WorldWideScience

Sample records for nonlocal kinetic-energy functionals

  1. Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions

    Science.gov (United States)

    Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2008-07-01

    We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang , Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic implementation of the WGC KEDF is then described and used in linear scaling orbital-free density functional theory (OF-DFT) calculations.

  2. Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    OpenAIRE

    Hamilton, I. P.; Mosna, Ricardo A.; Site, L. Delle

    2006-01-01

    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quant...

  3. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the low...

  4. libKEDF: An accelerated library of kinetic energy density functionals.

    Science.gov (United States)

    Dieterich, Johannes M; Witt, William C; Carter, Emily A

    2017-06-30

    Kinetic energy density functionals (KEDFs) approximate the kinetic energy of a system of electrons directly from its electron density. They are used in electronic structure methods that lack direct access to orbitals, for example, orbital-free density functional theory (OFDFT) and certain embedding schemes. In this contribution, we introduce libKEDF, an accelerated library of modern KEDF implementations that emphasizes nonlocal KEDFs. We discuss implementation details and assess the performance of the KEDF implementations for large numbers of atoms. We show that using libKEDF, a single computing node or (GPU) accelerator can provide easy computational access to mesoscale chemical and materials science phenomena using OFDFT algorithms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    CERN Document Server

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  6. Functional derivative of the kinetic energy functional for spherically symmetric systems.

    Science.gov (United States)

    Nagy, Á

    2011-07-28

    Ensemble non-interacting kinetic energy functional is constructed for spherically symmetric systems. The differential virial theorem is derived for the ensemble. A first-order differential equation for the functional derivative of the ensemble non-interacting kinetic energy functional and the ensemble Pauli potential is presented. This equation can be solved and a special case of the solution provides the original non-interacting kinetic energy of the density functional theory.

  7. Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks.

    Science.gov (United States)

    Yao, Kun; Parkhill, John

    2016-03-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from an input electron density. The output of the network is used as a nonlocal correction to conventional local and semilocal kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. The density which minimizes the total energy given by the functional is examined in detail. We identify several avenues to improve on this exploratory work, by reducing numerical noise and changing the structure of our functional. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  8. Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors

    Science.gov (United States)

    Shin, Ilgyou; Carter, Emily A.

    2014-05-01

    We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.

  9. Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilgyou [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States); Carter, Emily A., E-mail: eac@princeton.edu [Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263 (United States)

    2014-05-14

    We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect and (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.

  10. Incipient manifestation of the shell structure of atoms within the WDA model for the exchange and kinetic energy density functionals

    Science.gov (United States)

    Glossman, M. D.; Balbás, L. C.; Alonso, J. A.

    1995-07-01

    The radial electron density obtained for all the atoms of the main groups of the Periodic Table through the solution of the Euler equation associated with the nonlocal weighted density approximation (WDA) for the exchange and kinetic energy density functionals shows an incipient shell structure which is absent in other calculations using kinetic energy functionals based on the electronic density. The WDA radial density reveals two local maxima and the position of the first maximum correlates with the position of the maximum for the 1s orbital in the Hartree-Fock approximation. The cusp condition at the nucleus is fulfilled accurately. Also we study the density-based electron localization function (DELF) as a complementary procedure for the visualization of shells.

  11. Constrained Parmeterization of Reduced Density Approximation of Kinetic Energy Functionals

    Science.gov (United States)

    Chakraborty, Debajit; Trickey, Samuel; Karasiev, Valentin

    2014-03-01

    Evaluation of forces in ab initio MD is greatly accelerated by orbital-free DFT, especially at finite temperature. The recent achievement of a fully non-empirical constraint-based generalized gradient (GGA) functional for the Kohn-Sham KE Ts [ n ] brings to light the inherent limitations of GGAs. This motivates inclusion of higher-order derivatives in the form of reduced derivative approximation (RDA) functionals. That, in turn, requires new functional forms and design criteria. RDA functionals are constrained further to produce a positive-definite, non-singular Pauli potential. We focus on designing a non-empirical constraint-based meta-GGA functional with certain combinations of higher-order derivatives which avoid nuclear-site singularities to a specified order of gradient expansion. Here we report progress on this agenda. Work supported by U.S. Dept. of Energy, grant DE-SC0002139.

  12. The solutions of the strongly nonlocal spatial solitons with several types of nonlocal response functions

    Institute of Scientific and Technical Information of China (English)

    Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun

    2007-01-01

    The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.

  13. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    Science.gov (United States)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  14. Non-local electron energy probability function in a plasma expanding along a magnetic nozzle.

    Directory of Open Access Journals (Sweden)

    Roderick William Boswell

    2015-03-01

    Full Text Available Electron energy probability functions (eepfs have been measured along the axis of low pressure plasma expanding in a magnetic nozzle. The eepf at the maximum magnetic field of the nozzle shows a depleted tail commencing at an energy corresponding to the measured potential drop in the magnetic nozzle. The eepfs measured along the axis demonstrate that the potential and kinetic energies of the electrons are conserved and confirm the non-local collisionless kinetics of the electron dynamics.

  15. Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy

    Science.gov (United States)

    Perdew, John P.; Constantin, Lucian A.

    2007-04-01

    We construct a Laplacian-level meta-generalized-gradient-approximation (meta-GGA) for the noninteracting (Kohn-Sham orbital) positive kinetic energy density τ of an electronic ground state of density n . This meta-GGA is designed to recover the fourth-order gradient expansion τGE4 in the appropriate slowly varying limit and the von Weizsäcker expression τW=∣∇n∣2/(8n) in the rapidly varying limit. It is constrained to satisfy the rigorous lower bound τW(r)⩽τ(r) . Our meta-GGA is typically a strong improvement over the gradient expansion of τ for atoms, spherical jellium clusters, jellium surfaces, the Airy gas, Hooke’s atom, one-electron Gaussian density, quasi-two-dimensional electron gas, and nonuniformly scaled hydrogen atom. We also construct a Laplacian-level meta-GGA for exchange and correlation by employing our approximate τ in the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA density functional. The Laplacian-level TPSS gives almost the same exchange-correlation enhancement factors and energies as the full TPSS, suggesting that τ and ∇2n carry about the same information beyond that carried by n and ∇n . Our kinetic energy density integrates to an orbital-free kinetic energy functional that is about as accurate as the fourth-order gradient expansion for many real densities (with noticeable improvement in molecular atomization energies), but considerably more accurate for rapidly varying ones.

  16. On the evaluation of the non-interacting kinetic energy in density functional theory.

    Science.gov (United States)

    Peach, Michael J G; Griffiths, David G J; Tozer, David J

    2012-04-14

    The utility of both an orbital-free and a single-orbital expression for computing the non-interacting kinetic energy in density functional theory is investigated for simple atomic systems. The accuracy of both expressions is governed by the extent to which the Kohn-Sham equation is solved for the given exchange-correlation functional and so special attention is paid to the influence of finite Gaussian basis sets. The orbital-free expression is a statement of the virial theorem and its accuracy is quantified. The accuracy of the single-orbital expression is sensitive to the choice of Kohn-Sham orbital. The use of particularly compact orbitals is problematic because the failure to solve the Kohn-Sham equation exactly in regions where the orbital has decayed to near-zero leads to unphysical behaviour in regions that contribute to the kinetic energy, rendering it inaccurate. This problem is particularly severe for core orbitals, which would otherwise appear attractive due to their formally nodeless nature. The most accurate results from the single-orbital expression are obtained using the relatively diffuse, highest occupied orbitals, although special care is required at orbital nodes.

  17. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: quantum Monte Carlo simulations.

    Science.gov (United States)

    Neumann, Martin; Zoppi, Marco

    2002-03-01

    We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good.

  18. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    Science.gov (United States)

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  19. Dynamic kinetic energy potential for orbital-free density functional theory.

    Science.gov (United States)

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  20. Compressive Sensing via Nonlocal Smoothed Rank Function.

    Science.gov (United States)

    Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.

  1. Effective homogeneity of the exchange-correlation and non-interacting kinetic energy functionals under density scaling.

    Science.gov (United States)

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2012-01-21

    Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics

  2. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    Science.gov (United States)

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  3. Quadratic solitons for negative effective second-harmonic diffraction as nonlocal solitons with periodic nonlocal response function

    DEFF Research Database (Denmark)

    Esbensen, B.K.; Bache, Morten; Krolikowski, W.;

    2012-01-01

    We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....

  4. Kinetic energy of Throughfall in subtropical forests of SE China - effects of tree canopy structure, functional traits, and biodiversity.

    Directory of Open Access Journals (Sweden)

    Christian Geißler

    Full Text Available Throughfall kinetic energy (TKE plays an important role in soil erosion in forests. We studied TKE as a function of biodiversity, functional diversity as well as structural stand variables in a secondary subtropical broad-leaved forest in the Gutianshan National Nature Reserve (GNNR in south-east China, a biodiversity hotspot in the northern hemisphere with more than 250 woody species present. Using a mixed model approach we could identify significant effects of all these variables on TKE: TKE increased with rarefied tree species richness and decreased with increasing proportion of needle-leaved species and increasing leaf area index (LAI. Furthermore, for average rainfall amounts TKE was decreasing with tree canopy height whereas for high rainfall amounts this was not the case. The spatial pattern of throughfall was stable across several rain events. The temporal variation of TKE decreased with rainfall intensity and increased with tree diversity. Our results show that more diverse forest stands over the season have to cope with higher cumulative raindrop energy than less diverse stands. However, the kinetic energy (KE of one single raindrop is less predictable in diverse stands since the variability in KE is higher. This paper is the first to contribute to the understanding of the ecosystem function of soil erosion prevention in diverse subtropical forests.

  5. Controllability of impulsive functional differential systems with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    2013-08-01

    Full Text Available In this article, we study the controllability of impulsive functional differential equations with nonlocal conditions. We establish sufficient conditions for controllability, via the measure of noncompactness and Monch fixed point theorem.

  6. Laplacian-Level Kinetic Energy Approximations Based on the Fourth-Order Gradient Expansion: Global Assessment and Application to the Subsystem Formulation of Density Functional Theory.

    Science.gov (United States)

    Laricchia, Savio; Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2014-01-14

    We tested Laplacian-level meta-generalized gradient approximation (meta-GGA) noninteracting kinetic energy functionals based on the fourth-order gradient expansion (GE4). We considered several well-known Laplacian-level meta-GGAs from the literature (bare GE4, modified GE4, and the MGGA functional of Perdew and Constantin (Phys. Rev. B 2007,75, 155109)), as well as two newly designed Laplacian-level kinetic energy functionals (L0.4 and L0.6). First, a general assessment of the different functionals is performed to test them for model systems (one-electron densities, Hooke's atom, and different jellium systems) and atomic and molecular kinetic energies as well as for their behavior with respect to density-scaling transformations. Finally, we assessed, for the first time, the performance of the different functionals for subsystem density functional theory (DFT) calculations on noncovalently interacting systems. We found that the different Laplacian-level meta-GGA kinetic functionals may improve the description of different properties of electronic systems, but no clear overall advantage is found over the best GGA functionals. Concerning the subsystem DFT calculations, the here-proposed L0.4 and L0.6 kinetic energy functionals are competitive with state-of-the-art GGAs, whereas all other Laplacian-level functionals fail badly. The performance of the Laplacian-level functionals is rationalized thanks to a two-dimensional reduced-gradient and reduced-Laplacian decomposition of the nonadditive kinetic energy density.

  7. Monin-Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

    NARCIS (Netherlands)

    Hartogensis, O.K.; Debruin, H.A.R.

    2005-01-01

    The Monin-Obukhov similarity theory (MOST) functions fepsi; and fT, of the dissipation rate of turbulent kinetic energy (TKE), ¿, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover

  8. Ultra-nonlocality in density functional theory for photo-emission spectroscopy.

    Science.gov (United States)

    Uimonen, A-M; Stefanucci, G; van Leeuwen, R

    2014-05-14

    We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.

  9. 2D-3D Transition for Cationic and Anionic Gold Clusters: A Kinetic Energy Density Functional Study

    DEFF Research Database (Denmark)

    Ferrighi, Lara; Hammer, Bjørk; Madsen, Georg

    2009-01-01

    gradient enhancement. Moreover, we show how MGGAs, in contrast to generalize gradient approximations with smaller gradient enhancements, avoid overestimating the bond energies by combining the information contained in the reduced gradient and the kinetic energy. This allows MGGAs to treat differently...

  10. Laplacian-level kinetic energy approximations based on the fourth-order gradient expansion: Global assessment and application to the subsystem formulation of density functional theory

    CERN Document Server

    Laricchia, S; Fabiano, E; Della Sala, F

    2014-01-01

    We test Laplacian-level meta-generalized gradient approximation (meta-GGA) non-interacting kinetic energy functionals based on the fourth-order gradient expansion (GE4). We consider several well known Laplacian-level meta-GGAs from literature (bare GE4, modified GE4, and the MGGA functional of Perdew and Constantin [Phys. Rev. B \\textbf{75},155109 (2007)]), as well as two newly designed Laplacian-level kinetic energy functionals (named L0.4 and L0.6). First, a general assessment of the different functionals is performed, testing them for model systems (one-electron densities, Hooke's atom and different jellium systems), atomic and molecular kinetic energies as well as for their behavior with respect to density-scaling transformations. Finally, we assess, for the first time, the performance of the different functionals for Subsystem Density Functional Theory (DFT) calculations on non-covalently interacting systems. We find that the different Laplacian-level meta-GGA kinetic functionals may improve the descript...

  11. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method.

    Science.gov (United States)

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  12. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Debalina; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States)

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  13. How ambiguous is the local kinetic energy?

    Science.gov (United States)

    Anderson, James S M; Ayers, Paul W; Hernandez, Juan I Rodriguez

    2010-08-26

    The local kinetic energy and the closely related local electronic stress tensor are commonly used to elucidate chemical bonding patterns, especially for covalent bonds. We use three different approaches-transformation properties of the stress tensor, quasiprobability distributions, and the virial theorem from density-functional theory-to clarify the inherent ambiguity in these quantities, discussing the implications for analyses based on the local kinetic energy and stress tensor. An expansive-but not universal-family of local kinetic energy forms that includes the most common choices and is suitable for both chemical-bonding and atoms-in-molecule analysis is derived. A family of local electronic stress tensors is also derived. Several local kinetic energy functions that are mathematically justified, but unlikely to be conceptually useful, are derived. The implications of these forms for atoms-in-molecule analysis are discussed.

  14. Generalized Klein-Gordon and Dirac Equations from Nonlocal Kinetic Approach

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2016-09-01

    In this note, I generalized the Klein-Gordon and the Dirac equations by using Suykens's nonlocal-in-time kinetic energy approach, which is motivated from Feynman's kinetic energy functional formalism where the position differences are shifted with respect to one another. I proved that these generalized equations are similar to those obtained in literature in the presence of minimal length based on the Quesne-Tkachuk algebra.

  15. Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals.

    Science.gov (United States)

    Śmiga, Szymon; Fabiano, Eduardo; Constantin, Lucian A; Della Sala, Fabio

    2017-02-14

    The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embedding contributions. In particular, these models can also be efficiently employed to replace the exact KED in meta-Generalized Gradient Approximation (meta-GGA) exchange-correlation functionals allowing to extend the subsystem DFT applicability to the meta-GGA level of theory. Here, we present a two-dimensional scan of semilocal KED models as linear functionals of the reduced gradient and of the reduced Laplacian, for atoms and weakly bound molecular systems. We find that several models can perform well but in any case the Laplacian contribution is extremely important to model the local features of the KED. Indeed a simple model constructed as the sum of Thomas-Fermi KED and 1/6 of the Laplacian of the density yields the best accuracy for atoms and weakly bound molecular systems. These KED models are tested within subsystem DFT with various meta-GGA exchange-correlation functionals for non-bonded systems, showing a good accuracy of the method.

  16. Dimensional enhancement of kinetic energies

    DEFF Research Database (Denmark)

    Schleich, W.P.; Dahl, Jens Peder

    2002-01-01

    Simple thermodynamics considers kinetic energy to be an extensive variable which is proportional to the number N of particles. We present a quantum state of N noninteracting particles for which the kinetic energy increases quadratically with N. This enhancement effect is tied to the quantum centr...

  17. Turbulence kinetic energy equation for dilute suspensions

    Science.gov (United States)

    Abou-Arab, T. W.; Roco, M. C.

    1989-01-01

    A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.

  18. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantiti...... in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom....

  19. NONDENSELY DEFINED IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Yueju Cao; Xianlong Fu

    2009-01-01

    In this paper, using a fixed point theorem for condensing multi-valued maps, we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.

  20. Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Dhakne Machindra B.

    2017-04-01

    Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

  1. EXACT NULL CONTROLLABILITY OF NON-AUTONOMOUS FUNCTIONAL EVOLUTION SYSTEMS WITH NONLOCAL CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Xianlong FU; Yu ZHANG

    2013-01-01

    In this article,by using theory of linear evolution system and Schauder fixed point theorem,we establish a sufficient result of exact null controllability for a non-autonomous functional evolution system with nonlocal conditions.In particular,the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here.An example is also provided to show an application of the obtained result.

  2. Cascade of kinetic energy in three-dimensional compressible turbulence.

    Science.gov (United States)

    Wang, Jianchun; Yang, Yantao; Shi, Yipeng; Xiao, Zuoli; He, X T; Chen, Shiyi

    2013-05-24

    The conservative cascade of kinetic energy is established using both Fourier analysis and a new exact physical-space flux relation in a simulated compressible turbulence. The subgrid scale (SGS) kinetic energy flux of the compressive mode is found to be significantly larger than that of the solenoidal mode in the inertial range, which is the main physical origin for the occurrence of Kolmogorov's -5/3 scaling of the energy spectrum in compressible turbulence. The perfect antiparallel alignment between the large-scale strain and the SGS stress leads to highly efficient kinetic energy transfer in shock regions, which is a distinctive feature of shock structures in comparison with vortex structures. The rescaled probability distribution functions of SGS kinetic energy flux collapse in the inertial range, indicating a statistical self-similarity of kinetic energy cascades.

  3. Green's function surface-integral method for nonlocal response of plasmonic nanowires in arbitrary dielectric environments

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    We develop a nonlocal-response generalization to the Green's function surface-integral method (GSIM), also known as the boundary-element method. This numerically efficient method can accurately describe the linear hydrodynamic nonlocal response of arbitrarily shaped plasmonic nanowires in arbitrary...... dielectric backgrounds. All previous general-purpose methods for nonlocal response are bulk methods. We also expand the possible geometries to which the usual local-response GSIM can be applied, by showing how to regularize singularities that occur in the surface integrals when the nanoparticles touch...... close to and on top of planar dielectric substrates. Especially for the latter geometry, considerable differences in extinction cross sections are found for local as compared to nonlocal response, similar to what is found for plasmonic dimer structures....

  4. Analysis of Sigmoid Functionally Graded Material (S-FGM Nanoscale Plates Using the Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.

  5. Estimation of turbulent kinetic energy dissipation

    Science.gov (United States)

    Chen, Huey-Long; Hondzo, Miki; Rao, A. Ramachandra

    2001-06-01

    The kinetic energy dissipation rate is one of the key intrinsic fluid flow parameters in environmental fluid dynamics. In an indirect method the kinetic energy dissipation rate is estimated from the Batchelor spectrum. Because the Batchelor spectrum has a significant difference between the highest and lowest spectral values, the spectral bias in the periodogram causes the lower spectral values at higher frequencies to increase. Consequently, the accuracy in fitting the Batchelor spectrum is affected. In this study, the multitaper spectral estimation method is compared to conventional methods in estimating the synthetic temperature gradient spectra. It is shown in the results that the multitaper spectra have less bias than the Hamming window smoothed spectra and the periodogram in estimating the synthetic temperature gradient spectra. The results of fitting the Batchelor spectrum based on four error functions are compared. When the theoretical noise spectrum is available and delineated at the intersection of the estimated spectrum, the fitting results of the kinetic energy dissipation rate corresponding to the four error functions do not have significant differences. However, when the noise spectrum is unknown and part of the Batchelor spectrum overlaps the region where the noise spectrum dominates, the weighted chi-square distributed error function has the best fitting results.

  6. Kinetic energy transfer during the tennis serve

    Directory of Open Access Journals (Sweden)

    C.L. de Subijana

    2010-12-01

    Full Text Available Several studies have established the pattern used in the over arm hitting and throwing movements, however to date there has not been one which statistically expresses the Kinetic Link Principle of the tennis serve. The main goals of this study were: first to investigate the kinetic energy transmission pattern using a complete mechanical body model and second, to create a tool which could help evaluating the individual technique of a tennis player. This tool was a statistical procedure which expressed the individual technique of a player as a mathematical function. Fourteen and twelve flat tennis serves of two top tennis players landing in an aiming area were recorded with two synchronized video cameras at 125 Hz. The experimental technique was 3D photogrammetry. A 28 points body model with five solid-rigid (the pelvis, the thorax, the upper arms and the racquet was built. The kinetic energies from the body segments were considered the biomechanical parameters. The mean speeds of the balls were 41.9 m/s (150.9 km/hr and 38.1 m/s (137.2 km/hr. A Kinetic Sequential Action Muscle principle based on the kinetic energy transfer was probed statistically by mean a correlation analysis [3]. This pattern showed the existence of a proximal to distal sequence of kinetic energy maximums. A significant (p<0.05 discriminant function for each player could predict the category of the serve (“good” or “bad” in the 78.6% and 100% of the cases. This function facilitated the understanding of the individual technique of a tennis player showing that this could be a tool for the tennis training complementary to the qualitative (observational analysis.

  7. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  8. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is

  9. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  10. Existence of solutions for non-autonomous functional evolution equations with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Xianlong Fu

    2012-07-01

    Full Text Available In this work, we study the existence of mild solutions and strict solutions of semilinear functional evolution equations with nonlocal conditions, where the linear part is non-autonomous and generates a linear evolution system. The fraction power theory and alpha-norm are used to discuss the problems so that the obtained results can be applied to the equations in which the nonlinear terms involve spatial derivatives. In particular, the compactness condition or Lipschitz condition for the function g in the nonlocal conditions appearing in various literatures is not required here. An example is presented to show the applications of the obtained results

  11. Point-by-Point model description of average prompt neutron data as a function of total kinetic energy of fission fragments

    Science.gov (United States)

    Tudora, A.

    2013-03-01

    The experimental data of average prompt neutron multiplicity as a function of total kinetic energy of fragments (TKE) exhibit, especially in the case of 252Cf(SF), different slopes dTKE/dν and different behaviours at low TKE values. The Point-by-Point (PbP) model can describe these different behaviours. The higher slope dTKE/dν and the flattening of at low TKE exhibited by a part of experimental data sets is very well reproduced when the PbP multi-parametric matrix ν(A,TKE) is averaged over a double distribution Y(A,TKE). The lower slope and the almost linear behaviour over the entire TKE range exhibited by other data sets is well described when the same matrix ν(A,TKE) is averaged over a single distribution Y(A). In the case of average prompt neutron energy in SCM as a function of TKE, different dTKE/dɛ slopes are also obtained by averaging the same PbP matrix ɛ(A,TKE) over Y(A,TKE) and over Y(A). The results are exemplified for three fissioning systems benefiting of experimental data as a function of TKE: 252Cf(SF), 235U(nth,f) and 239Pu(nth,f). In the case of 234U(n,f) for the first time it was possible to calculate (TKE) and (TKE) at many incident energies by averaging the PbP multi-parametric matrices over the experimental Y(A,TKE) distributions recently measured at IRMM for 14 incident energies in the range 0.3-5 MeV. The results revealed that the slope dTKE/dν does not vary with the incident energy and the flattening of at low TKE values is more pronounced at low incident energies. The average model parameters dependences on TKE resulted from the PbP treatment allow the use of the most probable fragmentation approach, having the great advantage to provide results at many TKE values in a very short computing time compared to PbP and Monte Carlo treatments.

  12. Fragmentation functions of pions and kaons in the nonlocal chiral quark model

    Directory of Open Access Journals (Sweden)

    Kao Chung Wen

    2014-03-01

    Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.

  13. On Some Qualitative Properties of Mild Solutions of Nonlocal Semilinear Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Jain Rupali S.

    2014-12-01

    Full Text Available In the present paper, we investigate the qualitative properties such as existence, uniqueness and continuous dependence on initial data of mild solutions of first and second order nonlocal semilinear functional differential equations with delay in Banach spaces. Our analysis is based on semigroup theory and modified version of Banach contraction theorem.

  14. Improving the accuracy of the nonlocal van der Waals density functional with minimal empiricism.

    Science.gov (United States)

    Vydrov, Oleg A; Van Voorhis, Troy

    2009-03-14

    The nonlocal van der Waals density functional (vdW-DF) captures the essential physics of the dispersion interaction not only in the asymptotic regime but also for a general case of overlapping fragment densities. A balanced treatment of other energetic contributions, such as exchange, is crucial if we aim for accurate description of various properties of weakly bound systems. In this paper, the vdW-DF correlation functional is modified to make it better compatible with accurate exchange functionals. We suggest a slightly simplified construction of the nonlocal correlation, yielding more accurate asymptotic C(6) coefficients. We also derive a gradient correction, containing a parameter that can be adjusted to suit an exchange functional of choice. We devise a particularly apt combination of exchange and correlation terms, which satisfies many important constraints and performs well for our benchmark tests.

  15. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects

    Science.gov (United States)

    Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood

    2017-09-01

    Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.

  16. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-08-01

    In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.

  17. Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays

    OpenAIRE

    Wenzhen Gan; Canrong Tian; Qunying Zhang; Zhigui Lin

    2013-01-01

    This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show...

  18. Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity

    CERN Document Server

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.

  19. Stability in a Simple Food Chain System with Michaelis-Menten Functional Response and Nonlocal Delays

    Directory of Open Access Journals (Sweden)

    Wenzhen Gan

    2013-01-01

    Full Text Available This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results.

  20. Kinetic energy equations for the average-passage equation system

    Science.gov (United States)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  1. Kinetic energy equations for the average-passage equation system

    Science.gov (United States)

    Johnson, Richard W.; Adamczyk, John J.

    1989-01-01

    Important kinetic energy equations derived from the average-passage equation sets are documented, with a view to their interrelationships. These kinetic equations may be used for closing the average-passage equations. The turbulent kinetic energy transport equation used is formed by subtracting the mean kinetic energy equation from the averaged total instantaneous kinetic energy equation. The aperiodic kinetic energy equation, averaged steady kinetic energy equation, averaged unsteady kinetic energy equation, and periodic kinetic energy equation, are also treated.

  2. Green's functional for a higher order ordinary integro-differential equation with nonlocal conditions

    Science.gov (United States)

    Özen, Kemal

    2016-12-01

    One of the little-known techniques for ordinary integro-differential equations in literature is Green's functional method, the origin of which dates back to Azerbaijani scientist Seyidali S. Akhiev. According to this method, Green's functional concepts for some simple forms of such equations have been introduced in the several studies. In this study, we extend Green's functional concept to a higher order ordinary integro-differential equation involving generally nonlocal conditions. A novel kind of adjoint problem and Green's functional are constructed for completely nonhomogeneous problem. By means of the obtained Green's functional, the solution to the problem is identified.

  3. Mild solutions for nonlocal fractional semilinear functional differential inclusions involving Caputo derivative

    Directory of Open Access Journals (Sweden)

    Ahmed G. Ibrahim

    2014-05-01

    Full Text Available In this paper, we prove various existence results of a mild solution for a fractional nonlocal functional semilinear differential inclusion involving Caputo derivative in Banach spaces. We consider the case when the values of the orient field are convex as well as nonconvex. Moreover, we study the topological structure of solution sets. Our results extend or generalize results proved in recent papers.

  4. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    Science.gov (United States)

    Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.

    2017-01-01

    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.

  5. Discontinuity of the exchange-correlation potential and the functional derivative of the noninteracting kinetic energy as the number of electrons crosses integer boundaries in Li, Be, and B.

    Science.gov (United States)

    Morrison, Robert C

    2015-01-07

    Accurate densities were determined from configuration interaction wave functions for atoms and ions of Li, Be, and B with up to four electrons. Exchange-correlation potentials, Vxc(r), and functional derivatives of the noninteracting kinetic energy, δK[ρ]/δρ(r), obtained from these densities were used to examine their discontinuities as the number of electrons N increases across integer boundaries for N = 1, N = 2, and N = 3. These numerical results are consistent with conclusions that the discontinuities are characterized by a jump in the chemical potential while the shape of Vxc(r) varies continuously as an integer boundary is crossed. The discontinuity of the Vxc(r) is positive, depends on the ionization potential, electron affinity, and orbital energy differences, and the discontinuity in δK[ρ]/δρ(r) depends on the difference between the energies of the highest occupied and lowest unoccupied orbitals. The noninteracting kinetic energy and the exchange correlation energy have been computed for integer and noninteger values of N between 1 and 4.

  6. On the Linearly-Balanced Kinetic Energy Spectrum

    Science.gov (United States)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  7. Jellium-with-gap model applied to semilocal kinetic functionals

    Science.gov (United States)

    Constantin, Lucian A.; Fabiano, Eduardo; Śmiga, Szymon; Della Sala, Fabio

    2017-03-01

    We investigate a highly nonlocal generalization of the Lindhard function, given by the jellium-with-gap model. We find a band-gap-dependent gradient expansion of the kinetic energy, which performs noticeably well for large atoms. Using the static linear response theory and the simplest semilocal model for the local band gap, we derive a nonempirical generalized gradient approximation (GGA) of the kinetic energy. This GGA kinetic-energy functional is remarkably accurate for the description of weakly interacting molecular systems within the subsystem formulation of density functional theory.

  8. Traveling wavefronts in nonlocal diffusive predator-prey system with Holling type II functional response

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2015-06-01

    Full Text Available This article concerns the existence of traveling wavefronts for a nonlocal diffusive predator-prey system with functional response of Holling type II. We first establish the existence principle for the system with a general functional response by using a fixed point theorem and upper-lower solution technique. We apply this result to a predator-prey model with Holling type II functional response. We deduce the existence of traveling wavefronts that connect the zero equilibrium and the positive equilibrium.

  9. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  10. Density functional with full exact exchange, balanced nonlocality of correlations, and constraint satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin [Los Alamos National Laboratory; Perdew, John P [TULANE UNIV; Staroverov, Viktor N [UNIV OF WESTERN ONTARIO; Scuseria, Gustavo E [RICE UNIV

    2008-01-01

    We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known

  11. Non-Local Density Functional Description of Poly-Para-Phenylene Vinylene

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guang; Clark S. J.; Brand S.; Abram R. A.

    2007-01-01

    A fully non-local exchange-correlation formalism within the framework of density functional theory, known as the weighted density approximation (WDA), has been applied to the conjugated polymer poly-para-phenylene vinylene (PPV) and is shown to lead to a marked improvement in the agreement of theory and experiment for the electronic band structure of the conjugated polymer. In particular, some new model WDA functions are developed, which substantially increase the electronic band gap of the polymer relative to those obtained with the local density approximation and generalized gradient approximation. The calculated band gap of PPV is quantitatively or at 1east semiquantitatively in agreement with the experimental data.

  12. Meta-GGA exchange-correlation functional with a balanced treatment of nonlocality

    CERN Document Server

    Constantin, L A; Della Sala, F

    2013-01-01

    We construct a meta-generalized-gradient approximation which properly balances the nonlocality contributions to the exchange and correlation at the semilocal level. This non-empirical functional shows good accuracy for a broad palette of properties (thermochemistry, structural properties) and systems (molecules, metal clusters, surfaces and bulk solids). The accuracy for several well known problems in electronic structure calculations, such as the bending potential of the silver trimer and the dimensional crossover of anionic gold clusters, is also demonstrated. The inclusion of empirical dispersion corrections is finally discussed and analyzed.

  13. A calculation of internal kinetic energy and polarizability of compressed argon from the statistical atom model

    NARCIS (Netherlands)

    Seldam, C.A. ten; Groot, S.R. de

    From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of

  14. A simple nonlocal model for exchange.

    Science.gov (United States)

    Janesko, Benjamin G

    2009-12-21

    This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.

  15. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis

    Science.gov (United States)

    Ansari, R.; Norouzzadeh, A.

    2016-10-01

    The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.

  16. The nonlocal theory solution of a Mode-I crack in functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    LIANG Jun

    2009-01-01

    The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of displacements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. Numerical examples are provided to show the effects of the crack length, the parameter describing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.

  17. The nonlocal theory solution of a Mode-I crack in functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solu- tions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture crite- rion. Numerical examples are provided to show the effects of the crack length, the parameter describ- ing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.

  18. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  19. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  20. Generating functional and large N limit of nonlocal 2D generalized Yang-Mills theories (nlgYM 2's)

    Science.gov (United States)

    Saaidi, K.; Sajadi, H. M.

    2001-01-01

    Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) on nonlocal generalized 2D Yang Mills theories (nlgYM_2's), which are nonlocal in the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for general surfaces. We find a general expression for the free energy of W(φ) =φ^{2k} in nlgYM_2 theories at the strong coupling phase (SCP) regime (A > A_c) for large groups. In the specific φ^4 model, we show that the theory has a third order phase transition.

  1. Nonlocal van der Waals functionals: The case of rare-gas dimers and solids

    CERN Document Server

    Tran, Fabien

    2013-01-01

    Recently, the nonlocal van der Waals (vdW) density functionals [M. Dion, H. Rydberg, E. Schroeder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)] have attracted considerable attention due to their good performance for systems where weak interactions are important. Since the physics of dispersion is included in these functionals, they are usually more accurate and show less erratic behavior than the semilocal and hybrid methods. In this work, several variants of the vdW functionals have been tested on rare-gas dimers (from He2 to Kr2) and solids (Ne, Ar, and Kr) and their accuracy compared to standard semilocal approximations supplemented or not by an atom-pairwise dispersion correction [S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010)]. An analysis of the results in terms of energy decomposition is also provided.

  2. Existence of mild solutions of second-order neutral functional differential inclusions with nonlocal conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    S. Marshal Anthoni

    2004-01-01

    Full Text Available We study the existence of mild solutions of the nonlinear second-order neutral functional differential and integrodifferential inclusions with nonlocal conditions in Banach spaces. The results are obtained by using the theory of strongly continuous cosine families of bounded linear operators and a fixed point theorem for condensing maps due to Martelli.

  3. Distorted Waves with Exact Non-Local Exchange a Canonical Function Approach

    CERN Document Server

    Fakhreddine, K; Vien, G N; Tannous, C; Langlois, J M; Robaux, O

    2002-01-01

    It is shown how the Canonical Function approach can be used to obtain accurate solutions for the distorted wave problem taking account of direct static and polarisation potentials and exact non-local exchange. Calculations are made for electrons in the field of atomic hydrogen and the phaseshifts are compared with those obtained using a modified form of the DWPO code of McDowell and collaborators: for small wavenumbers our approach avoids numerical instabilities otherwise present. Comparison is also made with phaseshifts calculated using local equivalent-exchange potentials and it is found that these are inaccurate at small wavenumbers. Extension of our method to the case of atoms having other than s-type outer shells is dicussed.

  4. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  5. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  6. Across-Platform Imputation of DNA Methylation Levels Incorporating Nonlocal Information Using Penalized Functional Regression.

    Science.gov (United States)

    Zhang, Guosheng; Huang, Kuan-Chieh; Xu, Zheng; Tzeng, Jung-Ying; Conneely, Karen N; Guan, Weihua; Kang, Jian; Li, Yun

    2016-05-01

    DNA methylation is a key epigenetic mark involved in both normal development and disease progression. Recent advances in high-throughput technologies have enabled genome-wide profiling of DNA methylation. However, DNA methylation profiling often employs different designs and platforms with varying resolution, which hinders joint analysis of methylation data from multiple platforms. In this study, we propose a penalized functional regression model to impute missing methylation data. By incorporating functional predictors, our model utilizes information from nonlocal probes to improve imputation quality. Here, we compared the performance of our functional model to linear regression and the best single probe surrogate in real data and via simulations. Specifically, we applied different imputation approaches to an acute myeloid leukemia dataset consisting of 194 samples and our method showed higher imputation accuracy, manifested, for example, by a 94% relative increase in information content and up to 86% more CpG sites passing post-imputation filtering. Our simulated association study further demonstrated that our method substantially improves the statistical power to identify trait-associated methylation loci. These findings indicate that the penalized functional regression model is a convenient and valuable imputation tool for methylation data, and it can boost statistical power in downstream epigenome-wide association study (EWAS).

  7. Nonlocal Wigner-like correlation energy density functional: parametrization and tests on two-electron systems.

    Science.gov (United States)

    Katriel, Jacob; Bauer, Michael; Springborg, Michael; McCarthy, Shane P; Thakkar, Ajit J

    2007-07-14

    Reparametrization of Wigner's correlation energy density functional yields a very close fit to the correlation energies of the helium isoelectronic sequence. However, a quite different reparametrization is required to obtain an equally close fit to the isoelectronic sequence of Hooke's atom. In an attempt to avoid having to reparametrize the functional for different choices of the one-body potential, we propose a parametrization that depends on global characteristics of the ground-state electron density as quantified by scale-invariant combinations of expectation values of local one-body operators. This should be viewed as an alternative to the density-gradient paradigm, allowing one to introduce the nonlocal dependence of the density functional on the density in a possibly more effective way. Encouraging results are obtained for two-electron systems with one-body potentials of the form r(zeta) with zeta=-12,+12,1, which span the range between the Coulomb potential (zeta=-1) and the Hooke potential (zeta=2).

  8. Band structure calculation of SH waves in nanoscale multilayered piezoelectric phononic crystals using radial basis function method with consideration of nonlocal interface effects.

    Science.gov (United States)

    Yan, Zhizhong; Wei, Chunqiu; Zhang, Chuanzeng

    2017-01-01

    In this paper, the radial basis function (RBF) collocation method based on the nonlocal Eringen piezoelectricity theory is developed to compute the band structures of nanoscale multilayered piezoelectric phononic crystals taking account of nonlocal interface effects. Detailed calculations are performed for anti-plane transverse waves propagating obliquely or vertically in the system. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interfaces. The effects of nonlocal interface imperfections are considered by comparing with the nonlocal perfect interfaces. In addition, the influences of the piezoelectric constant, the nanoscale size, the impedance ratio and the incidence angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface discontinuity has more obvious effect on the low-frequency band structures at the microscopic scale than at the macroscopic scale. Furthermore, at the macroscopic scale, the nonlocal interface imperfection has an obvious effect on the high frequency waves, but the effect on the low frequency waves is not obvious, and the nonlocal interface imperfection has no effect on the cut-off frequency at the microscopic scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Filamentary and hierarchical pictures - Kinetic energy criterion

    Science.gov (United States)

    Klypin, Anatoly A.; Melott, Adrian L.

    1992-01-01

    We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.

  10. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  11. Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Farzad; Ghadiri, Majid; Salari, Erfan; Shaghaghi, Gholam Reza [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Hoseini, Seied Amir Hosein [University of Zanjan, Zanjan (Iran, Islamic Republic of)

    2015-03-15

    In this study, the applicability of differential transformation method (DTM) in investigations on vibrational characteristics of functionally graded (FG) size-dependent nanobeams is examined. The material properties of FG nanobeam vary over the thickness based on the power law. The nonlocal Eringen theory, which takes into account the effect of small size, enables the present model to be effective in the analysis and design of nanosensors and nanoactuators. Governing equations are derived through Hamilton's principle. The obtained results exactly match the results of the presented Navier-based analytical solution as well as those available in literature. The DTM is also demonstrated to have high precision and computational efficiency in the vibration analysis of FG nanobeams. The detailed mathematical derivations are presented and numerical investigations performed with emphasis placed on investigating the effects of several parameters, such as small scale effects, volume fraction index, mode number, and thickness ratio on the normalized natural frequencies of the FG nanobeams. The study also shows explicitly that vibrations of FG nanobeams are significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

  12. Investigation of the Kinetic Energy Characterization of Advanced Ceramics

    Science.gov (United States)

    2015-04-01

    ARL-TR-7263 ● APR 2015 US Army Research Laboratory Investigation of the Kinetic Energy Characterization of Advanced Ceramics ...Kinetic Energy Characterization of Advanced Ceramics by Tyrone L Jones Weapons and Materials Research Directorate, ARL...Kinetic Energy Characterization of Advanced Ceramics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tyrone L

  13. Buckling of Functionally Graded Nanobeams Based on the Nonlocal New First-Order Shear Deformation Beam Theory

    Directory of Open Access Journals (Sweden)

    Houari M.S.A.

    2014-04-01

    Full Text Available In this work, the size-dependent buckling behavior of functionally graded (FG nanobeams is investigated on the basis of the nonlocal continuum model. The material properties of FG nanobeams are assumed to vary through the thickness according to the power law. In addition, Poisson’s ratio is assumed constant in the current model. The nanobeams is modelled according to the new first order shear beam theory with small deformation and the equilibrium equations are derived using the Hamilton’s principle. The Naviertype solution is developed for simply-supported boundary conditions, and exact formulas are proposed for the buckling load. The effects of nonlocal parameter, aspect ratio, various material compositions on the stability responses of the FG nanobeams are discussed.

  14. Acausality in Nonlocal Gravity Theory

    CERN Document Server

    Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo

    2016-01-01

    We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.

  15. A note on the maintenance of the atmospheric kinetic energy

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1982-01-01

    The winter simulations of the GLAS climate model and the NCAR community climate model are used to examine the maintenance of the atmospheric kinetic energy. It is found that the kinetic energy is generated in the lower latitudes south of the maximum westerlies, transported northward and then, destroyed in the midlatitudes north of the maximum westerlies. Therefore, the atmospheric kinetic energy is maintained by the counterbalance between the divergence (convergence) of kinetic energy flux and generation (destruction) of kinetic energy in lower (middle) latitudes.

  16. A note on the maintenance of the atmospheric kinetic energy

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1982-01-01

    The winter simulations of the GLAS climate model and the NCAR community climate model are used to examine the maintenance of the atmospheric kinetic energy. It is found that the kinetic energy is generated in the lower latitudes south of the maximum westerlies, transported northward and then, destroyed in the midlatitudes north of the maximum westerlies. Therefore, the atmospheric kinetic energy is maintained by the counterbalance between the divergence (convergence) of kinetic energy flux and generation (destruction) of kinetic energy in lower (middle) latitudes.

  17. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.

    Science.gov (United States)

    Brokaw, Jason B; Haas, Kevin R; Chu, Jhih-Wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C7eq-to-Cax isomerization of an alanine dipeptide, the (4)C1-to-(1)C4 transition of an α-d-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.

  18. On the application of polynomial and NURBS functions for nonlocal response of low dimensional structures

    CERN Document Server

    Natarajan, S; Bordas, S; Mahapatra, D Roy

    2012-01-01

    In this paper, the axial vibration of cracked beams, the free flexural vibrations of nanobeams and plates based on Timoshenko beam theory and first-order shear deformable plate theory, respectively, using Eringen's nonlocal elasticity theory is numerically studied. The field variable is approximated by Lagrange polynomials and non-uniform rational B-splines. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the natural frequency is numerically studied. The influence of a crack on axial vibration is also studied. The results obtained from this study are found to be in good agreement with those reported in the literature.

  19. The nonlocal solution of two parallel cracks in functionally graded materials subjected to harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    Jun Liang; Shiping Wu; Shanyi Du

    2007-01-01

    In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.

  20. Maximum kinetic energy considerations in proton stereotactic radiosurgery.

    Science.gov (United States)

    Sengbusch, Evan R; Mackie, Thomas R

    2011-04-12

    The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc.

  1. Nonlocal conditions for differential inclusions in the space of functions of bounded variations

    Directory of Open Access Journals (Sweden)

    Boucherif Abdelkader

    2011-01-01

    Full Text Available Abstract We discuss the existence of solutions of an abstract differential inclusion, with a right-hand side of bounded variation and subject to a nonlocal initial condition of integral type. AMS Subject Classification 34A60, 34G20, 26A45, 54C65, 28B20

  2. Electric Vehicles Mileage Extender Kinetic Energy Storage

    Science.gov (United States)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  3. Experimental Studies on Turbulence Kinetic Energy in Confined Vortex Flows

    Institute of Scientific and Technical Information of China (English)

    L.Yan; G.H.Vatistas; 等

    2000-01-01

    Turbulence kinetic energies in confined vortex flows have been studied.The studies were based on the experiments performed in a vortex chamber,In the experiments,a Laser Doppler Anemometry(LDA) was used to perform flow measurements inside the vortex chamber,which provided the data for the kinetic energy analysis.The studies concentrated on the influences of the contraction ratio and the inlet air flow rate on the kinetic energy,and analyzed the characteristics of the kinetic energy in the confined vortex flows,including the distributions of the tangential component,radial component and total turbulence kinetic energy,In the paper,both the experimental techniques and the experimental results were presented.Based on a similarity analyis and the experimental data,an empirical scaling formula was proposed so that the tangential component of the turbulence kinetic energy was dependent only on the parameter of the contraction ratio.

  4. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of 34U

    Science.gov (United States)

    Montoya, M.; Rojas, J.; Lobato, I.

    2008-12-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as big as the measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass, the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass.

  5. Kinetic energy decomposition scheme based on information theory.

    Science.gov (United States)

    Imamura, Yutaka; Suzuki, Jun; Nakai, Hiromi

    2013-12-15

    We proposed a novel kinetic energy decomposition analysis based on information theory. Since the Hirshfeld partitioning for electron densities can be formulated in terms of Kullback-Leibler information deficiency in information theory, a similar partitioning for kinetic energy densities was newly proposed. The numerical assessments confirm that the current kinetic energy decomposition scheme provides reasonable chemical pictures for ionic and covalent molecules, and can also estimate atomic energies using a correction with viral ratios.

  6. Nonlocal Inflation

    CERN Document Server

    Barnaby, Neil

    2008-01-01

    We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.

  7. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  8. Monte-Carlo simulation for fragment mass and kinetic energy distributions from neutron induced fission of 235U

    CERN Document Server

    Montoya, M; Rojas, J

    2007-01-01

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron induced fission of 235U have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening on the standard deviation of the final fragment kinetic energy distribution $\\sigma_{e}(m)$ around the mass number m = 109, our simulation also produces a second broadening around m = 125, that is in agreement with the experimental data obtained by Belhafaf et al. These results are consequence of the characteristics of the neutron emission, the variation in the primary fragment mean kinetic energy and the yield as a function of the mass.

  9. High-resolution kinetic energy distributions via doppler shift measurements

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.

    1986-07-01

    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  10. Determination of kinetic energy applied by center pivot sprinklers

    Science.gov (United States)

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  11. Droplet Kinetic Energy from Center-Pivot Sprinklers

    Science.gov (United States)

    The kinetic energy of discrete water drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy developmen...

  12. The Kinetic Energy of a Rotating Figure Skater.

    Science.gov (United States)

    Chen, Wei R.; Troelstra, Arne A.

    1998-01-01

    When a rotating figure skater's fully extended arms are pulled back toward the torso, the angular velocity is noticeably increased and the kinetic energy of the skater can also be shown to increase. Discusses the change of the kinetic energy during such a process, and the work necessary for such an increase is derived using a dynamic equilibrium…

  13. Preliminary study on mechanics-based rainfall kinetic energy

    Directory of Open Access Journals (Sweden)

    Yuan Jiuqin Ms.

    2014-09-01

    Full Text Available A raindrop impact power observation system was employed to observe the real-time raindrop impact power during a rainfall event and to analyze the corresponding rainfall characteristics. The experiments were conducted at different simulated rainfall intensities. As rainfall intensity increased, the observed impact power increased linearly indicating the power observation system would be satisfactory for characterizing rainfall erosivity. Momentum is the product of mass and velocity (Momentum=MV, which is related to the observed impact power value. Since there is no significant difference between momentum and impact power, observed impact power can represent momentum for different rainfall intensities. The relationship between momentum and the observed impact power provides a convenient way to calculate rainfall kinetic energy. The value of rainfall kinetic energy based on the observed impact power was higher than the classic rainfall kinetic energy. The rainfall impact power based kinetic energy and the classic rainfall kinetic energy showed linear correlation, which indicates that the raindrop impact power observation system can characterize rainfall kinetic energy. The article establishes a preliminary way to calculate rainfall kinetic energy by using the real-time observed momentum, providing a foundation for replacing the traditional methods for estimating kinetic energy of rainstorms.

  14. Partitioning kinetic energy during freewheeling wheelchair maneuvers.

    Science.gov (United States)

    Medola, Fausto O; Dao, Phuc V; Caspall, Jayme J; Sprigle, Stephen

    2014-03-01

    This paper describes a systematic method to partition the kinetic energy (KE) of a free-wheeling wheelchair. An ultralightweight rigid frame wheelchair was instrumented with two axle-mounted encoders and data acquisition equipment to accurately measure the velocity of the drive wheels. A mathematical model was created combining physical specifications and geometry of the wheelchair and its components. Two able-bodied subjects propelled the wheelchair over four courses that involved straight and turning maneuvers at differing speeds. The KE of the wheelchair was divided into three components: translational, rotational, and turning energy. This technique was sensitive to the changing contributions of the three energy components across maneuvers. Translational energy represented the major component of total KE in all maneuvers except a zero radius turn in which turning energy was dominant. Both translational and rotational energies are directly related to wheelchair speed. Partitioning KE offers a useful means of investigating the dynamics of a moving wheelchair. The described technique permits analysis of KE imparted to the wheelchair during maneuvers involving changes in speed and direction, which are most representative of mobility in everyday life. This technique can be used to study the effort required to maneuver different types and configurations of wheelchairs.

  15. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  16. Zero kinetic energy photoelectron spectroscopy of pyrene.

    Science.gov (United States)

    Zhang, Jie; Han, Fangyuan; Kong, Wei

    2010-10-28

    We report zero kinetic energy photoelectron (ZEKE) spectroscopy of pyrene via resonantly enhanced multiphoton ionization. Our analysis centers on the symmetry of the first electronically excited state (S(1)), its vibrational modes, and the vibration of the ground cationic state (D(0)). From comparisons between the observed vibrational frequencies and those from ab initio calculations at the configuration interaction singles level using the 6-311G (d,p) basis set, and based on other previous experimental and theoretical reports, we confirm the (1)B(2u) symmetry for the S(1) state. This assignment represents a reversal in the energy order of the two closely spaced electronically excited states from our theoretical calculation, and extensive configuration interactions are attributed to this result. Among the observed vibrational levels of the S(1) state, three are results of vibronic coupling due to the nearby second electronically excited state. The ZEKE spectroscopy obtained via the vibronic levels of the S(1) state reveals similar modes for the cation as those of the intermediate state. Although we believe that the ground ionic state can be considered a single electron configuration, the agreement between theoretical and experimental frequencies for the cation is limited. This result is somewhat surprising based on our previous work on cata-condensed polycyclic aromatic hydrocarbons and small substituted aromatic compounds. Although a relatively small molecule, pyrene demonstrates its nonrigidity via several out-of-plane bending modes corresponding to corrugation of the molecular plane. The adiabatic ionization potential of neutral pyrene is determined to be 59 888 ± 7 cm(-1).

  17. Nonviolent nonlocality

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...

  18. Fractional Lattice Dynamics: Nonlocal constitutive behavior generated by power law matrix functions and their fractional continuum limit kernels

    CERN Document Server

    Michelitsch, Thomas; Riascos, Alejandro; Nowakowski, Andrzej F; Nicolleau, Franck C G A

    2016-01-01

    We introduce positive elastic potentials in the harmonic approximation leading by Hamilton's variational principle to fractional Laplacian matrices having the forms of power law matrix functions of the simple local Bornvon Karman Laplacian. The fractional Laplacian matrices are well defined on periodic and infinite lattices in $n=1,2,3,..$ dimensions. The present approach generalizes the central symmetric second differenceoperator (Born von Karman Laplacian) to its fractional central symmetric counterpart (Fractional Laplacian matrix).For non-integer powers of the Born von Karman Laplacian, the fractional Laplacian matrix is nondiagonal with nonzero matrix elements everywhere, corresponding to nonlocal behavior: For large lattices the matrix elements far from the diagonal expose power law asymptotics leading to continuum limit kernels of Riesz fractional derivative type. We present explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractio...

  19. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    Science.gov (United States)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  20. Non-local exchange correlation functionals impact on the structural, electronic and optical properties of III-V arsenides

    KAUST Repository

    Anua, N. Najwa

    2013-08-20

    Exchange correlation (XC) energy functionals play a vital role in the efficiency of density functional theory (DFT) calculations, more soundly in the calculation of fundamental electronic energy bandgap. In the present DFT study of III-arsenides, we investigate the implications of XC-energy functional and corresponding potential on the structural, electronic and optical properties of XAs (X = B, Al, Ga, In). Firstly we report and discuss the optimized structural lattice parameters and the band gap calculations performed within different non-local XC functionals as implemented in the DFT-packages: WIEN2k, CASTEP and SIESTA. These packages are representative of the available code in ab initio studies. We employed the LDA, GGA-PBE, GGA-WC and mBJ-LDA using WIEN2k. In CASTEP, we employed the hybrid functional, sX-LDA. Furthermore LDA, GGA-PBE and meta-GGA were employed using SIESTA code. Our results point to GGA-WC as a more appropriate approximation for the calculations of structural parameters. However our electronic bandstructure calculations at the level of mBJ-LDA potential show considerable improvements over the other XC functionals, even the sX-LDA hybrid functional. We report also the optical properties within mBJ potential, which show a nice agreement with the experimental measurements in addition to other theoretical results. © 2013 IOP Publishing Ltd.

  1. On Conversions between Potential and Kinetic Energy in the Atmospher

    OpenAIRE

    White, Robert M.; Saltzman, Barry

    2011-01-01

    From a consideration of the large-scale horizontal variations of individual pressure change and 500 mb temperature in a mid-latitude sector of the Northern Hemisphere, computations are made of the required mean conversion of potential energy into the kinetic energy of the horizontal wind systems. The order of magnitude of the estimate obtained is in agreement with that obtained by Brunt from considerations of the frictional dissipation of kinetic energy. In addition, the role of organized ove...

  2. Optimal measurements for nonlocal correlations

    Science.gov (United States)

    Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto

    2016-08-01

    A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.

  3. Kinetic Energy-Based Temperature Computation in Non-Equilibrium Molecular Dynamics Simulation

    OpenAIRE

    Liu, Bin; Xu, Ran; He, Xiaoqiao

    2009-01-01

    The average kinetic energy is widely used to characterize temperature in molecular dynamics (MD) simulation. In this letter, the applicability of three types of average kinetic energy as measures of temperature is investigated, i.e., the total kinetic energy, kinetic energy without the centroid translation part, and thermal disturbance kinetic energy. Our MD simulations indicate that definitions of temperature based on the kinetic energy including rigid translational or rotational motion may ...

  4. Modulational instability in nonlocal nonlinear Kerr media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens

    2001-01-01

    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...

  5. Binding in pair potentials of liquid simple metals from nonlocality in electronic kinetic energy

    Science.gov (United States)

    Perrot, F.; March, N. H.

    1990-01-01

    The paper presents an explicit expression for the pair potential in liquid simple metals from low-order density-gradient theory when the superposition of single-center displaced charges is employed. Numerical results are presented for the gradient expansion pair interaction in liquid Na and Be. The low-order density-gradient equation for the pair potential is presented.

  6. Local and Nonlocal Regularization to Image Interpolation

    Directory of Open Access Journals (Sweden)

    Yi Zhan

    2014-01-01

    Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.

  7. Structural Properties of Liquid Water and Ice Ih from Ab-Initio Molecular Dynamics with a Non-Local Correlation Functional

    Directory of Open Access Journals (Sweden)

    Niall J. English

    2015-08-01

    Full Text Available Equilibrium Born-Oppenheimer molecular dynamics simulations have been performed in the canonical ensemble to investigate the structural properties of liquid water and ice Ih (hexagonal ice at 298 and 273 K, respectively, using a state-of-the-art non-local correlation functional, whilst size effects have been examined explicitly in the case of liquid water. This has led to improved agreement with experiments for pair distribution functions, in addition to molecular dipole moments, vis-à-vis previous flavours of ab-initio molecular dynamics simulation of water, highlighting the importance of appropriate dispersion. Intramolecular geometry has also been examined, in addition to hydrogen-bonding interactions; it was found that an improved description of dispersion via non-local correlation helps to reduce over-structuring associated with the Perdew-Becke-Ernzerhof (PBE and other commonly-used functionals.

  8. Revisiting the density scaling of the non-interacting kinetic energy.

    Science.gov (United States)

    Borgoo, Alex; Teale, Andrew M; Tozer, David J

    2014-07-28

    Scaling relations play an important role in the understanding and development of approximate functionals in density functional theory. Recently, a number of these relationships have been redefined in terms of the Kohn-Sham orbitals [Calderín, Phys. Rev. A: At., Mol., Opt. Phys., 2013, 86, 032510]. For density scaling the author proposed a procedure involving a multiplicative scaling of the Kohn-Sham orbitals whilst keeping their occupation numbers fixed. In the present work, the differences between this scaling with fixed occupation numbers and that of previous studies, where the particle number change implied by the scaling was accommodated through the use of the grand canonical ensemble, are examined. We introduce the terms orbital and ensemble density scaling for these approaches, respectively. The natural ambiguity of the density scaling of the non-interacting kinetic energy functional is examined and the ancillary definitions implicit in each approach are highlighted and compared. As a consequence of these differences, Calderín recovered a homogeneity of degree 1 for the non-interacting kinetic energy functional under orbital scaling, contrasting recent work by the present authors [J. Chem. Phys., 2012, 136, 034101] where the functional was found to be inhomogeneous under ensemble density scaling. Furthermore, we show that the orbital scaling result follows directly from the linearity and the single-particle nature of the kinetic energy operator. The inhomogeneity of the non-interacting kinetic energy functional under ensemble density scaling can be quantified by defining an effective homogeneity. This quantity is shown to recover the homogeneity values for important approximate forms that are exact for limiting cases such as the uniform electron gas and one-electron systems. We argue that the ensemble density scaling provides more insight into the development of new functional forms.

  9. Accurate Reference Data for the Non-Additive Non-Interacting Kinetic Energy in Covalent Bonds

    CERN Document Server

    Nafziger, Jonathan; Wasserman, Adam

    2016-01-01

    The non-additive non-interacting kinetic energy is calculated exactly for fragments of H$_2$, Li$_2$, Be$_2$, C$_2$, N$_2$, F$_2$, and Na$_2$ within partition density-functional theory. The resulting fragments are uniquely determined and their sum reproduces the Kohn-Sham molecular density of the corresponding XC functional. We compare the use of fractional orbital occupation to the usual PDFT ensemble method for treating the fragment energies and densities. We also compare Thomas-Fermi and von Weiz{\\"a}cker approximate kinetic energy functionals to the numerically exact solution and find significant regions where the von Weiz{\\"a}cker solution is nearly exact.

  10. The conservative cascade of kinetic energy in compressible turbulence

    CERN Document Server

    Aluie, Hussein; Li, Hui

    2011-01-01

    The physical nature of compressible turbulence is of fundamental importance in a variety of astrophysical settings. We present the first direct evidence that mean kinetic energy cascades conservatively beyond a transitional "conversion" scale-range despite not being an invariant of the compressible flow dynamics. We use high-resolution three-dimensional simulations of compressible hydrodynamic turbulence on $512^3$ and $1024^3$ grids. We probe regimes of forced steady-state isothermal flows and of unforced decaying ideal gas flows. The key quantity we measure is pressure dilatation cospectrum, $E^{PD}(k)$, where we provide the first numerical evidence that it decays at a rate faster than $k^{-1}$ as a function of wavenumber. This is sufficient to imply that mean pressure dilatation acts primarily at large-scales and that kinetic and internal energy budgets statistically decouple beyond a transitional scale-range. Our results suggest that an extension of Kolmogorov's inertial-range theory to compressible turbu...

  11. Bayesian deconvolution of scanning electron microscopy images using point-spread function estimation and non-local regularization.

    Science.gov (United States)

    Roels, Joris; Aelterman, Jan; De Vylder, Jonas; Hiep Luong; Saeys, Yvan; Philips, Wilfried

    2016-08-01

    Microscopy is one of the most essential imaging techniques in life sciences. High-quality images are required in order to solve (potentially life-saving) biomedical research problems. Many microscopy techniques do not achieve sufficient resolution for these purposes, being limited by physical diffraction and hardware deficiencies. Electron microscopy addresses optical diffraction by measuring emitted or transmitted electrons instead of photons, yielding nanometer resolution. Despite pushing back the diffraction limit, blur should still be taken into account because of practical hardware imperfections and remaining electron diffraction. Deconvolution algorithms can remove some of the blur in post-processing but they depend on knowledge of the point-spread function (PSF) and should accurately regularize noise. Any errors in the estimated PSF or noise model will reduce their effectiveness. This paper proposes a new procedure to estimate the lateral component of the point spread function of a 3D scanning electron microscope more accurately. We also propose a Bayesian maximum a posteriori deconvolution algorithm with a non-local image prior which employs this PSF estimate and previously developed noise statistics. We demonstrate visual quality improvements and show that applying our method improves the quality of subsequent segmentation steps.

  12. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    Science.gov (United States)

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  13. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...

  14. Generating functional and large N limit of nonlocal 2D generalized Yang-Mills theories (nlgYM{sub 2}'s)

    Energy Technology Data Exchange (ETDEWEB)

    Saaidi, K.; Sajadi, H.M. [Dept. of Physics, Univ. of Tehran (Iran)

    2001-01-01

    Using the path integral method, we calculate the partition function and the generating functional (of the field strengths) on nonlocal generalized 2D Yang-Mills theories (nlgYM{sub 2}'s), which are nonlocal in the auxiliary field. This has been considered before by Saaidi and Khorrami. Our calculations are done for general surfaces. We find a general expression for the free energy of W({phi}) ={phi}{sup 2k} in nlgYM{sub 2} theories at the strong coupling phase (SCP) regime (A > A{sub c}) for large groups. In the specific {phi}{sup 4} model, we show that the theory has a third order phase transition. (orig.)

  15. The quantum mechanics based on a general kinetic energy

    CERN Document Server

    Wei, Yuchuan

    2016-01-01

    In this paper, we introduce the Schrodinger equation with a general kinetic energy operator. The conservation law is proved and the probability continuity equation is deducted in a general sense. Examples with a Hermitian kinetic energy operator include the standard Schrodinger equation, the relativistic Schrodinger equation, the fractional Schrodinger equation, the Dirac equation, and the deformed Schrodinger equation. We reveal that the Klein-Gordon equation has a hidden non-Hermitian kinetic energy operator. The probability continuity equation with sources indicates that there exists a different way of probability transportation, which is probability teleportation. An average formula is deducted from the relativistic Schrodinger equation, the Dirac equation, and the K-G equation.

  16. Abstract composition rule for relativistic kinetic energy in the thermodynamical limit

    CERN Document Server

    Biro, T S

    2008-01-01

    We demonstrate by simple mathematical considerations that a power-law tailed distribution in the kinetic energy of relativistic particles can be a limiting distribution seen in relativistic heavy ion experiments. We prove that the infinite repetition of an arbitrary composition rule on an infinitesimal amount leads to a rule with a formal logarithm. As a consequence the stationary distribution of energy in the thermodynamical limit follows the composed function of the Boltzmann-Gibbs exponential with this formal logarithm. In particular, interactions described as solely functions of the relative four-momentum squared lead to kinetic energy distributions of the Tsallis-Pareto (cut power-law) form in the high energy limit.

  17. A Note on Kinetic Energy, Dissipation and Enstrophy

    Science.gov (United States)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  18. Renormalizing the kinetic energy operator in elementary quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Coutinho, F A B [Faculdade de Medicina, Universidade de Sao Paulo e LIM 01-HCFMUSP, 05405-000 Sao Paulo (Brazil); Amaku, M [Faculdade de Medicina Veterinaria e Zootecnia, Universidade de Sao Paulo, 05508-970 Sao Paulo (Brazil)], E-mail: coutinho@dim.fm.usp.br

    2009-09-15

    In this paper, we consider solutions to the three-dimensional Schroedinger equation of the form {psi}(r) = u(r)/r, where u(0) {ne} 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly cancelling the kinetic energy divergence. This renormalization procedure produces a self-adjoint Hamiltonian. We solve some problems with this new Hamiltonian to illustrate its usefulness.

  19. The non-local theory solution of a Griffith crack in functionally graded materials subjected to the harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.

  20. The non-local theory solution of a Griffith crack in functionally graded materials subjected to the harmonic anti-plane shear waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG PeiWei; ZHOU ZhenGong; WU LinZhi

    2007-01-01

    In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investigated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials.To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform,the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.

  1. Non-local velocity distribution function and one-flight approximation

    Energy Technology Data Exchange (ETDEWEB)

    Bakunin, O.G. [FOM Instituut voor Plasmafysica ' Rijnhuizen' , Associate Euroatom-FOM, 3430 BE Nieuwegein (Netherlands) and Russian Research Center ' Kurchatov Institute' , Nuclear Fusion Institute, sq. Kurchatova 1, 123182 Moscow (Russian Federation)]. E-mail: oleg_bakunin@yahoo.com

    2004-09-13

    The functional equation describing the collisionless particle velocity distribution function f(V) is considered in the framework of probabilistic approach. The key element of the collisionless particles description is using the waiting time distribution {psi}(t). The solution of the considered functional is obtained for several model functions {psi}(t) and it leads to the power form tails of the velocity distribution f(V). It is possible to adopt considered functional to the Laplace transformation form that allows us to accord 'collision' and 'collisionless' description. This Laplace form of the functional yields the Levy-Smirnov velocity distribution function with the characteristic exponent aL=1/2.

  2. Non-local dynamic solution of two parallel cracks in a functionally graded piezoelectric material under harmonic anti-plane shear wave

    Science.gov (United States)

    Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong

    2016-10-01

    This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.

  3. How to measure kinetic energy of the heavy quark inside B mesons?

    CERN Document Server

    Bigi, Ikaros I; Shifman, M; Uraltsev, N; Vainshtein, A I

    1994-01-01

    We discuss how one can determine the average kinetic energy of the heavy quark inside heavy mesons from differential distributions in B decays. A new, so-called third, sum rule for the b\\rightarrow c transition is derived in the small velocity (SV) limit. Using this sum rule and the existing data on the momentum dependence in the B\\rightarrow D^* transition (the slope of the Isgur-Wise function) we obtain a new lower bound on the parameter \\mu_\\pi^2 = (2M_B)^{-1}\\langle B |\\bar b (i\\vec{D})^2 b |B\\rangle proportional to the average kinetic energy of b quark inside B meson. The existing data suggest \\mu_\\pi^2 > 0.4~GeV^2 and (from the ``optical'' sum rule) \\overline{\\Lambda} > 500 MeV, albeit with some numerical uncertainties.

  4. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    Science.gov (United States)

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H3(+).

  5. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    Science.gov (United States)

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  6. Local kinetic-energy density of the Airy gas

    DEFF Research Database (Denmark)

    Vitos, Levente; Johansson, B.; Kollár, J.

    2000-01-01

    The Airy gas model is used to derive an expression for the local kinetic energy in the linear potential approximation. The expression contains an explicit Laplacian term 2/5((h) over bar(2)/2m)del(mu)(2)(r) that, according to jellium surface calculations, must be a universal feature of any accura...

  7. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the

  8. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  9. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  10. Momentum and Kinetic Energy: Confusable Concepts in Secondary School Physics

    Science.gov (United States)

    Bryce, T. G. K.; MacMillan, K.

    2009-01-01

    Researchers and practitioners alike express concerns about the conceptual difficulties associated with the concepts of momentum and kinetic energy currently taught in school physics. This article presents an in-depth analysis of the treatment given to them in 44 published textbooks written for UK secondary school certificate courses. This is set…

  11. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    Science.gov (United States)

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  12. Abnormal Kinetic Energy of Charged Dust Particles in Plasmas

    NARCIS (Netherlands)

    Norman, G.; Stegailov, V.; Timofeev, A.

    2010-01-01

    A mechanism of the increase of the average kinetic energy of charged dust particles in gas discharge plasmas is suggested. Particle charge fluctuation is the reason for the appearance of forced resonance, which heals vertical oscillations. The energy transfer from vertical oscillations to the horizo

  13. Macro and Micro Scale Electromagnetic Kinetic Energy Harvesting Generators

    CERN Document Server

    Beeby, S -P; Torah, R -N; Koukharenko, E; Roberts, S; O'Donnell, T; Roy, S

    2007-01-01

    This paper is concerned with generators that harvest electrical energy from the kinetic energy present in the sensor nodes environment. These generators have the potential to replace or augment battery power which has a limited lifetime and requires periodic replacement which limits the placement and application of the sensor node.

  14. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  15. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    Science.gov (United States)

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the

  16. Temporal Non-locality

    Science.gov (United States)

    Filk, Thomas

    2013-04-01

    In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

  17. Nonlocal incoherent solitons

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Wyller, John

    2004-01-01

    We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....

  18. NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.

  19. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    Science.gov (United States)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  20. Influence of the height of the vegetation cover in the variation of the kinetic energy of raindrops intercepted; Influencia de la altura de la cubierta vegetal en la variacion de la energia cinetica de las gotas de lluvia interceptadas

    Energy Technology Data Exchange (ETDEWEB)

    Roldan Soriano, M.

    2009-07-01

    The erosive capacity of raindrops is function of mass (size) and terminal velocity. Drop mass and velocity govern the inherent erosivity of rainfall through kinetic energy. Kinetic energy is a very important property of the rainfall because it is one of the sources of energy in the process of water erosion. Vegetative canopy intercepts the raindrops and causes a variation on this rainfall kinetic energy due to modification of diameters and velocities distributions. If the height of canopy is enough, the bigger intercepted drops could achieve high velocities and their kinetic energies can increases. In this paper a quantitative evaluation of the increase of kinetic energy of intercepted drops is obtained and it is showed that this kinetic energy increases exponentially with vegetation height. (Author) 9 refs.

  1. Nonlocal energy density functionals for pairing and beyond-mean-field calculations

    CERN Document Server

    Bennaceur, K; Dobaczewski, J; Dobaczewski, P; Kortelainen, M; Raimondi, F

    2016-01-01

    We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and self-pairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order (NLO) and next-to-next-to-leading order (N2LO), which fairly well describe infinite-nuclear-matter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.

  2. Systems engineering analysis of kinetic energy weapon concepts

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  3. Systems engineering analysis of kinetic energy weapon concepts

    Energy Technology Data Exchange (ETDEWEB)

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  4. A drive system for the Pirouette kinetic energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Proud, N.J.; Kelsall, D.R. [International Energy Systems Ltd., Wigan (United Kingdom); Alexander, T.M. [Heenan Drives Ltd., Worcester (United Kingdom)

    1996-12-31

    Pirouette is a heavy cylindrical flywheel of wound carbon-fibre composite rotated at high speeds to store kinetic energy. To transfer energy in and out of the flywheel requires an integrated motor/generator coupled to suitable power electronics. This paper looks at the aspects of the design for a drive system that can operate the machine with the desired performance characteristics over its defined working range. (author)

  5. Kinetic energy recovery and power management for hybrid electric vehicles

    OpenAIRE

    P. Suntharalingam

    2011-01-01

    The major contribution of the work presented in this thesis is a thorough investigation of the constraints on regenerative braking and kinetic energy recovery enhancement for electric/hybrid electric vehicles during braking. Regenerative braking systems provide an opportunity to recycle the braking energy, which is otherwise dissipated as heat in the brake pads. However, braking energy harnessing is a relatively new concept in the automotive sector which still requires further research and de...

  6. Soliton tunneling with sub-barrier kinetic energies

    CERN Document Server

    González, J A; Guerrero, L E

    1999-01-01

    We investigate (theoretically and numerically) the dynamics of a soliton moving in an asymmetrical potential well with a finite barrier. For large values of the width of the well, the width of the barrier and/or the height of the barrier, the soliton behaves classically. On the other hand, we obtain the conditions for the existence of soliton tunneling with sub-barrier kinetic energies. We apply these results to the study of soliton propagation in disordered systems.

  7. Evaluating rainfall kinetic energy - intensity relationships with observed disdrometric data

    Science.gov (United States)

    Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja

    2016-04-01

    Rainfall kinetic energy is required for determining erosivity, the ability of rainfall to detach soil particles and initiate erosion. Its determination relay on the use of disdrometers, i.e. devices capable of measuring the drop size distribution and velocity of falling raindrops. In the absence of such devices, rainfall kinetic energy is usually estimated with empirical expressions relating rainfall energy and intensity. We evaluated the performance of 14 rainfall energy equations in estimating one-minute rainfall energy and event total energy, in comparison with observed data from 821 rainfall episodes (more than 100 thousand one-minute observations) by means of an optical disdrometer. In addition, two sources of bias when using such relationships were evaluated: i) the influence of using theoretical terminal raindrop fall velocities instead of measured values; and ii) the influence of time aggregation (rainfall intensity data every 5-, 10-, 15-, 30-, and 60-minutes). Empirical relationships did a relatively good job when complete events were considered (R2 > 0.82), but offered poorer results for within-event (one-minute resolution) variation. Also, systematic biases where large for many equations. When raindrop size distribution was known, estimating the terminal fall velocities by empirical laws produced good results even at fine time resolution. The influence of time aggregation was very high in the estimated kinetic energy, although linear scaling may allow empirical correction. This results stress the importance of considering all these effects when rainfall energy needs to be estimated from more standard precipitation records. , and recommends the use of disdrometer data to locally determine rainfall kinetic energy.

  8. Casimir rack and pinion as a miniaturized kinetic energy harvester.

    Science.gov (United States)

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.

  9. The eddy kinetic energy budget in the Red Sea

    KAUST Repository

    Zhan, Peng

    2016-06-09

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions and sink, is examined using a high-resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 miso-bath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about four to five times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea. This article is protected by copyright. All rights reserved.

  10. The eddy kinetic energy budget in the Red Sea

    Science.gov (United States)

    Zhan, Peng; Subramanian, Aneesh C.; Yao, Fengchao; Kartadikaria, Aditya R.; Guo, Daquan; Hoteit, Ibrahim

    2016-07-01

    The budget of eddy kinetic energy (EKE) in the Red Sea, including the sources, redistributions, and sink, is examined using a high'resolution eddy-resolving ocean circulation model. A pronounced seasonally varying EKE is identified, with its maximum intensity occurring in winter, and the strongest EKE is captured mainly in the central and northern basins within the upper 200 m. Eddies acquire kinetic energy from conversion of eddy available potential energy (EPE), from transfer of mean kinetic energy (MKE), and from direct generation due to time-varying (turbulent) wind stress, the first of which contributes predominantly to the majority of the EKE. The EPE-to-EKE conversion occurs almost in the entire basin, while the MKE-to-EKE transfer appears mainly along the shelf boundary of the basin (200 m isobath) where high horizontal shear interacts with topography. The EKE generated by the turbulent wind stress is relatively small and limited to the southern basin. All these processes are intensified during winter, when the rate of energy conversion is about 4-5 times larger than that in summer. The EKE is redistributed by the vertical and horizontal divergence of energy flux and the advection of the mean flow. As a main sink of EKE, dissipation processes is ubiquitously found in the basin. The seasonal variability of these energy conversion terms can explain the significant seasonality of eddy activities in the Red Sea.

  11. A study of the kinetic energy generation with general circulation models

    Science.gov (United States)

    Chen, T.-C.; Lee, Y.-H.

    1983-01-01

    The history data of winter simulation by the GLAS climate model and the NCAR community climate model are used to examine the generation of atmospheric kinetic energy. The contrast between the geographic distributions of the generation of kinetic energy and divergence of kinetic energy flux shows that kinetic energy is generated in the upstream side of jets, transported to the downstream side and destroyed there. The contributions from the time-mean and transient modes to the counterbalance between generation of kinetic energy and divergence of kinetic energy flux are also investigated. It is observed that the kinetic energy generated by the time-mean mode is essentially redistributed by the time-mean flow, while that generated by the transient flow is mainly responsible for the maintenance of the kinetic energy of the entire atmospheric flow.

  12. Neutron emission effects on final fragments mass and kinetic energy distribution from low energy fission of {sup 234}U

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, M.; Rojas, J. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, Lima 41 (Peru); Lobato, I. [Facultad de Ciencias, Universidad Nacional de Ingenieria, Av. Tupac Amaru 210, Apartado Postal 31-139, Lima (Peru)]. e-mail: mmontoya@ipen.gob.pe

    2008-07-01

    The standard deviation of the final kinetic energy distribution ({sigma}{sub e}) as a function of mass of final fragments (m) from low energy fission of {sup 234}U, measured with the Lohengrin spectrometer by Belhafaf et al., presents a peak around m = 109 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number, i.e. there is no peak on the standard deviation of the primary kinetic energy distribution ({sigma}{sub E}) as a function of primary fragment mass (A). The second peak is attributed to a real peak on {sigma}{sub E}(A). However, theoretical calculations related to primary distributions made by H.R. Faust and Z. Bao do not suggest any peak on {sigma}{sub E}(A). In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without structures on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on {sigma}{sub e} (m) curve around m = 109, a depletion from m = 121 to m = 129, and an small peak around m = 122, which is not as great as that measured by Belhafaf et al. Our simulation also reproduces the experimental results on the yield of the final mass Y(m), the average number of emitted neutrons as a function of the provisional mass (calculated from the values of the final kinetic energy of the complementary fragments) and the average value of fragment kinetic energy as a function of the final mass. From our results we conclude that there are no peaks on the {sigma}{sub E} (A) curve, and the observed peaks on {sigma}{sub e} (m) are due to the emitted neutron multiplicity and the variation of the average fragment kinetic energy as a function of primary fragment mass. (Author)

  13. On the kinetic energy of the divergent and nondivergent flow in the atmosphere

    OpenAIRE

    Chen, Tsing-Chang; Wiin-Nielsen, Aksel C.

    2011-01-01

    The kinetic energy of horizontal flow in a hydrostatic atmosphere is divided into the kinetic energies of its divergent and nondivergent components. The law of conversion between these two energies for large-scale flows in the atmosphere is derived and discussed using balanced and unbalanced models of circulations in the atmosphere. It is shown that the total potential energy is converted into the kinetic energy of the divergent flow which, in turn, is converted into the kinetic energy of the...

  14. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy.

    Science.gov (United States)

    Pergamenshchik, V M; Vozniak, A B

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N+1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b/T. The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b/T, the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b/T→∞: While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T/(N+1). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  15. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy

    Science.gov (United States)

    Pergamenshchik, V. M.; Vozniak, A. B.

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  16. Quantum nonlocality does not exist.

    Science.gov (United States)

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  17. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    Science.gov (United States)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  18. Fully nonlocal quantum correlations

    CERN Document Server

    Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán

    2011-01-01

    Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.

  19. Kinetic energy partition method applied to ground state helium-like atoms.

    Science.gov (United States)

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  20. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...

  1. Impact of nonlocal correlations over different energy scales: A dynamical vertex approximation study

    Science.gov (United States)

    Rohringer, G.; Toschi, A.

    2016-09-01

    In this paper, we investigate how nonlocal correlations affect, selectively, the physics of correlated electrons over different energy scales, from the Fermi level to the band edges. This goal is achieved by applying a diagrammatic extension of dynamical mean field theory (DMFT), the dynamical vertex approximation (D Γ A ), to study several spectral and thermodynamic properties of the unfrustrated Hubbard model in two and three dimensions. Specifically, we focus first on the low-energy regime by computing the electronic scattering rate and the quasiparticle mass renormalization for decreasing temperatures at a fixed interaction strength. This way, we obtain a precise characterization of the several steps through which the Fermi-liquid physics is progressively destroyed by nonlocal correlations. Our study is then extended to a broader energy range, by analyzing the temperature behavior of the kinetic and potential energy, as well as of the corresponding energy distribution functions. Our findings allow us to identify a smooth but definite evolution of the nature of nonlocal correlations by increasing interaction: They either increase or decrease the kinetic energy w.r.t. DMFT depending on the interaction strength being weak or strong, respectively. This reflects the corresponding evolution of the ground state from a nesting-driven (Slater) to a superexchange-driven (Heisenberg) antiferromagnet (AF), whose fingerprints are, thus, recognizable in the spatial correlations of the paramagnetic phase. Finally, a critical analysis of our numerical results of the potential energy at the largest interaction allows us to identify possible procedures to improve the ladder-based algorithms adopted in the dynamical vertex approximation.

  2. Nonlocal General Relativity

    CERN Document Server

    Mashhoon, B

    2014-01-01

    A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.

  3. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    Directory of Open Access Journals (Sweden)

    Sharief Hendricks, David Karpul, Mike Lambert

    2014-09-01

    Full Text Available Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior and position (forwards vs. backs, and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact. Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60. Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29. Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards are tactically predetermined to carry the ball in contact.

  4. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    Science.gov (United States)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  5. Flywheels for Low-Speed Kinetic Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Portnov, G.; Cruz, I.; Arias, F.; Fiffe, R. P.

    2003-07-01

    A brief overview of different steel disc-type flywheels is presented. It contents the analysis of relationship between stress-state and kinetic energy of rotating body, comparison of the main characteristics of flywheels and description of their optimization procedures. It is shown that profiles of the discs calculated on a basis of plane stress-state assumption may be considered only as a starting point for its further improvement using 3-D approach. The aim of the review is to provide a designer for a insight into problem of shaping of steel flywheels. (Author) 19 refs.

  6. Effects of directed and kinetic energy weapons on spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fraas, A P

    1986-12-01

    The characteristics of the various directed energy beams are reviewed, and their damaging effects on typical materials are examined for a wide range of energy pulse intensities and durations. Representative cases are surveyed, and charts are presented to indicate regions in which damage to spacecraft structures, particularly radiators for power plants, would be likely. The effects of kinetic energy weapons, such as bird-shot, are similarly examined. The charts are then applied to evaluate the effectiveness of various measures designed to reduce the vulnerability of spacecraft components, particularly nuclear electric power plants.

  7. Momentum and kinetic energy before the tackle in rugby union.

    Science.gov (United States)

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-09-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg(.)m(.)s(-1) n = 31 vs. backs 438 ± 135 Kg(.)m(.)s(-1), d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key PointsFirst study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player.Physical components alone, of either ball

  8. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    Science.gov (United States)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  9. Enhanced propagation of rainfall kinetic energy in the UK

    Science.gov (United States)

    Diodato, Nazzareno; Bellocchi, Gianni

    2017-08-01

    A gridded 0.25° reconstruction of rainfall kinetic energy (RKE) over the UK, on the basis of pluviometric observations and reanalysis back to 1765, shows that autumn RKE doubled in 1991-2013 (˜2 MJ m-2) compared to 1948-1990 (˜1 MJ m-2). A shift eastward is underway, which includes southern and northern portions of the country. Analyzing the long-running England and Wales precipitation series, we conclude that it is likely that increased precipitation amounts associated with more frequent convective storms created conditions for higher energy events.

  10. Determination of kinetic energy release from metastable peak widths

    DEFF Research Database (Denmark)

    Petersen, Allan Christian; Sølling, Theis I.

    2017-01-01

    The kinetic energy that is released upon bond rupture is often represented as T1/2. A value that is derived from the FWHM of a fragment peak by the use of two different conversion formulas. The choice of formula depends on whether the peak is recorded by scanning a magnetic sector...... that are obtained from magnet scans compared to the peaks that are obtained by scanning an electrostatic analyzer. The E scans (MIKE experiments) give rise to the same values for both of the employed mass spectrometers. The results are explained in terms of energy defocusing when the reactions take place too far...

  11. Molecular partitioning based on the kinetic energy density

    Science.gov (United States)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  12. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  13. Bending and Free Vibration Analysis of Nonlocal Functionally Graded Nanocomposite Timoshenko Beam Model Rreinforced by SWBNNT Based on Modified Coupled Stress Theory

    Directory of Open Access Journals (Sweden)

    M. Mohammadimehr

    2013-12-01

    Full Text Available In this article, the bending and free vibration analysis of functionally graded (FG nanocomposites Timoshenko beam model reinforced by single-walled boron nitride nanotube (SWBNNT using micro-mechanical approach embedded in an elastic medium is studied. The modified coupled stress (MCST and nonlocal elasticity theories are developed to take into account the size-dependent effect. The mechanical properties of FG boron nitride nanotube-reinforced composites are assumed to be graded in the thickness direction and estimated through the micro-mechanical approach. The governing equations of motion are obtained using Hamilton’s principle based on Timoshenko beam theory. The Navier's type solution is implemented to solve the equations that satisfy the simply supported boundary conditions. Furthermore, the influences of the slenderness ratio, length of nanocomposite beam, material length scale parameter, nonlocal parameter, power law index, axial wave number, and Winkler and Pasternak coefficients on the natural frequency of nanocomposite beam are investigated. Also, the effect of material length scale parameter on the dimensionless deflection of FG nanocomposite beam is studied.

  14. Asymptotic domination of cold relativistic MHD winds by kinetic energy flux

    Science.gov (United States)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1994-01-01

    We study the conditions which lead to the conversion of most Poynting flux into kinetic energy flux in cold, relativistic hydromagnetic winds. It is shown that plasma acceleration along a precisely radial flow is extremely inefficient due to the near cancellation of the toroidal magnetic pressure and tension forces. However, if the flux tubes in a flow diverge even slightly faster than radially, the fast magnetosonic point moves inward from infinity to a few times the light cylinder radius. Once the flow becomes supermagnetosonic, further divergence of the flux tubes beyond the fast point can accelerate the flow via the 'magnetic nozzle' effect, thereby further converting Poynting flux to kinetic energy flux. We show that the Grad-Shafranov equation admits a generic family of kinetic energy-dominated asymptotic wind solutions with finite total magnetic flux. The Poynting flux in these solutions vanishes logarithmically with distance. The way in which the flux surfaces are nested within the flow depends only on the ratio of angular velocity to poliodal 4-velocity as a function of magnetic flux. Radial variations in flow structure can be expressed in terms of a pressure boundary condition on the outermost flux surface, provided that no external toriodal field surrounds the flow. For a special case, we show explicitly how the flux surfaces merge gradually to their asymptotes. For flows confined by an external medium of pressure decreasing to zero at infinity we show that, depending on how fast the ambient pressure declines, the final flow state could be either a collimated jet or a wind that fills the entire space. We discuss the astrophysical implications of our results for jets from active galactic nuclei and for free pulsar winds such as that believed to power the Crab Nebula.

  15. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot.

    Science.gov (United States)

    Jeong, Daniel; Anagnostopoulos, Petros V; Roldan-Alzate, Alejandro; Srinivasan, Shardha; Schiebler, Mark L; Wieben, Oliver; François, Christopher J

    2015-05-01

    Ventricular kinetic energy measurements may provide a novel imaging biomarker of declining ventricular efficiency in patients with repaired tetralogy of Fallot. Our purpose was to assess differences in ventricular kinetic energy with 4-dimensional flow magnetic resonance imaging between patients with repaired tetralogy of Fallot and healthy volunteers. Cardiac magnetic resonance, including 4-dimensional flow magnetic resonance imaging, was performed at rest in 10 subjects with repaired tetralogy of Fallot and 9 healthy volunteers using clinical 1.5T and 3T magnetic resonance imaging scanners. Right and left ventricular kinetic energy (KERV and KELV), main pulmonary artery flow (QMPA), and aortic flow (QAO) were quantified using 4-dimensional flow magnetic resonance imaging data. Right and left ventricular size and function were measured using standard cardiac magnetic resonance techniques. Differences in peak systolic KERV and KELV in addition to the QMPA/KERV and QAO/KELV ratios between groups were assessed. Kinetic energy indices were compared with conventional cardiac magnetic resonance parameters. Peak systolic KERV and KELV were higher in patients with repaired tetralogy of Fallot (6.06 ± 2.27 mJ and 3.55 ± 2.12 mJ, respectively) than in healthy volunteers (5.47 ± 2.52 mJ and 2.48 ± 0.75 mJ, respectively), but were not statistically significant (P = .65 and P = .47, respectively). The QMPA/KERV and QAO/KELV ratios were lower in patients with repaired tetralogy of Fallot (7.53 ± 5.37 mL/[cycle mJ] and 9.65 ± 6.61 mL/[cycle mJ], respectively) than in healthy volunteers (19.33 ± 18.52 mL/[cycle mJ] and 35.98 ± 7.66 mL/[cycle mJ], respectively; P kinetic energy is necessary to generate flow in the pulmonary and aortic circulations in repaired tetralogy of Fallot. Quantification of ventricular kinetic energy in patients with repaired tetralogy of Fallot is a new observation. Future studies are needed to determine whether changes in ventricular kinetic

  16. Covalent bonding: the fundamental role of the kinetic energy.

    Science.gov (United States)

    Bacskay, George B; Nordholm, Sture

    2013-08-22

    This work addresses the continuing disagreement between two prevalent schools of thought concerning the mechanism of covalent bonding. According to Hellmann, Ruedenberg, and Kutzelnigg, a lowering of the kinetic energy associated with electron delocalization is the key stabilization mechanism. The opposing view of Slater, Feynman, and Bader has maintained that the source of stabilization is electrostatic potential energy lowering due to electron density redistribution to binding regions between nuclei. Despite the large body of accurate quantum chemical work on a range of molecules, the debate concerning the origin of bonding continues unabated, even for H2(+), the simplest of covalently bound molecules. We therefore present here a detailed study of H2(+), including its formation, that uses a sequence of computational methods designed to reveal the relevant contributing mechanisms as well as the spatial density distributions of the kinetic and potential energy contributions. We find that the electrostatic mechanism fails to provide real insight or explanation of bonding, while the kinetic energy mechanism is sound and accurate but complex or even paradoxical to those preferring the apparent simplicity of the electrostatic model. We further argue that the underlying mechanism of bonding is in fact of dynamical character, and analyses that focus on energy do not reveal the origin of covalent bonding in full clarity.

  17. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    Directory of Open Access Journals (Sweden)

    V. Blažica

    2013-03-01

    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  18. Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation

    Directory of Open Access Journals (Sweden)

    M. Arefi

    2017-05-01

    Full Text Available Wave propagation analysis for a functionally graded nanobeam with rectangular cross-section resting on visco-Pasternak’s foundation is studied in this paper. Timoshenko’s beam model and nonlocal elasticity theory are employed for formulation of the problem. The equations of motion are derived using Hamilton’s principals by calculating kinetic energy, strain energy and work due to viscoelastic foundation. The effects of various parameters such as wavenumber, non-homogeneous index, nonlocal parameter and three parameters of foundation are performed on the phase velocity of the nanobeam. The obtained results indicate that some parameters such as non-homogeneous index, nonlocal parameter and wavenumber have significant effect on the response of the system.

  19. Quantum theory of nonlocal nonlinear Schrodinger equation

    CERN Document Server

    Vyas, Vivek M

    2015-01-01

    Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.

  20. Al enhances the H2 storage capacity of graphene at nanoribbon borders but not at central sites: A study using nonlocal van der Waals density functionals

    Science.gov (United States)

    Carrete, J.; Longo, R. C.; Gallego, L. J.; Vega, A.; Balbás, L. C.

    2012-03-01

    We performed ab initio density-functional-theory calculations to investigate the adsorption of molecular hydrogen on pristine and Al-doped hydrogen-passivated zigzag graphene nanoribbons (GNRs) using nonlocal van der Waals functionals that have recently been proposed for an accurate description of exchange and correlation effects in weakly bound systems. Our results, which are compared with those obtained using the standard local density and generalized gradient approximations, show that neither pristine GNRs nor substitutionally Al-doped GNRs with an Al atom occupying a central, lateral, or subedge site satisfy the binding-energy criterion specified by the U.S. Department of Energy for novel hydrogen-storage materials. However, the criterion is satisfied by a GNR doped with an Al atom at an edge site and also by zigzag GNRs with adsorbed Al at lateral hole sites.

  1. Elimination of the Translational Kinetic Energy Contamination in pre-Born-Oppenheimer Calculations

    CERN Document Server

    Simmen, Benjamin; Reiher, Markus

    2012-01-01

    In this paper we present a simple strategy for the elimination of the translational kinetic energy contamination of the total energy in pre-Born--Oppenheimer calculations carried out in laboratory-fixed Cartesian coordinates (LFCCs). The simple expressions for the coordinates and the operators are thus preserved throughout the calculations, while the mathematical form and the parametrisation of the basis functions are chosen so that the translational and rotational invariances are respected. The basis functions are constructed using explicitly correlated Gaussian functions (ECGs) and the global vector representation. First, we observe that it is not possible to parametrise the ECGs so that the system is at rest in LFCCs and at the same time the basis functions are square-integrable with a non-vanishing norm. Then, we work out a practical strategy to circumvent this problem by making use of the properties of the linear transformation between the LFCCs and translationally invariant and center-of-mass Cartesian ...

  2. A Three-Dimensional Scale-adaptive Turbulent Kinetic Energy Model in ARW-WRF Model

    Science.gov (United States)

    Zhang, Xu; Bao, Jian-Wen; Chen, Baode

    2017-04-01

    A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing model is developed to address the problem of simulating the convective boundary layer (CBL) across the terra incognita in the Advanced Research version of the Weather Research and Forecasting Model (ARW-WRF). The new model combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the convectional one-dimensional (1D) planetary boundary layer (PBL) schemes. The transition between large-eddy simulation (LES) and mesoscale limit is accomplished in the new scale-adaptive model. A series of dry CBL and real-time simulations using the WRF model are carried out, in which the newly-developed, scale-adaptive, more general and energetically consistent TKE-based model is compared with the conventional 1D TKE-based PBL schemes for parameterizing vertical subgrid turbulent mixing against the WRF LES dataset and observations. The characteristics of the WRF-simulated results using the new and conventional schemes are compared. The importance of including the nonlocal component in the vertical buoyancy specification in the newly-developed general TKE-based scheme is illustrated. The improvements of the new scheme over convectional PBL schemes across the terra incognita can be seen in the partitioning of vertical flux profiles. Through comparing the results from the simulations against the WRF LES dataset and observations, we will show the feasibility of using the new scheme in the WRF model in the lieu of the conventional PBL parameterization schemes.

  3. Buoyant Turbulent Kinetic Energy Production in Steep-Slope Katabatic Flow

    Science.gov (United States)

    Oldroyd, Holly J.; Pardyjak, Eric R.; Higgins, Chad W.; Parlange, Marc B.

    2016-12-01

    We develop several critical concepts that should be considered when interpreting, modelling and designing future experiments for flows over sloping terrain. Vertical buoyancy fluxes in katabatic flows can be positive and a source of turbulent kinetic energy (TKE) despite the statically stable, thermal stratification that drives these flows. This phenomenon occurs when the ratio of along-slope to slope-normal kinematic heat fluxes is greater than the cotangent of the slope angle, suggesting a critical value of slope-angle steepness found in earlier studies. We provide field-data-based evidence that the along-slope heat flux may dominate the variables in this inequality, and therefore in generating buoyant TKE production or suppression over a steep slope. These data show the along-slope heat flux can be more variable and significantly larger in magnitude than the slope-normal component. The gradient Richardson number does not include the effects of the along-slope buoyancy; furthermore, none of the canonical stability parameters can properly reflect the TKE redistribution from turbulent transport divergence and the sink of TKE in cases of counter-gradient momentum fluxes, which we frequently observe near the peak of the katabatic jet. In such cases, canonical stability parameters inadequately represent the physical mechanisms associated with stability. These results have broad implications related to accurately modelling turbulence and surface exchanges over sloping terrain and illustrate the need to more thoroughly investigate the along-slope heat flux and its drivers, the meaning and definitions of stability, and the effects of non-local turbulent transport.

  4. Studies of Kernel Function in the Nonlocal Friction Model and Its Application on Bolt%非局部摩擦模型的核函数研究及其在锚杆中应用

    Institute of Scientific and Technical Information of China (English)

    刘伟平; 扶名福; 罗小艳

    2011-01-01

    为研究非局部摩擦理论中核函数的性质及其选取原则,在Oden等提出的非局部摩擦模型的基础上,分别采用指数型、三角函数型、负指数型和幂函数型等4种函数作为非局部摩擦模型中的核函数,并利用Mindlin问题的位移解导出的全长黏结式锚杆沿杆体表面所受剪应力的弹性解,对全长黏结式锚杆进行非局部摩擦分析.研究表明,基于这几种核函数的非局部摩擦模型以及局部摩擦模型所得到的剪应力分布大致相似.通过与实验数据对比可知,采用负指数函数的核函数形式计算所得锚杆侧剪应力分布比其他形式更接近于实验值.%To investigate the characteristics together with optimum selection of kernel functions in the nonlocal friction model, the nonlocal friction model proposed by Oden et al is modified. The kernel function in model is replaced by exponential function, trigonometric function, negative exponential function and power function. Based on the elastic solution of shear stress on bolt surface of the wholly grouted anchor derived with Mindlin's solution of displacement, wholly grouted anchor is analyzed by the modified nonlocal friction models which have four different kernel functions. The shear stress distributions on bolt surface given by the modified nonlocal friction models and the local friction models are similar. The nonlocal friction effect is also discussed. The results obtained by the modified nonlocal friction model with different kernel functions and local friction model are compared with experimental results. It is found that the calculating results obtained by modified nonlocal friction model with the negative exponential kernel functions agree better with experimental results.

  5. Classification of scalar and dyadic nonlocal optical response models.

    Science.gov (United States)

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.

  6. Mass independent kinetic energy reducing inlet system for vacuum environment

    Science.gov (United States)

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  7. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  8. Neutron Generation and Kinetic Energy of Expanding Laser Plasmas

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong-Sheng; WANG Nai-Yan; DUAN Xiao-Jiao; LAN Xiao-Fei; TAN Zhi-Xin; TANG Xiu-Zhang; HE Ye-Xi

    2007-01-01

    We investigate the kinetic energy of expanding plasma of a solid target heated by a ultra-short and ultra-intense laser pulse and the efficiency of energy coupling between the ultra-intense laser pulse and the solid target, in order to increase the utilization ratio of laser energy and to raise the neutron generation farther. Some new ideas about improving the energy utilization by head-on collisions between the expanding plasmas are proposed. The significance is the raise of generation of shorter duration neutron, of the order of picoseconds, which allows for an increase of energy resolution in time-of-flight experiments and also for the investigation of the dynamics of nuclear processes with high temporal resolution.

  9. A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone

    Science.gov (United States)

    Dare, P. M.; Smith, P. J.

    1983-01-01

    The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.

  10. Nonlocality from Local Contextuality

    Science.gov (United States)

    Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán

    2016-11-01

    We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.

  11. Nonlocality from Local Contextuality.

    Science.gov (United States)

    Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán

    2016-11-25

    We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.

  12. Effects of Nonlocality on Transfer Reactions

    CERN Document Server

    Titus, Luke J

    2016-01-01

    We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...

  13. Budgets of divergent and rotational kinetic energy during two periods of intense convection

    Science.gov (United States)

    Buechler, D. E.; Fuelberg, H. E.

    1986-01-01

    The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.

  14. The main beam correction term in kinetic energy release from metastable peaks.

    Science.gov (United States)

    Petersen, Allan Christian

    2017-08-26

    The correction term for the precursor ion signal width in determination of kinetic energy release is reviewed and the correction term is formally derived. The derived correction term differs from the traditionally applied term. An experimental finding substantiates the inaccuracy in the latter. The application of the 'T-value' to study kinetic energy release is found preferable to kinetic energy release distributions when the metastable peaks are slim and simple Gaussians. For electronically predissociated systems a 'borderline zero' kinetic energy release can be directly interpreted in terms of reaction dynamics with strong curvature in the reaction coordinate. This article is protected by copyright. All rights reserved.

  15. Monte Carlo Simulation to relate primary and final fragments mass and kinetic energy distribution from low energy fission of $^{234}U$

    CERN Document Server

    Montoya, M; Lobato, I

    2008-01-01

    The kinetic energy distribution as a function of mass of final fragments (m) from low energy fission of $^{234}U$, measured with the Lohengrin spectrometer by Belhafaf et al. presents a peak around m=108 and another around m = 122. The authors attribute the first peak to the evaporation of a large number of neutrons around the corresponding mass number; and the second peak to the distribution of the primary fragment kinetic energy. Nevertheless, the theoretical calculations related to primary distribution made by Faust et al. do not result in a peak around m = 122. In order to clarify this apparent controversy, we have made a numerical experiment in which the masses and the kinetic energy of final fragments are calculated, assuming an initial distribution of the kinetic energy without peaks on the standard deviation as function of fragment mass. As a result we obtain a pronounced peak on the standard deviation of the kinetic energy distribution around m = 109, a depletion from m = 121 to m = 129, and an small...

  16. Quest for a semi-empirical MGGA functional with tight bound

    Science.gov (United States)

    Delley, Bernard

    A numerically robust parametrization for a meta-GGA exchange functional approximation has been obtained by optimization of bond energies in a database of 303 species.The variables, density, gradient and kinetic energy density, are useful to differentiate efficiently among the wide variety of bonding types in the database. The resulting MGGA rivals the thermochmistry accuracy of composite quantum chemistry approaches when applied to a wider data set of 592 species. Noticeable improvements over GGA's are also obtained for solid state properties. The present functional shows some similarities with the recently presented SCAN functional of Sun, Ruscinszky and Perdew. With the easily available semi-nonlocality through gradients and a kinetic energy density,this MGGA is widely widely applicable for molecular- as well as for extended systems and surface models.

  17. Making space for nonlocality

    Science.gov (United States)

    Millen, James

    2016-04-01

    George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.

  18. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    Directory of Open Access Journals (Sweden)

    R. Sorgente

    2011-08-01

    to differentiate the four sub-regions as function of relative and absolute strength of the mesoscale activity. Furthermore the Baroclinic Energy Conversion term shows that in the Sardinia Channel the mesoscale activity, due to baroclinic instabilities, is significantly larger than in the other sub-regions, while a negative sign of the energy conversion, meaning a transfer of energy from the Eddy Kinetic Energy to the Eddy Available Potential Energy, has been recorded only for the surface layers of the Sicily Channel during summer.

  19. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation

    Science.gov (United States)

    Mardirossian, Narbe; Head-Gordon, Martin

    2016-06-01

    A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation is presented. The final 12-parameter functional form is selected from approximately 10 × 109 candidate fits that are trained on a training set of 870 data points and tested on a primary test set of 2964 data points. The resulting density functional, ωB97M-V, is further tested for transferability on a secondary test set of 1152 data points. For comparison, ωB97M-V is benchmarked against 11 leading density functionals including M06-2X, ωB97X-D, M08-HX, M11, ωM05-D, ωB97X-V, and MN15. Encouragingly, the overall performance of ωB97M-V on nearly 5000 data points clearly surpasses that of all of the tested density functionals. In order to facilitate the use of ωB97M-V, its basis set dependence and integration grid sensitivity are thoroughly assessed, and recommendations that take into account both efficiency and accuracy are provided.

  20. On nonlocal problems for ordinary differential equations and on a nonlocal parabolic transmission problem

    Directory of Open Access Journals (Sweden)

    M. Denche

    1999-01-01

    Full Text Available In the present paper we study nonlocal problems for ordinary differential equations with a discontinuous coefficient for the high order derivative. We establish sufficient conditions, known as regularity conditions, which guarantee the coerciveness for both the space variable and the spectral parameter, as well as guarantee the completeness of the system of root functions. The results obtained are then applied to the study of a nonlocal parabolic transmission problem.

  1. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers

    Science.gov (United States)

    The kinetic energy of discrete water drops impacting a bare soil surface generally leads to a drastic reduction in water infiltration rate due to formation of a seal on the soil surface. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development ...

  2. Characterizing droplet kinetic energy applied by moving spray-plate center pivot irrigation sprinklers

    Science.gov (United States)

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  3. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    Science.gov (United States)

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  4. Experimental evidence of the decrease of kinetic energy of hadrons in passing through atomic nuclei

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.

  5. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    Science.gov (United States)

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  6. Turbulent Cells in Stars: I. Fluctuations in Kinetic Energy

    CERN Document Server

    Arnett, W David

    2010-01-01

    Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning (Meakin and Arnett 2007) exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a general instability of the convective cell, requiring only a localized source of heating or cooling. Such fluctuations are shown to be suppressed in simulations of stellar evolution which use mixing-length theory (MLT). Quantitatively similar behavior occurs in the model of a convective roll (cell) of (Lorenz 1963), which is known to have a strange attractor that gives rise to chaotic fluctuations in time. Study of simulations suggests that the Lorenz convective roll may approximate the behavior of a cell in the large scale convective flow. Other flow patterns are also of interest (Chandrasekhar 1961); here we examine some implications of this simplest case, which is not a unique solution, but may be representative. A direct derivation of the Lorenz equations from the general fluid-dynamic equations for stars is pres...

  7. Kinetic Energy of Tornadoes in the United States.

    Science.gov (United States)

    Fricker, Tyler; Elsner, James B

    2015-01-01

    Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity.

  8. Numeric kinetic energy operators for molecules in polyspherical coordinates.

    Science.gov (United States)

    Sadri, Keyvan; Lauvergnat, David; Gatti, Fabien; Meyer, Hans-Dieter

    2012-06-21

    Generalized curvilinear coordinates, as, e.g., polyspherical coordinates, are in general better adapted to the resolution of the nuclear Schrödinger equation than rectilinear ones like the normal mode coordinates. However, analytical expressions of the kinetic energy operators (KEOs) for molecular systems in polyspherical coordinates may be prohibitively complicated for large systems. In this paper we propose a method to generate a KEO numerically and bring it to a form practicable for dynamical calculations. To examine the new method we calculated vibrational spectra and eigenenergies for nitrous acid (HONO) and compare it with results obtained with an exact analytical KEO derived previously [F. Richter, P. Rosmus, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 120, 6072 (2004)]. In a second example we calculated π → π* photoabsorption spectrum and eigenenergies of ethene (C(2)H(4)) and compared it with previous work [M. R. Brill, F. Gatti, D. Lauvergnat, and H.-D. Meyer, Chem. Phys. 338, 186 (2007)]. In this ethene study the dimensionality was reduced from 12 to 6 by freezing six internal coordinates. Results for both molecules show that the proposed method for obtaining an approximate KEO is reliable for dynamical calculations. The error in eigenenergies was found to be below 1 cm(-1) for most states calculated.

  9. Nonlocal thin films in calculations of the Casimir force

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Svetovoy, V.B.

    2005-01-01

    The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th

  10. Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.

    Science.gov (United States)

    Heidenreich, Andreas; Jortner, Joshua

    2011-02-21

    We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.

  11. Generic features of modulational instability in nonlocal Kerr media

    DEFF Research Database (Denmark)

    Wyller, John; Krolikowski, Wieslaw; Bang, Ole

    2002-01-01

    The modulational instability (MI) of plane waves in nonlocal Kerr media is studied for a general response function. Several generic properties are proven mathematically, with emphasis on how new gain bands are formed through a bifurcation process when the degree of nonlocality, sigma, passes...... the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum...

  12. Disentangling Nonlocality and Teleportation

    CERN Document Server

    Hardy, L

    1999-01-01

    Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.

  13. Nonlocal N=1 Supersymmetry

    CERN Document Server

    Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide

    2016-01-01

    We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  14. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation

  15. Spectral study of wintertime kinetic energy of the Northern Hemisphere in the troposphere

    Science.gov (United States)

    Lee, H. N.; Zhao, Z.; Kao, S. K.

    1983-01-01

    Characteristics of the kinetic energy of wind fields at various pressure levels were analyzed, and significant wavenumbers in the wavenumber-frequency domain were identified. The nonlinear interaction terms of the kinetic energy equation were examined, and the distribution of the kinetic energy at the 850 mb, 500 mb, and 200 mb levels was calculated. A 5 deg latitude-longitude square grid was used, with NMC data for the 1975-1976 winter in the 20-60 deg N at 500 mb and 20-85 deg N for the 200 mb and 850 mb levels. The kinetic energy distribution was determined to be geography-dependent, with wavenumbers 6-9 westerly waves in the midfrequency range contributing significantly to kinetic energy maxima over the North Pacific and the east coast of North America. The contribution of the nonlinear interactions of these waves, which correspond to the longitudinal convergence of the kinetic energy flux, was found to be larger than the meridional convergence of the kinetic energy flux, and to occur mainly between 30-50 deg N. The nonlinear interactions were a negative contribution over the North Pacific at the 200 mb level.

  16. Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the Be atom

    CERN Document Server

    Krishtal, Alisa; Van Alsenoy, Christian

    2010-01-01

    Holas and March (Phys. Rev. A51, 2040 (1995)) wrote the gradient of the one-body potential V(r) in terms of low-order derivatives of the idempotent Dirac density matrix built from a single Slater determinant of Kohn-Sham orbitals. Here, this is first combined with the study of Dawson and March (J. Chem. Phys. 81, 5850 (1984)) to express the single-particle kinetic energy density of the Be atom ground-state in terms of both the electron density n(r) and potential V(r). While this is the more compact formulation, we then, by removing V(r), demonstrate that the ratio t(r)/n(r) depends, though non-locally, only on the single variable n'(r)/n(r), no high-order gradients entering for the spherical Be atom.

  17. Low energy signatures of nonlocal field theories

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi

    2016-09-01

    The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.

  18. Kinetic energy release of diatomic and linear triatomic molecules in intense femtosecond laser fields

    Institute of Scientific and Technical Information of China (English)

    Chen Jian-Xin; Ma Ri; Ren Hai-Zhen; Li Xia; Wu Cheng-Yin; Yang Hong; Gong Qi-Huang

    2004-01-01

    @@ The kinetic energy release of fragment ions produced by the interaction of femtosecond laser pulse radiation with diatomic and linear triatomic molecules N2, CO, CO2 and CS2 is investigated. In the case of linear polarization, angles at which the kinetic energy release of ions has the maximum value are different from the alignment of molecules though the kinetic energy release of fragment atomic ions depends on the angle between the laser polarization vector and the detection axis of the time-of-flight.

  19. Teaching Quantum Nonlocality

    Science.gov (United States)

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  20. Teaching Quantum Nonlocality

    Science.gov (United States)

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  1. Single photon and nonlocality

    Indian Academy of Sciences (India)

    Aurelien Drezet

    2007-03-01

    In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.

  2. Self-organization analysis for a nonlocal convective Fisher equation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)

    2009-02-02

    Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.

  3. Kinetic energy management in road traffic injury prevention: a call for action

    Directory of Open Access Journals (Sweden)

    Davoud Khorasani-Zavareh

    2015-01-01

    Full Text Available Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy. The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety.

  4. Anisotropy of the field-induced kinetic energy density in Bi2212

    Energy Technology Data Exchange (ETDEWEB)

    Peña, J.P., E-mail: jullypaola@if.ufrgs.br [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15051, 91501-970 Porto Alegre, RS (Brazil); Silva, R.R. da [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda 777, C.P. 13083-970 Campinas, SP (Brazil); Pureur, P. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, C.P. 15051, 91501-970 Porto Alegre, RS (Brazil)

    2014-01-15

    We present an experimental study of the in-field kinetic energy density in two Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} single crystals. The kinetic energy density is determined from magnetization measurements performed above the irreversibility line. Anisotropy effects are observed when an external magnetic field is applied in the direction perpendicular or parallel to the superconducting Cu–O{sub 2} planes. When the field is applied parallel to the c-axis, the most relevant contribution to the kinetic energy comes from the Abrikosov vortices. At low fields, an additional term related to granularity is also observed. A kink in the kinetic energy density associated to the decoupling of the superconducting layers is identified when the field is applied parallel to the ab planes.

  5. New Ro-Vibrational Kinetic Energy Operators using Polyspherical Coordinates for Polyatomic Molecules

    Science.gov (United States)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We illustrate how one can easily derive kinetic energy operators for polyatomic molecules using polyspherical coordinates with very general choices for z-axis embeddings arid angles used to specify relative orientations of internal vectors. Computer algebra is not required.

  6. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    Science.gov (United States)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  7. Kinetic energy management in road traffic injury prevention: a call for action.

    Science.gov (United States)

    Khorasani-Zavareh, Davoud; Bigdeli, Maryam; Saadat, Soheil; Mohammadi, Reza

    2015-01-01

    By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy). The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy) prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety. © 2015 KUMS, All rights reserved.

  8. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Blais, N.; Podgorsak, E.B. (Montreal General Hospital, PQ (Canada). Dept. of Medical Physics)

    1992-10-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author).

  9. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    Science.gov (United States)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  10. Kinetic energy distribution of OH+ from water fragmentation by electron impact

    Science.gov (United States)

    Ferreira, Natalia; Sigaud, L.; Montenegro, E. C.

    2017-07-01

    The release of the highly reactive radical OH+ from the fragmentation of water by electron impact is made mostly through the OH++H0 channel. This channel ejects suprathermal OH+ ions with a kinetic energy distribution whose details are unexplored so far due to the difficulty in experimentally characterizing ions ejected with very low kinetic energy without another charged partner. These ions are studied here using the delayed extraction time-of-flight technique (DETOF). The structures and substructures in the kinetic energy distribution of OH+ associated with both single and double ionization are identified qualitatively and quantitatively. A comparison with the kinetic energy distribution of the complementary channel OH0+H+ , also originating from vacancies in the 1 b2 orbital, shows marked differences between the two, mainly regarding the relative role between the fragmentation involving the H2O+ ground state or via transitions to repulsive states.

  11. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Sideridis, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Yakinthos, K., E-mail: kyros@eng.auth.g [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Goulas, A. [Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-02-15

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  12. The role of latent heat in kinetic energy conversions of South Pacific cyclones

    Science.gov (United States)

    Kann, Deirdre M.; Vincent, Dayton G.

    1986-01-01

    The four-dimensional behavior of cyclone systems in the South Pacific Convergence Zone (SPCZ) is analyzed. Three cyclone systems, which occurred during the period from January 10-16, 1979, are examined using the data collected during the first special observing period of the FGGE. The effects of latent heating on the life cycles of the cyclones are investigated. Particular attention is given to the conversions of eddy available potential energy to eddy kinetic energy and of mean kinetic energy to eddy kinetic energy. The net radiation profile, sensible heat flux, total field of vertical motion, and latent heat component were computed. The life cycles of the cyclones are described. It is observed that the latent heating component accounts for nearly all the conversion in the three cyclones, and latent heating within the SPCZ is the major source of eddy kinetic energy for the cyclones.

  13. A Preliminary Study of the Potential to Kinetic Energy Conversion Process in the Stratosphere

    OpenAIRE

    White, Robert M.; Nolan, George F.

    2011-01-01

    The potential to kinetic energy conversion process in the lower stratosphere associated with the vertical exchange of warm and cold air is evaluated using adiabatically derived vertical velocities for the North American region for a five-day period. Preliminary results suggest the possibility that on the average the kinetic energy of stratospheric motions may not result from a conversion of potential energy within the stratosphere by this process. The further implication is that stratospheric...

  14. Development of an idealised downstream cyclone: Eulerian and Lagrangian perspective on the kinetic energy

    OpenAIRE

    Papritz, Lukas; Schemm, Sebastian

    2013-01-01

    In this idealised modelling study, the development of a downstream cyclone, which closely follows the life-cycle of a Shapiro-Keyser cyclone, is addressed from a quasi-geostrophic kinetic energy perspective. To this end a simulation of a dry, highly idealised, dispersive baroclinic wave, developing a primary and a downstream cyclone, is performed. Kinetic energy and processes contributing to its tendency – in particular baroclinic conversion and ageostrophic geopotential fluxes – are investig...

  15. The dp-elastic cross section measurement at the deuteron kinetic energy of 2.5 GeV

    Directory of Open Access Journals (Sweden)

    Rustamov A.

    2012-12-01

    Full Text Available New results on the differential cross section in deuteron-proton elastic scattering are obtained at the deuteron kinetic energy of 2.5 GeV with the HADES spectrometer. The angular range of 69° – 125° in the center of mass system is covered. The obtained results are compared with the relativistic multiple scattering model calculation using the CD-Bonn deuteron wave function. The data at fixed scattering angles in the c.m. are in qualitative agreement with the constituent counting rules prediction.

  16. The dp-elastic cross section measurement at the deuteron kinetic energy of 2.5 GeV

    Science.gov (United States)

    Kurilkin, P.; Agakishiev, G.; Behnke, C.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Blume, C.; Böhmer, M.; Cabanelas, P.; Chernenko, S.; Dritsa, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Holzmann, R.; Huck, P.; Höhne, C.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Krizek, F.; Kuc, H.; Kugler, A.; Kurepin, A.; Kurilkin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2012-12-01

    New results on the differential cross section in deuteron-proton elastic scattering are obtained at the deuteron kinetic energy of 2.5 GeV with the HADES spectrometer. The angular range of 69° - 125° in the center of mass system is covered. The obtained results are compared with the relativistic multiple scattering model calculation using the CD-Bonn deuteron wave function. The data at fixed scattering angles in the c.m. are in qualitative agreement with the constituent counting rules prediction.

  17. Higher harmonic nonlocal polymerization driven diffusion model: generalized nonlinearities and nonlocal responses

    Science.gov (United States)

    Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.

    2004-10-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.

  18. Nonlocal transformation optics

    CERN Document Server

    Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader

    2011-01-01

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  19. Nonlocality of quantum correlations

    CERN Document Server

    Streltsov, A; Roga, W; Bruß, D; Illuminati, F

    2012-01-01

    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.

  20. Entanglement without hidden nonlocality

    Science.gov (United States)

    Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas

    2016-11-01

    We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.

  1. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation

    Science.gov (United States)

    Lim, C. W.; Zhang, G.; Reddy, J. N.

    2015-05-01

    In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational

  2. Scale-dependent distribution of kinetic energy from surface drifters in the Gulf of Mexico

    Science.gov (United States)

    Balwada, Dhruv; LaCasce, Joseph H.; Speer, Kevin G.

    2016-10-01

    The scale-dependent distribution of kinetic energy is probed at the surface in the Gulf of Mexico using surface drifters from the Grand Lagrangian Deployment (GLAD) experiment. The second-order velocity structure function and its decomposition into rotational and divergent components are examined. The results reveal that the divergent component, compared to the rotational component, dominates at scales below 5 km, and the pattern is reversed at larger scales. The divergent component has a slope near 2/3 below 5 km, similar to an energy cascade range (k-5/3). The third-order velocity structure function at scales below 5 km is negative and implies a forward cascade of energy to smaller scales. The rotational component has a steeper slope, roughly 1.5, from scales of 5 km up to the deformation radius. This is similar to a 2-D enstrophy cascade, although the slope is shallower than the predicted 2. There is a brief 2/3 range from the deformation radius to 200 km, suggestive of a 2-D inverse cascade.

  3. Covalent bonds are created by the drive of electron waves to lower their kinetic energy through expansion.

    Science.gov (United States)

    Schmidt, Michael W; Ivanic, Joseph; Ruedenberg, Klaus

    2014-05-28

    An analysis based on the variation principle shows that in the molecules H2 (+), H2, B2, C2, N2, O2, F2, covalent bonding is driven by the attenuation of the kinetic energy that results from the delocalization of the electronic wave function. For molecular geometries around the equilibrium distance, two features of the wave function contribute to this delocalization: (i) Superposition of atomic orbitals extends the electronic wave function from one atom to two or more atoms; (ii) intra-atomic contraction of the atomic orbitals further increases the inter-atomic delocalization. The inter-atomic kinetic energy lowering that (perhaps counter-intuitively) is a consequence of the intra-atomic contractions drives these contractions (which per se would increase the energy). Since the contractions necessarily encompass both, the intra-atomic kinetic and potential energy changes (which add to a positive total), the fact that the intra-atomic potential energy change renders the total potential binding energy negative does not alter the fact that it is the kinetic delocalization energy that drives the bond formation.

  4. Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw

    2008-01-01

    Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...

  5. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    Science.gov (United States)

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  6. Strain analysis of nonlocal viscoelastic Kelvin bar in tension

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue-chuan; LEI Yong-jun; ZHOU Jian-ping

    2008-01-01

    Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.

  7. Non-local thin films in Casimir force calculations

    CERN Document Server

    Esquivel, R

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.

  8. Causality, Nonlocality, and Negative Refraction.

    Science.gov (United States)

    Forcella, Davide; Prada, Claire; Carminati, Rémi

    2017-03-31

    The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  9. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  10. Analytical theory of dark nonlocal solitons

    DEFF Research Database (Denmark)

    Kong, Qian; Wang, Qi; Bang, Ole;

    2010-01-01

    We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....

  11. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  12. Parameterization of the Non-Local Thermodynamic Equilibrium Source Function with Chemical Production by an Equivalent Two-Level Model

    Institute of Scientific and Technical Information of China (English)

    Xun ZHU

    2003-01-01

    The classic two-level or equivalent two-level model that includes only the statistical equilibriumof radiative and thermal processes of excitation and quenching between two vibrational energy levelsis extended by adding chemical production to the rate equations. The modifications to the non-localthermodynamic equilibrium source function and cooling rate are parameterized by φc, which characterizesthe ratio of chemical production to collisional quenching. For applications of broadband emission of O3 at9.6 μm, the non-LTE effect of chemical production on the cooling rate and limb emission is proportionalto the ratio of O to O3. For a typical [O]/[O3], the maximum enhancements of limb radiance and coolingrate are about 15%-30% and 0.03-0.05 K day-1, respectively, both occurring near the mesopause regions.This suggests that the broadband limb radiance above ~80 km is sensitive to O3 density but not sensitiveto the direct cooling rate along the line-of-sight, which makes O3 retrieval feasible but the direct coolingrate retrieval difficult by using the O3 9.6 μm band limb emission.

  13. Nehari manifold for non-local elliptic operator with concave–convex nonlinearities and sign-changing weight functions

    Indian Academy of Sciences (India)

    Sarika Goyal; K Sreenadh

    2015-11-01

    In this article, we study the existence and multiplicity of non-negative solutions of the following p-fractional equation: \\begin{equation*} \\left\\{ \\begin{matrix} -2 {\\displaystyle\\int}_{\\mathbb{R}^n} \\frac{|u(y) - u (x)|^{p-2} (u(y)-u(x))}{|x-y|^{n+p}} dy = h (x) |u|^{q-1} u + b (x)|u|^{r-1} u \\text{ in } ,\\\\ u = 0 \\quad \\text{ in } \\mathbb{R}^n \\setminus , \\quad u \\in W^{,p} (\\mathbb{R}^n) \\end{matrix} \\right. \\end{equation*} where is a bounded domain in $\\mathbb{R}^n$ with continuous boundary, $p ≥ 2$, $n > p $, $ \\in (0,1)$, $0 < q < p -1 < r < p^* - 1$ with $p^* = np (n -p)^{-1}$, $ > 0$ and $h, b$ are signchanging continuous functions. We show the existence and multiplicity of solutions by minimization on the suitable subset of Nehari manifold using the fibering maps. We find that there exists 0 such that for $ \\in (0, _0)$, it has at least two non-negative solutions.

  14. Nonlocal Mumford-Shah regularizers for color image restoration.

    Science.gov (United States)

    Jung, Miyoun; Bresson, Xavier; Chan, Tony F; Vese, Luminita A

    2011-06-01

    We propose here a class of restoration algorithms for color images, based upon the Mumford-Shah (MS) model and nonlocal image information. The Ambrosio-Tortorelli and Shah elliptic approximations are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, texture is nonlocal in nature and requires semilocal/non-local information for efficient image denoising and restoration. Inspired from recent works (nonlocal means of Buades, Coll, Morel, and nonlocal total variation of Gilboa, Osher), we extend the local Ambrosio-Tortorelli and Shah approximations to MS functional (MS) to novel nonlocal formulations, for better restoration of fine structures and texture. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, color image super-resolution, and color filter array demosaicing. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. We also prove several characterizations of minimizers based upon dual norm formulations.

  15. Decomposing cerebral blood flow MRI into functional and structural components: a non-local approach based on prediction.

    Science.gov (United States)

    Kandel, Benjamin M; Wang, Danny J J; Detre, John A; Gee, James C; Avants, Brian B

    2015-01-15

    We present RIPMMARC (Rotation Invariant Patch-based Multi-Modality Analysis aRChitecture), a flexible and widely applicable method for extracting information unique to a given modality from a multi-modal data set. We use RIPMMARC to improve the interpretation of arterial spin labeling (ASL) perfusion images by removing the component of perfusion that is predicted by the underlying anatomy. Using patch-based, rotation invariant descriptors derived from the anatomical image, we learn a predictive relationship between local neuroanatomical structure and the corresponding perfusion image. This relation allows us to produce an image of perfusion that would be predicted given only the underlying anatomy and a residual image that represents perfusion information that cannot be predicted by anatomical features. Our learned structural features are significantly better at predicting brain perfusion than tissue probability maps, which are the input to standard partial volume correction techniques. Studies in test-retest data show that both the anatomically predicted and residual perfusion signals are highly replicable for a given subject. In a pediatric population, both the raw perfusion and structurally predicted images are tightly linked to age throughout adolescence throughout the brain. Interestingly, the residual perfusion also shows a strong correlation with age in selected regions including the hippocampi (corr = 0.38, p-value <10(-6)), precuneus (corr = -0.44, p < 10(-5)), and combined default mode network regions (corr = -0.45, p < 10(-8)) that is independent of global anatomy-perfusion trends. This finding suggests that there is a regionally heterogeneous pattern of functional specialization that is distinct from that of cortical structural development.

  16. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    Science.gov (United States)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  17. Visualizing the large-$Z$ scaling of the kinetic energy density of atoms

    CERN Document Server

    Cancio, Antonio C

    2016-01-01

    The scaling of neutral atoms to large $Z$, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of energies, insights can also be gained from energy densities. We visualize the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly-varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models...

  18. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, Y. [Nuclear Research Center–Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Shang, S. L.; Wang, Y.; Liu, Z. K. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shchur, Ya. [Institute for Condensed Matter Physics, 1 Svientsitskii str., L’viv 79011 (Ukraine)

    2016-02-07

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH{sub 2}PO{sub 4}, X = K, Cs, Rb, Tl), the DKDP (XD{sub 2}PO{sub 4}, X = K, Cs, Rb) type, and the X{sub 3}H(SO{sub 4}){sub 2} superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M{sub 3}H(SO{sub 4}){sub 2} compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R{sub OO}, being a measure of the HB strength.

  19. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert; Van Wees, Bart J.

    2016-01-01

    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the t

  20. Modeling on the Effect of Coal Loads on Kinetic Energy of Balls for Ball Mills

    Directory of Open Access Journals (Sweden)

    Yan Bai

    2015-07-01

    Full Text Available This paper presents a solution for the detection and control of coal loads that is more accurate and convenient than those currently used. To date, no research has addressed the use of a grinding medium as the controlled parameter. To improve the accuracy of the coal load detection based on the kinetic energy of balls in a tubular ball mill, a Discrete Element Method (DEM model for ball kinematics based on coal loads is proposed. The operating process for a ball mill and the ball motion, as influenced by the coal quality and the coal load, was analyzed carefully. The relationship between the operating efficiency of a coal pulverizing system, coal loads, and the balls’ kinetic energy was obtained. Origin and Matlab were utilized to draw the variation of parameters with increasing coal loads in the projectile and cascading motion states. The parameters include the balls’ real-time kinetic energy, the friction energy consumption, and the mill’s total work. Meanwhile, a method of balanced adjacent degree and a physical experiment were proposed to verify the considerable effect of the balls’ kinetic energy on coal loads. The model and experiment results indicate that a coal load control method based on the balls’ kinetic energy is therefore feasible for the optimized operation of a coal pulverizing system.

  1. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets.

    Science.gov (United States)

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  2. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  3. Film edge nonlocal spin valves.

    Science.gov (United States)

    McCallum, Andrew T; Johnson, Mark

    2009-06-01

    Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.

  4. Experimental many-pairs nonlocality

    Science.gov (United States)

    Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian

    2017-08-01

    Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.

  5. Nonlocal Operational Calculi for Dunkl Operators

    Directory of Open Access Journals (Sweden)

    Ivan H. Dimovski

    2009-03-01

    Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.

  6. Randomness and Non-Locality

    Science.gov (United States)

    Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago

    2016-07-01

    The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.

  7. Observers in Spacetime and Nonlocality

    CERN Document Server

    Mashhoon, B

    2012-01-01

    Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.

  8. Quadratic solitons as nonlocal solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...

  9. A kinetic energy analysis of the meso beta-scale severe storm environment

    Science.gov (United States)

    Fuelberg, H. E.; Printy, M. F.

    1984-01-01

    Analyses are performed of the meso beta-scale (20-200 km wavelengths and several hours to one-day periods) severe storm kinetic energy balance on the fifth day of the AVE SESAME campaign of May 1979. A 24-hr interval covering the antecedent, active and post-convective outbreak activity over Oklahoma are considered. Use is made of the kinetic energy budget equation (KEBE) for a finite volume in an isobaric coordinate system. Rawindsonde data with 75 km resolution were treated. The KEBE model covered changes in kinetic energy due to the cross contour flows, horizontal and vertical components of flux divergence, and volumic mass changes on synoptic and subsynoptic scales. The greatest variability was concentrated above 400 mb height and over the most intense storm activity. Energy was generated at the highest rates in divergence and decreased the most in convection. The meso beta-scale lacked sufficient resolution for analyzing mesoscale activity.

  10. An operational framework for nonlocality

    CERN Document Server

    Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel

    2011-01-01

    Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...

  11. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  12. Properties of the kinetic energy budgets in wall-bounded turbulent flows

    Science.gov (United States)

    Zhou, Ang; Klewicki, Joseph

    2016-08-01

    Available high-quality numerical simulation data are used to investigate and characterize the kinetic energy budgets for fully developed turbulent flow in pipes and channels, and in the zero-pressure gradient turbulent boundary layer. The mean kinetic energy equation in these flows is empirically and analytically shown to respectively exhibit the same four-layer leading-order balance structure as the mean momentum equation. This property of the mean kinetic energy budget provides guidance on how to group terms in the more complicated turbulence and total kinetic energy budgets. Under the suggested grouping, the turbulence budget shows either a two- or three-layer structure (depending on channel or pipe versus boundary layer flow), while the total kinetic energy budget exhibits a clear four-layer structure. These layers, however, differ in position and size and exhibit variations with friction Reynolds number (δ+) that are distinct from the layer structure associated with the mean dynamics. The present analyses indicate that each of the four layers is characterized by a predominance of a reduced set of the grouped terms in the governing equation. The width of the third layer is mathematically reasoned to scale like δ+-√{δ+} at finite Reynolds numbers. In the boundary layer the upper bounds of both the second and third layers convincingly merge under this normalization, as does the width of the third layer. This normalization also seems to be valid for the width of the third layer in pipes and channels, but only for δ+>1000 . The leading-order balances in the total kinetic energy budget are shown to arise from a nontrivial interweaving of the mean and turbulence budget contributions with distance from the wall.

  13. Quantum Loops in Non-Local Gravity

    CERN Document Server

    Talaganis, Spyridon

    2015-01-01

    In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.

  14. Multifractal scaling of the kinetic energy flux in solar wind turbulence

    Science.gov (United States)

    Marsch, E.; Rosenbauer, H.; Tu, C.-Y.

    1995-01-01

    The geometrical and scaling properties of the energy flux of the turbulent kinetic energy in the solar wind have been studied. By present experimental technology in solar wind measurements, we cannot directly measure the real volumetric dissipation rate, epsilon(t), but are constrained to represent it by surrogating the energy flux near the dissipation range at the proton gyro scales. There is evidence for the multifractal nature of the so defined dissipation field epsilon(t), a result derived from the scaling exponents of its statistical q-th order moments. The related generalized dimension D(q) has been determined and reveals that the dissipation field has a multifractal structure. which is not compatible with a scale-invariant cascade. The associated multifractal spectrum f(alpha) has been estimated for the first time for MHD turbulence in the solar wind. Its features resemble those obtained for turbulent fluids and other nonlinear multifractal systems. The generalized dimension D(q) can, for turbulence in high-speed streams, be fitted well by the functional dependence of the p-model with a comparatively large parameter, p = 0.87. indicating a strongly intermittent multifractal energy cascade. The experimental value for D(p)/3, if used in the scaling exponent s(p) of the velocity structure function, gives an exponent that can describe some of the observations. The scaling exponent mu of the auto correlation function of epsilon(t) has also been directly evaluated. It has the value of 0.37. Finally. the mean dissipation rate was determined, which could be used in solar wind heating models.

  15. The study of the (α, α'f) reaction at 120MeV on 232Th (III) : Total kinetic energies and mass distributions for excitation energies below 12 MeV

    NARCIS (Netherlands)

    David, P.; Debrus, J.; Janszen, H.; Schulze, J.; Harakeh, M.N.; Plicht, J. van der; van der Woude, Adriaan

    1982-01-01

    The total kinetic energy release (TKE) of the fissioning nucleus 232Th is measured as a function of excitation energy and for various mass separations. A direct correlation of the TKE and of the prompt neutron yield excitation functions is observed. The mass yield is presented as function of the tot

  16. [Responses of biological soil crust to and its relief effect on raindrop kinetic energy].

    Science.gov (United States)

    Qin, Ning-qiang; Zhao, Yun-ge

    2011-09-01

    Based on the field investigation and by the method of simulated single-drop rain, this paper studied the responses of different types of biological soil crusts (biocrusts) in the wind-water erosion interleaving region of Loess Plateau to and their relief effect on the kinetic energy of raindrops. The responses of the biocrusts to raindrop kinetic energy had close relations with their biological composition. The cyanobacteria-dominated biocrusts with a thickness of 1 cm and the moss-dominated biocrusts with the coverage of 80% could resist in 0.99 J and 75.56 J of cumulative rain drop kinetic energy, respectively, and the potential resistance of the biocrusts with the same biological compositions was relative to the biomass of the biological compositions, i.e., the larger the biomass, the higher the resistance. As the chlorophyll a content of cyanobacteria- dominated biocrusts (which characterizes the cyanobacterial biomass) increased from 3.32 to 3.73 microg x g(-1), the resistance of the biocrusts against the cumulative raindrop kinetic energy increased from 0.99 to 2.17 J; when the moss biomass in the moss- dominated biocrusts increased from 2.03 to 4.73 g x dm(-2), the resistance of the crusts increased from 6.08 to 75.56 J. During the succession of the biocrusts, their responses to the raindrop kinetic energy presented an "S" pattern. No significant differences in the resistance against raindrop cumulative kinetic energy were observed between the cyanobacteria-dominated biocrusts with variable biomass, but the resistance of moss-dominated biocrusts increased significantly as their biomass per unit area increased. The resistance of moss-dominated biocrusts increased linearly when their biomass increased from 2.03 g x dm(-2) to 4.73 g x dm(-2). The moss-dominated biocrusts could resist in 62.03 J of raindrop kinetic energy when their biomass was up to 3.70 g x dm(-2). Biocrusts had obvious effects in relieving raindrop kinetic energy, and the relief effect

  17. Theoretical study of atoms by the electronic kinetic energy density and stress tensor density

    CERN Document Server

    Nozaki, Hiroo; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.

  18. Theoretical Study of Lithium Ionic Conductors by Electronic Stress Tensor Density and Electronic Kinetic Energy Density

    CERN Document Server

    Nozaki, Hiroo; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo

    2016-01-01

    We analyze the electronic structure of lithium ionic conductors, ${\\rm Li_3PO_4}$ and ${\\rm Li_3PS_4}$, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density.

  19. Self-adjoint integral operator for bounded nonlocal transport

    Science.gov (United States)

    Maggs, J. E.; Morales, G. J.

    2016-11-01

    An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.

  20. A straightforward approach to Eringen's nonlocal elasticity stress model and applications for nanobeams

    Science.gov (United States)

    Koutsoumaris, C. Chr.; Eptaimeros, K. G.; Zisis, T.; Tsamasphyros, G. J.

    2016-12-01

    The nonlocal theory of elasticity is widely employed to the study of nanoscale problems. The differential approach of Eringen's nonlocal beam theory has been widely used to solve problems whose size effect is substantial in structures. However, in the case of Euler-Bernoulli beam theory (EBBT), this approach reveals inconsistencies that do not allow for the energy functional formulation. To avoid these inconsistencies, an alternative route is to use the integral form of nonlocal elasticity. This study revolves around the nonlocal integral beam model for various attenuation functions with the intention to explore the static response of a beam (or a nanobeam) for different types of loadings and boundary conditions (BC).

  1. On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory

    Science.gov (United States)

    Tong, Lihong; Yu, Yang; Hu, Wentao; Shi, Yufeng; Xu, Changjie

    2016-09-01

    A nonlocal Biot theory is developed by combing Biot theory and nonlocal elasticity theory for fluid saturated porous material. The nonlocal parameter is introduced as an independent variable for describing wave propagation characteristics in poroelastic material. A physical insight on nonlocal term demonstrates that the nonlocal term is a superposition of two effects, one is inertia force effect generated by fluctuation of porosity and the other is pore size effect inherited from nonlocal constitutive relation. Models for situations of excluding fluid nonlocal effect and including fluid nonlocal effect are proposed. Comparison with experiment confirms that model without fluid nonlocal effect is more reasonable for predicting wave characteristics in saturated porous materials. The negative dispersion is observed theoretically which agrees well with the published experimental data. Both wave velocities and quality factors as functions of frequency and nonlocal parameter are examined in practical cases. A few new physical phenomena such as backward propagation and disappearance of slow wave when exceeding critical frequency and disappearing shear wave in high frequency range, which were not predicted by Biot theory, are demonstrated.

  2. Low kinetic energy photoelectron diffractions for C 1s and O 1s electrons of free CO molecules in the EXAFS region

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Jun-ichi; Yamazaki, Masakazu; Kimura, Yasuyuki; Yagishita, Akira [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Kazama, Misato; Ohori, Yusuke; Fujikawa, Takashi [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage 263-8522 (Japan); Teramoto, Takahiro, E-mail: jun-ichi.adachi@kek.j [Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2009-11-15

    We have measured molecular-frame photoelectron angular distributions from carbon 1s and oxygen 1s levels of CO molecules up to a photoelectron kinetic energy (KE) of {approx}150 eV. The backward-scattering intensities exhibited a strong modulation as a function of the kinetic energy of the photoelectrons, whereas the intensities for the forward-scattering gradually increased and then became nearly constant over KE {approx}100 eV. Multiple scattering calculations with a muffin-tin potential qualitatively reproduced the experimental results. The present results may be considered as the observation of low-energy photoelectron diffraction patterns for gaseous free CO molecules, which are involved in modulations in extended X-ray absorption fine structure (EXAFS) spectra.

  3. Nonlocal diffusion second order partial differential equations

    Science.gov (United States)

    Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.

    2017-02-01

    The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.

  4. Nonlocal Condensate Model for QCD Sum Rules

    CERN Document Server

    Hsieh, Ron-Chou

    2009-01-01

    We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.

  5. Kinetic energy and added mass of hydrodynamically interacting gas bubbles in liquid

    NARCIS (Netherlands)

    Kok, Jacobus B.W.

    1988-01-01

    By averaging the basic equations on microscale, expressions are derived for the effective added mass density and the kinetic energy density of a mixture of liquid and gas bubbles. Due to hydrodynamic interaction between the bubbles there appears to be a difference between the effective added mass

  6. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    Science.gov (United States)

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  7. Dissociation of CO induced by He2+ ions : I. Fragmentation and kinetic energy release spectra

    NARCIS (Netherlands)

    Bliek, FW; de Jong, MC; Hoekstra, R; Morgenstern, R

    1997-01-01

    The dissociation of COq+ ions (q less than or equal to 3) produced in collisions of keV amu(-1) He2+ ions with CO has been studied by time-of-flight measurements. Both singles and coincidence time-of-flight techniques have been used to determine the kinetic energy release of the dissociating CO mole

  8. Measurement of the Turbulence Kinetic Energy Budget of a Turbulent Planar Wake Flow in Pressure Gradients

    Science.gov (United States)

    Liu, Xiao-Feng; Thomas, Flint O.; Nelson, Robert C.

    2001-01-01

    Turbulence kinetic energy (TKE) is a very important quantity for turbulence modeling and the budget of this quantity in its transport equation can provide insight into the flow physics. Turbulence kinetic energy budget measurements were conducted for a symmetric turbulent wake flow subjected to constant zero, favorable and adverse pressure gradients in year-three of research effort. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Four different approaches, based on an isotropic turbulence assumption, a locally axisymmetric homogeneous turbulence assumption, a semi-isotropy assumption and a forced balance of the TKE equation, were applied for the estimate of the dissipation term. The pressure transport term is obtained from a forced balance of the turbulence kinetic energy equation. This report will present the results of the turbulence kinetic energy budget measurement and discuss their implication on the development of strained turbulent wakes.

  9. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    Science.gov (United States)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  10. Estimation of the kinetic energy dissipation in fall-arrest system and manikin during fall impact.

    Science.gov (United States)

    Wu, John Z; Powers, John R; Harris, James R; Pan, Christopher S

    2011-04-01

    Fall-arrest systems (FASs) have been widely applied to provide a safe stop during fall incidents for occupational activities. The mechanical interaction and kinetic energy exchange between the human body and the fall-arrest system during fall impact is one of the most important factors in FAS ergonomic design. In the current study, we developed a systematic approach to evaluate the energy dissipated in the energy absorbing lanyard (EAL) and in the harness/manikin during fall impact. The kinematics of the manikin and EAL during the impact were derived using the arrest-force time histories that were measured experimentally. We applied the proposed method to analyse the experimental data of drop tests at heights of 1.83 and 3.35 m. Our preliminary results indicate that approximately 84-92% of the kinetic energy is dissipated in the EAL system and the remainder is dissipated in the harness/manikin during fall impact. The proposed approach would be useful for the ergonomic design and performance evaluation of an FAS. STATEMENT OF RELEVANCE: Mechanical interaction, especially kinetic energy exchange, between the human body and the fall-arrest system during fall impact is one of the most important factors in the ergonomic design of a fall-arrest system. In the current study, we propose an approach to quantify the kinetic energy dissipated in the energy absorbing lanyard and in the harness/body system during fall impact.

  11. Kinetic energy offsets for multicharged ions from an electron beam ion source.

    Science.gov (United States)

    Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P

    2017-08-01

    Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar(4+) and Ar(8+) ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.

  12. Turbulent Kinetic Energy in the Energy Balance of a Solar Flare.

    Science.gov (United States)

    Kontar, E P; Perez, J E; Harra, L K; Kuznetsov, A A; Emslie, A G; Jeffrey, N L S; Bian, N H; Dennis, B R

    2017-04-14

    The energy released in solar flares derives from a reconfiguration of magnetic fields to a lower energy state, and is manifested in several forms, including bulk kinetic energy of the coronal mass ejection, acceleration of electrons and ions, and enhanced thermal energy that is ultimately radiated away across the electromagnetic spectrum from optical to x rays. Using an unprecedented set of coordinated observations, from a suite of instruments, we here report on a hitherto largely overlooked energy component-the kinetic energy associated with small-scale turbulent mass motions. We show that the spatial location of, and timing of the peak in, turbulent kinetic energy together provide persuasive evidence that turbulent energy may play a key role in the transfer of energy in solar flares. Although the kinetic energy of turbulent motions accounts, at any given time, for only ∼(0.5-1)% of the energy released, its relatively rapid (∼1-10  s) energization and dissipation causes the associated throughput of energy (i.e., power) to rival that of major components of the released energy in solar flares, and thus presumably in other astrophysical acceleration sites.

  13. Relativistic Momentum and Kinetic Energy, and E = mc[superscript 2

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2009-01-01

    Based on relativistic velocity addition and the conservation of momentum and energy, I present simple derivations of the expressions for the relativistic momentum and kinetic energy of a particle, and for the formula E = mc[superscript 2]. (Contains 5 footnotes and 2 figures.)

  14. Kinetic Energy Corrections for Slip-Stick Behavior in Brittle Adhesives

    Science.gov (United States)

    Macon, David J.; Anderson, Greg L.; McCool, Alex (Technical Monitor)

    2001-01-01

    Fracture mechanics is the study of the failure of a body that contains a flaw. In the energy balance approach to fracture mechanics, contributions from the external work and elastic strain energy are accounted for but rarely are corrections for the kinetic energy given. Under slip-stick conditions, part of the external work is expended as kinetic energy. The magnitude of this kinetic energy depends upon the shape of the crack. A specimen with a blunt crack will fail at a high load and the crack will catastrophically travel through the material until the kinetic energy is dissipated. Material with a sharp crack will fail at a lower load but will still be catastrophic in nature. A kinetic term is incorporated into the energy balance approach. This term accounts for the velocity of the crack after failure and how far the crack travels before arresting. This correction makes the shape of the initiation crack irrelevant. When applied to data generated by tapered double cantilever beam specimens under slip-stick conditions, the scatter in the measured critical strain energy release rate is significantly reduced.

  15. Measurement of the Kinetic Energy of a Body by Means of a Deformation.

    Science.gov (United States)

    Perez, Pedro J.; And Others

    1996-01-01

    Describes a technique that measures the deformation produced in a plastic material by a falling ball in order to compute the ball's kinetic energy. Varying the parameters produces accurate results and gives students a good understanding of the measurement of energy. Combines various mechanical concepts that students have learned separately in…

  16. Role of kinetic energy of impinging molecules in the α-sexithiophene growth

    NARCIS (Netherlands)

    Tonezzer, M.; Rigo, E.; Gottardi, S.; Bettotti, P.; Pavesi, L.; Iannotta, S.; Toccoli, T.

    2011-01-01

    We report on the α-sexithiophene sub-monolayer growth with supersonic molecular beam deposition by investigating how the kinetic energy of the impinging molecules influences the growth on substrates with different surface wettabilities and temperatures. The results show that the energy of the

  17. A Rolling Pendulum Bob: Conservation of Energy and Partitioning of Kinetic Energy.

    Science.gov (United States)

    Helrich, Carl; Lehman, Thomas

    1979-01-01

    Describes a pendulum in which the spherical bob can roll on a track of the same arc as it swings when suspended by a cord. Comparison of the motion in the two mentioned cases shows the effect of rotational kinetic energy when the bob rolls. (GA)

  18. Dissociation of CO induced by He2+ ions : I. Fragmentation and kinetic energy release spectra

    NARCIS (Netherlands)

    Bliek, FW; de Jong, MC; Hoekstra, R; Morgenstern, R

    1997-01-01

    The dissociation of COq+ ions (q less than or equal to 3) produced in collisions of keV amu(-1) He2+ ions with CO has been studied by time-of-flight measurements. Both singles and coincidence time-of-flight techniques have been used to determine the kinetic energy release of the dissociating CO

  19. Releasable Kinetic Energy-Based Inertial Control of a DFIG Wind Power Plant

    DEFF Research Database (Denmark)

    Lee, Jinsik; Muljadi, Eduard; Sørensen, Poul Ejnar

    2016-01-01

    Wind turbine generators (WTGs) in a wind power plant (WPP) contain different levels of releasable kinetic energy (KE) because of the wake effects. This paper proposes a releasable KE-based inertial control scheme for a doubly fed induction generator (DFIG) WPP that differentiates the contributions...

  20. Evaluation of the Kinetic Energy Approach for Modeling Turbulent Fluxes in Stratocumulus

    NARCIS (Netherlands)

    Lenderink, G.; Holtslag, A.A.M.

    2000-01-01

    The modeling of vertical mixing by a turbulence scheme on the basis of prognostic turbulent kinetic energy (E) and a diagnostic length scale (l ) is investigated with particular emphasis on the representation of entrainment. The behavior of this E–l scheme is evaluated for a stratocumulus case obser

  1. Towards LHC physics with nonlocal Standard Model

    OpenAIRE

    Tirthabir Biswas; Nobuchika Okada

    2015-01-01

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...

  2. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  3. Spider orb webs rely on radial threads to absorb prey kinetic energy.

    Science.gov (United States)

    Sensenig, Andrew T; Lorentz, Kimberly A; Kelly, Sean P; Blackledge, Todd A

    2012-08-07

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.

  4. Development of an idealised downstream cyclone: Eulerian and Lagrangian perspective on the kinetic energy

    Directory of Open Access Journals (Sweden)

    Lukas Papritz

    2013-03-01

    Full Text Available In this idealised modelling study, the development of a downstream cyclone, which closely follows the life-cycle of a Shapiro-Keyser cyclone, is addressed from a quasi-geostrophic kinetic energy perspective. To this end a simulation of a dry, highly idealised, dispersive baroclinic wave, developing a primary and a downstream cyclone, is performed. Kinetic energy and processes contributing to its tendency – in particular baroclinic conversion and ageostrophic geopotential fluxes – are investigated in three dimensions both in an Eulerian and a Lagrangian framework from the genesis of the downstream cyclone as an upper-level kinetic energy centre, over frontal fracture to the fully developed cyclone showing the characteristic T-bone surface frontal structure, with a strong low-level jet along the bent-back front. Initially the downstream cyclone grows by the convergence of ageostrophic geopotential fluxes from the primary cyclone, but as vertical motions intensify this process is replaced by baroclinic conversion in the warm sector. We show that kinetic energy released in the warm sector is radiated away at all levels by ageostrophic geopotential fluxes: in the upper troposphere they are directed downstream, while in the lower troposphere they radiate kinetic energy to the rear of the cyclone. Thereby, vertical ageostrophic geopotential fluxes, their location and divergence, are identified to play a major role in the intensification of the cyclone in the lower troposphere and for the formation of the low-level jet. Low-level rearward ageostrophic geopotential fluxes converging along the bent-back front are shown to be a general characteristic of an eastward propagating baroclinic wave.

  5. Solutions of Nonlocal -Laplacian Equations

    Directory of Open Access Journals (Sweden)

    Mustafa Avci

    2013-01-01

    Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.

  6. Spontaneous Emission in Nonlocal Materials

    CERN Document Server

    Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V

    2016-01-01

    Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.

  7. Classical and Quantum Nonlocal Supergravity

    CERN Document Server

    Giaccari, Stefano

    2016-01-01

    We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...

  8. A new exact quantum mechanical rovibrational kinetic energy operator for penta-atomic systems in internal coordinates

    Institute of Scientific and Technical Information of China (English)

    陈光巨; 李玉学

    1999-01-01

    The concrete molecule-fixed (MF) kinetic energy operator for penta-atomic molecules is expressed in terms of the parameterδ, the matrix element G?, and angular momentum operator (?). The applications of the operator are also discussed. Finally, a general compact form of kinetic energy operator suitable for calculating the rovibrational spectra of polyatomie molecules is presented.

  9. Equivalent bosonic theory for the massive Thirring model with non-local interaction

    OpenAIRE

    Li, Kang; Naon, Carlos

    1997-01-01

    We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass-expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the famous Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional...

  10. Dynamical nonlocality of the entangled coherent state in the phase damping model

    Institute of Scientific and Technical Information of China (English)

    Lu Huai-Xin; Li Ying-De

    2009-01-01

    This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.

  11. Study of Nonlocal Optical Potential

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yuan

    2013-01-01

    It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form

  12. Determinants of kinetic energy of blood flow in the four-chambered heart in athletes and sedentary controls.

    Science.gov (United States)

    Steding-Ehrenborg, K; Arvidsson, P M; Töger, J; Rydberg, M; Heiberg, E; Carlsson, M; Arheden, H

    2016-01-01

    The kinetic energy (KE) of intracardiac blood may play an important role in cardiac function. The aims of the present study were to 1) quantify and investigate the determinants of KE, 2) compare the KE expenditure of intracardiac blood between athletes and control subjects, and 3) quantify the amount of KE inside and outside the diastolic vortex. Fourteen athletes and fourteen volunteers underwent cardiac MRI, including four-dimensional phase-contrast sequences. KE was quantified in four chambers, and energy expenditure was calculated by determining the mean KE/cardiac index. Left ventricular (LV) mass was an independent predictor of diastolic LVKE (R(2) = 0.66, P energy expenditure for intracardiac blood flow, indicating similar pumping efficiency, likely explained by the lower heart rate that cancels the higher KE per heart beat in athletes. The majority of LVKE is found within the LV diastolic vortex, in contrast to earlier findings. Copyright © 2016 the American Physiological Society.

  13. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  14. Kinetic-Energy Distribution of D(2p) Atoms from Analysis of the D Lyman-Alpha Line Profile

    Science.gov (United States)

    Ciocca, M.; Ajello, Joseph M.; Liu, Xianming; Maki, Justin

    1997-01-01

    The kinetic-energy distribution of D(2p) atoms resulting from electron-impact dissociation of D2 has been measured. A high-resolution vacuum ultraviolet spectrometer was employed for the first measurement of the D Lyman-alpha (D L(alpha)) emission line profiles at 20- and 100-eV excitation energies. Analysis of the deconvoluted line profile of D L(alpha) at 100 eV reveals the existence of a narrow line central peak of 29+/-2 mA full width at half maximum and a broad pedestal wing structure about 190 mA wide. The wings of the line can be used to determine the fast atom distribution. The wings of D L(alpha) arise from dissociative excitation of a series of doubly excited states that cross the Franck-Condon region between 23 and 40 eV. The fast atom distribution at 100-eV electron impact energy spans the energy range from 1 to 10 eV with a peak value near 6 eV. Slow D(2p) atoms characterized by a distribution function with peak energy near 100 meV produce the central peak profile, which is nearly independent of the impact energy. The deconvoluted line profiles of the central peak at 20 eV for dissociative excitation of D2 and H2 are fitted with an analytical function for use in calibration of space flight instrumentation equipped with a D/H absorption cell. The kinetic-energy and line profile results are compared to similar measurements for H2. The absolute cross sections for the line center (slow atoms) and wings (fast atoms) and total emission line profile were measured from threshold to 400 eV. Analytical model coefficients are given for the energy dependence of the measured slow atom cross section.

  15. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    Science.gov (United States)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  16. Nonlocal optical response in metallic nanostructures.

    Science.gov (United States)

    Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N

    2015-05-13

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.

  17. Nonlocal optical response in metallic nanostructures

    DEFF Research Database (Denmark)

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn

    2015-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....

  18. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  19. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  20. Non-local Optical Potentials

    Science.gov (United States)

    Thompson, Ian

    2010-11-01

    In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.

  1. Numerical simulation of the one-dimensional population dynamics with nonlocal competitive losses and convection

    Science.gov (United States)

    Aleutdinova, V. A.; Borisov, A. V.; Shaparev, V. É.; Shapovalov, A. V.

    2011-09-01

    Numerical solutions of the generalized one-dimensional Fisher-Kolmogorov-Petrovskii-Piskunov equation with nonlocal competitive losses and convection are constructed. The influence function for nonlocal losses is chosen in the form of a Gaussian distribution. The effect of convection on the dynamics of the spatially inhomogeneous distribution of the population density is investigated.

  2. A novel approach to kinetic energy release distribution and charge state distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kaidee [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: lee@nsrrc.org.tw

    2005-06-15

    When a swarm of ions are accelerated by a pulsed electric field for a common duration before entering an electrostatically dispersive energy analyzer, they will be sorted according to their charge-to-mass ratio q/m. In other words, the apparent kinetic energy upon which an ion will be registered in an apparent 'energy' spectrum thus obtained is proportional to its q/m ratio. For ions of a fixed mass m, the apparent energy spectrum becomes a charge state distribution spectrum. For ions of a fixed charge q, the apparent energy spectrum becomes a mass spectrum. In essence, an energy analyzer becomes both a charge sorter and a mass spectrometer when operated in this mode. In addition, when applied to the detection of photofragment ions, this technique will be able to yield information on the kinetic energy release distribution of the underlying dissociation events.

  3. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  4. Traumatic thrombosis of internal carotid artery sustained by transfer of kinetic energy.

    Science.gov (United States)

    Kalcioglu, Mahmut Tayyar; Celbis, Osman; Mizrak, Bulent; Firat, Yezdan; Selimoglu, Erol

    2012-06-01

    A 31-year-old male patient with a fatal thrombosis of the internal carotid artery caused by gun shot injury was presented in this case report. The patient was referred to the hospital with a diffuse edema on his left cheek. On otolaryngologic examination, there was a bullet entrance hole at the left mandibular corpus. No exit hole could be found. The finding from his axial computed tomography of neck and paranasal sinuses was normal. On neurological examination, a dense right hemiparesis was observed. In his cerebral angiogram, left common carotid artery was totally obliterated. Diffuse ischemia was observed in the left cerebral hemisphere. Despite intensive interventions, the patient died 4 days after the accident. In the autopsy, a large thrombosis was obtained in the left common carotid artery. This case emphasizes a fatal kinetic energy effect in vascular structures. It is stressed that a gun shot injury could be fatal with its indirect kinetic energy effects at subacute phase.

  5. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    Science.gov (United States)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  6. The genetic code and its optimization for kinetic energy conservation in polypeptide chains.

    Science.gov (United States)

    Guilloux, Antonin; Jestin, Jean-Luc

    2012-08-01

    Why is the genetic code the way it is? Concepts from fields as diverse as molecular evolution, classical chemistry, biochemistry and metabolism have been used to define selection pressures most likely to be involved in the shaping of the genetic code. Here minimization of kinetic energy disturbances during protein evolution by mutation allows an optimization of the genetic code to be highlighted. The quadratic forms corresponding to the kinetic energy term are considered over the field of rational numbers. Arguments are given to support the introduction of notions from basic number theory within this context. The observations found to be consistent with this minimization are statistically significant. The genetic code may well have been optimized according to energetic criteria so as to improve folding and dynamic properties of polypeptide chains. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Influence of the Richtmyer-Meshkov instability on the kinetic energy spectrum.

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christopher R. (University of Wisconsin-Madison, Madison, WI)

    2010-09-01

    The fluctuating kinetic energy spectrum in the region near the Richtmyer-Meshkov instability (RMI) is experimentally investigated using particle image velocimetry (PIV). The velocity field is measured at a high spatial resolution in the light gas to observe the effects of turbulence production and dissipation. It is found that the RMI acts as a source of turbulence production near the unstable interface, where energy is transferred from the scales of the perturbation to smaller scales until dissipation. The interface also has an effect on the kinetic energy spectrum farther away by means of the distorted reflected shock wave. The energy spectrum far from the interface initially has a higher energy content than that of similar experiments with a flat interface. These differences are quick to disappear as dissipation dominates the flow far from the interface.

  8. The onset of sediment transport in vegetated channels predicted by turbulent kinetic energy

    Science.gov (United States)

    Yang, J. Q.; Chung, H.; Nepf, H. M.

    2016-11-01

    This laboratory study advances our understanding of sediment transport in vegetated regions, by describing the impact of stem density on the critical velocity, Ucrit, at which sediment motion is initiated. Sparse emergent vegetation was modeled with rigid cylinders arranged in staggered arrays of different stem densities. The sediment transport rate, Qs, was measured over a range of current speeds using digital imaging, and the critical velocity was selected as the condition at which the magnitude of Qs crossed the noise threshold. For both grain sizes considered here (0.6-0.85 mm and 1.7-2 mm), Ucrit decreased with increasing stem density. This dependence can be explained by a threshold condition based on turbulent kinetic energy, kt, suggesting that near-bed turbulence intensity may be a more important control than bed shear stress on the initiation of sediment motion. The turbulent kinetic energy model unified the bare bed and vegetated channel measurements.

  9. Turbulent Kinetic Energy Spectra of Solar Convection from NST Observations and Realistic MHD Simulations

    CERN Document Server

    Kitiashvili, I N; Goode, P R; Kosovichev, A G; Lele, S K; Mansour, N N; Wray, A A; Yurchyshyn, V B

    2012-01-01

    Turbulent properties of the quiet Sun represent the basic state of surface conditions, and a background for various processes of solar activity. Therefore understanding of properties and dynamics of this `basic' state is important for investigation of more complex phenomena, formation and development of observed phenomena in the photosphere and atmosphere. For characterization of the turbulent properties we compare kinetic energy spectra on granular and sub-granular scales obtained from infrared TiO observations with the New Solar Telescope (Big Bear Solar Observatory) and from 3D radiative MHD numerical simulations ('SolarBox' code). We find that the numerical simulations require a high spatial resolution with 10 - 25 km grid-step in order to reproduce the inertial (Kolmogorov) turbulence range. The observational data require an averaging procedure to remove noise and potential instrumental artifacts. The resulting kinetic energy spectra show a good agreement between the simulations and observations, opening...

  10. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    Science.gov (United States)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  11. Some Properties of the Kinetic Energy Flux and Dissipation in Turbulent Stellar Convection Zones

    CERN Document Server

    Meakin, Casey

    2010-01-01

    We investigate simulated turbulent flow within thermally driven stellar convection zones. Different driving sources are studied, including cooling at the top of the convectively unstable region, as occurs in surface convection zones; and heating at the base by nuclear burning. The transport of enthalpy and kinetic energy, and the distribution of turbulent kinetic energy dissipation are studied. We emphasize the importance of global constraints on shaping the quasi-steady flow characteristics, and present an analysis of turbulent convection which is posed as a boundary value problem that can be easily incorporated into standard stellar evolution codes for deep, efficient convection. Direct comparison is made between the theoretical analysis and the simulated flow and very good agreement is found. Some common assumptions traditionally used to treat quasi-steady turbulent flow in stellar models are briefly discussed. The importance and proper treatment of convective boundaries are indicated.

  12. Decrypting the charge-resolved kinetic-energy spectrum in the Coulomb explosion of argon clusters

    Science.gov (United States)

    Rajeev, R.; Rishad, K. P. M.; Trivikram, T. Madhu; Narayanan, V.; Brabec, T.; Krishnamurthy, M.

    2012-02-01

    Ion emissions from clusters in intense ultrashort laser fields have been studied predominantly using time-of-flight (TOF) spectroscopy so far. Assuming atomic ion emission, arrival time signal is converted to a charge-integrated kinetic-energy spectrum. We present here a Thomson parabola spectrum that decrypts the charge-integrated energy distribution to the charge-resolved kinetic-energy spectra (CRKES). TOF measurements compare well with the spectrum generated by encrypting back the CRKES. A quantitative measure of ionization probabilities of Ar36000 clusters to varied charge states at 7×1015 W cm-2 is compared with three-dimensional microscopic particle-in-cell simulations. A good agreement between these detailed measurements and the simulations shows the possibility for the retrieval of charge distribution within a nanocluster.

  13. The dynamic polarization potential and dynamical non-locality in nuclear potentials: Deuteron-nucleus potential

    CERN Document Server

    Mackintosh, R S

    2016-01-01

    The consequences for direct reactions of the dynamical non-locality generated by the excitation of the target and projectile are much less studied than the effects of non-locality arising from exchange processes. Here we are concerned with the dynamical non-locality due to projectile excitation in deuteron induced reactions. The consequences of this non-locality can be studied by the comparison of deuteron induced direct reactions calculated with alternative representations of the elastic channel wave functions: (i) the elastic channel wave functions from coupled channel (CC) calculations involving specific reaction processes, and, (ii) elastic channel wave functions calculated from local potentials that exactly reproduce the elastic scattering $S$-matrix from the same CC calculations. In this work we produce the local equivalent deuteron potentials required for the study of direct reactions involving deuterons. These will enable the study of the effects of dynamical non-locality following a method previously...

  14. Kinetic Energy Release in Fragmentation Processes following Electron Emission: A time dependent approach

    CERN Document Server

    Chiang, Ying-Chih; Meyer, Hans-Dieter; Cederbaum, Lorenz S

    2012-01-01

    A time-dependent approach for the kinetic energy release (KER) spectrum is developed for a fragmentation of a diatomic molecule after an electronic decay process, e.g. Auger process. It allows one to simulate the time-resolved spectra and provides more insight into the molecular dynamics than the time-independent approach. Detailed analysis of the time-resolved emitted electron and KER spectra sheds light on the interrelation between wave packet dynamics and spectra.

  15. A Nonlocal Poisson-Fermi Model for Ionic Solvent

    CERN Document Server

    Xie, Dexuan; Eisenberg, Bob; Scott, L Ridgway

    2016-01-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-type kernel function. Moreover, the Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Finally, numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  16. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  17. Kinetic energy from supernova feedback in high-resolution galaxy simulations

    CERN Document Server

    Simpson, Christine M; Hummels, Cameron; Ostriker, Jeremiah P

    2014-01-01

    We describe a new method for adding a prescribed amount of kinetic energy to simulated gas modeled on a cartesian grid by directly altering grid cells' mass and velocity in a distributed fashion. The method is explored in the context of supernova feedback in high-resolution hydrodynamic simulations of galaxy formation. In idealized tests at varying background densities and resolutions, we show convergence in behavior between models with different initial kinetic energy fractions at low densities and/or at high resolutions. We find that in high density media ($\\gtrsim$ 50 cm$^{-3}$) with coarse resolution ($\\gtrsim 4$ pc per cell), results are sensitive to the initial fraction of kinetic energy due to the early rapid cooling of thermal energy. We describe and test a resolution dependent scheme for adjusting this fraction that approximately replicates our high-resolution tests. We apply the method to a prompt supernova feedback model, meant to mimic Type II supernovae, in a cosmological simulation of a $10^9$ M...

  18. Anomalous kinetic energy of a system of dust particles in a gas discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Norman, G. E., E-mail: norman@ihed.ras.ru; Stegailov, V. V., E-mail: stegailov@gmail.com; Timofeev, A. V., E-mail: timofeevalvl@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2011-11-15

    The system of equations of motion of dust particles in a near-electrode layer of a gas discharge has been formulated taking into account fluctuations of the charge of a dust particle and the features of the nearelectrode layer of the discharge. The molecular dynamics simulation of the system of dust particles has been carried out. Performing a theoretical analysis of the simulation results, a mechanism of increasing the average kinetic energy of dust particles in the gas discharge plasma has been proposed. According to this mechanism, the heating of the vertical oscillations of dust particles is initiated by induced oscillations generated by fluctuations of the charge of dust particles, and the energy transfer from vertical to horizontal oscillations can be based on the parametric resonance phenomenon. The combination of the parametric and induced resonances makes it possible to explain an anomalously high kinetic energy of dust particles. The estimate of the frequency, amplitude, and kinetic energy of dust particles are close to the respective experimental values.

  19. Kinetic Energy and Angular Distributions of He and Ar Atoms Evaporating from Liquid Dodecane.

    Science.gov (United States)

    Patel, Enamul-Hasan; Williams, Mark A; Koehler, Sven P K

    2017-01-12

    We report both kinetic energy and angular distributions for He and Ar atoms evaporating from C12H26. All results were obtained by performing molecular dynamics simulations of liquid C12H26 with around 10-20 noble gas atoms dissolved in the liquid and by subsequently following the trajectories of the noble gas atoms after evaporation from the liquid. Whereas He evaporates with a kinetic energy distribution of (1.05 ± 0.03) × 2RT (corrected for the geometry used in experiments: (1.08 ± 0.03) × 2RT, experimentally obtained value: (1.14 ± 0.01) × 2RT), Ar displays a kinetic energy distribution that better matches a Maxwell-Boltzmann distribution at the temperature of the liquid ((0.99 ± 0.04) × 2RT). This behavior is also reflected in the angular distributions, which are close to a cosine distribution for Ar but slightly narrower, especially for faster atoms, in the case of He. This behavior of He is most likely due to the weak interaction potential between He and the liquid hydrocarbon.

  20. Measuring kinetic energy changes in the mesoscale with low acquisition rates

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, É. [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Martínez, I. A.; Rica, R. A., E-mail: rul@ugr.es [ICFO–Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, 08860 Castelldefels (Barcelona) (Spain); Dinis, L. [GISC–Grupo Interdisciplinar de Sistemas Complejos, Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2014-06-09

    We report on the measurement of the average kinetic energy changes in isothermal and non-isothermal quasistatic processes in the mesoscale, realized with a Brownian particle trapped with optical tweezers. Our estimation of the kinetic energy change allows to access to the full energetic description of the Brownian particle. Kinetic energy estimates are obtained from measurements of the mean square velocity of the trapped bead sampled at frequencies several orders of magnitude smaller than the momentum relaxation frequency. The velocity is tuned applying a noisy electric field that modulates the amplitude of the fluctuations of the position and velocity of the Brownian particle, whose motion is equivalent to that of a particle in a higher temperature reservoir. Additionally, we show that the dependence of the variance of the time-averaged velocity on the sampling frequency can be used to quantify properties of the electrophoretic mobility of a charged colloid. Our method could be applied to detect temperature gradients in inhomogeneous media and to characterize the complete thermodynamics of biological motors and of artificial micro and nanoscopic heat engines.

  1. Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media

    Directory of Open Access Journals (Sweden)

    Maxim A. Molchan

    2007-08-01

    Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.

  2. Nonlocal Measurements via Quantum Erasure.

    Science.gov (United States)

    Brodutch, Aharon; Cohen, Eliahu

    2016-02-19

    Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.

  3. Nonlocalized cluster dynamics and nuclear molecular structure

    CERN Document Server

    Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2013-01-01

    A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...

  4. Nonlocal optical response in metallic nanostructures

    OpenAIRE

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger

    2014-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...

  5. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  6. Totality of Subquantum Nonlocal Correlations

    CERN Document Server

    Khrennikov, Andrei

    2011-01-01

    In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...

  7. Anderson Localization in Nonlocal Nonlinear Media

    CERN Document Server

    Folli, Viola; 10.1364/OL.37.000332

    2012-01-01

    The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.

  8. Solitons in nonlocal nonlinear media: Exact solutions

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole

    2001-01-01

    We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...

  9. Exact Solutions in Nonlocal Linear Models

    OpenAIRE

    Vernov, S. Yu.

    2008-01-01

    A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.

  10. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  11. Nonlocally Centralized Simultaneous Sparse Coding

    Institute of Scientific and Technical Information of China (English)

    雷阳; 宋占杰

    2016-01-01

    The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.

  12. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  13. Hierarchical expansion of the kinetic energy operator in curvilinear coordinates for the vibrational self-consistent field method.

    Science.gov (United States)

    Strobusch, D; Scheurer, Ch

    2011-09-28

    A new hierarchical expansion of the kinetic energy operator in curvilinear coordinates is presented and modified vibrational self-consistent field (VSCF) equations are derived including all kinematic effects within the mean field approximation. The new concept for the kinetic energy operator is based on many-body expansions for all G matrix elements and its determinant. As a test application VSCF computations were performed on the H(2)O(2) molecule using an analytic potential (PCPSDE) and different hierarchical approximations for the kinetic energy operator. The results indicate that coordinate-dependent reduced masses account for the largest part of the kinetic energy. Neither kinematic couplings nor derivatives of the G matrix nor its determinant had significant effects on the VSCF energies. Only the zero-point value of the pseudopotential yields an offset to absolute energies which, however, is irrelevant for spectroscopic problems.

  14. Simple Method Obtaining Analytical Expressions of Particle and Kinetic-Energy Densities for One-Dimensional Confined Fermi Gases

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoXue; WU Ying

    2002-01-01

    We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.

  15. Bounding the persistency of the nonlocality of W states

    Science.gov (United States)

    Diviánszky, Péter; Trencsényi, Réka; Bene, Erika; Vértesi, Tamás

    2016-04-01

    The nonlocal properties of the W states are investigated under particle loss. By removing all but two particles from an N -qubit W state, the resulting two-qubit state is still entangled. Hence, the W state has high persistency of entanglement. We ask an analogous question regarding the persistency of nonlocality [see N. Brunner and T. Vértesi, Phys. Rev. A 86, 042113 (2012), 10.1103/PhysRevA.86.042113]. Namely, we inquire what is the minimal number of particles that must be removed from the W state so that the resulting state becomes local. We bound this value in function of N qubits by considering Bell nonlocality tests with two alternative settings per site. In particular, we find that this value is between 2 N /5 and N /2 for large N . We also develop a framework to establish bounds for more than two settings per site.

  16. Near field radiative heat transfer between two nonlocal dielectrics

    CERN Document Server

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  17. A Caveat on Building Nonlocal Models of Cosmology

    CERN Document Server

    Tsamis, N C

    2014-01-01

    Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.

  18. Modelling population growth with delayed nonlocal reaction in 2-dimensions.

    Science.gov (United States)

    Liang, Dong; Wu, Jianhong; Zhang, Fan

    2005-01-01

    In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.

  19. Theory of genuine tripartite nonlocality of Gaussian states.

    Science.gov (United States)

    Adesso, Gerardo; Piano, Samanta

    2014-01-10

    We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable systems. For pure states, we present a simplified procedure to obtain the maximum violation of the Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine tripartite entanglement measured via Rényi-2 entropy. The maximum Svetlichny violation admits tight upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the nonclassical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise recipes for its experimental verification.

  20. Generalized non-local responses and higher harmonic retention in non-local polymerization driven diffusion model based simulations

    Science.gov (United States)

    Sheridan, J. T.; Kelly, J. V.; O'Brien, G.; Gleeson, M. R.; O'Neill, F. T.

    2004-12-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is described as non-local as it is assumed that monomers are polymerized to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The material model is non-linear as a general non-linear material response to the incident light is included. Typically the numerical method of solution has involved retaining only up to four harmonics of the Fourier series of monomer concentration in the calculations. In this paper a general set of coupled first-order differential equations is derived which allow the inclusion of a higher number of harmonics. The resulting effect on the convergence of the algorithm, as the number of harmonics retained is increased, is investigated. Special care is taken to note the effect of physical parameters, i.e. the non-local material variance σ, the power-law degree k, and the rates of diffusion, D, and polymerization, F0.

  1. Dynamical nonlocal coherent-potential approximation for itinerant electron magnetism.

    Science.gov (United States)

    Rowlands, D A; Zhang, Yu-Zhong

    2014-11-26

    A dynamical generalisation of the nonlocal coherent-potential approximation is derived based upon the functional integral approach to the interacting electron problem. The free energy is proven to be variational with respect to the self-energy provided a self-consistency condition on a cluster of sites is satisfied. In the present work, calculations are performed within the static approximation and the effect of the nonlocal physics on the formation of the local moment state in a simple model is investigated. The results reveal the importance of the dynamical correlations.

  2. Low-Energy Signatures of Nonlocal Field Theories

    CERN Document Server

    Belenchia, Alessio; Martin-Martinez, Eduardo; Saravani, Mehdi

    2016-01-01

    The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by non-analytic functions of the d'Alembertian operator $\\Box$ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy non-locality scales. This allows us to suggest a nuclear physics experiment ($\\sim$ MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.

  3. Theoretical Foundations of Incorporating Local Boundary Conditions into Nonlocal Problems

    Science.gov (United States)

    Aksoylu, Burak; Beyer, Horst Reinhard; Celiker, Fatih

    2017-08-01

    We study nonlocal equations from the area of peridynamics on bounded domains. We present four main results. In our recent paper, we have discovered that, on R, the governing operator in peridynamics, which involves a convolution, is a bounded function of the classical (local) governing operator. Building on this, as main result 1, we construct an abstract convolution operator on bounded domains which is a generalization of the standard convolution based on integrals. The abstract convolution operator is a function of the classical operator, defined by a Hilbert basis available due to the purely discrete spectrum of the latter. As governing operator of the nonlocal equation we use a function of the classical operator, this allows us to incorporate local boundary conditions into nonlocal theories. As main result 2, we prove that the solution operator can be uniquely decomposed into a Hilbert-Schmidt operator and a multiple of the identity operator. As main result 3, we prove that Hilbert-Schmidt operators provide a smoothing of the input data in the sense a square integrable function is mapped into a function that is smooth up to boundary of the domain. As main result 4, for the homogeneous nonlocal wave equation, we prove that continuity is preserved by time evolution. Namely, the solution is discontinuous if and only if the initial data is discontinuous. As a consequence, discontinuities remain stationary.

  4. Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    王兵; 张会强; 王希麟

    2004-01-01

    The instantaneous and time-averaged statistic characteristics of the sub-grid scale (SGS) turbulent kinetic energy and SGS dissipation in a backward-facing step turbulent flow have been studied bylarge eddy simulation. The SGS turbulent kinetic energy and SGS turbulent dissipation vary in different flow regions and decrease with the flow developing spatially. The fluid molecular dissipation shares about 14% to 28% of the whole dissipation.

  5. Fission properties of einsteinium and fermium. [Half-life, kinetic energy release, mass division, prompt neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1978-01-01

    The systematics of the low energy fission of the fermium isotopes is studied considering half-lives, masss division, kinetic-energy release, and accompanying prompt neutron emission. It is shown that the low energy fission of the fermium isotopes is a microcosm of the fission process, exhibiting a wide range of half lives, mass and kinetic energy distributions and varying neutron emission. The trends in the fermium isotopes are considered. 23 references. (JFP)

  6. Transition between self-focusing and self-defocusing in nonlocally nonlinear media

    CERN Document Server

    Liang, Guo; Hu, Yahong; Wang, Jing; Wang, Zhuo; Li, Yingbing; Guo, Qi; Hu, Wei; Lou, Senyue; Christodoulides, Demetrios N

    2015-01-01

    We reveal the relevance between the nonlocality and the focusing/defocusing states in nonlocally nonlinear media, and predict a novel phenomenon that the self-focusing/self-defocusing property of the optical beam in the nonlocally nonlinear medium with a sine-oscillation response function depends on its degree of nonlocality. The transition from the focusing nonlinearity to the defocusing nonlinearity of the nonlinear refractive index will happen when the degree of nonlocality of the system goes cross a critical value, and vise verse. Bright and dark soliton solutions are obtained, respectively, in the focusing state and in the defocusing state, and their stabilities are also discussed. It is mentioned that such a phenomenon might be experimentally realized in the nematic liquid crystal with negative dielectric anisotropy or in the quadratic nonlinear medium.

  7. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  8. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...

  9. A nonlocal discretization of fields

    CERN Document Server

    Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.

    2001-01-01

    A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.

  10. Learning Non-Local Dependencies

    Science.gov (United States)

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  11. Learning Non-Local Dependencies

    Science.gov (United States)

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  12. Extreme nonlocality with one photon

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)

    2011-05-15

    Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.

  13. Temperature Dependence of the Kinetic Energy of the Correlated Electron Plasma by Restricted Path-Integral Molecular Dynamics

    Science.gov (United States)

    Runge, Keith; Deymier, Pierre

    2013-03-01

    Recent progress in orbital-free Density Functional Theory (OF-DFT), particularly with regard to temperature dependent functionals, has promise for the simulation of warm dense matter (WDM) systems. WDM includes systems with densities of an order of magnitude beyond ambient or more and temperatures measured in kilokelvin. A challenge for the development of temperature dependent OF-DFT functionals is the lack of benchmark information with temperature and pressure dependence on simple models under WDM conditions. We present an approach to fill this critical gap using the restricted path-integral molecular dynamics (rPIMD) method. Electrons are described as harmonic necklaces within the discrete path integral representation while quantum exchange takes the form of cross linking between electron necklaces. A molecular dynamics algorithm is used to sample phase space and the fermion sign problem is addressed by restricting the density matrix to positive values. The temperature dependence of kinetic energies for the strongly coupled electron plasma is presented for a number of Wigner-Seitz radii in terms of a fourth order Sommerfeld expansion. Supported by US DoE Grant DE-SC0002139

  14. Nonlocal dispersive optical model ingredients for ${}^{40}$Ca

    CERN Document Server

    Mahzoon, M H; Dickhoff, W H; Dussan, H; Waldecker, S J

    2013-01-01

    A comprehensive description of all single-particle properties associated with the nucleus ${}^{40}$Ca has been generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. We gather all relevant functional forms and the numerical values of the parameters in this contribution.

  15. Numerical computation of a nonlocal double obstacle problem

    NARCIS (Netherlands)

    Bhowmik, S.K.

    2009-01-01

    We consider a nonlocal double obstacle problem. This type of problems comes in various biological and physical situations, e.g., in phase transition models. We focus on numerical approximations and fast computation of such a model. We start with considering piece-wise basis functions for spatial app

  16. Collapse arrest and soliton stabilization in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Bang, Ole; Krolikowski, Wieslaw; Wyller, John

    2002-01-01

    We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...

  17. Fragment Excitation and Moments of Kinetic Energy Distributions in Nuclear Fission

    Science.gov (United States)

    Faust, Herbert R.

    2004-02-01

    The Random Excitation Model (REX-M) in nuclear fission is formulated with the level density formula from the Fermi-gas model. It is assumed that excitation of fission fragments is totally determined by a temperature calculated from the reaction Q-value. From this assumption fragment excitation, moments of kinetic energy distributions, and neutron evaporation are calculated. It is shown that the measured distributions and the neutron evaporation characteristics are in good agreement with the model calculations. Finally we extend the REX-model to describe aspects of ternary fission.

  18. Kinetic energies of fragment ions produced by dissociative photoionization of NO

    Science.gov (United States)

    Samson, J. A. R.; Angel, G. C.; Rstgi, O. P.

    1985-01-01

    The kinetic energies of ions produced by dissociative photoionization of NO have been measured at the discrete resonance lines of He (584A) and Ne (736A), and with undispersed synchrotron radiation. O sup + ions were identified with energies from 0 to approximately 0.5 eV and two groups of N sup + ions one with energy of 0.36 eV and another with energies between 0.9 and 1.5 eV, apparently produced by predissociation of the C sup 3 P 1 and B'1 sigma states respectively.

  19. Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy

    Science.gov (United States)

    Yoshizawa, Akira; Liou, Meng-Sing

    1992-01-01

    The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.

  20. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    Science.gov (United States)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  1. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.

    1991-01-01

    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile's initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  2. Numerical simulations of gun-launched kinetic energy projectiles subjected to asymmetric projectile base pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rabern, D.A.

    1991-12-31

    Three-dimensional numerical simulations were performed to determine the effect of an asymmetric base pressure on kinetic energy projectiles during launch. A matrix of simulations was performed in two separate launch environments. One launch environment represented a severe lateral load environment, while the other represented a nonsevere lateral load environment based on the gun tube straightness. The orientation of the asymmetric pressure field, its duration, the projectile`s initial position, and the tube straightness were altered to determine the effects of each parameter. The pressure asymmetry translates down the launch tube to exit parameters and is washed out by tube profile. Results from the matrix of simulations are presented.

  3. Calculated half-lives and kinetic energies for spontaneous emission of heavy ions from nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Greiner, W.; Depta, K.; Ivascu, M.; Mazilu, D.; Sandulescu, A.

    1986-05-01

    The most probable decays by spontaneous emission of heavy ions are listed for nuclides with Z = 47--106 and total half-lives>1 ..mu..sec. Partial half-lives, branching ratios relative to ..cap alpha.. decay, kinetic energies, and Q values are estimated by using the analytical superasymmetric fission model, a semiempirical formula for those ..cap alpha..-decay lifetimes which have not been measured, and the new Wapstra--Audi mass tables. Numerous ''stable'' nuclides with Z>40 are found to be metastable with respect to the new decay modes. The current experimental status is briefly reviewed.

  4. On the possibility of kinetic energy density evaluation from the experimental electron-density distribution

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, Yu.A. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)

    1997-05-01

    A simple new approach for the evaluation of the electronic kinetic energy density, G(r), from the experimental (multipole-fitted) electron density is proposed. It allows a quantitative and semi-quantitative description of the G(r) behavior at the bond critical points of compounds with closed-shell and shared interactions, respectively. This can provide information on the values of the kinetic electron energy densities at the bond critical points, which appears to be useful for quantum-topological studies of chemical interactions using experimental electron densities. (orig.).

  5. Kinetic energy releases of small amino acids upon interaction with keV ions

    Energy Technology Data Exchange (ETDEWEB)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlatholter, T. [Groningen Univ., KVI Atomic Physics (Netherlands); Schlatholter, T. [Universites P. et M. Curie and D. Diderot, INSP, CNRS UMR 75-88, 75 - Paris (France)

    2009-01-15

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV {alpha}-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies. (authors)

  6. Kinetic energy releases of small amino acids upon interaction with keV ions

    Science.gov (United States)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlathölter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies.

  7. Effects of nonlocal one-pion-exchange potential in the deuteron

    Science.gov (United States)

    Forest, J. L.

    2000-03-01

    The off-shell aspects of the one-pion-exchange potential (OPEP) are discussed. Relativistic Hamiltonians containing relativistic kinetic energy, relativistic OPEP with various off-shell behaviors, and Argonne v18 short-range parametrization are used to study the deuteron wave functions. The OPEP off-shell behaviors depend on whether a pseudovector or pseudoscalar pion-nucleon coupling is used and are characterized by a parameter μ. We study potentials having μ=-1, 0, and +1 and we find that they are nearly unitarily equivalent. We also find that a nonrelativistic Hamiltonian containing local potentials and nonrelativistic kinetic energy provides a good approximation to a Hamiltonian containing a relativistic OPEP based on pseudovector pion-nucleon coupling and relativistic kinetic energy.

  8. Numerical investigation of kinetic energy dynamics during autoignition of n-heptane/air mixture

    Science.gov (United States)

    Lucena Kreppel Paes, Paulo; Brasseur, James; Xuan, Yuan

    2015-11-01

    Many engineering applications involve complex turbulent reacting flows, where nonlinear, multi-scale turbulence-combustion couplings are important. Direct representation of turbulent reacting flow dynamics is associated with prohibitive computational costs, which makes it necessary to employ turbulent combustion models to account for the effects of unresolved scales on resolved scales. Classical turbulence models are extensively employed in reacting flow simulations. However, they rely on assumptions about the energy cascade, which are valid for incompressible, isothermal homogeneous isotropic turbulence. A better understanding of the turbulence-combustion interactions is required for the development of more accurate, physics-based sub-grid-scale models for turbulent reacting flows. In order to investigate the effects of reaction-induced density, viscosity, and pressure variations on the turbulent kinetic energy, Direct Numerical Simulation (DNS) of autoignition of partially-premixed, lean n-heptane/air mixture in three-dimensional homogeneous isotropic turbulence has been performed. This configuration represents standard operating conditions of Homogeneous-Charge Compression-Ignition (HCCI) engines. The differences in the turbulent kinetic energy balance between the present turbulent reacting flow and incompressible, isothermal homogeneous isotropic turbulence are highlighted at different stages during the autoignition process.

  9. Comparison of CME masses and kinetic energies near the Sun and in the inner heliosphere

    Science.gov (United States)

    Webb, D. F.; Howard, R. A.; Jackson, B. V.

    1995-01-01

    Masses have now been determined for many of the CMEs observed in the inner heliosphere by the HELIOS 1 and 2 zodiacal light photometers. The speed of the brightest material of each CME has also been measured so that, for events having both mass and speed determinations, the kinetic energies of the CMEs are estimated. We compare the masses and kinetic energies of the individual CMEs measured in the inner heliosphere by HELIOS and near the Sun from observations by the SOLWIND (1979-1983) and SMM coronagraphs (1980). Where feasible we also compare the speeds of the same CMEs. We find that the HELIOS masses and energies tend to be somewhat larger by factors of 2-5 than those derived from the coronagraph data. We also compare the distribution of the masses and energies of the HELIOS and coronagraph CMEs over the solar cycle. These results provide an important baseline for observations of CMEs from coronagraphs, from the ISEE-3/ICE, WIND and Ulysses spacecraft and in the future from SOHO.

  10. A kinetic energy model of two-vehicle crash injury severity.

    Science.gov (United States)

    Sobhani, Amir; Young, William; Logan, David; Bahrololoom, Sareh

    2011-05-01

    An important part of any model of vehicle crashes is the development of a procedure to estimate crash injury severity. After reviewing existing models of crash severity, this paper outlines the development of a modelling approach aimed at measuring the injury severity of people in two-vehicle road crashes. This model can be incorporated into a discrete event traffic simulation model, using simulation model outputs as its input. The model can then serve as an integral part of a simulation model estimating the crash potential of components of the traffic system. The model is developed using Newtonian Mechanics and Generalised Linear Regression. The factors contributing to the speed change (ΔV(s)) of a subject vehicle are identified using the law of conservation of momentum. A Log-Gamma regression model is fitted to measure speed change (ΔV(s)) of the subject vehicle based on the identified crash characteristics. The kinetic energy applied to the subject vehicle is calculated by the model, which in turn uses a Log-Gamma Regression Model to estimate the Injury Severity Score of the crash from the calculated kinetic energy, crash impact type, presence of airbag and/or seat belt and occupant age. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Quantifying Turbulent Kinetic Energy in an Aortic Coarctation with Large Eddy Simulation and Magnetic Resonance Imaging

    Science.gov (United States)

    Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2012-11-01

    In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.

  13. When and how does a prominence-like jet gain kinetic energy?

    CERN Document Server

    Liu, Jiajia; Liu, Rui; Zhang, Quanhao; Liu, Kai; Shen, Chenglong; Wang, S

    2014-01-01

    Jet, a considerable amount of plasma being ejected from chromosphere or lower corona into higher corona, is a common phenomenon. Usually a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, non-thermal and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The whole picture described above is well known in the community, but how and how much magnetic energy is released through the way other than the reconnection is still unclear. Here, through studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet t...

  14. Nonlinear structure formation in Nonlocal Gravity

    CERN Document Server

    Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia

    2014-01-01

    We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...

  15. Nonlocal elasticity defined by Eringen's integral model: Introduction of a boundary layer method

    National Research Council Canada - National Science Library

    Abdollahi, R; Boroomand, B

    2014-01-01

    In this paper we consider a nonlocal elasticity theory defined by Eringen's integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs...

  16. The interaction of C60 on Si(111 7x7 studied by Supersonic Molecular Beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes.

    Directory of Open Access Journals (Sweden)

    Lucrezia eAversa

    2015-06-01

    Full Text Available Buckminsterfullerene (C60 is a molecule fully formed of carbon that can be used, owing to its electronic and mechanical properties, as clean precursor for the growth of carbon-based materials, ranging from -conjugated systems (graphenes to synthesized species, e.g. carbides such as silicon carbide (SiC. To this goal, C60 cage rupture is the main physical process that triggers material growth. Cage breaking can be obtained either thermally by heating up the substrate to high temperatures (630°C, after C60 physisorption, or kinetically by using Supersonic Molecular Beam Epitaxy (SuMBE techniques. In this work, aiming at demonstrating the growth of SiC thin films by C60 supersonic beams, we present the experimental investigation of C60 impacts on Si(111 7x7 kept at 500°C for translational kinetic energies ranging from 18 to 30 eV. The attained kinetically activated synthesis of SiC submonolayer films is probed by in-situ surface electron spectroscopies (XPS and UPS. Furthermore, in these experimental conditions the C60-Si(111 7×7 collision has been studied by computer simulations based on a tight-binding approximation to Density Functional Theory, DFT. Our theoretical and experimental findings point towards a kinetically driven growth of SiC on Si, where C60 precursor kinetic energy plays a crucial role, while temperature is relevant only after cage rupture to enhance Si and carbon reactivity. In particular, we observe a counterintuitive effect in which for low kinetic energy (below 22 eV, C60 bounces back without breaking more effectively at high temperature due to energy transfer from excited phonons. At higher kinetic energy (22 < K < 30 eV, for which cage rupture occurs, temperature enhances reactivity without playing a major role in the cage break. These results are in good agreement with ab-initio molecular dynamics simulations. SuMBE is thus a technique able to drive materials growth at low temperature regime.

  17. Non-Local Euclidean Medians.

    Science.gov (United States)

    Chaudhury, Kunal N; Singer, Amit

    2012-11-01

    In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.

  18. Extreme nonlocality with one photon

    CERN Document Server

    Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko

    2009-01-01

    The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.

  19. Percolation transitions with nonlocal constraint.

    Science.gov (United States)

    Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong

    2012-09-01

    We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.

  20. Rogue waves in nonlocal media

    CERN Document Server

    Horikis, Theodoros P

    2016-01-01

    The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.

  1. Nonlocal Quantum Effects in Cosmology

    CERN Document Server

    Dumin, Yurii V

    2014-01-01

    Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...

  2. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer

    Science.gov (United States)

    Lyashenko, V.; Kobilskaya, O.

    2015-10-01

    In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.

  3. Nonlocal reflection by photonic barriers

    OpenAIRE

    Vetter, R. -M.; A. Haibel; Nimtz, G.

    2001-01-01

    The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.

  4. Gravity and non-locality

    CERN Document Server

    Diaz, Pablo; Walton, Mark

    2016-01-01

    With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.

  5. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  6. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    Science.gov (United States)

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2017-09-18

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m(3) while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  7. Theoretical analysis of ion kinetic energies and DLC film deposition by CH4+Ar (He) dielectric barrier discharge plasmas

    Institute of Scientific and Technical Information of China (English)

    Liu Yan-Hong; Zhang Jia-Liang; Ma Teng-Cai; Li Jian; Liu Dong-Ping

    2007-01-01

    The kinetic energy of ions in dielectric barrier discharge plasmas are analysed theoretically using the model of binary collisions between ions and gas molecules. Langevin equation for ions in other gases, Blanc law for ions in mixed gases, and the two-temperature model for ions at higher reduced field are used to determine the ion mobility. The kinetic energies of ions in CH4 + Ar(He) dielectric barrier discharge plasma at a fixed total gas pressure and various Ar (He)concentrations are calculated. It is found that with increasing Ar (He) concentration in CH4 + Ar (He) from 20% to 83%,the CH4+ kinetic energy increases from 69.6 (43.9) to 92.1 (128.5)eV, while the Ar+ (He+) kinetic energy decreases from 97 (145.2) to 78.8 (75.5)eV. The increase of CH4+ kinetic energy is responsible for the increase of hardness of diamond-like carbon films deposited by CH4 + Ar (He) dielectric barrier discharge without bias voltage over substrates.

  8. LES and Proper Orthogonal Decomposition analysis of vertical entrainment of kinetic energy in large wind farms (Invited)

    Science.gov (United States)

    Meneveau, C. V.; VerHulst, C.

    2013-12-01

    Vertical entrainment of kinetic energy has been shown to be an important limiting factor in the performance of very large wind turbine arrays. Given high Reynolds numbers and domain sizes on the order of kilometers, we rely on wall-modeled Large Eddy Simulation (LES) to predict flow within large wind farm. We use Proper Orthogonal Decomposition (POD) to identify energetically important large-scale structures in the flow. The primary large-scale structures are found to be streamwise counter-rotating vortices located above the height of the wind turbines. The contribution of each flow structure to the kinetic energy entrainment is quantified. Surprisingly, fewer flow structures (POD modes) contribute to the vertical kinetic energy flux than to the kinetic energy in the flow, for which the POD analysis is optimal. While the general characteristics of the flow structures are robust, the net kinetic energy entrainment to the turbines depends on the orientation of the wind turbines in the array. The various modes' contributions to variability and intermittency is also quantified. The POD analysis is performed for aligned and staggered wind turbine arrays as well as for atmospheric flow without wind turbines. This research is supported by a NSF Graduate Fellowship and by the WINDINSPIRE project, funded through NSF-OISE 1243482.

  9. Towards LHC physics with nonlocal Standard Model

    Directory of Open Access Journals (Sweden)

    Tirthabir Biswas

    2015-09-01

    Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  10. Nonlocal transport in superconducting oxide nanostructures

    Science.gov (United States)

    Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2013-03-01

    We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443

  11. Detrimental nonlocality in luminescence measurements

    Science.gov (United States)

    Pluska, Mariusz; Czerwinski, Andrzej

    2017-08-01

    Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  12. Non-local massive gravity

    CERN Document Server

    Modesto, Leonardo

    2013-01-01

    We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...

  13. Nonlocal response of hyperbolic metasurfaces.

    Science.gov (United States)

    Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A

    2015-11-16

    We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.

  14. Making nonlocal reality compatible with relativity

    OpenAIRE

    Nikolic, H.

    2010-01-01

    It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.

  15. Dynamical Coulomb blockade of the nonlocal conductance in normalmetal/superconductor hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Kolenda, Stefan; Wolf, Michael J.; Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany)

    2013-07-01

    In normalmetal/superconductor hybrid structures nonlocal conductance is determined by crossed Andreev reflection (CAR) and elastic cotunneling (EC). This was investigated recently both experimentally and theoretically. Dynamical Coulomb blockade of EC and CAR was predicted theoretically. Here we report on experimental investigations of these effects. We found signatures of dynamical Coulomb blockade in local and nonlocal conductance in the normal state. In the superconducting state, we find s-shaped nonlocal differential conductance curves as a function of bias applied on both contacts. These curves were observed for bias voltages both below and above the gap. We compare our results to theory.

  16. Nonlocal Gravity in the Solar System

    CERN Document Server

    Chicone, C

    2015-01-01

    The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

  17. Nonlocal gravity in the solar system

    Science.gov (United States)

    Chicone, C.; Mashhoon, B.

    2016-04-01

    The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.

  18. Origin of Dynamical Quantum Non-locality

    Science.gov (United States)

    Pachon, Cesar E.; Pachon, Leonardo A.

    2014-03-01

    Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.

  19. Perturbative loop corrections and nonlocal gravity

    CERN Document Server

    Maggiore, Michele

    2016-01-01

    Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.

  20. Causality, Non-Locality and Negative Refraction

    CERN Document Server

    Forcella, Davide; Carminati, Rémi

    2016-01-01

    The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  1. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  2. Nonlocal effect in surface plasmon polariton of ultrathin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Hong-jie; Yu, Yabin, E-mail: apybyu@hnu.edu.cn; Wu, Reng-lai; Yu, Yan-qin; Wang, Ya-xin

    2015-09-01

    Using the nonlocal conductivity based on quantum response theory, we study the optical properties of p-polarized wave in quartz–metal–film–air structures, especially the influence of nonlocal effect on the surface plasmon polaritons (SPPs) resonance. In absorption spectrum, the resonant peak of SPP is found, and the dependence of the resonant peak on film thickness shows that nonlocal effect in the SPP resonance is enhanced significantly with the decrease of film-thickness, especially in the less than 20 nm metal film. We calculate the surface charge density as a function of frequency, and find that the frequencies at the charge and absorption peaks are the same. This clearly confirms that the absorption peak stems from SPP resonance excitation, and SPPs absorb the energy of the electromagnetic wave via charge oscillations. In the case of SPP resonance, the charge and electric field on the down-surface of thin film are always greater than that on the up-surface; however, the situation is just opposite in the case of no SPP resonance. This implies that the SPP resonance occurs near the down-surface of the film. Moreover, due to the nonlocal response of electric current to the electric field, the energy flow and electric current show anomalous oscillations, and with the increase of film thickness the anomalous oscillations exhibit obvious attenuation.

  3. Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: an experimental benchmark

    CERN Document Server

    Andreani, Carla; Senesi, Roberto

    2016-01-01

    This study presents the first direct and quantitative measurements of the nuclear momentum distribution anisotropy and the quantum kinetic energy tensor in stable and metastable (supercooled) water near its triple point using Deep Inelastic Neutron Scattering (DINS). From the experimental spectra accurate lineshapes of the hydrogen momentum distributions are derived using an anisotropic Gaussian and a model independent framework. The experimental results, benchmarked with those obtained for the solid phase, provide the state of the art directional values of the hydrogen mean kinetic energy in metastable water. The determinations of the direction kinetic energies in the supercooled phase, benchmarked with ice at the same temperature, provide accurate and quantitative measurements of these dynamical observables in metastable and stable phases, {i.e.} key insight in the physical mechanisms of the hydrogen quantum state in both disordered and polycrystalline systems. The remarkable findings of this study establis...

  4. A new method for the derivation of exact vibration-rotational kinetic energy operator in internal coordinates

    Institute of Scientific and Technical Information of China (English)

    陈光巨; 刘若庄

    1997-01-01

    An efficient angular momentum method is presented and used to derive analytic expressions for the vibration-rotational kinetic energy operator of polyatomic molecules.The vibration-rotational kinetic energy operator is expressed in terms of the total angular momentum operator J,the angular momentum operator J and the momentum operator p conjugate to Z in the molecule-fixed frame Not only the method of derivation is simpler than that in the previous work,but also the expressions ot the kinetic energy operators arc more compact.Particularly,the operator is easily applied to different vibrational or rovibrational problems of the polyatomic molecules by variations of matrix elements Gn of a mass-dependent constant symmetric matrix

  5. Mass yields and kinetic energy of fragments from fission of highly-excited nuclei with A≲220

    Science.gov (United States)

    Denisov, V. Yu.; Margitych, T. O.; Sedykh, I. Yu.

    2017-02-01

    It is shown that the potential energy surface of the two separated fragments has the saddle point, which takes place at small distance between the surfaces of well-deformed fragments. The height of this two-body saddle point is larger than the height of one-body fission barrier for nuclei with A ≲ 220. The mass yields of the fission fragments, which are appearing at the fission of nuclei with A ≲ 220, are related to the number of states of the two-fragment systems at the two-body saddle points. The characteristics of kinetic energy of fragments are described by using the trajectory motion equations with the dissipation terms. The Gaussian distribution of the final kinetic energy around the classical value of this energy induced by the stochastic fluctuations is taken into account at an evaluation of the total kinetic energy distributions of the fission fragments.

  6. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T., E-mail: ohkubo.takeru@jaea.go.jp; Ishii, Y. [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2015-03-15

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally and numerically demonstrated to be maintained as long as the ratio was constant.

  7. Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications.

    Science.gov (United States)

    Armentrout, P B; Ervin, Kent M; Rodgers, M T

    2008-10-16

    Ion chemistry, first discovered 100 years ago, has profitably been coupled with statistical rate theories, developed about 80 years ago and refined since. In this overview, the application of statistical rate theory to the analysis of kinetic-energy-dependent collision-induced dissociation (CID) reactions is reviewed. This procedure accounts for and quantifies the kinetic shifts that are observed as systems increase in size. The statistical approach developed allows straightforward extension to systems undergoing competitive or sequential dissociations. Such methods can also be applied to the reverse of the CID process, association reactions, as well as to quantitative analysis of ligand exchange processes. Examples of each of these types of reactions are provided and the literature surveyed for successful applications of this statistical approach to provide quantitative thermochemical information. Such applications include metal-ligand complexes, metal clusters, proton-bound complexes, organic intermediates, biological systems, saturated organometallic complexes, and hydrated and solvated species.

  8. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    Science.gov (United States)

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D; Mussa-Ivaldi, Ferdinando A

    2016-04-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  9. The analysis and kinetic energy balance of an upper-level wind maximum during intense convection

    Science.gov (United States)

    Fuelberg, H. E.; Jedlovec, G. J.

    1982-01-01

    The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.

  10. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    Science.gov (United States)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  11. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    Science.gov (United States)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  12. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation.

    Directory of Open Access Journals (Sweden)

    Ali Farshchiansadegh

    2016-04-01

    Full Text Available The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum. In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths.

  13. Sensory Agreement Guides Kinetic Energy Optimization of Arm Movements during Object Manipulation

    Science.gov (United States)

    Farshchiansadegh, Ali; Melendez-Calderon, Alejandro; Ranganathan, Rajiv; Murphey, Todd D.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    The laws of physics establish the energetic efficiency of our movements. In some cases, like locomotion, the mechanics of the body dominate in determining the energetically optimal course of action. In other tasks, such as manipulation, energetic costs depend critically upon the variable properties of objects in the environment. Can the brain identify and follow energy-optimal motions when these motions require moving along unfamiliar trajectories? What feedback information is required for such optimal behavior to occur? To answer these questions, we asked participants to move their dominant hand between different positions while holding a virtual mechanical system with complex dynamics (a planar double pendulum). In this task, trajectories of minimum kinetic energy were along curvilinear paths. Our findings demonstrate that participants were capable of finding the energy-optimal paths, but only when provided with veridical visual and haptic information pertaining to the object, lacking which the trajectories were executed along rectilinear paths. PMID:27035587

  14. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    Science.gov (United States)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  15. Current redistribution and generation of kinetic energy in the stagnated Z pinch.

    Science.gov (United States)

    Ivanov, V V; Anderson, A A; Papp, D; Astanovitskiy, A L; Talbot, B R; Chittenden, J P; Niasse, N

    2013-07-01

    The structure of magnetic fields was investigated in stagnated wire-array Z pinches using a Faraday rotation diagnostic at the wavelength of 266 nm. The distribution of current in the pinch and trailing material was reconstructed. A significant part of current can switch from the main pinch to the trailing plasma preheated by x-ray radiation of the pinch. Secondary implosions of trailing plasma generate kinetic energy and provide enhanced heating and radiation of plasma at stagnation. Hot spots in wire-array Z pinches also provide enhanced radiation of the Z pinch. A collapse of a single hot spot radiates 1%-3% of x-ray energy of the Z pinch with a total contribution of hot spots of 10%-30%.

  16. The end height of fireball as a function of their residual kinetic energy

    Science.gov (United States)

    Revelle, D. O.

    1987-01-01

    Previous analyses of meteoroid compositional groupings have utilized the end height of fireballs as a diagnostic tool. From an observational perspective this definition is straight forward, but from a theoretical viewpoint there are problems with using this operational definition. In order to realistically assess the estimated geometric uncertainty of + 1 km in the observed end height, a theoretical definition of the end height of meteoritic fireballs is proposed using the results from the integral radiation efficiency model of ReVelle. Three photographed and recovered meteorites are used as a calibration for this proposed definition. This definition was used to evaluate the end height of all fireballs that were deduced by Wetherill and ReVelle as being meteoritic. In almost all cases the theoretical values are lower than the observed values, in some cases as much as 5 km lower. A preliminary summary of results are given.

  17. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    Energy Technology Data Exchange (ETDEWEB)

    Vos, M. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Marmitt, G. G. [Atomic and Molecular Physics Laboratories, Research School of Physics and Engineering, Australian National University, Canberra ACT (Australia); Instituto de Fisica da Universidade Federal do Rio Grande do Sul, Avenida Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Finkelstein, Y. [Nuclear Research Center — Negev, Beer-Sheva 84190 (Israel); Moreh, R. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  18. An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza

    2014-06-01

    Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Study of Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach

    Science.gov (United States)

    Koscinski, J. S.; MacMahan, J. H.; Wang, Q.; Thornton, E. B.

    2016-12-01

    A 6-m high, meteorological tower consisting six evenly spaced ultrasonic anemometers and temperature-relative humidity sensors was deployed at the high tide line on sandy, wave-dissipative, meso-tidal beach in southern Monterey Bay, CA in October 2015. The micro-meteorology study focus is to explore the momentum fluxes and turbulent kinetic energy influenced by the interaction between an intensive wave-breaking surf zone and a sandy beach associated with onshore & cross-shore winds, diurnal heating, and differences in ocean-air temperatures. The tower was deployed for approximately 1-month and experienced diurnal wind variations and synoptic storm events with winds measuring up to 10 m/s and an air temperature range of 5-28 oC. This beach environment was found to be primarily unstable in thermal stratification indicating that the air temperature is colder than underlying surface, either the ocean or the sandy beach. The drag coefficient was found to be dependent upon the atmospheric stability. Direct-estimates of atmospheric stability were obtained with the sonic anemometer. The direct estimates are a ratio of w*/u*, where the w*, vertically scaled buoyancy velocity, is greater than u*, horizontally scaled friction velocity. Hypotheses for the enhanced buoyancy are 1) diurnal heating of the sandy beach, 2) warmer ocean temperatures relative to air temperatures, and 3) the wave breaking within the surf zone. Further exploration into these hypotheses is conducted by using vertical tower sensor pairs for estimating the temporal variability of the mechanical shear production and buoyancy production terms in turbulent kinetic energy budget. These results are part of the Coastal Land Air Sea Interaction (CLASI) experiment.

  20. Enhancing the prediction of turbulent kinetic energy in the marine atmospheric boundary layer

    Science.gov (United States)

    Foreman, R. J.; Emeis, S.

    2010-09-01

    A recent study by Shaikh and Siddiqui (2010) has shown definitively that the turbulent structure of boundary layer flows over water is fundamentally different compared with that over a smooth surface and with that over a solid wavy surface whose wave amplitude is similar to that of dynamically wind-generated waves. In light of this new information, the constants of the Mellor-Yamada boundary layer model, which are based on laboratory data over solid walls, are re-evaluated to suit the turbulent dynamics of a dynamic, wavy surface. The constants are based on the principal that the enhanced turbulent production in the vicinity of waves is redistributed among the normal stress components by virtue of the enhanced pressure-velocity covariances also found in the vicinity of waves. There is then a feedback mechanism whereby enhanced normal stresses modify the dynamic surface. The net effect of this is that in the marine boundary layer, one can expect an enhancement of turbulent kinetic energy due to the enhancement of normal stresses at the expense of shear stresses. The constants in the Mellor-Yamada-Janjic planetary boundary layer scheme within the Weather Research and Forecasting (WRF) model are changed to fit this principal. Simulations are then performed and compared with data (wind speed and turbulent kinetic energy) from the FINO1 platform in the North Sea. It is found that while predictions of the wind speed are barely changed, the magnitude of the tke error (RMS) is reduced by up to 50%. This is expected to be practically relevant for the estimation of blade fatigue of wind energy converters, where the tke is an important parameter in this assessment. It could also be relevant for pollution dispersion in marine boundary layers.

  1. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  2. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere.

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  3. The effects of divergent and nondivergent winds on the kinetic energy budget of a mid-latitude cyclone - A case study

    Science.gov (United States)

    Chen, T.-C.; Alpert, J. C.; Schlatter, T. W.

    1978-01-01

    The magnitude of the divergent component of the wind is relatively small compared to that of the nondivergent component in large-scale atmospheric flows; nevertheless, it plays an important role in the case of explosive cyclogenesis examined here. The kinetic energy budget for the life cycle of an intense, developing cyclone over North America is calculated. The principal kinetic energy source is the net horizontal transport across the boundaries of the region enclosing the cyclone. By investigating the relative importance of the divergent and nondivergent wind components in the kinetic energy budget, it was found, as expected, that neglecting the divergent wind component in calculating the magnitude of the kinetic energy is of little consequence, but that the horizontal flux convergence and generation of kinetic energy depend crucially upon the divergent component. Modification of the divergent wind component can result in significant changes in the kinetic energy budget of the synoptic system.

  4. Distributions of available potential and kinetic energy budget quantities associated with wintertime cyclone activity along the eastern coasts of Asia and North America

    OpenAIRE

    ZAPOTOCNY, JOHN V.

    2011-01-01

    Available potential energy and kinetic energy budget quantities are examined during a two-week period of the Global Weather Experiment (GWE) winter season (14–28 February 1979) for regions encompassing the cyclogenetically active eastern coasts of Asia and North America. Twice daily values of vertically integrated available potential energy generation, kinetic energy generation, and kinetic energy boundary flux are produced using gridded isentropic data derived from the National Meteorologica...

  5. Nonlocality threshold for entanglement under general dephasing evolutions: a case study

    Science.gov (United States)

    Lo Franco, Rosario

    2016-06-01

    Determining relationships between different types of quantum correlations in open composite quantum systems is important since it enables the exploitation of a type by knowing the amount of another type. We here review, by giving a formal demonstration, a closed formula of the Bell function, witnessing nonlocality, as a function of the concurrence, quantifying entanglement, valid for a system of two noninteracting qubits initially prepared in extended Werner-like states undergoing any local pure-dephasing evolution. This formula allows for finding nonlocality thresholds for the concurrence depending only on the purity of the initial state. We then utilize these thresholds in a paradigmatic system where the two qubits are locally affected by a quantum environment with an Ohmic class spectrum. We show that steady entanglement can be achieved and provide the lower bound of initial state purity such that this stationary entanglement is above the nonlocality threshold thus guaranteeing the maintenance of nonlocal correlations.

  6. Explaination of nonlocal granular fluidity in terms of microscopic fluctuations

    Science.gov (United States)

    Zhang, Qiong; Kamrin, Ken

    A recently proposed granular constitutive law has shown capability to predict nonlocal granular rheology using a variable denoted ``granular fluidity''. This work is aimed at finding the microscopic physical meaning of fluidity in terms of fluctuations such as fluctuation of normalized shear stress and fluctuation of velocity. We try to predict the fluidity as a function of the fluctuation of normalized shear stress, and also test Eyring equation and kinetic theory based on the theoretical prediction proposed in other work. We find a consistent definition for the fluidity to be proportional to the product of the velocity fluctuations and some function of packing fraction divided by the average diameter of the grains. This definition shows predictive ability in multiple geometries for which flow behavior is nonlocal. It is notable that the fluidity is well-defined as a function of kinematic state variables, as one would hope for a quantity of this nature.

  7. Nonlocality of a single particle

    OpenAIRE

    Dunningham, Jacob; Vedral, Vlatko

    2007-01-01

    There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...

  8. Non-Local Means Denoising

    Directory of Open Access Journals (Sweden)

    Antoni Buades

    2011-09-01

    Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.

  9. Monotone method for nonlinear nonlocal hyperbolic problems

    Directory of Open Access Journals (Sweden)

    Azmy S. Ackleh

    2003-02-01

    Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.

  10. Nonlocality as Evidence for a Multiverse Cosmology

    CERN Document Server

    Tipler, Frank J

    2010-01-01

    I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.

  11. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...

  12. A New Model of Nonlocal Modified Gravity

    CERN Document Server

    Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran

    2014-01-01

    We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$

  13. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...

  14. On instabilities in tensorial nonlocal gravity

    CERN Document Server

    Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R

    2016-01-01

    We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.

  15. Multipole vector solitons in nonlocal nonlinear media.

    Science.gov (United States)

    Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru

    2006-05-15

    We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.

  16. Creation of Entanglement with Nonlocal Operations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu

    2005-01-01

    We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.

  17. Spectral Dimension from Causal Set Nonlocal Dynamics

    CERN Document Server

    Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo

    2015-01-01

    We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  18. Nonlocal and quasi-local field theories

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...

  19. Nonlocal Galileons and self-acceleration

    Science.gov (United States)

    Gabadadze, Gregory; Yu, Siqing

    2017-05-01

    A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  20. Nonlocal Galileons and self-acceleration

    Directory of Open Access Journals (Sweden)

    Gregory Gabadadze

    2017-05-01

    Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  1. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  2. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...

  3. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  4. Nonlocal thermal transport in solar flares

    Science.gov (United States)

    Karpen, Judith T.; Devore, C. Richard

    1987-01-01

    A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.

  5. Non-local parallel transport in BOUT++

    CERN Document Server

    Omotani, J T; Havlickova, E; Umansky, M

    2015-01-01

    Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.

  6. Virial Theorem in Nonlocal Newtonian Gravity

    CERN Document Server

    Mashhoon, B

    2015-01-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  7. Virial Theorem in Nonlocal Newtonian Gravity

    Science.gov (United States)

    Mashhoon, Bahram

    2016-05-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  8. On a class of nonlocal wave equations from applications

    Science.gov (United States)

    Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih

    2016-06-01

    We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.

  9. On the compatible weakly nonlocal Poisson brackets of hydrodynamic type

    Directory of Open Access Journals (Sweden)

    Andrei Ya. Maltsev

    2002-01-01

    of hydrodynamic type (Ferapontov brackets and the corresponding integrable hierarchies. We show that, under the requirement of the nondegeneracy of the corresponding “first” pseudo-Riemannian metric g(0 νμ and also some nondegeneracy requirement for the nonlocal part, it is possible to introduce a “canonical” set of “integrable hierarchies” based on the Casimirs, momentum functional and some “canonical Hamiltonian functions.” We prove also that all the “higher” “positive” Hamiltonian operators and the “negative” symplectic forms have the weakly nonlocal form in this case. The same result is also true for “negative” Hamiltonian operators and “positive” symplectic structures in the case when both pseudo-Riemannian metrics g(0 νμ and g(1 νμ are nondegenerate.

  10. Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids

    CERN Document Server

    Bakosi, J; Boybeyi, Z

    2010-01-01

    In probability density function (PDF) methods a transport equation is solved numerically to compute the time and space dependent probability distribution of several flow variables in a turbulent flow. The joint PDF of the velocity components contains information on all one-point one-time statistics of the turbulent velocity field, including the mean, the Reynolds stresses and higher-order statistics. We developed a series of numerical algorithms to model the joint PDF of turbulent velocity, frequency and scalar compositions for high-Reynolds-number incompressible flows in complex geometries using unstructured grids. Advection, viscous diffusion and chemical reaction appear in closed form in the PDF formulation, thus require no closure hypotheses. The generalized Langevin model (GLM) is combined with an elliptic relaxation technique to represent the non-local effect of walls on the pressure redistribution and anisotropic dissipation of turbulent kinetic energy. The governing system of equations is solved fully...

  11. Climatic variability of near-surface turbulent kinetic energy over the United States: implications for fire-weather predications

    Science.gov (United States)

    Warren E. Heilman; Xindi. Bain

    2013-01-01

    Recent research suggests that high levels of ambient near-surface atmospheric turbulence are often associated with rapid and sometimes erratic wildland fire spread that may eventually lead to large burn areas. Previous research has also examined the feasibility of using near-surface atmospheric turbulent kinetic energy (TKEs) alone or in...

  12. Climatic variability of a fire-weather index based on turbulent kinetic energy and the Haines Index

    Science.gov (United States)

    Warren E. Heilman; Xindi Bian

    2010-01-01

    Combining the Haines Index (HI) with near-surface turbulent kinetic energy (TKEs) through a product of the two values (HITKEs) has shown promise as an indicator of the atmospheric potential for extreme and erratic fire behavior in the U.S. Numerical simulations of fire-weather evolution during past wildland fire episodes in...

  13. Kinetic energy release of dissociating CO3+ ions produced in collisions of multiply charged ions with CO

    NARCIS (Netherlands)

    Schlatholter, T; Hoekstra, R; Morgenstern, R

    1997-01-01

    We investigate fragmentation of CO molecules by collisions of He2+ ions at energies between 2 and 11 keV/amu by means of a reflectron time-of-flight (TOF) spectrometer. The kinetic-energy-release (KER) in the center of mass system of the molecule can be determined from the flight times of these

  14. Design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation.

    Science.gov (United States)

    Thallmair, Sebastian; Roos, Matthias K; de Vivie-Riedle, Regina

    2016-06-21

    Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

  15. Frequency Activated Fast Power Reserve for Wind Power Plant Delivered from Stored Kinetic Energy in the Wind Turbine Inertia

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Thuring, P.; Kumar, S

    2011-01-01

    is proposed that delivers a short-term power reserve from the kinetic energy in the wind turbine (WT) inertia, while considering the inherent characteristics of a wind power plant. The aim is to contribute with a fast power reserve to stabilize the frequency drop during large and sudden production deficits...

  16. Design of specially adapted reactive coordinates to economically compute potential and kinetic energy operators including geometry relaxation

    Science.gov (United States)

    Thallmair, Sebastian; Roos, Matthias K.; de Vivie-Riedle, Regina

    2016-06-01

    Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

  17. Altered Right Ventricular Kinetic Energy Work Density and Viscous Energy Dissipation in Patients with Pulmonary Arterial Hypertension: A Pilot Study Using 4D Flow MRI.

    Directory of Open Access Journals (Sweden)

    Q Joyce Han

    Full Text Available Right ventricular (RV function has increasingly being recognized as an important predictor for morbidity and mortality in patients with pulmonary arterial hypertension (PAH. The increased RV after-load increase RV work in PAH. We used time-resolved 3D phase contrast MRI (4D flow MRI to derive RV kinetic energy (KE work density and energy loss in the pulmonary artery (PA to better characterize RV work in PAH patients.4D flow and standard cardiac cine images were obtained in ten functional class I/II patients with PAH and nine healthy subjects. For each individual, we calculated the RV KE work density and the amount of viscous dissipation in the PA.PAH patients had alterations in flow patterns in both the RV and the PA compared to healthy subjects. PAH subjects had significantly higher RV KE work density than healthy subjects (94.7±33.7 mJ/mL vs. 61.7±14.8 mJ/mL, p = 0.007 as well as a much greater percent PA energy loss (21.1±6.4% vs. 2.2±1.3%, p = 0.0001 throughout the cardiac cycle. RV KE work density and percent PA energy loss had mild and moderate correlations with RV ejection fraction.This study has quantified two kinetic energy metrics to assess RV function using 4D flow. RV KE work density and PA viscous energy loss not only distinguished healthy subjects from patients, but also provided distinction amongst PAH patients. These metrics hold promise as imaging markers for RV function.

  18. Pressure and kinetic energy transport across the cavity mouth in resonating cavities.

    Science.gov (United States)

    Bailey, Peter Roger; Abbá, Antonella; Tordella, Daniela

    2013-01-01

    Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which

  19. Nonlocal Quantum Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Yurii V. Dumin

    2014-01-01

    Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.

  20. On Bending of Bernoulli-Euler Nanobeams for Nonlocal Composite Materials

    Directory of Open Access Journals (Sweden)

    Luciano Feo

    2016-01-01

    Full Text Available Evaluation of size effects in functionally graded elastic nanobeams is carried out by making recourse to the nonlocal continuum mechanics. The Bernoulli-Euler kinematic assumption and the Eringen nonlocal constitutive law are assumed in the formulation of the elastic equilibrium problem. An innovative methodology, characterized by a lowering in the order of governing differential equation, is adopted in the present manuscript in order to solve the boundary value problem of a nanobeam under flexure. Unlike standard treatments, a second-order differential equation of nonlocal equilibrium elastic is integrated in terms of transverse displacements and equilibrated bending moments. Benchmark examples are developed, thus providing the nonlocality effect in nanocantilever and clampled-simply supported nanobeams for selected values of the Eringen scale parameter.