∞)} and {J_m˜ e^{-γ|m|}, s=∞, γ > 0,} (Kac-Baker). For {s≥1}, the bifurcation is seeded by solutions of the (effective/homogenized) cubic focusing nonlinear Schrödinger equation (NLS). However, for {1/4 equation, FNLS, with {(-Δ)^s} replacing {-Δ}. The proof is based on a Lyapunov-Schmidt reduction strategy applied to a momentum space formulation. The PN barrier bounds require appropriate uniform decay estimates for the discrete Fourier transform of DNLS discrete solitary waves. A key role is also played by non-degeneracy of the ground state of FNLS, recently proved by Frank, Lenzmann and Silvestrie.
Plasmon-enhanced fluorescence near nonlocal metallic nanospheres
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, N.; Wubs, Martijn
) of a dipole emitter. Here we explore the importance of hitherto disregarded nonclassical effects in the description of emitter-plasmon hybrids, focusing on the roles of metal nonlocal optical response and size-dependent plasmon damping [1]. Comparison between the common local response approximation (LRA......) and the generalized nonlocal optical response (GNOR) theory [2] shows that a significant decrease in fluorescence enhancement is obtained for emitters close to small metallic nanospheres or thin metallic nanoshells, while the optimum emitter position is also affected. In this respect, our recent work introduces...... the study of emitterplasmon coupling (in the weak-coupling limit) as a sensitive test for the validity of stateof-the-art nonclassical models. For the regime of strong emitter-plasmon coupling, we anticipate an analogously wide importance of a description beyond classical electrodynamics, particularly once...
On the preservation of cooperation in two-strategy games with nonlocal interactions.
Aydogmus, Ozgur; Zhou, Wen; Kang, Yun
2017-03-01
Nonlocal interactions such as spatial interaction are ubiquitous in nature and may alter the equilibrium in evolutionary dynamics. Models including nonlocal spatial interactions can provide a further understanding on the preservation and emergence of cooperation in evolutionary dynamics. In this paper, we consider a variety of two-strategy evolutionary spatial games with nonlocal interactions based on an integro-differential replicator equation. By defining the invasion speed and minimal traveling wave speed for the derived model, we study the effects of the payoffs, the selection pressure and the spatial parameter on the preservation of cooperation. One of our most interesting findings is that, for the Prisoners Dilemma games in which the defection is the only evolutionary stable strategy for unstructured populations, analyses on its asymptotic speed of propagation suggest that, in contrast with spatially homogeneous games, the cooperators can invade the habitat under proper conditions. Other two-strategy evolutionary spatial games are also explored. Both our theoretical and numerical studies show that the nonlocal spatial interaction favors diversity in strategies in a population and is able to preserve cooperation in a competing environment. A real data application in a virus mutation study echoes our theoretical observations. In addition, we compare the results of our model to the partial differential equation approach to demonstrate the importance of including non-local interaction component in evolutionary game models.
Nonlocal Measurements via Quantum Erasure.
Brodutch, Aharon; Cohen, Eliahu
2016-02-19
Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.
Local enrichment and its nonlocal consequences for victim-exploiter metapopulations
Yaari, Gur; Schiffer, Marcelo; Shnerb, Nadav M
2008-01-01
The stabilizing effects of local enrichment are revisited. Diffusively coupled host-parasitoid and predator-prey metapopulations are shown to admit a stable fixed point, limit cycle or stable torus with a rich bifurcation structure. A linear toy model that yields many of the basic qualitative features of this system is presented. The further nonlinear complications are analyzed in the framework of the marginally stable Lotka-Volterra model, and the continuous time analog of the unstable, host-parasitoid Nicholson-Bailey model. The dependence of the results on the migration rate and level of spatial variations is examined, and the possibility of "nonlocal" effect of enrichment, where local enrichment induces stable oscillations at a distance, is studied. A simple method for basic estimation of the relative importance of this effect in experimental systems is presented and exemplified.
Rai, Ashutosh; Home, Dipankar; Majumdar, A. S.
2011-11-01
Leggett-type nonlocal realistic inequalities that have been derived to date are all contingent upon suitable geometrical constraints to be strictly satisfied by the spatial arrangement of the relevant measurement settings. This undesirable restriction is removed in the present work by deriving appropriate forms of nonlocal realistic inequalities, one of which involves the fewest number of settings compared to all such inequalities derived earlier. The way such inequalities would provide a logically firmer basis for a clearer testing of a Leggett-type nonlocal realistic model vis-à-vis quantum mechanics is explained.
Nonlocal propagation and tunnelling of surface plasmons in metallic hourglass waveguides.
Wiener, Aeneas; Fernández-Domínguez, Antonio I; Pendry, J B; Horsfield, Andrew P; Maier, Stefan A
2013-11-04
The nanofocusing performance of hourglass plasmonic waveguides is studied analytically and numerically. Nonlocal effects in the linearly tapered metal-air-metal stack that makes up the device are taken into account within a hydrodynamical approach. Using this hourglass waveguide as a model structure, we show that spatial dispersion drastically modifies the propagation of surface plasmons in metal voids, such as those generated between touching particles. Specifically, we investigate how nonlocal corrections limit the enormous field enhancements predicted by local electromagnetic treatments of geometric singularities. Finally, our results also indicate the emergence of nonlocality assisted tunnelling of plasmonic modes across hourglass contacts as thick as 0.5 nm.
Directory of Open Access Journals (Sweden)
Sean P Parsons
2016-02-01
Full Text Available Pacemaker activities generated by networks of interstitial cells of Cajal (ICC, in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e. spatial noise with a long-tailed distribution, plateau steps occurred at points of low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Parsons, Sean P.; Huizinga, Jan D.
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875
Parsons, Sean P; Huizinga, Jan D
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Nonlocal optical response in metallic nanostructures
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger
2014-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Totality of Subquantum Nonlocal Correlations
Khrennikov, Andrei
2011-01-01
In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
Non-local viscosity of polymer melts approaching their glassy state
DEFF Research Database (Denmark)
Puscasu, Ruslan; Todd, Billy; Daivis, Peter
2010-01-01
The nonlocal viscosity kernels of polymer melts have been determined by means of equilibrium molecular dynamics upon cooling toward the glass transition. Previous results for the temperature dependence of the self-diffusion coefficient and the value of the glass transition temperature are confirmed...... transition, leading to a very broad kernel in physical space. Thus, spatial nonlocality turns out to play an important role in polymeric fluids at temperatures near the glass transition temperature...
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)
1996-08-01
The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.
Vector and axial vector mesons in a nonlocal chiral quark model
Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.
2016-09-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Adali, Sarp
2009-05-01
Variational principles are derived for multiwalled carbon nanotubes undergoing vibrations. Derivations are based on the continuum modeling with the Euler-Bernoulli beam representing the nanotubes and small scale effects taken into account via the nonlocal elastic theory. Hamilton's principle for multiwalled nanotubes is given and Rayleigh's quotient for the frequencies is derived for nanotubes undergoing free vibrations. Natural and geometric boundary conditions are derived which lead to a set of coupled boundary conditions due to nonlocal effects.
Vector and axial vector mesons in a nonlocal chiral quark model
Villafañe, M F Izzo; Scoccola, N N
2016-01-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality
Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.
2012-01-01
, thereby modifying the thermal structure of the atmosphere and its circulation. Results presented in other papers at this workshop show that including the radiative effects of water ice clouds greatly influence the water cycle and the vigor of weather systems in both the northern and southern hemispheres. Our goal is to investigate the effects of fully coupling the dust and water cycles on the dust cycle. We show that including water ice clouds and their radiative effects greatly affect the magnitude, spatial extent and seasonality of dust lifting and the season of maximum atmospheric dust loading.
Institute of Scientific and Technical Information of China (English)
王智诚; 王双明
2013-01-01
利用动力系统方法及持久性理论研究了一类时间周期的时滞非局部反应扩散单种群增长模型，建立了解的全局存在性以及一致持久性。%The paper was concerned with a class of delayed nonlocal reaction-diffusion equation with a time period, which modelled the growth of a single species. By using the monotone dynamical system method and practice persistence theory, the global existence and uniform persistence of solutions were established.
Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces
Savoia, Silvio; Valagiannopoulos, Constantinos A.; Monticone, Francesco; Castaldi, Giuseppe; Galdi, Vincenzo; Alà, Andrea
2017-03-01
We show that a cylindrical lensing system composed of two metasurfaces with suitably tailored non-Hermitian (i.e., with distributed gain and loss) and nonlocal (i.e., spatially dispersive) properties can perform magnified imaging with reduced aberrations. More specifically, we analytically derive the idealized surface-impedance values that are required for "perfect" magnification and imaging and elucidate the role and implications of non-Hermiticity and nonlocality in terms of spatial resolution and practical implementation. For a basic demonstration, we explore some proof-of-principle quasilocal and multilayered implementations and independently validate the outcomes via full-wave numerical simulations. We also show that the metasurface frequency-dispersion laws can be chosen so as to ensure unconditional stability with respect to arbitrary temporal excitations. These results, which extend previous studies on planar configurations, may open intriguing venues in the design of metastructures for field imaging and processing.
Chaoticons described by nonlocal nonlinear Schrödinger equation
Zhong, Lanhua; Li, Yuqi; Chen, Yong; Hong, Weiyi; Hu, Wei; Guo, Qi
2017-01-01
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-like properties (with invariant statistic width and interaction of quasi-elastic collisions). PMID:28134268
A quantum loophole to Bell nonlocality
Romero-Rochin, Victor
2015-01-01
We argue that the conclusion of Bell theorem, namely, that there must be spatial non-local correlations in certain experimental situations, does not apply to typical individual measurements performed on entangled EPR pairs. Our claim is based on three points, (i) on the notion of quantum {\\it complete measurements}; (ii) on Bell results on local yet distant measurements; and (iii) on the fact that perfect simultaneity is banned by the quantum mechanics. We show that quantum mechanics indicates that, while the measurements of the pair members are indeed space-like separated, the pair measurement is actually a sequence of two complete measurements, the first one terminating the entanglement and, therefore, the second one becoming unrelated to the initial preparation of the entangled pair. The outstanding feature of these measurements is that neither of them violates the principle of locality. We discuss that the present measurement viewpoint appears to run contrary to the usual interpretation of "superposition"...
Nonlocal Response in Plasmonic Nanostructures
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2016-01-01
After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
A nonlocal discretization of fields
Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.
2001-01-01
A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Institute of Scientific and Technical Information of China (English)
张忠文
2015-01-01
A nonlocal and time-delayed reaction-diffusion predator-prey model was studied, where prey individuals undergo two stages, i.e. immature and mature, and the conversion of consumed from prey biomass to predator biomass has a retardation. The growth of the prey population obeys general Beverton-Holt function. By discussing the principal eigenvalue of nonlocal elliptic problems, we showed an explicit expression of the principal eigenvalue, the suﬃcient conditions for the uniform persistence and global extinction for the model could be established. By the fluctuation method, the global attractivity of the unique positive constant steady state was obtained.%考虑一类带阶段结构的扩散捕食者食饵模型，其中食饵个体经历两个生命阶段，未成熟和成熟阶段，捕食者生物量的转化有一个延迟，食饵生物量的增长遵循一般化的Beverton-Holt函数。就非局部椭圆特征问题的主特征值，建立一致持久性与全局灭绝性。利用波动方法，给出唯一正常数稳态解的全局吸引性。
Modelling of Nonlocal Effects in Electromechanical Nano-Switches
Toropova, M. M.
2010-01-01
Dielectric nano-swithes made of the materials that exhibit piezoelectric and/or flexoelectric properties with significant electro-mechanical coupling are considered. In this case, a nonuniform strain field may locally break inversion symmetry and induce polarization even in nonpiezoelectrics. At reducing dimensions to the nanoscale, the flexoelectric effect demonstrates the nonlocality of the dielectric materials and plays more significant role than piezoelectric effect. The flexoelectric eff...
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Du, Qiang; Yang, Jiang
2017-03-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge-Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge-Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen-Cahn equations, nonlocal Cahn-Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Energy Technology Data Exchange (ETDEWEB)
Du, Qiang, E-mail: jyanghkbu@gmail.com; Yang, Jiang, E-mail: qd2125@columbia.edu
2017-03-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2015-11-01
Asymptotic solutions of the multidimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation with an influence function that is invariant with respect to a spatial shift are constructed. The asymptotic solutions are perturbations of a spatially-homogeneous quasistationary exact solution. General expressions are illustrated by the example of a two-dimensional equation with a Gaussian initial condition.
Directory of Open Access Journals (Sweden)
Yange Shao
2014-01-01
Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.
Hoch, Jannis; van Beek, Rens; Winsemius, Hessel; Bierkens, Marc
2017-04-01
In recent years, losses due to riverine inundations have been increasing due to growth of both population and asset values in floodplain areas as well as changes in river regimes. As global flood risk will even increase in the future, it is paramount for the scientific community to provide sound flood hazard, exposure, and vulnerability estimates for improved flood risk management. Since inundations are a large-scale hazard, two main requirements for modelling efforts can be formulated. First, large-scale models need to be applied to capture the spatial correlation of flood events in neighbouring river basins, and second, modelling approaches need to be able to simulate future climate conditions and the resulting hydrologic response. Both requirements can be met by employing global hydrologic models (GHM). Obtaining the required information from GHM at a locally relevant resolution, however, remains a major research challenge. For instance, the coarse spatial resolution of such models hampers a detailed representation of channel and floodplain geometry, and simplistic routing schemes implemented often fail to capture discharge dynamics. In addition to other current approaches trying to overcome these issues, Hoch et al. (2016, in review) applied a spatially explicit coupling scheme between the global hydrologic model PCR-GLOBWB and the hydrodynamic model Delft3D Flexible Mesh. Two main features are central to this study. First, the water balance computations were performed by PCR-GLOBWB, while the routing was explicitly performed by FM solving the full shallow water equations. Results indeed showed that such a spatial coupling approach can simulate discharge more accurately than both models stand-alone. Second, the model domain was schematized by a flexible mesh which allows for smaller grids for areas such as channel and floodplain areas while preserving coarser spatial resolution in more remote areas. As a result, computational costs can be strongly reduced
Masselon, Chloé; Colin, Annie; Olmsted, Peter D
2010-02-01
In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.
Huijbers, C.M.; Nagelekerken, I.; Debrot, A.O.; Jongejans, E.
2013-01-01
Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived diffe
Nonlocal electrical diffusion equation
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
Chaudhury, Kunal N; Singer, Amit
2012-11-01
In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.
Extreme nonlocality with one photon
Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko
2009-01-01
The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.
Percolation transitions with nonlocal constraint.
Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong
2012-09-01
We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.
Horikis, Theodoros P
2016-01-01
The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.
Nonlocal Quantum Effects in Cosmology
Dumin, Yurii V
2014-01-01
Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...
Quantum Overloading Cryptography Using Single-Photon Nonlocality
Institute of Scientific and Technical Information of China (English)
TAN Yong-Gang; CAI Qing-Yu; SHI Ting-Yun
2007-01-01
@@ Using the single-photon nonlocality, we propose a quantum novel overloading cryptography scheme, in which a single photon carries two bits information in one-way quantum channel. Two commutative modes of the single photon, the polarization mode and the spatial mode, are used to encode secret information. Strict time windows are set to detect the impersonation attack. The spatial mode which denotes the existence of photons is noncommutative with the phase of the photon, so that our scheme is secure against photon-number-splitting attack. Our protocol may be secure against individual attack.
Nonlocal reflection by photonic barriers
Vetter, R. -M.; A. Haibel; Nimtz, G.
2001-01-01
The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.
Diaz, Pablo; Walton, Mark
2016-01-01
With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Liu, Chuangye; Nguyen, Nghiem V.; Wang, Zhi-Qiang
2016-10-01
In this paper, we investigate the orbital stability of solitary-wave solutions for an m-coupled nonlinear Schrödinger system i /∂ ∂ t u j + /∂ 2 ∂ x 2 u j + ∑ i = 1 m b i j |" separators=" u i | 2 u j = 0 , j = 1 , … , m , where m ≥ 2, uj are complex-valued functions of (x, t) ∈ ℝ2, bjj ∈ ℝ, j = 1, 2, …, m, and bij, i ≠ j are positive coupling constants satisfying bij = bji. It will be shown that spatially synchronized solitary-wave solutions of the m-coupled nonlinear Schrödinger system exist and are orbitally stable. Here, by synchronized solutions we mean solutions in which the components are proportional to one another. Our results completely settle the question on the existence and stability of synchronized solitary waves for the m-coupled system while only partial results were known in the literature for the cases of m ≥ 3 heretofore. Furthermore, the conditions imposed on the symmetric matrix B = (bij) satisfied here are both sufficient and necessary for the m-coupled nonlinear Schrödinger system to admit synchronized ground-state solutions.
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...
Towards LHC physics with nonlocal Standard Model
Directory of Open Access Journals (Sweden)
Tirthabir Biswas
2015-09-01
Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.
Nonlocal transport in superconducting oxide nanostructures
Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy
2013-03-01
We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443
Modesto, Leonardo
2013-01-01
We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...
Spatial versus temporal deterministic wave breakup of nonlinearly coupled light waves.
Salerno, D; Minardi, S; Trull, J; Varanavicius, A; Tamosauskas, G; Valiulis, G; Dubietis, A; Caironi, D; Trillo, S; Piskarskas, A; Di Trapani, P
2003-10-01
We investigate experimentally the competition between spatial and temporal breakup due to modulational instability in chi((2)) nonlinear mixing. The modulation of the wave packets caused by the energy exchange between fundamental and second-harmonic components is found to be the prevailing trigger mechanism which, according to the relative weight of diffraction and dispersion, leads to the appearance of a multisoliton pattern in the low-dimensional spatial or temporal domain.
Analyzing Spatial and Temporal Variation in Precipitation Estimates in a Coupled Model
Tomkins, C. D.; Springer, E. P.; Costigan, K. R.
2001-12-01
Integrated modeling efforts at the Los Alamos National Laboratory aim to simulate the hydrologic cycle and study the impacts of climate variability and land use changes on water resources and ecosystem function at the regional scale. The integrated model couples three existing models independently responsible for addressing the atmospheric, land surface, and ground water components: the Regional Atmospheric Model System (RAMS), the Los Alamos Distributed Hydrologic System (LADHS), and the Finite Element and Heat Mass (FEHM). The upper Rio Grande Basin, extending 92,000 km2 over northern New Mexico and southern Colorado, serves as the test site for this model. RAMS uses nested grids to simulate meteorological variables, with the smallest grid over the Rio Grande having 5-km horizontal grid spacing. As LADHS grid spacing is 100 m, a downscaling approach is needed to estimate meteorological variables from the 5km RAMS grid for input into LADHS. This study presents daily and cumulative precipitation predictions, in the month of October for water year 1993, and an approach to compare LADHS downscaled precipitation to RAMS-simulated precipitation. The downscaling algorithm is based on kriging, using topography as a covariate to distribute the precipitation and thereby incorporating the topographical resolution achieved at the 100m-grid resolution in LADHS. The results of the downscaling are analyzed in terms of the level of variance introduced into the model, mean simulated precipitation, and the correlation between the LADHS and RAMS estimates. Previous work presented a comparison of RAMS-simulated and observed precipitation recorded at COOP and SNOTEL sites. The effects of downscaling the RAMS precipitation were evaluated using Spearman and linear correlations and by examining the variance of both populations. The study focuses on determining how the downscaling changes the distribution of precipitation compared to the RAMS estimates. Spearman correlations computed for
Quantum nonlocality in weak-thermal-light interferometry.
Tsang, Mankei
2011-12-30
In astronomy, interferometry of light collected by separate telescopes is often performed by physically bringing the optical paths together in the form of Young's double-slit experiment. Optical loss severely limits the efficiency of this so-called direct detection method, motivating the fundamental question of whether one can achieve a comparable performance using separate optical measurements at the two telescopes before combining the measurement results. Using quantum mechanics and estimation theory, here I show that any such spatially local measurement scheme, such as heterodyne detection, is fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result reveals an overlooked signature of quantum nonlocality in a classic optics experiment.
Uncertainty estimation in diffusion MRI using the nonlocal bootstrap.
Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang
2014-08-01
In this paper, we propose a new bootstrap scheme, called the nonlocal bootstrap (NLB) for uncertainty estimation. In contrast to the residual bootstrap, which relies on a data model, or the repetition bootstrap, which requires repeated signal measurements, NLB is not restricted by the data structure imposed by a data model and obviates the need for time-consuming multiple acquisitions. NLB hinges on the observation that local imaging information recurs in an image. This self-similarity implies that imaging information coming from spatially distant (nonlocal) regions can be exploited for more effective estimation of statistics of interest. Evaluations using in silico data indicate that NLB produces distribution estimates that are in closer agreement with those generated using Monte Carlo simulations, compared with the conventional residual bootstrap. Evaluations using in vivo data demonstrate that NLB produces results that are in agreement with our knowledge on white matter architecture.
Spatial Fluctuations of Loose Spin Coupling in CuMn/Co Multilayers
Saerbeck, T.; Loh, N.; Lott, D.; Toperverg, B. P.; Mulders, A. M.; Rodríguez, A. Fraile; Freeland, J. W.; Ali, M.; Hickey, B. J.; Stampfl, A. P. J.; Klose, F.; Stamps, R. L.
2011-09-01
A detailed investigation of magnetic impurity-mediated interlayer exchange coupling observed in Cu0.94Mn0.06/Co multilayers using polarized neutron reflectometry and magnetic x-ray techniques is reported. Excellent descriptions of temperature and magnetic field dependent biquadratic coupling are obtained using a variant of the loose spin model that takes into account the distribution of the impurity Mn ions in three dimensions. Positional disorder of the magnetic impurities is shown to enhance biquadratic coupling via a new contribution J2fluct, leading to a temperature dependent canting of magnetic domains in the multilayer. These results provide measurable effects on RKKY coupling associated with the distribution of impurities within planes parallel to the interfaces.
Distributed optical fiber sensor for spatial location of polarization mode coupling
Cokgor, Ilkan; Handerek, Vincent A.; Rogers, Alan J.
1993-03-01
Transverse stress applied to a highly birefringent fiber at an arbitrary angle (other than 0 or 90 degrees) to the fiber birefringence axes causes rotation of the birefringence axes and changes the beat length of the fiber in that section. If one of the polarization modes is excited at the input, coupling of light from one mode to the other will be observed at a stress point. The presentation describes a method for determining the locations of discrete mode coupling points spaced along a polarization maintaining fiber using a pump-prob architecture based on the optical Kerr effect. Probe light experiences coupling at different stress locations. Counterpropagating strong pump light also experiences coupling while inducing additional birefringence, and changing the polarization state of the probe at the output. This system may be made temperature independent by introducing a phase tracking/triggering system. The advantages and limitations of this technique are described.
Making nonlocal reality compatible with relativity
Nikolic, H.
2010-01-01
It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.
Schmidt, Lennart; Krischer, Katharina
2015-06-01
We study an oscillatory medium with a nonlinear global coupling that gives rise to a harmonic mean-field oscillation with constant amplitude and frequency. Two types of cluster states are found, each undergoing a symmetry-breaking transition towards a related chimera state. We demonstrate that the diffusional coupling is non-essential for these complex dynamics. Furthermore, we investigate localized turbulence and discuss whether it can be categorized as a chimera state.
Institute of Scientific and Technical Information of China (English)
李昌华; 王形华; 黎东波; 刘孟连
2012-01-01
研究了1+1维高斯型双光束在含小损耗的强非局域非线性介质中的传输特性.通过对该介质中光束传输遵循的非局域非线性薛定谔方程进行近似简化,得到了含小损耗强非局域非线性介质中1+1维高斯型双光束传输模型.在此基础上运用解析的方法研究了双光束传输的演化规律,得到了准双孤子解.经过进一步分析发现,在传输过程中两光束中心的轨迹为艾里函数；两光束会准周期性地碰撞、分离；随着传输距离的增大,两光束中心之间的最大距离会越来越大.另一方面,当损耗逐渐增大时,两光束的碰撞空间周期将变短,同时两光束中心之间的最大距离也越来越大.%The propagation properties of (1 + 1) D Gaussian double light beams in strongly nonlocal nonlinear media with low losses are studied. By simplifying the nonlocal nonlinear Schrodinger equation which the light propagation in strongly nonlocal nonlinear media with low losses obeys, the propagation model of (1 + 1) D Gaussian double light beams in the media is obtained. With analysis method, the evolution laws of double light beams propagation are studied, the quasi double solitons solution is obtained. Further studies point out that the trajectories of the two light beams' centers in propagation are Airy functions; the two light beams will collide and separate; with the increase of propagation distance, the maximal distance between the two light beams' centers will become larger. When the losses increase, the collision spatial period will become smaller, and the maximal distance between the two light beams' centers will become larger.
Faugloire, Elise; Lejeune, Laure
2014-12-01
This study quantified the effectiveness of tactile guidance in indicating a direction to turn to and measured its benefits compared to spatial language. The device (CAYLAR), which was composed of 8 vibrators, specified the requested direction by a vibration at the corresponding location around the waist. Twelve participants were tested in normal light and in total darkness with 3 guidance conditions: spatial language, a long tactile rhythm (1 s on/4 s off vibrations) providing a single stimulation before movement, and a short rhythm (200 ms on/200 ms off vibrations) allowing information-movement coupling during body rotation. We measured response time, heading error, and asked participants to rate task easiness, intuitiveness and perceived accuracy for each guidance mode. Accuracy was higher and participants' ratings were more positive with the short tactile mode than with the 2 other modes. Compared to spatial language, tactile guidance, regardless of the vibration rhythm, also allowed faster responses and did not impair accuracy in the absence of vision. These findings quantitatively demonstrate that tactile guidance is particularly effective when it is reciprocally related to movement. We discuss implications of the benefits of perception-action coupling for the design of tactile navigation devices.
Wave propagation in nanostructures nonlocal continuum mechanics formulations
Gopalakrishnan, Srinivasan
2013-01-01
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...
Optimizing plasmon-enhanced fluorescence with nonlocal metallic nanospheres
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn
nonlocal corrections, the plasmon blueshift predicted by the hydrodynamic Drude model [1] leads to a small reduction of η. If however the plasmonic mode does not coincide exactly with λem, this blueshift can tune the mode to increase η. Nevertheless, when size-dependent losses are also taken into account......The fluorescence signal η of molecules coupled to plasmonic nanoparticles (NPs) is optimized through extended simulations, taking the metal nonlocal optical response fully into account. Solid Au and Ag nanospheres, as well as SiO2/Au(Ag) core/shell NPs (of total radius R), are engineered...... to maximize the ratio of radiative to nonradiative losses and match the emitter emission wavelength, λem. For a molecule modeled as an electric dipole p, oriented parallel to the incident field E, the optimal emitter-NP distance is then identified within the local response approximation (LRA). Introducing...
Origin of Dynamical Quantum Non-locality
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Perturbative loop corrections and nonlocal gravity
Maggiore, Michele
2016-01-01
Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.
Local and Nonlocal Regularization to Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2014-01-01
Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
Non-local flow effects on bedform dynamics
Perron, J. Taylor; Kao, Justin; Myrow, Paul
2013-04-01
Bedform patterns are sensitive recorders of feedbacks among bed topography, fluid flow, and sediment transport. Some of the most important feedbacks are local. For example, evolution models based on simple flow parameterizations that only incorporate local bed height can reproduce some of the essential features of bedform evolution, including bedform growth and migration. However, non-local effects can also be critically important. For example, field and laboratory measurements have shown that the spacing of most sand ripples generated by wave-driven oscillatory flows is linearly proportional to the amplitude of the flow oscillation, implying that fluid stress and sediment transport at a given location depend on upstream features that perturb the flow. A model that fully captures the coupling of flow and bedform evolution must include such effects, but it is not clear how detailed the description of the flow must be to reproduce the most important aspects of bedform evolution. To account for the most significant non-local flow effects without resorting to a coupled hydrodynamic model, we propose an approximation in which the bed shear stress is expressed as a convolution of the bed topography with a kernel that includes both local effects, such as acceleration over bumps, and non-local effects, such as flow separation and re-attachment. Two-dimensional flow simulations demonstrate that a single, generic kernel gives a good approximation of shear stress over a wide range of bed profiles under oscillatory and some combined flows. Incorporating this approximation into a simple bedform evolution model, we show that non-local effects are required to reproduce the characteristic transient patterns that emerge as wave ripples respond to changes in the flow, which we have documented with time-lapse imagery of laboratory wave tank experiments. We then show how this result informs interpretations of two-dimensional wave ripple patterns preserved in the geologic record.
Nonlocal Effects on D-branes in Plane-Wave Backgrounds
Ganor, O J; Ganor, Ori J.; Varadarajan, Uday
2002-01-01
We argue that the effective field theory on D3-branes in a plane-wave background with 3-form flux is a nonlocal deformation of Yang-Mills theory. In the case of NSNS flux, it is a dipole field theory with lightlike dipole vectors. For an RR 3-form flux the dipole theory is strongly coupled. We propose a weakly coupled S-dual description for it. The S-dual description is local at any finite order in string perturbation theory but becomes nonlocal when all perturbation theory orders are summed together.
Energy Technology Data Exchange (ETDEWEB)
Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)
2014-11-15
The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.
Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.
Energy Technology Data Exchange (ETDEWEB)
Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2016-08-07
The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.
Nonlocality of a single particle
Dunningham, Jacob; Vedral, Vlatko
2007-01-01
There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...
Directory of Open Access Journals (Sweden)
Antoni Buades
2011-09-01
Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J
2010-01-01
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal study of ultimate plasmon hybridization
DEFF Research Database (Denmark)
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.
2015-01-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
On instabilities in tensorial nonlocal gravity
Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R
2016-01-01
We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.
Creation of Entanglement with Nonlocal Operations
Institute of Scientific and Technical Information of China (English)
ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu
2005-01-01
We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.
Spectral Dimension from Causal Set Nonlocal Dynamics
Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo
2015-01-01
We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Emergent singular solutions of nonlocal density-magnetization equations in one dimension.
Holm, Darryl D; O Náraigh, Lennon; Tronci, Cesare
2008-03-01
We investigate the emergence of singular solutions in a nonlocal model for a magnetic system. We study a modified Gilbert-type equation for the magnetization vector and find that the evolution depends strongly on the length scales of the nonlocal effects. We pass to a coupled density-magnetization model and perform a linear stability analysis, noting the effect of the length scales of nonlocality on the system's stability properties. We carry out numerical simulations of the coupled system and find that singular solutions emerge from smooth initial data. The singular solutions represent a collection of interacting particles (clumpons). By restricting ourselves to the two-clumpon case, we are reduced to a two-dimensional dynamical system that is readily analyzed, and thus we classify the different clumpon interactions possible.
Controlled spatial separation of spins and coherent dynamics in spin-orbit-coupled nanostructures
Lo, Shun-Tsung; Chen, Chin-Hung; Fan, Ju-Chun; Smith, L. W.; Creeth, G. L.; Chang, Che-Wei; Pepper, M.; Griffiths, J. P.; Farrer, I.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Chen, Tse-Ming
2017-07-01
The spatial separation of electron spins followed by the control of their individual spin dynamics has recently emerged as an essential ingredient in many proposals for spin-based technologies because it would enable both of the two spin species to be simultaneously utilized, distinct from most of the current spintronic studies and technologies wherein only one spin species could be handled at a time. Here we demonstrate that the spatial spin splitting of a coherent beam of electrons can be achieved and controlled using the interplay between an external magnetic field and Rashba spin-orbit interaction in semiconductor nanostructures. The technique of transverse magnetic focusing is used to detect this spin separation. More notably, our ability to engineer the spin-orbit interactions enables us to simultaneously manipulate and probe the coherent spin dynamics of both spin species and hence their correlation, which could open a route towards spintronics and spin-based quantum information processing.
Even-odd spatial nonequivalence for atomic quantum gases with isotropic spin-orbit couplings
Singh, G. S.; Gupta, Reena
2014-05-01
A general expression for the density of states (DOS) of power-law trapped d-dimensional ideal quantum gases with isotropic spin-orbit couplings (SOCs) is derived and is found to bifurcate into even- dand odd- d classes. The expressions for the grand potential and hence for several thermodynamic quantities are then shown to be amenable to exact analytical forms provided d is an odd integer. Also, a condition γ transition temperature and the condensate fraction in a 3D Bose gas under combined presence of the harmonic trapping and the Weyl coupling shows that the condensation is favored by the former but disfavored by the latter. This countering behavior is discussed to be in conformity with the exchange-symmetry-induced statistical interactions resulting from these two entities as enunciated recently [Phys. Rev. A 88, 053607 (2013)].
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Nonlocal Galileons and self-acceleration
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Nonlocal Galileons and self-acceleration
Directory of Open Access Journals (Sweden)
Gregory Gabadadze
2017-05-01
Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Nonlocal thermal transport in solar flares
Karpen, Judith T.; Devore, C. Richard
1987-01-01
A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.
Non-local parallel transport in BOUT++
Omotani, J T; Havlickova, E; Umansky, M
2015-01-01
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, B
2015-01-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, Bahram
2016-05-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Spherical systems in models of nonlocally corrected gravity
Bronnikov, K A
2009-01-01
The properties of static, spherically symmetric configurations are considered in the framework of two models of nonlocally corrected gravity, suggested in S. Deser and R. Woodard., Phys. Rev. Lett. 663, 111301 (2007), and S. Capozziello et al., Phys. Lett. B 671, 193 (2009). For the first case, where the Lagrangian of nonlocal origin represents a scalar-tensor theory with two massless scalars, an explicit condition is found under which both scalars are canonical (non-phantom). If this condition does not hold, one of the fields exhibits a phantom behavior. Scalar-vacuum configurations then behave in a manner known for scalar-tensor theories. In the second case, the Lagrangian of nonlocal origin exhibits a scalar field interacting with the Gauss-Bonnet (GB) invariant and contains an arbitrary scalar field potential. It is found that the GB term, in general, leads to violation of the well-known no-go theorems valid for minimally coupled scalar fields in general relativity. It is shown, however, that some configu...
Positive cosmological constant, non-local gravity and horizon entropy
Energy Technology Data Exchange (ETDEWEB)
Solodukhin, Sergey N., E-mail: Sergey.Solodukhin@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Federation Denis Poisson - CNRS, Parc de Grandmont, 37200 Tours (France)
2012-08-21
We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant {Lambda}>0 and with zero {Lambda}. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive {Lambda}, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.
Positive cosmological constant, non-local gravity and horizon entropy
Solodukhin, Sergey N.
2012-08-01
We discuss a class of (local and non-local) theories of gravity that share same properties: (i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; (ii) the on-shell action of such a theory vanishes and (iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant Λ>0 and with zero Λ. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive Λ, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entropy proportional to the area. We conclude that, somewhat surprisingly, the presence of any, even extremely tiny, positive cosmological constant should be important for the proper resolution of the entropy problem and, possibly, the information puzzle.
Positive cosmological constant, non-local gravity and horizon entropy
Solodukhin, Sergey N
2012-01-01
We discuss a class of (local and non-local) theories of gravity that share same properties: i) they admit the Einstein spacetime with arbitrary cosmological constant as a solution; ii) the on-shell action of such a theory vanishes and iii) any (cosmological or black hole) horizon in the Einstein spacetime with a positive cosmological constant does not have a non-trivial entropy. The main focus is made on a recently proposed non-local model. This model has two phases: with a positive cosmological constant $\\Lambda>0$ and with zero $\\Lambda$. The effective gravitational coupling differs essentially in these two phases. Generalizing the previous result of Barvinsky we show that the non-local theory in question is free of ghosts on the background of any Einstein spacetime and that it propagates a standard spin-2 particle. Contrary to the phase with a positive $\\Lambda$, where the entropy vanishes for any type of horizon, in an Einstein spacetime with zero cosmological constant the horizons have the ordinary entro...
Conformal symmetry and nonlinear extensions of nonlocal gravity
Cusin, Giulia; Maggiore, Michele; Mancarella, Michele
2016-01-01
We study two nonlinear extensions of the nonlocal $R\\,\\Box^{-2}R$ gravity theory. We extend this theory in two different ways suggested by conformal symmetry, either replacing $\\Box^{-2}$ with $(-\\Box + R/6)^{-2}$, which is the operator that enters the action for a conformally-coupled scalar field, or replacing $\\Box^{-2}$ with the inverse of the Paneitz operator, which is a four-derivative operator that enters in the effective action induced by the conformal anomaly. We show that the former modification gives an interesting and viable cosmological model, with a dark energy equation of state today $w_{\\rm DE}\\simeq -1.01$, which very closely mimics $\\Lambda$CDM and evolves asymptotically into a de Sitter solution. The model based on the Paneitz operator seems instead excluded by the comparison with observations. We also review some issues about the causality of nonlocal theories, and we point out that these nonlocal models can be modified so to nicely interpolate between Starobinski inflation in the primordia...
Non-local currents and the structure of eigenstates in planar discrete systems with local symmetries
Energy Technology Data Exchange (ETDEWEB)
Röntgen, M., E-mail: mroentge@physnet.uni-hamburg.de [Zentrum für optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Morfonios, C.V., E-mail: christian.morfonios@physnet.uni-hamburg.de [Zentrum für optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Diakonos, F.K., E-mail: fdiakono@phys.uoa.gr [Department of Physics, University of Athens, GR-15771 Athens (Greece); Schmelcher, P., E-mail: pschmelc@physnet.uni-hamburg.de [Zentrum für optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)
2017-05-15
Local symmetries are spatial symmetries present in a subdomain of a complex system. By using and extending a framework of so-called non-local currents that has been established recently, we show that one can gain knowledge about the structure of eigenstates in locally symmetric setups through a Kirchhoff-type law for the non-local currents. The framework is applicable to all discrete planar Schrödinger setups, including those with non-uniform connectivity. Conditions for spatially constant non-local currents are derived and we explore two types of locally symmetric subsystems in detail, closed-loops and one-dimensional open ended chains. We find these systems to support locally similar or even locally symmetric eigenstates. - Highlights: • We extend the framework of non-local currents to discrete planar systems. • Structural information about the eigenstates is gained. • Conditions for the constancy of non-local currents are derived. • We use the framework to design two types of example systems featuring locally symmetric eigenstates.
Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces
Energy Technology Data Exchange (ETDEWEB)
Wagner, Ryan; Raman, Arvind, E-mail: raman@purdue.edu [Birck Nanotechnology Center, 1205 W. State Street, Purdue University, West Lafayette, Indiana 47907 (United States); Proksch, Roger, E-mail: Roger.Proksch@oxinst.com [Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117 (United States)
2013-12-23
Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.
Existence and uniqueness of positive solutions for a nonlocal dispersal population model
Directory of Open Access Journals (Sweden)
Jian-Wen Sun
2014-06-01
Full Text Available In this article, we study the solutions of a nonlocal dispersal equation with a spatial weight representing competitions and aggregation. To overcome the limitations of comparison principles, we introduce new definitions of upper-lower solutions. The proof of existence and uniqueness of positive solutions is based on the method of monotone iteration sequences.
Bound dipole solitary solutions in anisotropic nonlocal self-focusing media
DEFF Research Database (Denmark)
Mamaev, A.V.; Zozulya, A.A.; Mezentsev, V.K.;
1997-01-01
We find and analyze bound dipole solitary solutions in media with anisotropic nonlocal photorefractive material response. The dipole solutions consist of two elliptically shaped Gaussian-type beams separated by several diameters, and with a pi phase shift between their fields. Spatial evolution...... of two initially round Gaussian beams and their convergence to the above dipole solution is demonstrated experimentally....
Nonlinear and Nonlocal Feedbacks in an Aquaplanet
Feldl, N.; Roe, G.
2012-12-01
The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.
Exploring nonlocal observables in shock wave collisions
Ecker, Christian; Stanzer, Philipp; Stricker, Stefan A; van der Schee, Wilke
2016-01-01
We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large 't Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: hi...
Nonlocal quark model description of a composite Higgs particle
Kachanovich, Aliaksei
2016-01-01
We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.
Non-Local effective SU(2) Polyakov-loop models from inverse Monte-Carlo methods
Bahrampour, Bardiya; von Smekal, Lorenz
2016-01-01
The strong-coupling expansion of the lattice gauge action leads to Polyakov-loop models that effectively describe gluodynamics at low temperatures, and together with the hopping expansion of the fermion determinant provides insight into the QCD phase diagram at finite density and low temperatures, although for rather heavy quarks. At higher temperatures the strong-coupling expansion breaks down and it is expected that the interactions between Polyakov loops become non-local. Here, we therefore test how well pure SU(2) gluodynamics can be mapped onto different non-local Polyakov models with inverse Monte-Carlo methods. We take into account Polyakov loops in higher representations and gradually add interaction terms at larger distances. We are particularly interested in extrapolating the range of non-local terms in sufficiently large volumes and higher representations. We study the characteristic fall-off in strength of the non-local couplings with the interaction distance, and its dependence on the gauge coupl...
Testing Spatial Correlation of Subduction Interplate Coupling and Forearc Morpho-Tectonics
Goldfinger, Chris; Meigs, Andrew; Meigs, Andrew; Kaye, Grant D.; VanLaningham, Sam
2005-01-01
Subduction zones that are capable of generating great (Mw greater than 8) earthquakes appear to have a common assemblage of forearc morphologic elements. Although details vary, each have (from the trench landward), an accretionary prism, outer arc high, outer forearc basin, an inner forean: basin, and volcanic arc. This pattern is common in spite of great variation in forearc architecture. Because interseismic strain is known to be associated with a locked seismogenic plate interface, we infer that this common forearc morphology is related, in an unknown way, to the process of interseismic Strain accumulation and release in great earthquakes. To date, however, no clear relationship between the subduction process and the common elements of upper plate form has emerged. Whereas certain elements of the system, i.e. the outer arc high, are reasonably well- understood in a structural context, there is little understanding of the structural or topographic evolution of the other key elements like the inner arc and inner forearc basin, particularly with respect to the coupled zone of earthquake generation. This project developed a model of the seismologic, topographic, and uplift/denudation linkages between forearc topography and the subduction system by: 1) comparing geophysical, geodetic, and topographic data from subduction margins that generate large earthquakes; 2) using existing GPS, seismicity, and other data to model the relationship between seismic cycles involving a locked interface and upper-plate topographic development; and 3) using new GPS data and a range-scale topographic, uplift, and denudation analysis of the presently aseismic Cascadia margin to constrain topographic/plate coupling relationships at this poorly understood margin.
Shear Flow instability in a strongly coupled dusty plasma
Banerjee, D; Chakrabarti, N
2013-01-01
Linear stability analysis of strongly coupled incompressible dusty plasma in presence of shear flow has been carried out using Generalized Hydrodynamical(GH) model. With the proper Galilean invariant GH model, a nonlocal eigenvalue analysis has been done using different velocity profiles. It is shown that the effect of elasticity enhances the growth rate of shear flow driven Kelvin- Helmholtz (KH) instability. The interplay between viscosity and elasticity not only enhances the growth rate but the spatial domain of the instability is also widened. The growth rate in various parameter space and the corresponding eigen functions are presented.
Local, nonlocal quantumness and information theoretic measures
Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.
2016-08-01
It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.
Nonlocal study of ultimate plasmon hybridization.
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2015-03-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.
Das, Sudeb; Kundu, Malay Kumar
2012-10-01
In this article, a novel multimodal medical image fusion (MIF) method based on non-subsampled contourlet transform (NSCT) and pulse-coupled neural network (PCNN) is presented. The proposed MIF scheme exploits the advantages of both the NSCT and the PCNN to obtain better fusion results. The source medical images are first decomposed by NSCT. The low-frequency subbands (LFSs) are fused using the 'max selection' rule. For fusing the high-frequency subbands (HFSs), a PCNN model is utilized. Modified spatial frequency in NSCT domain is input to motivate the PCNN, and coefficients in NSCT domain with large firing times are selected as coefficients of the fused image. Finally, inverse NSCT (INSCT) is applied to get the fused image. Subjective as well as objective analysis of the results and comparisons with state-of-the-art MIF techniques show the effectiveness of the proposed scheme in fusing multimodal medical images.
Kasai, Kenta; Sakaniwa, Kohichi
2012-01-01
We study LDPC codes for the channel with $2^m$-ary input $\\underline{x}\\in \\GF(2)^m$ and output $\\underline{y}=\\underline{x}+\\underline{z}\\in \\GF(2)^m$. The receiver knows a subspace $V\\subset \\GF(2)^m$ from which $\\underline{z}=\\underline{y}-\\underline{x}$ is uniformly chosen. Or equivalently, the receiver receives an affine subspace $\\underline{y}-V$ where $\\underline{x}$ lies. We consider a joint iterative decoder involving the channel detector and the LDPC decoder. The decoding system considered in this paper can be viewed as a simplified model of the joint iterative decoder over non-binary modulated signal inputs e.g., $2^m$-QAM. We evaluate the performance of binary spatially-coupled MacKay-Neal code by density evolution. EXIT-like function curve calculations reveal that iterative decoding threshold values are very close to the Shannon limit.
Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions
Directory of Open Access Journals (Sweden)
Xianlong Fu
2012-07-01
Full Text Available In this work, we study the existence of mild solutions and strict solutions of semilinear functional evolution equations with nonlocal conditions, where the linear part is non-autonomous and generates a linear evolution system. The fraction power theory and alpha-norm are used to discuss the problems so that the obtained results can be applied to the equations in which the nonlinear terms involve spatial derivatives. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is presented to show the applications of the obtained results
Nonlocal description of sound propagation through an array of Helmholtz resonators
Nemati, Navid; Lafarge, Denis; Fang, Nicholas X
2015-01-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory capable to describe resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, relating to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures.
Film edge nonlocal spin valves.
McCallum, Andrew T; Johnson, Mark
2009-06-01
Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Spatial and temporal variability of soil moisture-temperature coupling in current and future climate
Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia Isabelle
2017-04-01
While climate models generally agree on a future global mean temperature increase, the exact rate of change is still uncertain. The uncertainty is even higher for regional temperature trends that can deviate substantially from the projected global temperature increase. Several studies tried to constrain these regional temperature projections. They found that over land areas soil moisture is an important factor that influences the regional response. Due to the limited knowledge of the influence of soil moisture on atmospheric conditions on global scale the constraint remains still weak, though. Here, we use a framework that is based on the dependence of evaporative fraction (i.e. the fraction of net radiation that goes into latent heat flux) on soil moisture to distinguish between different soil moisture regimes (Seneviratne et al., 2010). It allows to estimate the influence of soil moisture on near-surface air temperature in the current climate and in future projections. While in the wet soil moisture regime, atmospheric conditions and related land surface fluxes can be considered as mostly driven by available energy, in the transitional regime - where evaporative fraction and soil moisture are essentially linearly coupled - soil moisture has an impact on turbulent heat fluxes, air humidity and temperature: Decreasing soil moisture and concomitant decreasing evaporative fraction cause increasing sensible heat flux, which might further lead to higher surface air temperatures. We investigate the strength of the single couplings (soil moisture → latent heat flux → sensible heat flux → air temperature) in order to quantify the influence of soil moisture on surface air temperature in the transitional regime. Moreover, we take into account that the coupling strength can change in the course of the year due to seasonal climate variations. The relations between soil moisture, evaporative fraction and near-surface air temperature in re-analysis and observation
Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
DEFF Research Database (Denmark)
Raza, Søren; Christensen, Thomas; Wubs, Martijn
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....
Rajan, P. K.; Khan, Ajmal
1993-01-01
Spatial light modulators (SLMs) are being used in correlation-based optical pattern recognition systems to implement the Fourier domain filters. Currently available SLMs have certain limitations with respect to the realizability of these filters. Therefore, it is necessary to incorporate the SLM constraints in the design of the filters. The design of a SLM-constrained minimum average correlation energy (SLM-MACE) filter using the simulated annealing-based optimization technique was investigated. The SLM-MACE filter was synthesized for three different types of constraints. The performance of the filter was evaluated in terms of its recognition (discrimination) capabilities using computer simulations. The correlation plane characteristics of the SLM-MACE filter were found to be reasonably good. The SLM-MACE filter yielded far better results than the analytical MACE filter implemented on practical SLMs using the constrained magnitude technique. Further, the filter performance was evaluated in the presence of noise in the input test images. This work demonstrated the need to include the SLM constraints in the filter design. Finally, a method is suggested to reduce the computation time required for the synthesis of the SLM-MACE filter.
Non-local dynamics governing the self-induced motion of a planar vortex filament
Van Gorder, Robert A.
2015-06-01
While the Hasimoto planar vortex filament is one of the few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics; however, the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré-Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their forms under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.
Energy Technology Data Exchange (ETDEWEB)
Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others
1996-10-01
This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.
Chimera patterns induced by distance-dependent power-law coupling in ecological networks
Banerjee, Tanmoy; Dutta, Partha Sharathi; Zakharova, Anna; Schöll, Eckehard
2016-09-01
This paper reports the occurrence of several chimera patterns and the associated transitions among them in a network of coupled oscillators, which are connected by a long-range interaction that obeys a distance-dependent power law. This type of interaction is common in physics and biology and constitutes a general form of coupling scheme, where by tuning the power-law exponent of the long-range interaction the coupling topology can be varied from local via nonlocal to global coupling. To explore the effect of the power-law coupling on collective dynamics, we consider a network consisting of a realistic ecological model of oscillating populations, namely the Rosenzweig-MacArthur model, and show that the variation of the power-law exponent mediates transitions between spatial synchrony and various chimera patterns. We map the possible spatiotemporal states and their scenarios that arise due to the interplay between the coupling strength and the power-law exponent.
Ebrahimi, Farzad; Reza Barati, Mohammad; Haghi, Parisa
2016-11-01
In this paper, the thermo-elastic wave propagation analysis of a temperature-dependent functionally graded (FG) nanobeam supported by Winkler-Pasternak elastic foundation is studied using nonlocal elasticity theory. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The temperature field has a nonlinear distribution called heat conduction across the nanobeam thickness. Temperature-dependent material properties change gradually in the spatial coordinate according to the Mori-Tanaka model. The governing equations of the wave propagation of the refined FG nanobeam are derived by using Hamilton's principle. The analytic dispersion relation of the embedded nonlocal functionally graded nanobeam is obtained by solving an eigenvalue problem. Numerical examples show that the wave characteristics of the functionally graded nanobeam are related to the temperature distribution, elastic foundation parameters, nonlocality and material composition.
Nonlocal Effects in the Confocal μ-Raman Characterization of Inhomogeneous Polymer Coatings
Rodriguez, R.; Vargas, S.; Estevez, M.
2010-11-01
The confocal μ-Raman technique was used to characterize the morphology of inhomogeneous anti-graffiti coatings; for these systems, the antiadherent molecules were segregated to the external (exposed) surface forming a layer whose thickness was determined. The confocal data from these inhomogeneous coatings contains nonlocal contributions because the light scattered from sources near the specific specimen under analysis (the focused region) could not be completely rejected by the spatial filter of the confocal device. These nonlocal contributions had important effects in the Raman spectra, modifying the bands height profiles of homogeneous and inhomogeneous materials allowing their identification. Taking into account these nonlocal effects, it was possible to interpret correctly the relative intensities of the Raman bands and characterize properly the inhomogeneous coatings.
Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run
2016-04-01
This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The
Some generalizations of the nonlocal transformations approach
Directory of Open Access Journals (Sweden)
V. A. Tychynin
2015-02-01
Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a connection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transformation with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and formulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.
Family of nonlocal bound entangled states
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Employee Travel Data (Non-Local)
Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
On a Nonlocal Damping Model in Ferromagnetism
Directory of Open Access Journals (Sweden)
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Quantum theory of nonlocal nonlinear Schrodinger equation
Vyas, Vivek M
2015-01-01
Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.
Experimental falsification of Leggett's nonlocal variable model.
Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio
2007-11-23
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Nonlocal Infrared Modifications of Gravity. A Review
Maggiore, Michele
2016-01-01
We review an approach developed in the last few years by our group in which GR is modified in the infrared, at an effective level, by nonlocal terms associated to a mass scale. We begin by recalling the notion of quantum effective action and its associated nonlocalities, illustrating some of their features with the anomaly-induced effective actions in $D=2$ and $D=4$. We examine conceptual issues of nonlocal theories such as causality, degrees of freedoms and ghosts, stressing the importance of the fact that these nonlocalities only emerge at the effective level. We discuss a particular class of nonlocal theories where the nonlocal operator is associated to a mass scale, and we show that they perform very well in the comparison with cosmological observations, to the extent that they fit CMB, supernovae, BAO and structure formation data at a level fully competitive with $\\Lambda$CDM, with the same number of free parameters. We explore some extensions of these `minimal' models, and we finally discuss some direc...
Effects of Nonlocality on Transfer Reactions
Titus, Luke J
2016-01-01
We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...
Tensor decomposition and nonlocal means based spectral CT reconstruction
Zhang, Yanbo; Yu, Hengyong
2016-10-01
As one of the state-of-the-art detectors, photon counting detector is used in spectral CT to classify the received photons into several energy channels and generate multichannel projection simultaneously. However, the projection always contains severe noise due to the low counts in each energy channel. How to reconstruct high-quality images from photon counting detector based spectral CT is a challenging problem. It is widely accepted that there exists self-similarity over the spatial domain in a CT image. Moreover, because a multichannel CT image is obtained from the same object at different energy, images among channels are highly correlated. Motivated by these two characteristics of the spectral CT, we employ tensor decomposition and nonlocal means methods for spectral CT iterative reconstruction. Our method includes three basic steps. First, each channel image is updated by using the OS-SART. Second, small 3D volumetric patches (tensor) are extracted from the multichannel image, and higher-order singular value decomposition (HOSVD) is performed on each tensor, which can help to enhance the spatial sparsity and spectral correlation. Third, in order to employ the self-similarity in CT images, similar patches are grouped to reduce noise using the nonlocal means method. These three steps are repeated alternatively till the stopping criteria are met. The effectiveness of the developed algorithm is validated on both numerically simulated and realistic preclinical datasets. Our results show that the proposed method achieves promising performance in terms of noise reduction and fine structures preservation.
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod
2006-02-01
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy’s nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy’s argument.
Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol
2017-02-01
In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.
Thompson, Ian
2010-11-01
In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.
Nonlocal homogenization for nonlinear metamaterials
Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.
Pallud, C.; Masue-Slowey, Y.; Fendorf, S.
2010-05-01
Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Spatial coexistence of synchronized oscillation and death: A chimeralike state
Dutta, Partha Sharathi; Banerjee, Tanmoy
2015-10-01
We report an interesting spatiotemporal state, namely the chimeralike incongruous coexistence of synchronized oscillation and stable steady state (CSOD) in a network of nonlocally coupled oscillators. Unlike the chimera and chimera death state, in the CSOD state identical oscillators are self-organized into two coexisting spatially separated domains: In one domain neighboring oscillators show synchronized oscillation and in another domain the neighboring oscillators randomly populate either a synchronized oscillating state or a stable steady state (we call it a death state). We consider a realistic ecological network and show that the interplay of nonlocality and coupling strength results in two routes to the CSOD state: One is from a coexisting mixed state of amplitude chimera and death, and another one is from a globally synchronized state. We provide a qualitative explanation of the origin of this state. We further explore the importance of this study in ecology that gives insight into the relationship between spatial synchrony and global extinction of species. We believe this study will improve our understanding of chimera and chimeralike states.
Temporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction.
Kazantsev, Daniil; Guo, Enyu; Kaestner, Anders; Lionheart, William R B; Bent, Julian; Withers, Philip J; Lee, Peter D
2016-01-01
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In this paper, we propose a novel iterative reconstruction algorithm with a nonlocal regularization term to account for time-evolving datasets. The aim of the proposed nonlocal penalty is to collect the maximum relevant information in the spatial and temporal domains. With the proposed sparsity seeking approach in the temporal space, the computational complexity of the classical nonlocal regularizer is substantially reduced (at least by one order of magnitude). The presented reconstruction method can be directly applied to various big data 4D (x, y, z+time) tomographic experiments in many fields. We apply the proposed technique to modelled data and to real dynamic X-ray microtomography (XMT) data of high resolution. Compared to the classical spatio-temporal nonlocal regularization approach, the proposed method delivers reconstructed images of improved resolution and higher contrast while remaining significantly less computationally demanding.
Häger, Christian; Brännström, Fredrik; Alvarado, Alex; Agrell, Erik
2014-01-01
We study the design of spectrally efficient fiber-optical communication systems based on different spatially coupled (SC) forward error correction (FEC) schemes. In particular, we optimize the allocation of the coded bits from the FEC encoder to the modulation bits of the signal constellation. Two SC code classes are considered. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes which are decoded using iterative hard-decision decoding. For both code classes, the bit allocation is optimized for the terminated and tailbiting SC cases based on a density evolution analysis. An optimized bit allocation can significantly improve the performance of tailbiting SC codes codes over the baseline sequential allocation, up to the point where they have a comparable gap to capacity as their terminated counterparts, at a lower FEC overhead. For the considered terminated SC co...
Directory of Open Access Journals (Sweden)
Zhigang Zhang
2015-01-01
Full Text Available A two-node spatial beam element with the Euler-Bernoulli assumption is developed for the nonlinear dynamic analysis of slender beams undergoing arbitrary rigid motions and large deformations. During the analysis, the global displacement and rotation vectors with six degrees of freedom are selected as the nodal coordinates. In addition, the “shear locking” problem is avoided successfully since the beam cross-sections are always perpendicular to the current neutral axes by employing a special coupled interpolation of the centroid position and the cross-section orientation. Then a scheme is presented where the original transient strains representing the nodal forces are replaced by proposed average strains over a small time interval. Thus all the high frequencies can be filtered out and a corresponding equivalent internal damping will be produced in this new formulation, which can improve the computation performance of the proposed element for solving the stiff problem and evaluate the governing equations even by using the nonstiff ordinary differential equation solver. Finally, several numerical examples are carried out to verify the validation and efficiency of this proposed formulation by comparison with the analytical solutions and other research works.
Stewart, Lauren; Verdonschot, Rinus G; Nasralla, Patrick; Lanipekun, Jennifer
2013-01-01
The principle of common coding suggests that a joint representation is formed when actions are repeatedly paired with a specific perceptual event. Musicians are occupationally specialized with regard to the coupling between actions and their auditory effects. In the present study, we employed a novel paradigm to demonstrate automatic action-effect associations in pianists. Pianists and nonmusicians pressed keys according to aurally presented number sequences. Numbers were presented at pitches that were neutral, congruent, or incongruent with respect to pitches that would normally be produced by such actions. Response time differences were seen between congruent and incongruent sequences in pianists alone. A second experiment was conducted to determine whether these effects could be attributed to the existence of previously documented spatial/pitch compatibility effects. In a "stretched" version of the task, the pitch distance over which the numbers were presented was enlarged to a range that could not be produced by the hand span used in Experiment 1. The finding of a larger response time difference between congruent and incongruent trials in the original, standard, version compared with the stretched version, in pianists, but not in nonmusicians, indicates that the effects obtained are, at least partially, attributable to learned action effects.
Mohammadimehr, M.; Mohammadi-Dehabadi, A. A.; Maraghi, Z. Khoddami
2017-04-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
Energy Technology Data Exchange (ETDEWEB)
Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)
2017-04-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Modeling elastic tensile fractures in snow using nonlocal damage mechanics
Borstad, C. P.; McClung, D. M.
2011-12-01
of a tensile crack from an existing stress concentration as well as the initiation of a crack from a smooth boundary using the same model parameters and boundary conditions. Sensitivity analyses were conducted on the most uncertain model parameters. For the optimally paramaterized model, the simulated load-displacement curves agreed well with the experimental data, with the primary discrepancy related to the loss of elastic stability following peak load in the experiments. The spatial distribution of strain and damage is shown to support a quasi-brittle interpretation of the fracture physics for both crack initiation and crack propagation problems. These results provide a foundation for future predictive modeling applications related to the tensile fractures which release slab avalanches. We conclude by discussing the applicability of the nonlocal damage approach to a viscous or viscoelastic framework for simulating iceberg calving and the initiation and propagation of ice shelf rifts.
Nonlocal hyperconcentration on entangled photons using photonic module system
Energy Technology Data Exchange (ETDEWEB)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhang, Ru [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Ethnic Minority Education, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, Chuan, E-mail: wangchuan@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)
2016-06-15
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Transfer reaction code with nonlocal interactions
Titus, L J; Nunes, F M
2016-01-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.
Transfer reaction code with nonlocal interactions
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-10-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.
Mixed noise removal by weighted encoding with sparse nonlocal regularization.
Jiang, Jielin; Zhang, Lei; Yang, Jian
2014-06-01
Mixed noise removal from natural images is a challenging task since the noise distribution usually does not have a parametric model and has a heavy tail. One typical kind of mixed noise is additive white Gaussian noise (AWGN) coupled with impulse noise (IN). Many mixed noise removal methods are detection based methods. They first detect the locations of IN pixels and then remove the mixed noise. However, such methods tend to generate many artifacts when the mixed noise is strong. In this paper, we propose a simple yet effective method, namely weighted encoding with sparse nonlocal regularization (WESNR), for mixed noise removal. In WESNR, there is not an explicit step of impulse pixel detection; instead, soft impulse pixel detection via weighted encoding is used to deal with IN and AWGN simultaneously. Meanwhile, the image sparsity prior and nonlocal self-similarity prior are integrated into a regularization term and introduced into the variational encoding framework. Experimental results show that the proposed WESNR method achieves leading mixed noise removal performance in terms of both quantitative measures and visual quality.
Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.
2013-01-01
The Super Advanced X-ray Emission Spectrometer (SAXES) is an instrument at the Swiss Light Source designed for Resonant Inelastic X-ray Scattering with an energy resolution (E/ΔE) better than 12000 at 930 eV. Improvements to the instrument have been predicted that could allow the energy resolution to be improved by a factor of two. To achieve this, the spatial resolution of the detector (currently a Charge-Coupled Device, CCD) over which the energy spectrum is dispersed would have to be improved to better than 5 μm. X-ray photons with energies between a few hundred to a few thousand electron volts primarily interact within the field-free region of back-illuminated CCDs, where each photon forms an electron cloud that diffuses isotropically before reaching the depleted region close to the electrodes. Each photon's electron cloud is likely to be detected as an event with signal split across multiple pixels. Analysing these split events using centroiding techniques allows the photon's interaction position to be determined to a sub-pixel level. PolLux is a soft X-ray microspectroscopy endstation at the Swiss Light Source that can focus 200 eV to 1200 eV X-rays to a spot size of approximately 20 nm. Previous studies using data taken with a linear scan across the centre of a pixel in 3 μm steps predicted an improved resolution by applying centroiding techniques and using an Electron-Multiplying CCD (EM-CCD). In this study, a full 2D map of the centroiding accuracy in the pixel is presented, formed by rastering in two dimensions across the image plane in single micron steps. The improved spatial resolution from centroiding events in the EM-CCD in all areas of the pixel over the standard CCD is attributed to the improved signal to noise ratio provided by the multiplication register even at high pixel readout speeds (tens of MHz).
Towards an emerging understanding of non-locality phenomena and non-local transport
Ida, K.; Shi, Z.; Sun, H. J.; Inagaki, S.; Kamiya, K.; Rice, J. E.; Tamura, N.; Diamond, P. H.; Dif-Pradalier, G.; Zou, X. L.; Itoh, K.; Sugita, S.; Gürcan, O. D.; Estrada, T.; Hidalgo, C.; Hahm, T. S.; Field, A.; Ding, X. T.; Sakamoto, Y.; Oldenbürger, S.; Yoshinuma, M.; Kobayashi, T.; Jiang, M.; Hahn, S. H.; Jeon, Y. M.; Hong, S. H.; Kosuga, Y.; Dong, J.; Itoh, S.-I.
2015-01-01
In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed
Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.
2017-04-01
We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Nonlocal regularization of abelian models with spontaneous symmetry breaking
Clayton, M. A.
2001-01-01
We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.
Nonlocality and entanglement as opposite properties
Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A
2011-01-01
We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Energy Technology Data Exchange (ETDEWEB)
Xu Rui [Department of Applied Mathematics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: rxu88@yahoo.com.cn; Chaplain, M.A.J. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Davidson, F.A. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)
2006-11-15
In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model.
Ma, Jing; Ma, Lie; Yang, Qingbo; Ran, Qiwen
2015-11-01
The average efficiency of spatial light coupling into a single-mode optical fiber is widely used but cannot estimate the signal-to-noise ratio (SNR) and bit error rate (BER) in free-space optical communication. We provide a statistical model for coupling efficiency and derive the exact expression of the probability density function (PDF). The simulation results confirm that the model is reasonable in the condition of different turbulence intensities and wavefront compensation terms, which is also consistent with our outdoor experiment. We also estimate the average SNR and BER using the PDF. The model is quite useful in a satellite-to-ground laser communication downlink.
Liang, Lin-mei; Li, Cheng-zu
2005-02-01
This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Consequences and applications of the completeness of Hardy's nonlocality
Mansfield, Shane
2017-02-01
Logical nonlocality is completely characterized by Hardy's "paradox" in (2 ,2 ,l ) and (2 ,k ,2 ) scenarios. We consider a variety of consequences and applications of this fact. (i) Polynomial algorithms may be given for deciding logical nonlocality in these scenarios. (ii) Bell states are the only entangled two-qubit states which are not logically nonlocal under projective measurements. (iii) It is possible to witness Hardy nonlocality with certainty in a simple tripartite quantum system. (iv) Noncommutativity of observables is necessary and sufficient for enabling logical nonlocality.
Energy Technology Data Exchange (ETDEWEB)
Shepelev, I.A., E-mail: igor_sar@li.ru; Vadivasova, T.E., E-mail: vadivasovate@yandex.ru; Bukh, A.V., E-mail: buh.andrey@yandex.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru; Anishchenko, V.S., E-mail: wadim@info.sgu.ru
2017-04-25
We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied. - Highlights: • Dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime is studied. • A new type of chimera patterns has been found in the noise-free network. • The region of existence of new structures has been explored when varying the coupling parameters.
Enhancing the Trace Norm and Bures Norm Measurement-Induced Nonlocality in the Heisenberg XYZ Model
Xie, Yu-Xia; Liu, Jing; Ma, Hong
2016-11-01
Nonlocality is one unique characteristic of quantum mechanics and an essential resource for quantum communication and computation. We investigate two measures of the well-defined geometric measurement-induced nonlocality (MIN) in the Heisenberg XYZ model, and found that considerable enhancement of the MINs can be achieved by tuning strength of the anisotropic parameter, the J z coupling, and the Dzyaloshinsky-Moriya (DM) interaction of the model. Particularly, the maxima of the two MINs can be obtained when the strength of the J z coupling or the DM interaction approaches infinity. We have also demonstrated the singular behaviors of the two MINs such as the nonunique states ordering and the sudden change behaviors.
Directory of Open Access Journals (Sweden)
M. Denche
1999-01-01
Full Text Available In the present paper we study nonlocal problems for ordinary differential equations with a discontinuous coefficient for the high order derivative. We establish sufficient conditions, known as regularity conditions, which guarantee the coerciveness for both the space variable and the spectral parameter, as well as guarantee the completeness of the system of root functions. The results obtained are then applied to the study of a nonlocal parabolic transmission problem.
Quantum nonlocality in weak-thermal-light interferometry
Tsang, Mankei
2011-01-01
In astronomy, interferometry of light collected by separate telescopes is often performed by physically interfering the optical paths in the form of the classic Young's double-slit experiment. Optical loss along the paths severely hampers the efficiency of this so-called direct detection method, limiting the maximum baseline between the telescopes and thus the achievable resolution. This problem motivates the fundamental question of whether one can achieve a comparable signal-to-noise performance by separate optical measurements at the two telescopes before combining the measurement results. Using quantum mechanics and estimation theory, here I show that any such spatially local measurement scheme, such as heterodyne or homodyne detection, is fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result can be regarded as a dual of Einstein-Podolsky-Rosen entanglem...
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J.
We show that observations of quantum nonlocaltiy can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Nonlocality and discrete cellular methods in optics
Wijers, C.M.J.; Boeij, de P.L.
2001-01-01
A subdivision of space into discrete cells underlies the traditional discrete dipole model. This model presumes that only nonlocal electric interactions between cells govern the electromagnetic response of a condensed matter system. Apart from the case of simple dielectrics, this is not realistic. C
Circumferential nonlocal effect on the buckling and vibration of nanotubes
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng Yuan, E-mail: cywang@ujs.edu.cn; Li, Xiao Hu; Luo, Ying
2016-04-01
The nonlocal beam theories are widely used to study the mechanics of cylindrical nanotubes (NTs). The one-dimensional models however are unable to account for the nonlocal effect in the circumferential direction, which may substantially affect the applicability of the nonlocal beam models. To address the issue this letter examines the circumferential nonlocal effect (CNE) on the buckling and vibration of the NTs. Here the CNE is characterized by the difference between the nonlocal beam model considering the axial nonlocal effect only and the nonlocal shell model with both axial and circumferential nonlocal effects. The aspect ratio and radius-dependence of the CNE are calculated for the singlewall carbon NTs selected as a typical example. The results show that the CNE is substantial for the buckling and vibration of the NTs with small radius (e.g., <1 nm) and aspect ratio (e.g., <15). It however decreases with the rising radius and the aspect ratio, and turns out to be small for relatively wide and long NTs. The nonlocal beam theories thus may overestimate the buckling load and vibration frequency for the thin and short NTs. - Highlights: • First revealed the substantial circumferential nonlocal effect (CNE) on nanotube buckling. • Achieved radius/aspect ratio-dependence of CNE on nanotube buckling and vibration. • Located the range of applicability of the nonlocal beam theory without CNE.
Non-local form factors for curved-space antisymmetric fields
Netto, Tiberio de Paula
2016-01-01
In the recent paper Buchbinder, Kirillova and Pletnev presented formal arguments concerning quantum equivalence of free massive antisymmetric tensor fields of second and third rank to the free Proca theory and massive scalar field with minimal coupling to gravity, respectively. We confirm this result using explicit covariant calculations of non-local form factors based on the heart-kernel technique, and discuss the discontinuity of quantum contributions in the massless limit.
Wenzhen Gan; Canrong Tian; Qunying Zhang; Zhigui Lin
2013-01-01
This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show...
Possible detection of causality violation in a non-local scalar model
Energy Technology Data Exchange (ETDEWEB)
Haque, Asrarul; Joglekar, Satish D [Department of Physics, IIT Kanpur, Kanpur 208016 (India)], E-mail: ahaque@iitk.ac.in, E-mail: sdj@iitk.ac.in
2009-02-13
We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar non-local theory containing a mass scale {lambda} as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to {lambda}) and couplings to which the observable can be used.
DEFF Research Database (Denmark)
Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus
2004-01-01
We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...
AC-conductance of a non-local Thirring model
Energy Technology Data Exchange (ETDEWEB)
Trobo, Marta Liliana; Von Reichenbach, Maria Cecilia [Universidad Nacional de La Plata (UNLP) (Argentina); Barci, Daniel G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)]|[Illinois Univ., Urbana, IL (United States); Medeiros Neto, J.F. de [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)
2000-07-01
Full text follows: In recent years renewed interest has arisen in the study of low dimensional field theories. In particular, research on the one dimensional (1-d) fermionic gas has been very active, mainly due to the actual nano-fabrication of the so called quantum wires and their relevance for low dimensional condensed matter physics as, for instance, the quantum Hall effect and high-T{sub c} superconductivity. Experimental and theoretical investigations of the AC-transport phenomena in nano-structures are of profound scientific interest since they provide insight into the behavior of quantum systems. In this frame, we consider a field theoretical approach that can be used to describe a system of 1-d strongly correlated particles in the low transferred momentum limit. We study a non-local and non-covariant version of the Thirring model where the fermionic densities and currents are coupled through bilocal, distance-dependent potentials which describe the forward scattering processes. We apply the functional bosonization formalism, a very useful technique to understand the non-perturbative regime of strongly correlated one-dimensional fermionic systems, to this non local Thirring like model (NLTM). We are interesting in the transport properties of the system, in particular in the AC-conductance. To this end, we consider a NLTM in the presence of an external electromagnetic field. We obtain the AC-conductance of the model in terms of non-local potentials used to describe the interactions between fermionic currents. We also analyze the transport properties in the case in which weak couplings between fermionic currents and localized impurities are taken into account. (author)
Non-Local Signal in Quasi-2DEG of LAO/STO
Jin, Mi-Jin; Moon, Seon Young; Modepalli, Vijayakumar; Jo, Junhyeon; Park, Jungmin; Baek, Seung-Hyub; Yoo, Jung-Woo
2015-03-01
Electron gas arizen at the insulating oxide interfaces exhibits high electron mobility, tunable carrier densities and related unique behaviors such as coexistence of superconductivity and ferromagnetism, Kondo resistance, etc. Itinerant electrons at the oxide hetero-interface are predicted to have long spin diffusion length, while they are under the relatively strong Rashba-type spin orbit coupling due to inversion symmetry breaking. We studied non-local spin signal induced by spin orbit coupling with additional gate-controlled Rashba field in quasi-2DEG of LaAlO3/SrTiO (LAO/STO) interface. We fabricated simple hall-bar like geometry to measure non-local signal with the variation of channel length (2 ~ 10 μm). Cleaned sample was patterned using e-beam lithography and reactive ion etching followed by oxygen treatment to anneal out oxygen vacancies. When an electric current flows one line of the hall bar structure, spin orbit coupling will induce the current flow away from the source current channel via spin hall and inverse spin hall effects. The non-local signals were studied under different angles of magnetic field and the variation of applied gate voltage. This work was supported by a grant from (No. 1.140092.01) funded by the Ulsan National Institute of Science and Technology.
Spin-Hall Non-Local Transport Mediated by a Magnetic Insulator
Ramezani Masir, Massoud; Chen, Hua; Sodemann, Inti; MacDonald, Allan. H.
Magnetic systems with easy-plane order support dissipationless spin supercurrents that can lead to non-local coupling between electrically separated conductors. Recently the electrical properties of a system containing two magnetic multilayer stacks with perpendicular magnetic anisotropy electrodes and a shared easy-plane magnetic layer have been discussed. In this research we discuss a closely related system in which the two conducting channels that are coupled by the easy-plane magnetic layer are co-planar thin film metals with large spin Hall effects. We theoretically explained the non-local relationship between the current-voltage relationships of two thin film metallic conductors. Coupling occurs because both conductors inject spins into the magnetic insulator and because this information is communicated between conductors via exchange interactions within the magnetic system. We investigate the non-local transport properties of the system in the macrospin and long thin nanomagnet limits, deriving conditions for the critical currents and using solutions to the Landau-Liftshitz-Gilbert equation to characterize the dynamic steady state case. This work was supported by as part of SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.
Directory of Open Access Journals (Sweden)
Xiaoteng Cen
2015-01-01
Full Text Available Despite the unprecedented rate of urbanization throughout the world, human society is still facing the challenge of coordinating urban socioeconomic development and ecological conservation. In this article, we integrated socioeconomic data and spatial metrics to investigate the coupling relationship between intensive land use (ILU system and landscape ecological security (LES system for urban sustainable development, and to determine how these systems interact with each other. The values of ILU and LES were first calculated according to two evaluation subsystems under the pressure-state-response (PSR framework. A coupling model was then established to analyze the coupling relationship within these two subsystems. The results showed that the levels of both subsystems were generally increasing, but there were several fluctuation changes in LES. The interaction in each system was time lagged; urban land use/cover change (LUCC and ecosystem transformation were determined by political business cycles and influenced by specific factors. The coupling relationship underwent a coordinated development mode from 1992–2012. From the findings we concluded that the coupling system maintained a stable condition and underwent evolving threshold values. The integrated ILU and LES system was a coupling system in which subsystems were related to each other and internal elements had mutual effects. Finally, it was suggested that our results provided a multi-level interdisciplinary perspective on linking socioeconomic-ecological systems. The implications for urban sustainable development were also discussed.
Generating functional and large N limit of nonlocal 2D generalized Yang-Mills theories (nlgYM 2's)
Saaidi, K.; Sajadi, H. M.
2001-01-01
Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) on nonlocal generalized 2D Yang Mills theories (nlgYM_2's), which are nonlocal in the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for general surfaces. We find a general expression for the free energy of W(φ) =φ^{2k} in nlgYM_2 theories at the strong coupling phase (SCP) regime (A > A_c) for large groups. In the specific φ^4 model, we show that the theory has a third order phase transition.
Kiani, Keivan
2011-10-01
The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.
Fiber transport of spatially entangled photons
Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.
2012-03-01
High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.
Speich, Matthias; Lischke, Heike; Scherstjanoi, Marc; Zappa, Massimiliano
2016-04-01
Various modeling studies have shown that global climate and land use change are expected to have important impacts on the hydrology and vegetation dynamics of European mountainous regions. However, these models focus on either hydrological or ecological processes, while the respective other processes are represented in a simplified manner, e.g. using static parameters or empirical process formulations. This way, dynamic feedbacks between the water cycle and forest dynamics are neglected, which can influence long-term predictions. Integration of dynamic hydrological and ecological models increases the confidence in long-term forecasts by explicitly addressing this feedback. We present FORHYCS, a spatially distributed, coupled eco-hydrological model. FORHYCS is designed for application in temperate and Alpine regions at landscape scale, and consists of the integration of the rainfall-runoff model PREVAH and the forest-landscape model TreeMig. Both these models have previously been used in long-term climate impact studies in Switzerland. In the new, coupled model, both individual models are run simultaneously while exchanging information via a set of interface variables. The forest-landscape model is driven by annual bioclimatic variables (drought stress, snow cover duration, degree-day sum and winter chill), which are obtained through yearly integration of the local water balance as calculated by the hydrological model at an hourly time step. Growth, establishment and mortality of tree species, as simulated by the forest-landscape model, are used to calculate vegetation parameters (leaf area index and fractional vegetation cover), which in turn influence the partitioning of precipitation into interception loss, transpiration, evaporation, soil moisture storage and runoff. Furthermore, the vegetation cover in each grid cell is used to determine and update its land cover class, which allows the simulation of forest advancement or retreat and its hydrological
Directory of Open Access Journals (Sweden)
Iman Eshraghi
2016-09-01
Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.
Classification of scalar and dyadic nonlocal optical response models.
Wubs, M
2015-11-30
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.
Institute of Scientific and Technical Information of China (English)
XIANG Shao-Hua; SONG Ke-Hui; WEN Wei; SHI Zhen-Gang
2011-01-01
We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In (V)u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.
Nonlocal Operational Calculi for Dunkl Operators
Directory of Open Access Journals (Sweden)
Ivan H. Dimovski
2009-03-01
Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
Nonlocal diffusion second order partial differential equations
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Quantum Loops in Non-Local Gravity
Talaganis, Spyridon
2015-01-01
In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.
Nonlocal Condensate Model for QCD Sum Rules
Hsieh, Ron-Chou
2009-01-01
We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... averaging through both HDM and the recent Generalized Nonlocal Optical Response (GNOR) theory, which apart from the resonance frequency shifts accounts successfully for size-dependent damping as well. We examine NPs made of either ideal Drude-like metals [of plasmon frequency (wavelength) ωp (λp...
An Adaptive Iterated Nonlocal Interferometry Filtering Method
Directory of Open Access Journals (Sweden)
Lin Xue
2014-04-01
Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.
Nonlocal neurology: beyond localization to holonomy.
Globus, G G; O'Carroll, C P
2010-11-01
The concept of local pathology has long served neurology admirably. Relevant models include self-organizing nonlinear brain dynamics, global workspace and dynamic core theories. However such models are inconsistent with certain clinical phenomena found in Charles Bonnet syndrome, disjunctive agnosia and schizophrenia, where there is disunity of content within the unity of consciousness. This is contrasted with the split-brain case where there is disunity of content and disunity of consciousnesses. The development of quantum brain theory with it nonlocal mechanisms under the law of the whole ("holonomy") offers new possibilities for explaining disintegration within unity. Dissipative quantum brain dynamics and its approach to the binding problem, memory and consciousness are presented. A nonlocal neurology armed with a holonomic understanding might see more deeply into what clinical neurology has always aspired to: the patient as a whole.
Non-local geometry inside Lifshitz horizon
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Park, I. J.; Woo, S. I.
1993-09-01
Gas-phase coupling between two Pd(110) single crystals in a UHV CO oxidation reaction in a continuous stirred tank reactor (CSTR) has been simulated by solving gas-phase mass balance equations with kinetic rate equations. This work was motivated by the experimental results which show that the frequency of partial pressure change in carbon monoxide is the same as the frequency of the work function change in the oscillation region and that the coupling between the two crystals occurred entirely via CO partial pressure. The computer simulation described here gives qualitative agreement with the experimental results. The change in the oscillatory region originating from the coupling of chemical oscillators which are slightly different to each other is successfully demonstrated by this model. The coupling of two oscillators having a simple periodic oscillation to produce mixed-mode oscillation was also successfully simulated.
Energy Technology Data Exchange (ETDEWEB)
Prasankumar, Rohit P [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory
2009-01-01
Ultrafast density-dependent optical spectroscopic measurements on a quantum dots-in-a-well heterostructure reveal several distinctive phenomena, most notably a strong coupling between the quantum well population and light absorption at the quantum dot excited state.
Pakhomov, A V; Babushkin, I V; Arkhipov, M V; Tolmachev, Yu A; Rosanov, N N
2016-01-01
We study the optical response of a resonant medium possessing the nonlinear coupling to external field under excitation by few-cycle pump pulses. A theoretical approach is developed, allowing to analyze unipolar half-cycle pulse generation in such a geometry. Our approach is applicable for the arbitrary coupling functions as well as arbitrarily curved pump pulse wavefronts and defines a general framework to produce unipolar pulses of desired form.
Surface-enhanced Raman spectroscopy: nonlocal limitations
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, S.; Xiao, Sanshui;
2012-01-01
Giant field enhancement and field singularities are a natural consequence of the commonly employed local-response framework. We show that a more general nonlocal treatment of the plasmonic response leads to new and possibly fundamental limitations on field enhancement with important consequences ...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...
Structure of Nonlocal Vacuum Condensate of Quarks
Institute of Scientific and Technical Information of China (English)
周丽娟; 马维兴
2003-01-01
The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.
Popper's experiment, Copenhagen Interpretation and Nonlocality
Qureshi, T
2003-01-01
A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.
Nonlocal Optical Response of Plasmonic Nanowire Metamaterials
2014-01-01
exceptional properties that are not readily found in nature. There are numerous applications in modern optics which can be realized through the study and...K., R. C. McPhedran, and Vladimir M. Shalaev. " Electrodynamics of metal-dielectric composites and electromagnetic crystals." Physical Review B 62.12...16.10 (2008): 7460-7470. [41] Pokrovsky, A. L., and A. L. Efros. "Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals." Physical
Dual-switching behavior of nonlocal interfaces
Sánchez-Curto, Julio; Chamorro-Posada, Pedro
2017-05-01
Nonlinear interfaces separating two diffusive Kerr-type media exhibit dual switching between total internal reflection and transmission. This property is found within a weakly nonlocal regime when both a nonparaxial treatment of the problem and a full two-dimensional model for carrier diffusion are assumed. The theoretical model is shown to predict an effective cubic-quintic nonlinearity with competing terms that produces such property. The validity of the analysis is contrasted with a full set of numerical simulations.
Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan
2016-01-01
We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.
Nonlocal Theories in Continuum Mechanics
Directory of Open Access Journals (Sweden)
M. Jirásek
2004-01-01
Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems.
Directory of Open Access Journals (Sweden)
D. Yu. Klimushkin
2006-09-01
Full Text Available The paper employs the frame of a 1-D inhomogeneous model of space plasma,to examine the spatial structure and growth rate of drift mirror modes, often suggested for interpreting some oscillation types in space plasma. Owing to its coupling with the Alfvén mode, the drift mirror mode attains dispersion across magnetic shells (dependence of the frequency on the wave-vector's radial component, k_{r}. The spatial structure of a mode confined across magnetic shells is studied. The scale of spatial localization of the wave is shown to be determined by the plasma inhomogeneity scale and by the azimuthal component of the wave vector. The wave propagates across magnetic shells, its amplitude modulated along the radial coordinate by the Gauss function. Coupling with the Alfvén mode strongly influences the growth rate of the drift mirror instability. The mirror mode can only exist in a narrow range of parameters. In the general case, the mode represents an Alfvén wave modified by plasma inhomogeneity.
Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J
2017-03-25
Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Maximum quantum nonlocality between systems that never interacted
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adán, E-mail: adan@us.es [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)
2012-12-03
We show that there is a stronger form of bipartite quantum nonlocality in which systems that never interacted are as nonlocal as allowed by no-signaling. For this purpose, we first show that nonlocal boxes, theoretical objects that violate a bipartite Bell inequality as much as the no-signaling principle allows and which are physically impossible for most scenarios, are feasible if the two parties have 3 measurements with 4 outputs. Then we show that, in this case, entanglement swapping allows us to prepare mixtures of nonlocal boxes using systems that never interacted. -- Highlights: ► We show quantum correlations as nonlocal as allowed by no-signaling between systems that never interacted. ► We show that nonlocal boxes are feasible if 2 parties have 3 measurements with 4 outputs. ► Experimental implementations of 1 and 2 are proposed.
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Relativistic three-partite non-locality
Montakhab, A
2015-01-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and GHZ states which exhibit distinctly different type of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Svetlichny's inequality as the main measure of non-locality and uses the same angles in the rest frame ($S$) as well as the moving frame ($S^{\\prime}$), then maximally violated inequality in $S$ will decrease in the moving frame, and will eventually lead to lack of non-locality ( i.e. satisfaction of inequality) in the $v \\rightarrow c$ limit. This is shown for both GHZ and W states and in two different configurations which are commonly ...
Nonlocal Gravity and Structure in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Lee, Myeong H.; Troisi, Alessandro
2017-02-01
It has been reported in recent years that vibronic resonance between vibrational energy of the intramolecular nuclear mode and excitation-energy difference is crucial to enhance excitation energy transport in light harvesting proteins. Here we investigate how vibronic enhancement induced by vibronic resonance is influenced by the details of local and non-local exciton-phonon interactions. We study a heterodimer model with parameters relevant to the light-harvesting proteins with the surrogate Hamiltonian quantum dynamics method in a vibronic basis. In addition, the impact of field-driven excitation on the efficiency of population transfer is compared with the instantaneous excitation, and the effect of multi-mode vibronic coupling is presented in comparison with the coupling to a single effective vibrational mode. We find that vibronic enhancement of site population transfer is strongly suppressed with the increase of non-local exciton-phonon interaction and increasing the number of strongly coupled high-frequency vibrational modes leads to a further decrease in vibronic enhancement. Our results indicate that vibronic enhancement is present but may be much smaller than previously thought and therefore care needs to be taken when interpreting its role in excitation energy transport. Our results also suggest that non-local exciton-phonon coupling, which is related to the fluctuation of the excitonic coupling, may be as important as local exciton-phonon coupling and should be included in any quantum dynamics model.
Nonlocal Spin Diffusion Driven by Giant Spin Hall Effect at Oxide Heterointerfaces.
Jin, Mi-Jin; Moon, Seon Young; Park, Jungmin; Modepalli, Vijayakumar; Jo, Junhyeon; Kim, Shin-Ik; Koo, Hyun Cheol; Min, Byoung-Chul; Lee, Hyun-Woo; Baek, Seung-Hyub; Yoo, Jung-Woo
2017-01-11
A two-dimensional electron gas emerged at a LaAlO3/SrTiO3 interface is an ideal system for "spin-orbitronics" as the structure itself strongly couple the spin and orbital degree of freedom through the Rashba spin-orbit interaction. One of core experiments toward this direction is the nonlocal spin transport measurement, which has remained elusive due to the low spin injection efficiency to this system. Here we bypass the problem by generating a spin current not through the spin injection from outside but instead through the inherent spin Hall effect and demonstrate the nonlocal spin transport. The analysis on the nonlocal spin voltage, confirmed by the signature of a Larmor spin precession and its length dependence, displays that both D'yakonov-Perel' and Elliott-Yafet mechanisms involve in the spin relaxation at low temperature. Our results show that the oxide heterointerface is highly efficient in spin-charge conversion with exceptionally strong spin Hall coefficient γ ∼ 0.15 ± 0.05 and could be an outstanding platform for the study of coupled charge and spin transport phenomena and their electronic applications.
Low-damping epsilon-near-zero slabs: nonlinear and nonlocal optical properties
de Ceglia, Domenico; Vincenti, Maria Antonietta; Capolino, Filippo; Scalora, Michael
2013-01-01
We investigate second harmonic generation, low-threshold multistability, all-optical switching, and inherently nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ frequency region, achieved by using gain medium inside the shells' dielectric cores, enhances the nonlinear properties. Reflection is inhibited and the electric field component normal to the slab interface is enhanced near the effective pseudo-Brewster angle, where the effective \\epsilon-near-zero condition triggers a non-resonant, impedance-matching phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes that are mediated by the compensation of damping. The presence of these leaky modes then induces further spectral and angular conditions where the local fields are enhanced, thus opening new windows of opportunity for the enhancement of ...
Band Structure Calculation of Si and Ge by Non-Local Empirical Pseudo-Potential Technique
Institute of Scientific and Technical Information of China (English)
CHEN Yong; RAVAIOLI Umberto
2005-01-01
In this paper, the princ iple of spatial nonlocal empirical pseudopotential and its detailed calculation procedure is presented. Consequently, this technique is employed to calculate the band structuresof Silicon and Germaniun. By comparing the results with photoemission experimental data, the validity and accuracy of this calculation are fully conformed for valence or conductance band,respectively. Thus it can be concluded that the spin-orbit Hamiltonian will only affect the energy band gap and another conductance or valence band structure. Therefore, this nonlocal approach without spin-orbit part is adequate for the device simulation of only one carrier transport such as metal oxide semiconductor field effect transistors (MOSFET)'s, and it can significantly reduce the complication of band structure calculation.
Internal noise-driven generalized Langevin equation from a nonlocal continuum model.
Sarkar, Saikat; Chowdhury, Shubhankar Roy; Roy, Debasish; Vasu, Ram Mohan
2015-08-01
Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.
Nonlocal description of sound propagation through an array of Helmholtz resonators
Nemati, Navid; Kumar, Anshuman; Lafarge, Denis; Fang, Nicholas X.
2015-12-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory, which enables the description of resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties, such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, related to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures. xml:lang="fr"
The frustrated Brownian motion of nonlocal solitary waves
Folli, Viola
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation
The non-local content of quantum operations
Collins, D; Popescu, S; Collins, Daniel; Linden, Noah; Popescu, Sandu
2000-01-01
We show that quantum operations on multi-particle systems have a non-local content; this mirrors the non-local content of quantum states. We introduce a general framework for discussing the non-local content of quantum operations, and give a number of examples. Quantitative relations between quantum actions and the entanglement and classical communication resources needed to implement these actions are also described. We also show how entanglement can catalyse classical communication from a quantum action.
A Nonlocal Model for Carbon Nanotubes under Axial Loads
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2013-01-01
Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.
Proposal for revealing quantum nonlocality via local contextuality.
Cabello, Adán
2010-06-04
Two distant systems can exhibit quantum nonlocality even though the correlations between them admit a local model. This nonlocality can be revealed by testing extra correlations between successive measurements on one of the systems which do not admit a noncontextual model whatever the reduced state of this system is. This shows that quantum contextuality plays a fundamental role in quantum nonlocality, and allows an experimental test of the Kochen-Specker with locality theorem.
Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory
Energy Technology Data Exchange (ETDEWEB)
Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)
2015-10-15
Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.
Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2013-02-01
In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.
Directory of Open Access Journals (Sweden)
Wenzhen Gan
2013-01-01
Full Text Available This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results.
Nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex
Bengtson, Charlotta; Sjöqvist, Erik
2015-01-01
Pigment protein complexes involved in photosynthesis are remarkably efficient in transferring excitation energy from light harvesting antenna molecules to a reaction centre where it is converted to and stored as chemical energy. Recent experimental and theoretical studies suggest that quantum coherence and correlations may play a role in explaining this efficiency. We examine whether bipartite nonlocality, a property that verifies a strong correlation between two quantum systems, exists between different pairs of chromophore states in the Fenna-Matthews-Olson (FMO) complex and how this is connected to the amount of bipartite entanglement. In particular, it is tested in what way these correlation properties are affected by different initial conditions (i.e., which chromophore is initially excited). When modeling the excitation energy transfer (EET) in the FMO complex with the hierarchically coupled equations of motions (HEOM), it is found that bipartite nonlocality indeed exists for some pairs of chromophore s...
Modification of a nonlocal electron energy distribution in a bounded plasma.
DeJoseph, C A; Demidov, V I; Kudryavtsev, A A
2005-09-01
It is demonstrated experimentally, in a pulsed discharge, that it is possible to modify the "tail" of a nonlocal electron energy distribution (EED) without significantly changing the electron density and temperature (mean energy). The EED tail is modified by changing the potential of a small portion of the plasma boundary and/or by changing the volume creation rate of electrons with energies in the range of the tail of the EED. The discussed effects are a direct result of the nonlocal nature of the EED and have applications to a number of basic research issues associated with discharges under nonequilibrium conditions. As an example, we discuss the possibility of utilizing these methods to measure electron impact excitation cross sections from the metastable states of atoms, which are difficult to measure by other means. The experiments have been conducted in an argon and argon-nitrogen pulsed rf inductively coupled plasma discharge.
A hybridizable discontinuous Galerkin method for solving nonlocal optical response models
Li, Liang; Mortensen, N Asger; Wubs, Martijn
2016-01-01
We propose Hybridizable Discontinuous Galerkin (HDG) methods for solving the frequency-domain Maxwell's equations coupled to the Nonlocal Hydrodynamic Drude (NHD) and Generalized Nonlocal Optical Response (GNOR) models, which are employed to describe the optical properties of nano-plasmonic scatterers and waveguides. Brief derivations for both the NHD model and the GNOR model are presented. The formulations of the HDG method are given, in which we introduce two hybrid variables living only on the skeleton of the mesh. The local field solutions are expressed in terms of the hybrid variables in each element. Two conservativity conditions are globally enforced to make the problem solvable and to guarantee the continuity of the tangential component of the electric field and the normal component of the current density. Numerical results show that the proposed HDG methods converge at optimal rate. We benchmark our implementation and demonstrate that the HDG method has the potential to solve complex nanophotonic pro...
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
Molecular fluorescence enhancement in plasmonic environments: exploring the role of nonlocal effects
DEFF Research Database (Denmark)
Tserkezis, Christos; Stefanou, Nikolaos; Wubs, Martijn
2016-01-01
in the nanoparticle vicinity. Here we explore the influence of hitherto disregarded nonclassical effects in the description of emitter-plasmon hybrids, focusing on the roles of metal nonlocal response and especially size-dependent plasmon damping. Through extensive modelling of metallic nanospheres and nanoshells...... coupled to dipole emitters, we show that within a purely classical description a remarkable fluorescence enhancement can be achieved. However, once departing from the local-response approximation, and particularly by implementing the recent generalised nonlocal optical response theory, which provides...... a more complete physical description combining electron convection and diffusion, we show that not only are fluorescence rates dramatically reduced as compared to the predictions of the local description and the common hydrodynamic Drude model, but the optimum emitter-nanoparticle distance is also...
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
Nonlocal effects on dynamic damage accumulation in brittle solids
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1995-12-01
This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.
Nonlocality Sudden Birth and Transfer in System and Environment
Institute of Scientific and Technical Information of China (English)
QIU Liang
2011-01-01
Dynamics of the nonlocality measured by the violation of Svetlichny's Bell-type inequality is investigated in the non-Markovian model. The phenomenon of nonlocality sudden birth for the atoms and the reservoirs is obtained.The evolution of the nonlocality among the atoms or the reservoirs depends on the choice of the atom detuning from the cavity pseudomode, the cavity pseudomode decay and the rotation angles. For the small pseudomode decay in the near-resonance regime, the initial atomic nonlocality is completely transferred to the reservoirs ultimately.
On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains
Institute of Scientific and Technical Information of China (English)
Fei LIANG; Qi Lin LIU; Yu Xiang LI
2013-01-01
In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Directory of Open Access Journals (Sweden)
Jinliang Huang
demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities.
DEFF Research Database (Denmark)
Schrum, Corinna; St. John, Michael; Alekseeva, I.
2006-01-01
The 3-D coupled biophysical model ECOSMO (ECOSystern MOdel) has been applied to simulate the spatial and temporal variability of primary and secondary production and biomass in the North Sea in 1984, In order to assess the spatial and temporal dynamics of these components, statistical methods based...... and production in the North Sea. Employing these techniques made it possible to separate regional and temporal variability into the annual pattern, its temporal characteristics and some basic regional modulations of the average seasonal signal. The analysis was able to identify the modulation of average seasonal...... and the end of April, with little to no diatom biomass in the second half of summer. Conversely flagellate biomass did not peak before the beginning of May and showed a relatively constant summer production and an autumn bloom. (c) 2006 Published by Elsevier B.V....
Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Christina E. Stringer; Carl C. Trettin
2017-01-01
Mangroves are an important terrestrial carbon reservoir with numerous ecosystem services. Yet, it is difficult to inventory mangroves because of their low accessibility. A sampling approach that produces accurate assessment while maximizing logistical integrity of inventory operation is often required. Spatial decision support systems (SDSSs) provide support for...
Mass concentration in a nonlocal model of clonal selection.
Busse, J-E; Gwiazda, P; Marciniak-Czochra, A
2016-10-01
Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations.
Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation
Institute of Scientific and Technical Information of China (English)
金艳; 贾曼; 楼森岳
2012-01-01
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group Jnvariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.
Le Pichon, C.; Coustillas, J.; Zahm, A.; Bunel, M.; Gazeau-Nadin, C.; Rochard, E.
2017-09-01
Acoustic telemetry and GIS-based spatial analysis were used to investigate the summer habitat use and movement patterns of three fish species in the tidal freshwaters of the Seine estuary (France). Experimental displacement of tagged individuals of thin-lipped grey mullet (Liza ramada), European eel (Anguilla anguilla), and common bream (Abramis brama) were conducted to test for their spatial fidelity and home range establishment. Most tagged individuals (95%) successfully returned to their previously occupied capture site, showing spatial homing abilities. The studied upstream tidal freshwater segment of the Seine estuary was regularly used by grey mullet as a part of its larger summer home range, while European eel and common bream were resident in this segment. The fidelity of eel to small nocturnal refuges and the regular use of intertidal waterbodies at high tide by grey mullet and bream suggested that they possess a capacity of acquiring spatial memory of habitats in a fluctuating environment. Importantly, the scale of movements travelled by each species was positively related to tidal phase. Grey mullet and bream, both visual feeders, exhibited short-term tidal movements to known habitats, providing food resources and contiguous resting habitat suggesting that they have shown behavioural strategies adaptive to fluctuating environments. Eel, in contrast, was found to have a different strategy strongly related to diel dynamics: it stayed in subtidal habitats rich in refuges that remained available at low tide. The results of this study emphasize the importance of restoring intertidal waterbodies and the relevance of considering the availability of adjacent subtidal habitats providing refuge at low tides.
Nonlocal Transport in the Reversed Field Pinch
Energy Technology Data Exchange (ETDEWEB)
Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.
2009-09-21
Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.
Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.
2011-01-01
A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and
Nonlocal Crowd Dynamics Models for several Populations
Colombo, Rinaldo M
2011-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
Energy Technology Data Exchange (ETDEWEB)
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)
2016-08-15
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Non-local modeling of materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...
Uncertainty, non-locality and Bell's inequality
Pati, A K
1998-01-01
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables then the statistical predictions of hidden variable theory is well respected in quantum world. We argue that the uncertainties play a key role in understanding the non-locality issues in quantum world. Thus we can not rule out the possibility that a local, realistic hidden variable theory with statistical uncertainties in the observables might reproduce all the results of quantum theory.
NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS
Institute of Scientific and Technical Information of China (English)
Rinaldo M. Colombo; Magali Lécureux-Mercier
2012-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.
Nonlocal calculation for nonstrange dibaryons and tribaryons
Mota, R D; Fernández, F; Entem, D R; Garcilazo, H
2002-01-01
We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are $NN$, $N\\Delta$, and $\\Delta\\Delta$, while the three-body systems are $NNN$, $NN\\Delta$, $N\\Delta\\Delta$, and $\\Delta\\Delta\\Delta$. We use as input the nonlocal $NN$, $N\\Delta$, and $\\Delta\\Delta$ potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations
DEFF Research Database (Denmark)
Mortensen, N. Asger
2013-01-01
The plasmon response of metallic nanostructures is anticipated to exhibit nonlocal dynamics of the electron gas when exploring the true nanoscale. We extend the local-response approximation (based on Ohm's law) to account for a general short-range nonlocal response of the homogeneous electron gas...
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
On nonlocal symmetries of some shallow water equations
Energy Technology Data Exchange (ETDEWEB)
Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)
2007-04-27
A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.
Solutions to nonlocal fractional differential equations using a noncompact semigroup
Directory of Open Access Journals (Sweden)
Shaochun Ji
2013-10-01
Full Text Available This article concerns the existence of solutions to nonlocal fractional differential equations in Banach spaces. By using a type of newly-defined measure of noncompactness, we discuss this problem in general Banach spaces without any compactness assumptions to the operator semigroup. Some existence results are obtained when the nonlocal term is compact and when is Lipschitz continuous.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
A Note on a Nonlocal Nonlinear Reaction-Diffusion Model
Walker, Christoph
2011-01-01
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.
Spectral dimension from nonlocal dynamics on causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo
2016-02-01
We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Colin, F.; Moussa, R.
2009-04-01
In rural basins, agricultural landscape management highly influences water and pollutants transfers. Landuse, agricultural practices and their spatial arrangements are at issue. Hydrological model are widely used to explore impacts of anthropogenic influences on experimental catchments. But planning all spatial arrangements leads to a possible cases count which cannot be considered. On the basis of the recent « numerical experiment » approach, we propose a « numerical tracer function » which had to be coupled to a distributed rainfall-runoff model. This function simulate the transfer of a virtual tracer successively spread on each distributed unit inside the catchment. It allows to rank hydrological spatial units according to their hydrological contribution to the surface flows, particularly at the catchment outlet. It was used with the distributed model MHYDAS in an agricultural context. The case study concerns the experimental Roujan vine-growing catchment (1km², south of France) studied since 1992. In this Mediterranean context, we focus on the soil hydraulic conductivity distributed parameter because it highly depends on weed control practices (chemical weeding induces a lot more runoff than mechanical weeding). We checked model sensitivity analysis to soil hydraulic conductivity spatial arrangement on runoff coefficient, peak discharge and catchment lag-time. Results show (i) the use of the tracer function is more efficient than a random approach to improve sensitivity to spatial arrangements from point of view of simulated discharge range, (ii) the first factor explaining hydrological simulations variability was practices area ratio, (iii) variability induced by practices spatial arrangements was significant on runoff coefficient and peak discharge for balanced practices area ratio and on lag-time for low area ratio of chemical weeding practices. From the actual situation on the experimental Roujan catchment (40% of tilled and 60% of non tilled vineyard
Wang, T.; Zhang, H.; Lin, H.
2017-09-01
surfaces has increasingly roused widely interests of researchers in monitoring urban development and determining the overall environmental health of a watershed. However, studies on the impervious surface using multi-spectral imageries is insufficient and inaccurate due to the complexity of urban infrastructures base on the need to further recognize these impervious surface materials in a finer scale. Hyperspectral imageries have been proved to be sensitive to subtle spectral differences thus capable to exquisitely discriminate these similar materials while limited to the low spatial resolution. Coupled nonnegative matrix factorization (CNMF) unmixing method is one of the most physically straightforward and easily complemented hyperspectral pan-sharpening methods that could produce fused data with both high spectral and spatial resolution. This paper aimed to exploit the latent capacity and tentative validation of CNMF on the killer application of mapping urban impervious surfaces in complexed metropolitan environments like Hong Kong. Experiments showed that the fusion of high spectral and spatial resolution image could provide more accurate and comprehensive information on urban impervious surface estimation.
Energy as a Detector of Nonlocality of Many-Body Spin Systems
Directory of Open Access Journals (Sweden)
J. Tura
2017-04-01
Full Text Available We present a method to show that low-energy states of quantum many-body interacting systems in one spatial dimension are nonlocal. We assign a Bell inequality to the Hamiltonian of the system in a natural way and we efficiently find its classical bound using dynamic programing. The Bell inequality is such that its quantum value for a given state, and for appropriate observables, corresponds to the energy of the state. Thus, the presence of nonlocal correlations can be certified for states of low enough energy. The method can also be used to optimize certain Bell inequalities: in the translationally invariant (TI case, we provide an exponentially faster computation of the classical bound and analytically closed expressions of the quantum value for appropriate observables and Hamiltonians. The power and generality of our method is illustrated through four representative examples: a tight TI inequality for eight parties, a quasi-TI uniparametric inequality for any even number of parties, ground states of spin-glass systems, and a nonintegrable interacting XXZ-like Hamiltonian. Our work opens the possibility for the use of low-energy states of commonly studied Hamiltonians as multipartite resources for quantum information protocols that require nonlocality.
A Robust and Fast Non-Local Means Algorithm for Image Denoising
Institute of Scientific and Technical Information of China (English)
Yan-Li Liu; Jin Wang; Xi Chen; Yan-Wen Guo; Qun-Sheng Peng
2008-01-01
In the paper, we propose a robust and fast image denoising method. The approach integrates both Non- Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm - similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.
Nonlocal image restoration with bilateral variance estimation: a low-rank approach.
Dong, Weisheng; Shi, Guangming; Li, Xin
2013-02-01
Simultaneous sparse coding (SSC) or nonlocal image representation has shown great potential in various low-level vision tasks, leading to several state-of-the-art image restoration techniques, including BM3D and LSSC. However, it still lacks a physically plausible explanation about why SSC is a better model than conventional sparse coding for the class of natural images. Meanwhile, the problem of sparsity optimization, especially when tangled with dictionary learning, is computationally difficult to solve. In this paper, we take a low-rank approach toward SSC and provide a conceptually simple interpretation from a bilateral variance estimation perspective, namely that singular-value decomposition of similar packed patches can be viewed as pooling both local and nonlocal information for estimating signal variances. Such perspective inspires us to develop a new class of image restoration algorithms called spatially adaptive iterative singular-value thresholding (SAIST). For noise data, SAIST generalizes the celebrated BayesShrink from local to nonlocal models; for incomplete data, SAIST extends previous deterministic annealing-based solution to sparsity optimization through incorporating the idea of dictionary learning. In addition to conceptual simplicity and computational efficiency, SAIST has achieved highly competent (often better) objective performance compared to several state-of-the-art methods in image denoising and completion experiments. Our subjective quality results compare favorably with those obtained by existing techniques, especially at high noise levels and with a large amount of missing data.
Adaptive Nonlocal Sparse Representation for Dual-Camera Compressive Hyperspectral Imaging.
Wang, Lizhi; Xiong, Zhiwei; Shi, Guangming; Wu, Feng; Zeng, Wenjun
2016-10-25
Leveraging the compressive sensing (CS) theory, coded aperture snapshot spectral imaging (CASSI) provides an efficient solution to recover 3D hyperspectral data from a 2D measurement. The dual-camera design of CASSI, by adding an uncoded panchromatic measurement, enhances the reconstruction fidelity while maintaining the snapshot advantage. In this paper, we propose an adaptive nonlocal sparse representation (ANSR) model to boost the performance of dualcamera compressive hyperspectral imaging (DCCHI). Specifically, the CS reconstruction problem is formulated as a 3D cube based sparse representation to make full use of the nonlocal similarity in both the spatial and spectral domains. Our key observation is that, the panchromatic image, besides playing the role of direct measurement, can be further exploited to help the nonlocal similarity estimation. Therefore, we design a joint similarity metric by adaptively combining the internal similarity within the reconstructed hyperspectral image and the external similarity within the panchromatic image. In this way, the fidelity of CS reconstruction is greatly enhanced. Both simulation and hardware experimental results show significant improvement of the proposed method over the state-of-the-art.
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.