Hidden Variable Theories and Quantum Nonlocality
Boozer, A. D.
2009-01-01
We clarify the meaning of Bell's theorem and its implications for the construction of hidden variable theories by considering an example system consisting of two entangled spin-1/2 particles. Using this example, we present a simplified version of Bell's theorem and describe several hidden variable theories that agree with the predictions of…
Hidden-variable models for the spin singlet: I. Non-local theories reproducing quantum mechanics
Di Lorenzo, Antonio
2011-01-01
A non-local hidden variable model reproducing the quantum mechanical probabilities for a spin singlet is presented. The non-locality is concentrated in the distribution of the hidden variables. The model otherwise satisfies both the hypothesis of outcome independence, made in the derivation of Bell inequality, and of compliance with Malus's law, made in the derivation of Leggett inequality. It is shown through the prescription of a protocol that the non-locality can be exploited to send information instantaneously provided that the hidden variables can be measured, even though they cannot be controlled.
Entanglement without hidden nonlocality
Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas
2016-11-01
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
La Cour, Brian R.
2017-07-01
An experiment has recently been performed to demonstrate quantum nonlocality by establishing contextuality in one of a pair of photons encoding four qubits; however, low detection efficiencies and use of the fair-sampling hypothesis leave these results open to possible criticism due to the detection loophole. In this Letter, a physically motivated local hidden-variable model is considered as a possible mechanism for explaining the experimentally observed results. The model, though not intrinsically contextual, acquires this quality upon post-selection of coincident detections.
Energy Technology Data Exchange (ETDEWEB)
Aharonov, Y. [Texas A and M Univ., College Station, TX (United States); South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy; Tel Aviv Univ. (Israel). School of Physics and Astronomy; Botero, A. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy; Centro Internacional de Fisica, Ciudad Univ., Bogota (Colombia); Scully, M. [Texas A and M Univ., College Station, TX (United States); Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany)
2001-02-01
The folklore notion of the ''Non-Locality of Quantum Mechanics'' is examined from the point of view of hidden-variables theories according to Belinfante's classification in his Survey of Hidden Variables Theories. It is here shown that in the case of EPR, there exist hidden variables theories that successfully reproduce quantum-mechanical predictions, but which are explicitly local. Since such theories do not fall into Belinfante's classification, we propose an expanded classification which includes similar theories, which we term as theories of the ''third'' kind. Causal implications of such theories are explored. (orig.)
Hidden Variables or Positive Probabilities?
Rothman, T; Rothman, Tony
2001-01-01
Despite claims that Bell's inequalities are based on the Einstein locality condition, or equivalent, all derivations make an identical mathematical assumption: that local hidden-variable theories produce a set of positive-definite probabilities for detecting a particle with a given spin orientation. The standard argument is that because quantum mechanics assumes that particles are emitted in a superposition of states the theory cannot produce such a set of probabilities. We examine a paper by Eberhard who claims to show that a generalized Bell inequality, the CHSH inequality, can be derived solely on the basis of the locality condition, without recourse to hidden variables. We point out that he nonetheless assumes a set of positive-definite probabilities, which supports the claim that hidden variables or "locality" is not at issue here, positive-definite probabilities are. We demonstrate that quantum mechanics does predict a set of probabilities that violate the CHSH inequality; however these probabilities ar...
Experimental falsification of Leggett's nonlocal variable model.
Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio
2007-11-23
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
Hidden variables and hidden time in quantum theory
Kurakin, Pavel V.
2005-01-01
Bell's theorem proves only that hidden variables evolving in true physical time can't exist; still the theorem's meaning is usually interpreted intolerably wide. The concept of hidden time (and, in general, hidden space-time) is introduced. Such concept provides a whole new class of physical theories, fully compatible with current knowledge, but giving new tremendous possibilities. Those theories do not violate Bell's theorem.
Hidden variable models for quantum mechanics can have local parts
Larsson, Jan-Ake
2009-01-01
We present an explicit nonlocal nonsignaling model which has a nontrivial local part and is compatible with quantum mechanics. This model constitutes a counterexample to Colbeck and Renner's statement [Phys. Rev. Lett. 101, 050403 (2008)] that "any hidden variable model can only be compatible with quantum mechanics if its local part is trivial". Furthermore, we examine Colbeck and Renner's definition of "local part" and find that, in the case of models reproducing the quantum predictions for the singlet state, it is a restriction equivalent to the conjunction of nonsignaling and trivial local part.
A survey of hidden-variables theories
Belinfante, F J
1973-01-01
A Survey of Hidden-Variables Theories is a three-part book on the hidden-variable theories, referred in this book as """"theories of the first kind"""". Part I reviews the motives in developing different types of hidden-variables theories. The quest for determinism led to theories of the first kind; the quest for theories that look like causal theories when applied to spatially separated systems that interacted in the past led to theories of the second kind. Parts II and III further describe the theories of the first kind and second kind, respectively. This book is written to make the literat
Fujikawa, Kazuo
2013-01-01
Hidden-variables models are critically reassessed. It is first examined if the quantum discord is classically described by the hidden-variable model of Bell in the Hilbert space with $d=2$. The criterion of vanishing quantum discord is related to the notion of reduction and, surprisingly, the hidden-variable model in $d=2$, which has been believed to be consistent so far, is in fact inconsistent and excluded by the analysis of conditional measurement and reduction. The description of the full contents of quantum discord by the deterministic hidden-variables models is not possible. We also re-examine CHSH inequality. It is shown that the well-known prediction of CHSH inequality $|B|\\leq 2$ for the CHSH operator $B$ introduced by Cirel'son is not unique. This non-uniqueness arises from the failure of linearity condition in the non-contextual hidden-variables model in $d=4$ used by Bell and CHSH, in agreement with Gleason's theorem which excludes $d=4$ non-contextual hidden-variables models. If one imposes the l...
Algorithmic information theory and the hidden variable question
Fuchs, Christopher
1992-01-01
The admissibility of certain nonlocal hidden-variable theories are explained via information theory. Consider a pair of Stern-Gerlach devices with fixed nonparallel orientations that periodically perform spin measurements on identically prepared pairs of electrons in the singlet spin state. Suppose the outcomes are recorded as binary strings l and r (with l sub n and r sub n denoting their n-length prefixes). The hidden-variable theories considered here require that there exists a recursive function which may be used to transform l sub n into r sub n for any n. This note demonstrates that such a theory cannot reproduce all the statistical predictions of quantum mechanics. Specifically, consider an ensemble of outcome pairs (l,r). From the associated probability measure, the Shannon entropies H sub n and H bar sub n for strings l sub n and pairs (l sub n, r sub n) may be formed. It is shown that such a theory requires that the absolute value of H bar sub n - H sub n be bounded - contrasting the quantum mechanical prediction that it grow with n.
Hidden Variables and Placebo Effects
Goradia, Shantilal
2006-03-01
God's response to prayers and placebo leads to a question. How does He respond deterministically? He may be controlling at least one of the two variables of the uncertainty principle by extending His invisible soul to each body particle locally. Amazingly, many Vedic verses support this answer. One describes the size of the soul as arithmetically matching the size of the nucleons as if a particle is a soul. One gives a name meaning particle soul (anu-atma), consistent with particle's indeterministic behavior like that of (soulful) bird’s flying in any directions irrespective of the direction of throw. One describes souls as eternal consistent with the conservation of baryon number. One links the souls to the omnipresent (param- atma) like Einstein Rosen bridges link particles to normal spacetime. One claims eternal coexistence of matter and soul as is inflationary universe in physics/0210040 V2. The implicit scientific consistency of such verses makes the relationship of particle source of consciousness to the omnipresent Supreme analogous to the relationship of quantum source of gravitons in my gr-qc/0507130 to normal spacetime This frees us from the postulation of quantum wormholes and quantum foam. Dr. Hooft's view in ``Does God play dice,'' Physicsword, Dec 2005 seems consistent with my progressive conference presentations in Russia, Europe, India, and USA (Hindu University) in 2004/05. I see implications for nanoscience.
Bardeen variables and hidden gauge symmetries in linearized massive gravity
Jaccard, Maud; Mitsou, Ermis
2012-01-01
We give a detailed discussion of the use of the (3+1) decomposition and of Bardeen's variables in massive gravity linearized over a Minkowski as well as over a de Sitter background. In Minkowski space the Bardeen "potential" \\Phi, that in the massless case is a non-radiative degree of freedom, becomes radiative and describes the helicity-0 component of the massive graviton. Its dynamics is governed by a simple Klein-Gordon action, supplemented by a term (\\Box \\Phi)^2 if we do not make the Fierz-Pauli tuning of the mass term. In de Sitter the identification of the variable that describes the radiative degree of freedom in the scalar sector is more subtle, and even involves expressions non-local in time. The use of this new variable provides a simple and transparent derivation of the Higuchi bound and of the disappearance of the scalar degree of freedom at a special value of $m_g^2/H^2$. The use of this formalism also allows us to uncover the existence of a hidden gauge symmetry of the massive theory, that beco...
The incompatibility between local hidden variable theories and the fundamental conservation laws
Indian Academy of Sciences (India)
C S Unnikrishnan
2005-09-01
I discuss in detail the result that the Bell's inequalities derived in the context of local hidden variable theories for discrete quantized observables can be satisfied only if a fundamental conservation law is violated on the average. This result shows that such theories are physically nonviable, and makes the demarcating criteria of the Bell's inequalities redundant. I show that a unique correlation function can be derived from the validity of the conservation law alone and this coincides with the quantum mechanical correlation function. Thus, any theory with a different correlation function, like any local hidden variable theory, is incompatible with the fundamental conservation laws and space-time symmetries. The results are discussed in the context of two-particle singlet and triplet states, GHZ states, and two-particle double slit interferometry. Some observations on quantum entropy, entanglement, and nonlocality are also discussed.
Foundational Forces & Hidden Variables in Technology Commercialization
Barnett, Brandon
2011-03-01
The science of physics seems vastly different from the process of technology commercialization. Physics strives to understand our world through the experimental deduction of immutable laws and dependent variables and the resulting macro-scale phenomenon. In comparison, the~goal of business is to make a profit by addressing the needs, preferences, and whims of individuals in a market. It may seem that this environment is too dynamic to identify all the hidden variables and deduct the foundational forces that impact a business's ability to commercialize innovative technologies. One example of a business ``force'' is found in the semiconductor industry. In 1965, Intel co-founder Gordon Moore predicted that the number of transistors incorporated in a chip will approximately double every 24 months. Known as Moore's Law, this prediction has become the guiding principle for the semiconductor industry for the last 40 years. Of course, Moore's Law is not really a law of nature; rather it is the result of efforts by Intel and the entire semiconductor industry. A closer examination suggests that there are foundational principles of business that underlie the macro-scale phenomenon of Moore's Law. Principles of profitability, incentive, and strategic alignment have resulted in a coordinated influx of resources that has driven technologies to market, increasing the profitability of the semiconductor industry and optimizing the fitness of its participants. New innovations in technology are subject to these same principles. So, in addition to traditional market forces, these often unrecognized forces and variables create challenges for new technology commercialization. In this talk, I will draw from ethnographic research, complex adaptive theory, and industry data to suggest a framework with which to think about new technology commercialization. Intel's bio-silicon initiative provides a case study.
A Bell-type Theorem Without Hidden Variables
Stapp, Henry P
2002-01-01
Bell's theorem rules out local hidden-variable theories. The locality condition is the demand that what an experimenter freely chooses to measure in one space-time region has no influence in a second space-time region that is spacelike separated from the first. The hidden-variable stipulation means that this demand is implemented through requirements on an assumed-to-exist substructure involving hidden variables. The question thus arises whether the locality condition itself fails, or only its implementation by means of the assumed hidden-variable structure. This paper shows that any theory that satisfies two generally accepted features of orthodox quantum theory and that yields certain predictions of quantum theory cannot satisfy the afore-mentioned locality condition. These two features are that the choices made by the experimenters can be treated as localized free variables and that such free choices do not affect outcomes that have already occurred.
Local clustering in scale-free networks with hidden variables.
van der Hofstad, Remco; Janssen, A J E M; van Leeuwaarden, Johan S H; Stegehuis, Clara
2017-02-01
We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ∈(2,3), so that the degrees have infinite variance. The natural cutoff h_{c} characterizes the largest degrees in the hidden variable models, and a structural cutoff h_{s} introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N, as a function of h_{s} and h_{c}. For scale-free networks with exponent 2vanish only for networks as large as N=10^{9}.
Indian Academy of Sciences (India)
Aurelien Drezet
2007-03-01
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.
On Noncontextual, Non-Kolmogorovian Hidden Variable Theories
Feintzeig, Benjamin H.; Fletcher, Samuel C.
2017-01-01
One implication of Bell's theorem is that there cannot in general be hidden variable models for quantum mechanics that both are noncontextual and retain the structure of a classical probability space. Thus, some hidden variable programs aim to retain noncontextuality at the cost of using a generalization of the Kolmogorov probability axioms. We generalize a theorem of Feintzeig (Br J Philos Sci 66(4): 905-927, 2015) to show that such programs are committed to the existence of a finite null cover for some quantum mechanical experiments, i.e., a finite collection of probability zero events whose disjunction exhausts the space of experimental possibilities.
Backward causation, hidden variables and the meaning of completeness
Indian Academy of Sciences (India)
Huw Price
2001-02-01
Bell’s theorem requires the assumption that hidden variables are independent of future measurement settings. This independence assumption rests on surprisingly shaky ground. In particular, it is puzzlingly time-asymmetric. The paper begins with a summary of the case for considering hidden variable models which, in abandoning this independence assumption, allow a degree of ‘backward causation’. The remainder of the paper clariﬁes the physical signiﬁcance of such models, in relation to the issue as to whether quantum mechanics provides a complete description of physical reality.
On Noncontextual, Non-Kolmogorovian Hidden Variable Theories
Feintzeig, Benjamin H.; Fletcher, Samuel C.
2017-02-01
One implication of Bell's theorem is that there cannot in general be hidden variable models for quantum mechanics that both are noncontextual and retain the structure of a classical probability space. Thus, some hidden variable programs aim to retain noncontextuality at the cost of using a generalization of the Kolmogorov probability axioms. We generalize a theorem of Feintzeig (Br J Philos Sci 66(4): 905-927, 2015) to show that such programs are committed to the existence of a finite null cover for some quantum mechanical experiments, i.e., a finite collection of probability zero events whose disjunction exhausts the space of experimental possibilities.
A Sequence of Relaxations Constraining Hidden Variable Models
Steeg, Greg Ver
2011-01-01
Many widely studied graphical models with latent variables lead to nontrivial constraints on the distribution of the observed variables. Inspired by the Bell inequalities in quantum mechanics, we refer to any linear inequality whose violation rules out some latent variable model as a "hidden variable test" for that model. Our main contribution is to introduce a sequence of relaxations which provides progressively tighter hidden variable tests. We demonstrate applicability to mixtures of sequences of i.i.d. variables, Bell inequalities, and homophily models in social networks. For the last, we demonstrate that our method provides a test that is able to rule out latent homophily as the sole explanation for correlations on a real social network that are known to be due to influence.
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Optical Test of Local Hidden-Variable Model
Institute of Scientific and Technical Information of China (English)
WU XiaoHua; ZONG HongShi; PANG HouRong
2001-01-01
An inequality is deduced from local realism and a supplementary assumption. This inequality defines an experiment that can be actually performed with the present technology to test local hidden-variable models, and it is violated by quantum mechanics with a factor 1.92, while it can be simplified into a form where just two measurements are required.``
Local clustering in scale-free networks with hidden variables
van der Hofstad, Remco; Janssen, A. J. E. M.; van Leeuwaarden, Johan S. H.; Stegehuis, Clara
2017-02-01
We investigate the presence of triangles in a class of correlated random graphs in which hidden variables determine the pairwise connections between vertices. The class rules out self-loops and multiple edges. We focus on the regime where the hidden variables follow a power law with exponent τ ∈(2 ,3 ) , so that the degrees have infinite variance. The natural cutoff hc characterizes the largest degrees in the hidden variable models, and a structural cutoff hs introduces negative degree correlations (disassortative mixing) due to the infinite-variance degrees. We show that local clustering decreases with the hidden variable (or degree). We also determine how the average clustering coefficient C scales with the network size N , as a function of hs and hc. For scale-free networks with exponent 2 universality class at hand. We characterize the extremely slow decay of C when τ ≈2 and show that for τ =2.1 , say, clustering starts to vanish only for networks as large as N =109 .
On local-hidden-variable no-go theorems
Methot, A. A.
2006-06-01
The strongest attack against quantum mechanics came in 1935 in the form of a paper by Einstein, Podolsky, and Rosen. It was argued that the theory of quantum mechanics could not be called a complete theory of Nature, for every element of reality is not represented in the formalism as such. The authors then put forth a proposition: we must search for a theory where, upon knowing everything about the system, including possible hidden variables, one could make precise predictions concerning elements of reality. This project was ultimately doomed in 1964 with the work of Bell, who showed that the most general local hidden variable theory could not reproduce correlations that arise in quantum mechanics. There exist mainly three forms of no-go theorems for local hidden variable theories. Although almost every physicist knows the consequences of these no-go theorems, not every physicist is aware of the distinctions between the three or even their exact definitions. Thus, we will discuss here the three principal forms of no-go theorems for local hidden variable theories of Nature. We will define Bell theorems, Bell theorems without inequalities, and pseudo-telepathy. A discussion of the similarities and differences will follow.
Consistent histories, quantum truth functionals, and hidden variables
Griffiths, Robert B.
2000-01-01
A central principle of consistent histories quantum theory, the requirement that quantum descriptions be based upon a single framework (or family), is employed to show that there is no conflict between consistent histories and a no-hidden-variables theorem of Bell, and Kochen and Specker, contrary to a recent claim by Bassi and Ghirardi. The argument makes use of `truth functionals' defined on a Boolean algebra of classical or quantum properties.
Consistent histories, quantum truth functionals, and hidden variables
Griffiths, R B
1999-01-01
A central principle of consistent histories quantum theory, the requirement that quantum descriptions be based upon a single framework (or family), is employed to show that there is no conflict between consistent histories and a no-hidden-variables theorem of Bell, and Kochen and Specker, contrary to a recent claim by Bassi and Ghirardi. The argument makes use of ``truth functionals'' defined on a Boolean algebra of classical or quantum properties.
Hidden blazars and emission line variability of high redshift quasars
Directory of Open Access Journals (Sweden)
Feng Ma
2001-01-01
Full Text Available We have carried out a survey to search for hidden blazars in a sample of z 2 radio{loud quasars. The idea is based on our prediction that we should be able to see large C IV line variability not associated with observed continuum variations or most other emission lines in every radio{loud quasar. Here we report the initial results including the discovery of large C IV line variations in two quasars.
On local-hidden-variable no-go theorems
Méthot, A A
2005-01-01
The strongest attack against quantum mechanics came in 1935 in the form of a paper by Einstein, Podolsky and Rosen. It was argued that the theory of quantum mechanics could not be called a complete theory of Nature, for every element of reality is not represented in the formalism as such. The authors then put forth a proposition: we must search for a theory where, upon knowing everything about the system, including possible hidden variables, one could make precise predictions concerning elements of reality. This project was ultimatly doomed in 1964 with the work of Bell Bell, who showed that the most general local hidden variable theory could not reproduce correlations that arise in quantum mechanics. There exist mainly three forms of no-go theorems for local hidden variable theories. Although almost every physicist knows the consequences of these no-go theorems, not every physicist is aware of the distinctions between the three or even their exact definitions. Thus we will discuss here the three principal fo...
Hidden variable problem for a family of continuously many spin 1 measurements
Kurzynski, Pawel; Soeda, Akihito; Bzdega, Bartlomiej; Kaszlikowski, Dagomir
2012-01-01
We study a continuous set of spin 1 measurements and show that for a special family of measurements parametrized by a single variable $\\theta$ the possibility of hidden-variable description is a discontinuous property.
Inferring topologies of complex networks with hidden variables.
Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing
2012-10-01
Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.
Uncertainty, non-locality and Bell's inequality
Pati, A K
1998-01-01
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables then the statistical predictions of hidden variable theory is well respected in quantum world. We argue that the uncertainties play a key role in understanding the non-locality issues in quantum world. Thus we can not rule out the possibility that a local, realistic hidden variable theory with statistical uncertainties in the observables might reproduce all the results of quantum theory.
A fast collocation method for a variable-coefficient nonlocal diffusion model
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Hidden worlds in quantum physics
Gouesbet, Gérard
2014-01-01
The past decade has witnessed a resurgence in research and interest in the areas of quantum computation and entanglement. This new book addresses the hidden worlds or variables of quantum physics. Author Gérard Gouesbet studied and worked with a former student of Louis de Broglie, a pioneer of quantum physics. His presentation emphasizes the history and philosophical foundations of physics, areas that will interest lay readers as well as professionals and advanced undergraduate and graduate students of quantum physics. The introduction is succeeded by chapters offering background on relevant concepts in classical and quantum mechanics, a brief history of causal theories, and examinations of the double solution, pilot wave, and other hidden-variables theories. Additional topics include proofs of possibility and impossibility, contextuality, non-locality, classification of hidden-variables theories, and stochastic quantum mechanics. The final section discusses how to gain a genuine understanding of quantum mec...
A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States
Ryff, Luiz Carlos
1996-01-01
A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.
Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States
Hirsch, Flavien; Quintino, Marco Túlio; Vértesi, Tamás; Pusey, Matthew F.; Brunner, Nicolas
2016-11-01
Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements. This leads to a sequence of tests which, in the limit, fully captures the set of quantum states admitting a LHV model. Similar methods are developed for local hidden state models. We illustrate the practical relevance of these methods with several examples.
Algorithmic Construction of Local Hidden Variable Models for Entangled Quantum States.
Hirsch, Flavien; Quintino, Marco Túlio; Vértesi, Tamás; Pusey, Matthew F; Brunner, Nicolas
2016-11-04
Constructing local hidden variable (LHV) models for entangled quantum states is a fundamental problem, with implications for the foundations of quantum theory and for quantum information processing. It is, however, a challenging problem, as the model should reproduce quantum predictions for all possible local measurements. Here we present a simple method for building LHV models, applicable to any entangled state and considering continuous sets of measurements. This leads to a sequence of tests which, in the limit, fully captures the set of quantum states admitting a LHV model. Similar methods are developed for local hidden state models. We illustrate the practical relevance of these methods with several examples.
Bianchi Cosmologies New Variables and a Hidden Supersymmetry
Obregón, O; Ryan, M P; Obregon, Octavio; Pullin, Jorge; Ryan, Michael P.
1993-01-01
We find a supersymmetrization of the Bianchi IX cosmology in terms of Ashtekar's new variables. This provides a framework for connecting the recent results of Graham and those of Ryan and Moncrief for quantum states of this model. These states are also related with the states obtained particularizing supergravity for a minisuperspace. Implications for the general theory are also briefly discussed.
Entanglement and nonlocality in multi-particle systems
Reid, M D; Drummond, P D
2011-01-01
Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hidden-variable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.
Quantum Computing and Hidden Variables II: The Complexity of Sampling Histories
Aaronson, S
2004-01-01
This paper shows that, if we could examine the entire history of a hidden variable, then we could efficiently solve problems that are believed to be intractable even for quantum computers. In particular, under any hidden-variable theory satisfying a reasonable axiom called "indifference to the identity," we could solve the Graph Isomorphism and Approximate Shortest Vector problems in polynomial time, as well as an oracle problem that is known to require quantum exponential time. We could also search an N-item database using O(N^{1/3}) queries, as opposed to O(N^{1/2}) queries with Grover's search algorithm. On the other hand, the N^{1/3} bound is optimal, meaning that we could probably not solve NP-complete problems in polynomial time. We thus obtain the first good example of a model of computation that appears slightly more powerful than the quantum computing model.
Post-relativistic gravity a hidden variable theory for general relativity
Schmelzer, I
1996-01-01
Post-relativistic gravity is a hidden variable theory for general relativity. It introduces the pre-relativistic notions absolute space, absolute time, and ether as hidden variables into general relativity. Evolution is defined by the equations of general relativity and the harmonic coordinate condition interpreted as a physical equation. There are minor differences in predictions compared with general relativity (i.e. trivial topology of the universe is predicted). The unobservable absolute time is designed to solve the problem of time in quantization of general relativity. Background space and time define a Newtonian frame for the quantization of the gravitational field. By the way, a lot of other conceptual problems of quantization will be solved (i.e. no constraints, no topological foam, no black hole and bib bang singularities, natural vacuum definition for quantum fields on classical background).
Altafini, C
2004-01-01
For the 3-qubit UPB state, i.e., the bound entangled state constructed from an Unextendable Product Basis of Bennett et al. (Phys. Rev. Lett. 82:5385, 1999), we provide a set of violations of Local Hidden Variable (LHV) models based on the particular type of reflection symmetry encoded in this state. The explicit nonlocal unitary operation needed to prepare the state from its reflected separable mixture of pure states is given, as well as a nonlocal one-parameter orbit of states with Positive Partial Transpositions (PPT) which swaps the entanglement between a state and its reflection twice during a period.
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
Kim, Y S
2010-01-01
The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but...
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Directory of Open Access Journals (Sweden)
Fazle R. Ahad
2013-01-01
Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.
On-line Fault Diagnosis in Industrial Processes Using Variable Moving Window and Hidden Markov Model
Institute of Scientific and Technical Information of China (English)
周韶园; 谢磊; 王树青
2005-01-01
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.
Self-similar variables and the problem of nonlocal electron heat conductivity
Energy Technology Data Exchange (ETDEWEB)
Krasheninnikov, S.I.; Bakunin, O.G. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center]|[Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)
1993-10-01
Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z{sub eff}. For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, {gamma}{sub T}, to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a {open_quotes}symmetrized{close_quotes} kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z{sub eff} (Z{sub eff} {ge} (L/{gamma}{sub T}){sup 1/2}). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r.
Critical analysis of the empirical tests of local hidden-variable theories
Santos, Emilio
1992-10-01
A local hidden-variable model is exhibited for the experiments by Aspect, Grangier, and Roger [Phys. Rev. Lett. 47, 460 (1981); 49, 91 (1982)] and Aspect, Dalibard, and Roger [Phys. Rev. Lett. 49, 1804 (1982)] measuring polarization correlation of optical-photon pairs. The model agrees with quantum-mechanical predictions for all measurable quantities even with ideal polarizers and detectors, and emphasizes the need of a high degree of directional correlation, besides the correlation of spin (or polarization or other quantities), in any test of locality. It is proved that homogeneous inequalities, involving only coincidence detection rates, cannot discriminate between quantum mechanics and local theories, which invalidates all previously used empirical tests. The role of supplementary assumptions, like the so-called no enhancement, for the derivation of Bell's inequalities is discussed. Finally it is conjectured that quantum mechanics might be compatible with local realism, if we assume that not all self-adjoint operators represent observables and not all density operators represent states.
Quantum non-locality - It ain't necessarily so...
Zukowski, Marek
2015-01-01
Bell's theorem is 50 years old. Still there is a controversy about its implications. Much of it has its roots in confusion regarding the premises from which the theorem can be derived. Some claim that a derivation of Bell's inequalities requires just locality assumption, and nothing more. Violations of the inequalities are then interpreted as ``nonlocality'' or ``quantum nonlocality''. We show that such claims are unfounded and that every derivation of Bell's inequalities requires a premise -- in addition to locality and freedom of choice -- which is either assumed tacitly, or unconsciously, or is embedded in a single compound condition (like Bell's ``local causality''). The premise is equivalent to the assumption of existence of additional variables which do not appear in the quantum formalism (in form of determinism, or joint probability for outcomes of all conceivable measurements, or ``additional causes`'', or ``hidden variables'', ``complete description of the state'' or counterfactual definiteness, etc....
Tan, Wei Lun; Yusof, Fadhilah; Yusop, Zulkifli
2017-07-01
This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño-Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño-Southern Oscillation in Peninsular Malaysia.
Tan, Wei Lun; Yusof, Fadhilah; Yusop, Zulkifli
2016-04-01
This study involves the modelling of a homogeneous hidden Markov model (HMM) on the northeast rainfall monsoon using 40 rainfall stations in Peninsular Malaysia for the period of 1975 to 2008. A six hidden states HMM was selected based on Bayesian information criterion (BIC), and every hidden state has distinct rainfall characteristics. Three of the states were found to correspond by wet conditions; while the remaining three states were found to correspond to dry conditions. The six hidden states were found to correspond with the associated atmospheric composites. The relationships between El Niño-Southern Oscillation (ENSO) and the sea surface temperatures (SST) in the Pacific Ocean are found regarding interannual variability. The wet (dry) states were found to be well correlated with a Niño 3.4 index which was used to characterize the intensity of an ENSO event. This model is able to assess the behaviour of the rainfall characteristics with the large scale atmospheric circulation; the monsoon rainfall is well correlated with the El Niño-Southern Oscillation in Peninsular Malaysia.
Fréchet Envelopes of Nonlocally Convex Variable Exponent Hörmander Spaces
Directory of Open Access Journals (Sweden)
Joaquín Motos
2016-01-01
Full Text Available We show that the dual Bp·locΩ′ of the variable exponent Hörmander space Bp(·loc(Ω is isomorphic to the Hörmander space B∞c(Ω (when the exponent p(· satisfies the conditions 0
The detection of hidden visual loss in optic neuropathy: VISTECH test at variable illuminations.
Leys, M J; Candaele, C M; Uvijls, A G; Heintz, B F; De Rouck, A F; Odom, J V
1990-01-01
The sensitivity of the VISTECH chart in the detection of hidden visual loss is debated. We tried to evaluate the diagnostic value of the test by using different illumination levels. Twelve MS-patients with normal acuity but a pathological VEP were examined at 9 different illuminations. We did not identify more abnormalities among patients, using VISTECH test at other illumination levels than the one recommended by the manufacturer.
Energy Technology Data Exchange (ETDEWEB)
Ghil, M. [Univ. of California, Los Angeles, CA (United States); Kravtsov, S. [Univ. of Wisconsin, Madison, WI (United States); Robertson, A. W. [IRI, Palisades, NY (United States); Smyth, P. [Univ. of California, Irvine, CA (United States)
2008-10-14
This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.
Barnaby, Neil
2008-01-01
We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.
Quach, Minh; Brunel, Nicolas; d'Alché-Buc, Florence
2007-12-01
Statistical inference of biological networks such as gene regulatory networks, signaling pathways and metabolic networks can contribute to build a picture of complex interactions that take place in the cell. However, biological systems considered as dynamical, non-linear and generally partially observed processes may be difficult to estimate even if the structure of interactions is given. Using the same approach as Sitz et al. proposed in another context, we derive non-linear state-space models from ODEs describing biological networks. In this framework, we apply Unscented Kalman Filtering (UKF) to the estimation of both parameters and hidden variables of non-linear state-space models. We instantiate the method on a transcriptional regulatory model based on Hill kinetics and a signaling pathway model based on mass action kinetics. We successfully use synthetic data and experimental data to test our approach. This approach covers a large set of biological networks models and gives rise to simple and fast estimation algorithms. Moreover, the Bayesian tool used here directly provides uncertainty estimates on parameters and hidden states. Let us also emphasize that it can be coupled with structure inference methods used in Graphical Probabilistic Models. Matlab code available on demand.
Giddings, Steven B
2012-01-01
If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...
Scaringi, S; Middleton, M
2014-01-01
We explore the non-linear, high-frequency, aperiodic variability properties in the three cataclysmic variables MV Lyr, KIC 8751494 and V1504 Cyg observed with Kepler, as well as the X-ray binary Cyg X-1 observed with RXTE. This is done through the use of a high-order Fourier statistic called the bispectrum and its related biphase and bicoherence, as well as the time-skewness statistic. We show how all objects display qualitatively similar biphase trends. In particular all biphase amplitudes are found to be smaller than $\\pi/2$, suggesting that the flux distributions for all sources are positively skewed on all observed timescales, consistent with the log-normal distributions expected from the fluctuating accretion disk model. We also find that for all objects the biphases are positive at frequencies where the corresponding power spectral densities display their high frequency break. This suggests that the noise-like flaring observed is rising more slowly than it is falling, and thus not time-reversible. This ...
A close hidden stellar companion to the SX Phe-type variable star DW Psc
Energy Technology Data Exchange (ETDEWEB)
Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q., E-mail: qsb@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China)
2015-01-01
DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion (M{sub 2}sini∼0.45(±0.03) M{sub ⊙}). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ∼ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.
Variational Infinite Hidden Conditional Random Fields
Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja; Ghahramani, Zoubin
2015-01-01
Hidden conditional random fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An Infinite hidden conditional random field is a hidden conditional random field with a countably infinite number of
Combinatorics and quantum nonlocality.
Buhrman, Harry; Høyer, Peter; Massar, Serge; Röhrig, Hein
2003-07-25
We use techniques for lower bounds on communication to derive necessary conditions (in terms of detector efficiency or amount of superluminal communication) for being able to reproduce the quantum correlations occurring in Einstein-Podolsky-Rosen-type experiments with classical local hidden-variable theories. As an application, we consider n parties sharing a Greenberger-Horne-Zeilinger-type state and show that the amount of superluminal classical communication required to reproduce the correlations is at least n(log((2)n-3) bits and the maximum detector efficiency eta(*) for which the resulting correlations can still be reproduced by a local hidden-variable theory is upper bounded by eta(*)
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.
Bell's Nonlocality in a General Nonsignaling Case: Quantitatively and Conceptually
Loubenets, Elena R.
2017-03-01
Quantum violation of Bell inequalities is now used in many quantum information applications and it is important to analyze it both quantitatively and conceptually. In the present paper, we analyze violation of multipartite Bell inequalities via the local probability model—the LqHV (local quasi hidden variable) model (Loubenets in J Math Phys 53:022201, 2012), incorporating the LHV model only as a particular case and correctly reproducing the probabilistic description of every quantum correlation scenario, more generally, every nonsignaling scenario. The LqHV probability framework allows us to construct nonsignaling analogs of Bell inequalities and to specify parameters quantifying violation of Bell inequalities—Bell's nonlocality—in a general nonsignaling case. For quantum correlation scenarios on an N-qudit state, we evaluate these nonlocality parameters analytically in terms of dilation characteristics of an N-qudit state and also, numerically—in d and N. In view of our rigorous mathematical description of Bell's nonlocality in a general nonsignaling case via the local probability model, we argue that violation of Bell inequalities in a quantum case is not due to violation of the Einstein-Podolsky-Rosen (EPR) locality conjectured by Bell but due to the improper HV modelling of "quantum realism".
Wavefunction Collapse via a Nonlocal Relativistic Variational Principle
Energy Technology Data Exchange (ETDEWEB)
Harrison, Alan K. [Los Alamos National Laboratory
2012-06-18
Since the origin of quantum theory in the 1920's, some of its practitioners (and founders) have been troubled by some of its features, including indeterminacy, nonlocality and entanglement. The 'collapse' process described in the Copenhagen Interpretation is suspect for several reasons, and the act of 'measurement,' which is supposed to delimit its regime of validity, has never been unambiguously defined. In recent decades, nonlocality and entanglement have been studied energetically, both theoretically and experimentally, and the theory has been reinterpreted in imaginative ways, but many mysteries remain. We propose that it is necessary to replace the theory by one that is explicitly nonlinear and nonlocal, and does not distinguish between measurement and non-measurement regimes. We have constructed such a theory, for which the phase of the wavefunction plays the role of a hidden variable via the process of zitterbewegung. To capture this effect, the theory must be relativistic, even when describing nonrelativistic phenomena. It is formulated as a variational principle, in which Nature attempts to minimize the sum of two spacetime integrals. The first integral tends to drive the solution toward a solution of the standard quantum mechanical wave equation, and also enforces the Born rule of outcome probabilities. The second integral drives the collapse process. We demonstrate that the new theory correctly predicts the possible outcomes of the electron two-slit experiment, including the infamous 'delayed-choice' variant. We observe that it appears to resolve some long-standing mysteries, but introduces new ones, including possible retrocausality (a cause later than its effect). It is not clear whether the new theory is deterministic.
Some generalizations of the nonlocal transformations approach
Directory of Open Access Journals (Sweden)
V. A. Tychynin
2015-02-01
Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a connection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transformation with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and formulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.
Pankovic, V; Krmar, M; Radovanovic, M; Pankovic, Vladan; Predojevic, Milan; Krmar, Miodrag; Radovanovic, Milan
2005-01-01
In this work we analyse critically Griffiths's example of the classical superluminal motion of a bug shadow. Griffiths considers that this example is conceptually very close to quantum nonlocality or superluminality,i.e. quantum breaking of the famous Bell inequality. Or, generally, he suggests implicitly an absolute asymmetric duality (subluminality vs. superluminality) principle in any fundamental physical theory.It, he hopes, can be used for a natural interpretation of the quantum mechanics too. But we explain that such Griffiths's interpretation retires implicitly but significantly from usual, Copenhagen interpretation of the standard quantum mechanical formalism. Within Copenhagen interpretation basic complementarity principle represents, in fact, a dynamical symmetry principle (including its spontaneous breaking, i.e. effective hiding by measurement). Similarly, in other fundamental physical theories instead of Griffiths's absolute asymmetric duality principle there is a dynamical symmetry (including it...
Fully nonlocal quantum correlations
Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán
2011-01-01
Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.
Mashhoon, B
2014-01-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
Yu, Yi-Kuo
2007-02-01
We construct a metric measure among weight matrices that are commonly used in non-interacting statistical physics systems, computational biology problems, as well as in general applications such as hidden Markov models. The metric distance between two weight matrices is obtained via aligning the matrices and thus can be evaluated by dynamic programming. Capable of allowing reverse complements in distance evaluation, this metric accommodates both gapless and gapped alignments between two weight matrices. The distance statistics among random motifs is also studied. We find that the average square distance and its standard error grow with different powers of motif length, and the normalized square distance follows a Gaussian distribution for large motif lengths.
Directory of Open Access Journals (Sweden)
M. Denche
1999-01-01
Full Text Available In the present paper we study nonlocal problems for ordinary differential equations with a discontinuous coefficient for the high order derivative. We establish sufficient conditions, known as regularity conditions, which guarantee the coerciveness for both the space variable and the spectral parameter, as well as guarantee the completeness of the system of root functions. The results obtained are then applied to the study of a nonlocal parabolic transmission problem.
Notes on nonlocal projective measurements in relativistic systems
Lin, Shih-Yuin
2013-01-01
In quantum mechanical bipartite systems, naive extensions of von Neumann's projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of "R-nonlocal" variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement "Q-nonlocal". After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the "R-nonlocal" variable or the quantum nondemolition verification of a Fock state, are all suppres...
Nonlocality from Local Contextuality
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-01
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Nonlocality from Local Contextuality.
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-25
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Millen, James
2016-04-01
George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
DEFF Research Database (Denmark)
Kieffer-Kristensen, Rikke; Johansen, Karen Lise Gaardsvig
2013-01-01
to participate. RESULTS: All children were affected by their parents' ABI and the altered family situation. The children's expressions led the authors to identify six themes, including fear of losing the parent, distress and estrangement, chores and responsibilities, hidden loss, coping and support. The main...... the ill parent. These findings contribute to a deeper understanding of the traumatic process of parental ABI that some children experience and emphasize the importance of family-centred interventions that include the children....
Hidden Statistics of Schroedinger Equation
Zak, Michail
2011-01-01
Work was carried out in determination of the mathematical origin of randomness in quantum mechanics and creating a hidden statistics of Schr dinger equation; i.e., to expose the transitional stochastic process as a "bridge" to the quantum world. The governing equations of hidden statistics would preserve such properties of quantum physics as superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Disentangling Nonlocality and Teleportation
Hardy, L
1999-01-01
Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.
Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide
2016-01-01
We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
Variational Hidden Conditional Random Fields with Coupled Dirichlet Process Mixtures
Bousmalis, K.; Zafeiriou, S.; Morency, L.P.; Pantic, Maja; Ghahramani, Z.
2013-01-01
Hidden Conditional Random Fields (HCRFs) are discriminative latent variable models which have been shown to successfully learn the hidden structure of a given classification problem. An infinite HCRF is an HCRF with a countably infinite number of hidden states, which rids us not only of the necessit
Nonlocal transformation optics
Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader
2011-01-01
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
Nonlocality of quantum correlations
Streltsov, A; Roga, W; Bruß, D; Illuminati, F
2012-01-01
We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.
Popper's experiment, Copenhagen Interpretation and Nonlocality
Qureshi, T
2003-01-01
A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.
Acausality in Nonlocal Gravity Theory
Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo
2016-01-01
We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.
Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Analytical theory of dark nonlocal solitons
DEFF Research Database (Denmark)
Kong, Qian; Wang, Qi; Bang, Ole;
2010-01-01
We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory
Tong, Lihong; Yu, Yang; Hu, Wentao; Shi, Yufeng; Xu, Changjie
2016-09-01
A nonlocal Biot theory is developed by combing Biot theory and nonlocal elasticity theory for fluid saturated porous material. The nonlocal parameter is introduced as an independent variable for describing wave propagation characteristics in poroelastic material. A physical insight on nonlocal term demonstrates that the nonlocal term is a superposition of two effects, one is inertia force effect generated by fluctuation of porosity and the other is pore size effect inherited from nonlocal constitutive relation. Models for situations of excluding fluid nonlocal effect and including fluid nonlocal effect are proposed. Comparison with experiment confirms that model without fluid nonlocal effect is more reasonable for predicting wave characteristics in saturated porous materials. The negative dispersion is observed theoretically which agrees well with the published experimental data. Both wave velocities and quality factors as functions of frequency and nonlocal parameter are examined in practical cases. A few new physical phenomena such as backward propagation and disappearance of slow wave when exceeding critical frequency and disappearing shear wave in high frequency range, which were not predicted by Biot theory, are demonstrated.
Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago
2016-07-01
The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.
Observers in Spacetime and Nonlocality
Mashhoon, B
2012-01-01
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...
Nonlocal Measurements in the Time-Symmetric Quantum Mechanics
Vaidman, L; Vaidman, Lev; Nevo, Izhar
2005-01-01
Although nondemolition, reliable, and instantaneous quantum measurements of some nonlocal variables are impossible, demolition reliable instantaneous measurements are possible for all variables. It is shown that this is correct also in the framework of the time-symmetric quantum formalism, i.e. nonlocal variables of composite quantum systems with quantum states evolving both forward and backward in time are measurable in a demolition way. The result follows from the possibility to reverse with certainty the time direction of a backward evolving quantum state. Demolition measurements of nonlocal backward evolving quantum states require remarkably small resources. This is so because the combined operation of time reversal and teleportation of a local backward evolving quantum state requires only a single quantum channel and no transmission of classical information.
Nonlocal Symmetry of the Lax Equation Related to Riccati-Type Pseudopotential
Wang, Yun-Hu; Chen, Yong; Xin, Xiang-Peng
2012-12-01
We investigate the Lax equation that can be employed to describe motions of long waves in shallow water under gravity. A nonlocal symmetry of this equation is given and used to find exact solutions and derive lower integrable models from higher ones. It is interesting that this nonlocal symmetry links with its corresponding Riccati-type pseudopotential. By introducing suitable and simple auxiliary dependent variables, the nonlocal symmetry is localized and used to generate new solutions from trivial solutions. Meanwhile, this equation is reduced to an ordinary differential equation by means of this nonlocal symmetry and some local symmetries.
An operational framework for nonlocality
Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel
2011-01-01
Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Nonlocal order parameters for the 1D Hubbard model.
Montorsi, Arianna; Roncaglia, Marco
2012-12-07
We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.
Weakly nonlocal non-equilibrium thermodynamics - variational principles and Second Law
Ván, P.
2009-01-01
A general, uniform, rigorous and constructive thermodynamic approach to weakly nonlocal non-equilibrium thermodynamics is reviewed. A method is given to construct and restrict the evolution equations of physical theories according to the Second Law of thermodynamics and considering weakly nonlocal constitutive state spaces. The evolution equations of internal variables, the classical irreversible thermodynamics and Korteweg fluids are treated.
Institute of Scientific and Technical Information of China (English)
Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun
2007-01-01
The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.
Optimal measurements for nonlocal correlations
Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto
2016-08-01
A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.
Towards LHC physics with nonlocal Standard Model
Tirthabir Biswas; Nobuchika Okada
2015-01-01
We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...
Solutions of Nonlocal -Laplacian Equations
Directory of Open Access Journals (Sweden)
Mustafa Avci
2013-01-01
Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.
Spontaneous Emission in Nonlocal Materials
Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V
2016-01-01
Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.
Classical and Quantum Nonlocal Supergravity
Giaccari, Stefano
2016-01-01
We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...
Study of Nonlocal Optical Potential
Institute of Scientific and Technical Information of China (English)
TIAN; Yuan
2013-01-01
It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form
Coding with partially hidden Markov models
DEFF Research Database (Denmark)
Forchhammer, Søren; Rissanen, J.
1995-01-01
Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...
Genuine multipartite nonlocality of permutationally invariant Gaussian states
Xu, Buqing; Adesso, Gerardo
2016-01-01
We investigate genuine multipartite nonlocality of pure permutationally invariant multimode Gaussian states of continuous variable systems, as detected by the violation of Svetlichny inequality. We identify the phase space settings leading to the largest violation of the inequality when using displaced parity measurements, distinguishing between even and odd number of modes. We further consider pseudospin measurements and show that, for three-mode states with asymptotically large squeezing degree, particular settings of these measurements allow one to approach the maximum violation allowed by quantum mechanics. This indicates that the highest possible genuine multipartite quantum nonlocality is in principle verifiable on Gaussian states.
Nonlocal optical response in metallic nanostructures.
Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N
2015-05-13
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.
Nonlocal optical response in metallic nanostructures
DEFF Research Database (Denmark)
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn
2015-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....
Partially Hidden Markov Models
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Rissanen, Jorma
1996-01-01
Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression wher...
Theory of genuine tripartite nonlocality of Gaussian states.
Adesso, Gerardo; Piano, Samanta
2014-01-10
We investigate the genuine multipartite nonlocality of three-mode Gaussian states of continuous variable systems. For pure states, we present a simplified procedure to obtain the maximum violation of the Svetlichny inequality based on displaced parity measurements, and we analyze its interplay with genuine tripartite entanglement measured via Rényi-2 entropy. The maximum Svetlichny violation admits tight upper and lower bounds at fixed tripartite entanglement. For mixed states, no violation is possible when the purity falls below 0.86. We also explore a set of recently derived weaker inequalities for three-way nonlocality, finding violations for all tested pure states. Our results provide a strong signature for the nonclassical and nonlocal nature of Gaussian states despite their positive Wigner function, and lead to precise recipes for its experimental verification.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Institute of Scientific and Technical Information of China (English)
周韶园; 谢磊; 王树青
2005-01-01
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method.
Nonlocal Measurements via Quantum Erasure.
Brodutch, Aharon; Cohen, Eliahu
2016-02-19
Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.
Nonlocal optical response in metallic nanostructures
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger
2014-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Totality of Subquantum Nonlocal Correlations
Khrennikov, Andrei
2011-01-01
In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
Nonlocally Centralized Simultaneous Sparse Coding
Institute of Scientific and Technical Information of China (English)
雷阳; 宋占杰
2016-01-01
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)
1996-08-01
The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.
Nonlocal Response in Plasmonic Nanostructures
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2016-01-01
After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
A nonlocal discretization of fields
Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.
2001-01-01
A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Extreme nonlocality with one photon
Energy Technology Data Exchange (ETDEWEB)
Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)
2011-05-15
Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Hidden circuits and argumentation
Leinonen, Risto; Kesonen, Mikko H. P.; Hirvonen, Pekka E.
2016-11-01
Despite the relevance of DC circuits in everyday life and schools, they have been shown to cause numerous learning difficulties at various school levels. In the course of this article, we present a flexible method for teaching DC circuits at lower secondary level. The method is labelled as hidden circuits, and the essential idea underlying hidden circuits is in hiding the actual wiring of DC circuits, but to make their behaviour evident for pupils. Pupils are expected to find out the wiring of the circuit which should enhance their learning of DC circuits. We present two possible ways to utilise hidden circuits in a classroom. First, they can be used to test and enhance pupils’ conceptual understanding when pupils are expected to find out which one of the offered circuit diagram options corresponds to the actual circuit shown. This method aims to get pupils to evaluate the circuits holistically rather than locally, and as a part of that aim this method highlights any learning difficulties of pupils. Second, hidden circuits can be used to enhance pupils’ argumentation skills with the aid of argumentation sheet that illustrates the main elements of an argument. Based on the findings from our co-operating teachers and our own experiences, hidden circuits offer a flexible and motivating way to supplement teaching of DC circuits.
Hidden symmetries in dilaton-axion gravity
Kechkin, O V
1996-01-01
Four--dimensional Einstein--Maxwell--dilaton--axion system restricted to space--times with one non--null Killing symmetry is formulated as the three--dimensional gravity coupled sigma--model. Several alternative representations are discussed and the associated hidden symmetries are revealed. The action of target space isometries on the initial set of (non--dualized ) variables is found. New mulicenter solutions are obtained via generating technique based on the formulation in terms of the non--dualized variables.
How Hidden Can Be Even More Hidden?
Fraczek, Wojciech; Szczypiorski, Krzysztof
2011-01-01
The paper presents Deep Hiding Techniques (DHTs) that define general techniques that can be applied to every network steganography method to improve its undetectability and make steganogram extraction harder to perform. We define five groups of techniques that can make steganogram less susceptible to detection and extraction. For each of the presented group, examples of the usage are provided based on existing network steganography methods. To authors' best knowledge presented approach is the first attempt in the state of the art to systematically describe general solutions that can make steganographic communication more hidden and steganogram extraction harder to perform.
Du, Qiang; Yang, Jiang
2017-03-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge-Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge-Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen-Cahn equations, nonlocal Cahn-Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Energy Technology Data Exchange (ETDEWEB)
Du, Qiang, E-mail: jyanghkbu@gmail.com; Yang, Jiang, E-mail: qd2125@columbia.edu
2017-03-01
This work is concerned with the Fourier spectral approximation of various integral differential equations associated with some linear nonlocal diffusion and peridynamic operators under periodic boundary conditions. For radially symmetric kernels, the nonlocal operators under consideration are diagonalizable in the Fourier space so that the main computational challenge is on the accurate and fast evaluation of their eigenvalues or Fourier symbols consisting of possibly singular and highly oscillatory integrals. For a large class of fractional power-like kernels, we propose a new approach based on reformulating the Fourier symbols both as coefficients of a series expansion and solutions of some simple ODE models. We then propose a hybrid algorithm that utilizes both truncated series expansions and high order Runge–Kutta ODE solvers to provide fast evaluation of Fourier symbols in both one and higher dimensional spaces. It is shown that this hybrid algorithm is robust, efficient and accurate. As applications, we combine this hybrid spectral discretization in the spatial variables and the fourth-order exponential time differencing Runge–Kutta for temporal discretization to offer high order approximations of some nonlocal gradient dynamics including nonlocal Allen–Cahn equations, nonlocal Cahn–Hilliard equations, and nonlocal phase-field crystal models. Numerical results show the accuracy and effectiveness of the fully discrete scheme and illustrate some interesting phenomena associated with the nonlocal models.
Photonic multipartite entanglement conversion using nonlocal operations
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication
Walleczek, Jan; Grössing, Gerhard
2016-09-01
It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time
Explaination of nonlocal granular fluidity in terms of microscopic fluctuations
Zhang, Qiong; Kamrin, Ken
A recently proposed granular constitutive law has shown capability to predict nonlocal granular rheology using a variable denoted ``granular fluidity''. This work is aimed at finding the microscopic physical meaning of fluidity in terms of fluctuations such as fluctuation of normalized shear stress and fluctuation of velocity. We try to predict the fluidity as a function of the fluctuation of normalized shear stress, and also test Eyring equation and kinetic theory based on the theoretical prediction proposed in other work. We find a consistent definition for the fluidity to be proportional to the product of the velocity fluctuations and some function of packing fraction divided by the average diameter of the grains. This definition shows predictive ability in multiple geometries for which flow behavior is nonlocal. It is notable that the fluidity is well-defined as a function of kinematic state variables, as one would hope for a quantity of this nature.
The SHiP Experiment is a new general-purpose fixed target facility at the SPS to search for hidden particles as predicted by a very large number of recently elaborated models of Hidden Sectors which are capable of accommodating dark matter, neutrino oscillations, and the origin of the full baryon asymmetry in the Universe. Specifically, the experiment is aimed at searching for very weakly interacting long lived particles including Heavy Neutral Leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc.; scalar, axion and vector portals to the hidden sector. The high intensity of the SPS and in particular the large production of charm mesons with the 400 GeV beam allow accessing a wide variety of light long-lived exotic particles of such models and of SUSY. Moreover, the facility is ideally suited to study the interactions of tau neutrinos.
Vongehr, Sascha
2013-01-01
Experimental violation of Bell-inequalities disproves actualization of single futures (~ 'naive realism'). To show this self-contained pedagogically, I resolve the Einstein-Podolsky-Rosen paradox by starting with a trivial non-quantum many-worlds model that already has 'apparent non-locality'. I modify it, constructing a visually intuitive classical-to-quantum transition model. 'Model-external randomness' (a ghost outside the universe throwing a pebble on state-space) stays unchanged, but the modeled observers witness even stronger Bell-violation than standard quantum probability P. P is derived from classical-to-quantum consistency. Model-internal probability (~ subjective Bayesianism) is derived as a measure of surprise (~ Deutsch's rational expectation) and shown to be reflected in the empirical records. The model shows how absolute actualization, say by hidden variables, fails. Models with standard quantum probabilities are supplied for completeness. The transition model is then presented as the first tou...
Schwarz, Matthias; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter
2011-01-01
The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope.
Energy Technology Data Exchange (ETDEWEB)
Schwarz, Matthias; Wiedemann, Guenter [Hamburg Univ. (Germany). Sternwarte; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany)
2011-11-15
The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope. (orig.)
Chaudhury, Kunal N; Singer, Amit
2012-11-01
In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.
Extreme nonlocality with one photon
Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko
2009-01-01
The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.
Percolation transitions with nonlocal constraint.
Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong
2012-09-01
We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.
Horikis, Theodoros P
2016-01-01
The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.
Nonlocal Quantum Effects in Cosmology
Dumin, Yurii V
2014-01-01
Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...
Nonlocal reflection by photonic barriers
Vetter, R. -M.; A. Haibel; Nimtz, G.
2001-01-01
The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.
Diaz, Pablo; Walton, Mark
2016-01-01
With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...
Towards LHC physics with nonlocal Standard Model
Directory of Open Access Journals (Sweden)
Tirthabir Biswas
2015-09-01
Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.
Nonlocal transport in superconducting oxide nanostructures
Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy
2013-03-01
We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443
Detrimental nonlocality in luminescence measurements
Pluska, Mariusz; Czerwinski, Andrzej
2017-08-01
Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.
Modesto, Leonardo
2013-01-01
We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...
Nonlocal response of hyperbolic metasurfaces.
Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A
2015-11-16
We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.
Nonlocal electrical diffusion equation
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
Making nonlocal reality compatible with relativity
Nikolic, H.
2010-01-01
It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.
Application of nonlocal models to nano beams. Part I: Axial length scale effect.
Kim, Jun-Sik
2014-10-01
Applicability of nonlocal models to nano-beams is discussed in terms of physical implications via the similarity between a nonlocal Euler-Bernoulli (EB) beam theory and a classical Rankine-Timoshenko (RT) beam theory. The nonlocal EB beam model, Eringen's model, is briefly reviewed and the classical RT beam theory is recast by the primary variables of the EB model. A careful comparison of these two models reveals that the scale parameter used to the Eringen's model has a strike resemblance to the shear flexibility in the RT model. This implies that the nonlocal model employed in literature consider the axial length scale effect only. In addition, the paradox for a cantilevered nano-beam subjected to tip shear force is clearly explained by finding appropriate displacement prescribed boundary conditions.
Nonlocal Gravity in the Solar System
Chicone, C
2015-01-01
The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.
Nonlocal gravity in the solar system
Chicone, C.; Mashhoon, B.
2016-04-01
The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.
Origin of Dynamical Quantum Non-locality
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Perturbative loop corrections and nonlocal gravity
Maggiore, Michele
2016-01-01
Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.
Local and Nonlocal Regularization to Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2014-01-01
Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
Causality, Non-Locality and Negative Refraction
Forcella, Davide; Carminati, Rémi
2016-01-01
The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.
Symmetry reduction related with nonlocal symmetry for Gardner equation
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
Nonlocality of a single particle
Dunningham, Jacob; Vedral, Vlatko
2007-01-01
There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...
Directory of Open Access Journals (Sweden)
Antoni Buades
2011-09-01
Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J
2010-01-01
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal study of ultimate plasmon hybridization
DEFF Research Database (Denmark)
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.
2015-01-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...
On instabilities in tensorial nonlocal gravity
Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R
2016-01-01
We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.
Multipole vector solitons in nonlocal nonlinear media.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru
2006-05-15
We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.
Creation of Entanglement with Nonlocal Operations
Institute of Scientific and Technical Information of China (English)
ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu
2005-01-01
We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.
Spectral Dimension from Causal Set Nonlocal Dynamics
Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo
2015-01-01
We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
DEFF Research Database (Denmark)
Krogh, Anders Stærmose; Riis, Søren Kamaric
1999-01-01
A general framework for hybrids of hidden Markov models (HMMs) and neural networks (NNs) called hidden neural networks (HNNs) is described. The article begins by reviewing standard HMMs and estimation by conditional maximum likelihood, which is used by the HNN. In the HNN, the usual HMM probability...... parameters are replaced by the outputs of state-specific neural networks. As opposed to many other hybrids, the HNN is normalized globally and therefore has a valid probabilistic interpretation. All parameters in the HNN are estimated simultaneously according to the discriminative conditional maximum...... likelihood criterion. The HNN can be viewed as an undirected probabilistic independence network (a graphical model), where the neural networks provide a compact representation of the clique functions. An evaluation of the HNN on the task of recognizing broad phoneme classes in the TIMIT database shows clear...
Królikowski, Wojciech
2016-01-01
A hypothetic Hidden Sector of the Universe, consisting of sterile fermions ("sterinos") and sterile mediating bosons ("sterons") of mass dimension 1 (not 2!) - the last described by an antisymmetric tensor field - requires to exist also a scalar isovector and scalar isoscalar in order to be able to construct electroweak invariant coupling (before spontaneously breaking its symmetry). The introduced scalar isoscalar might be a resonant source for the diphoton excess of 750 GeV, suggested recently by experiment.
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Nonlocal Galileons and self-acceleration
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Nonlocal Galileons and self-acceleration
Directory of Open Access Journals (Sweden)
Gregory Gabadadze
2017-05-01
Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Nonlocal thermal transport in solar flares
Karpen, Judith T.; Devore, C. Richard
1987-01-01
A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.
Non-local parallel transport in BOUT++
Omotani, J T; Havlickova, E; Umansky, M
2015-01-01
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, B
2015-01-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, Bahram
2016-05-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
The neglected nonlocal effects of deforestation
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation
Nonlocality Proof for Two-Particle Systems in 3 3 Hilbert Space
Institute of Scientific and Technical Information of China (English)
WU Xiao-Hua; ZONG Hong-Shi; PANG Hou-Rong; WANG Fan
2001-01-01
For a two-particle system in 3 3 Hilbert space, we derive a new type of inequality for local hidden variable model. Using an entangled state, we give a realizable experiment whose joint probabilities violate the inequality.``
EPR Paradox, Quantum Nonlocality and Physical Reality
Kupczynski, Marian
2016-01-01
Eighty years ago Einstein demonstrated that a particular interpretation of the reduction of wave function led to a paradox and that this paradox disappeared if statistical interpretation of quantum mechanics was adopted. According to the statistical interpretation a wave function describes only an ensemble of identically prepared physical systems. Searching for an intuitive explanation of long range correlations between outcomes of distant measurements, performed on pairs of physical systems prepared in a spin singlet state, John Bell analysed local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of quantum mechanics. Several different local models were constructed, various inequalities proven and shown to be violated by experimental data. Some physicists concluded that Nature is definitely not local. We strongly disagree with this conclusion and we critically analyze some influential finite sample proo...
Hidden symmetries of the Higgs oscillator and the conformal algebra
Evnin, Oleg; Nivesvivat, Rongvoram
2017-01-01
We give a solution to the long-standing problem of constructing the generators of hidden symmetries of the quantum Higgs oscillator, a particle on a d-sphere moving in a central potential varying as the inverse cosine-squared of the polar angle. This superintegrable system is known to possess a rich algebraic structure, including a hidden SU(d) symmetry that can be deduced from classical conserved quantities and degeneracies of the quantum spectrum. The quantum generators of this SU(d) have not been constructed thus far, except at d = 2, and naive quantization of classical conserved quantities leads to deformed Lie algebras with quadratic terms in the commutation relations. The nonlocal generators we obtain here satisfy the standard su(d) Lie algebra, and their construction relies on a recently discovered realization of the conformal algebra, which contains a complete set of raising and lowering operators for the Higgs oscillator. This operator structure has emerged from a relation between the Higgs oscillator Schrödinger equation and the Klein-Gordon equation in Anti-de Sitter spacetime. From such a point-of-view, constructing the hidden symmetry generators reduces to manipulations within the abstract conformal algebra so(d, 2).
Can EPR non-locality be geometrical?
Energy Technology Data Exchange (ETDEWEB)
Ne`eman, Y. [Tel-Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics; Botero, A. [Texas Univ., Austin, TX (United States)
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Local, nonlocal quantumness and information theoretic measures
Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.
2016-08-01
It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.
Nonlocal study of ultimate plasmon hybridization.
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2015-03-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.
Nonlocal-response diffusion model of holographic recording in photopolymer
Sheridan, John T.; Lawrence, Justin R.
2000-01-01
The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be completely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equation is then solved numerically, in low-harmonic approximation, to de...
Film edge nonlocal spin valves.
McCallum, Andrew T; Johnson, Mark
2009-06-01
Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.
Nonlocality in uniaxially polarizable media
Gorlach, Maxim A
2015-01-01
We reveal extraordinary electromagnetic properties for a general class of uniaxially polarizable media. Depending on parameters, such metamaterials may have wide range of nontrivial shapes of isofrequency contours including lemniscate, diamond and multiply connected curves with connectivity number reaching five. The possibility of the dispersion engineering paves a way to more flexible manipulation of electromagnetic waves. Employing first-principle considerations we prove that uniaxially polarizable media should be described in terms of the nonlocal permittivity tensor which by no means can be reduced to local permittivity and permeability even in the long-wavelength limit. We introduce an alternative set of local material parameters including quadrupole susceptibility capable to capture all of the second-order spatial dispersion effects.
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
DEFF Research Database (Denmark)
Raza, Søren; Christensen, Thomas; Wubs, Martijn
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....
Self-similarity of complex networks and hidden metric spaces
Serrano, M Angeles; Boguna, Marian
2007-01-01
We demonstrate that the self-similarity of some scale-free networks with respect to a simple degree-thresholding renormalization scheme finds a natural interpretation in the assumption that network nodes exist in hidden metric spaces. Clustering, i.e., cycles of length three, plays a crucial role in this framework as a topological reflection of the triangle inequality in the hidden geometry. We prove that a class of hidden variable models with underlying metric spaces are able to accurately reproduce the self-similarity properties that we measured in the real networks. Our findings indicate that hidden geometries underlying these real networks are a plausible explanation for their observed topologies and, in particular, for their self-similarity with respect to the degree-based renormalization.
Binary hidden Markov models and varieties
Critch, Andrew J
2012-01-01
The technological applications of hidden Markov models have been extremely diverse and successful, including natural language processing, gesture recognition, gene sequencing, and Kalman filtering of physical measurements. HMMs are highly non-linear statistical models, and just as linear models are amenable to linear algebraic techniques, non-linear models are amenable to commutative algebra and algebraic geometry. This paper examines closely those HMMs in which all the random variables, called nodes, are binary. Its main contributions are (1) minimal defining equations for the 4-node model, comprising 21 quadrics and 29 cubics, which were computed using Gr\\"obner bases in the cumulant coordinates of Sturmfels and Zwiernik, and (2) a birational parametrization for every binary HMM, with an explicit inverse for recovering the hidden parameters in terms of observables. The new model parameters in (2) are hence rationally identifiable in the sense of Sullivant, Garcia-Puente, and Spielvogel, and each model's Zar...
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Family of nonlocal bound entangled states
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Employee Travel Data (Non-Local)
Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...
Energy Technology Data Exchange (ETDEWEB)
Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2016-08-07
The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
On a Nonlocal Damping Model in Ferromagnetism
Directory of Open Access Journals (Sweden)
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Quantum theory of nonlocal nonlinear Schrodinger equation
Vyas, Vivek M
2015-01-01
Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Nonlocal Infrared Modifications of Gravity. A Review
Maggiore, Michele
2016-01-01
We review an approach developed in the last few years by our group in which GR is modified in the infrared, at an effective level, by nonlocal terms associated to a mass scale. We begin by recalling the notion of quantum effective action and its associated nonlocalities, illustrating some of their features with the anomaly-induced effective actions in $D=2$ and $D=4$. We examine conceptual issues of nonlocal theories such as causality, degrees of freedoms and ghosts, stressing the importance of the fact that these nonlocalities only emerge at the effective level. We discuss a particular class of nonlocal theories where the nonlocal operator is associated to a mass scale, and we show that they perform very well in the comparison with cosmological observations, to the extent that they fit CMB, supernovae, BAO and structure formation data at a level fully competitive with $\\Lambda$CDM, with the same number of free parameters. We explore some extensions of these `minimal' models, and we finally discuss some direc...
Effects of Nonlocality on Transfer Reactions
Titus, Luke J
2016-01-01
We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...
Non-local dynamics governing the self-induced motion of a planar vortex filament
Van Gorder, Robert A.
2015-06-01
While the Hasimoto planar vortex filament is one of the few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics; however, the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré-Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their forms under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.
Natarajan, S; Bordas, S; Mahapatra, D Roy
2012-01-01
In this paper, the axial vibration of cracked beams, the free flexural vibrations of nanobeams and plates based on Timoshenko beam theory and first-order shear deformable plate theory, respectively, using Eringen's nonlocal elasticity theory is numerically studied. The field variable is approximated by Lagrange polynomials and non-uniform rational B-splines. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the natural frequency is numerically studied. The influence of a crack on axial vibration is also studied. The results obtained from this study are found to be in good agreement with those reported in the literature.
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod
2006-02-01
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy’s nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy’s argument.
Hidden attractors in dynamical systems
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Thompson, Ian
2010-11-01
In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.
Managing Hidden Costs of Offshoring
DEFF Research Database (Denmark)
Larsen, Marcus M.; Pedersen, Torben
2014-01-01
This chapter investigates the concept of the ‘hidden costs’ of offshoring, i.e. unexpected offshoring costs exceeding the initially expected costs. Due to the highly undefined nature of these costs, we position our analysis towards the strategic responses of firms’ realisation of hidden costs....... In this regard, we argue that a major response to the hidden costs of offshoring is the identification and utilisation of strategic mechanisms in the organisational design to eventually achieving system integration in a globally dispersed and disaggregated organisation. This is heavily moderated by a learning...
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Dynamics of traveling waves in fluctuating nonlocal media
S. I., Skurativskyi; I. A., Skurativska
2017-08-01
The article deals with nonlocal hydrodynamic models for structured media with a fluctuating parameter. We are interested in the structure of traveling wave solutions disturbed by noise. Using the stochastic sensitivity function technique, the confidence ellipses for periodic trajectories obeying the period doubling scenario, hidden and spiral periodic orbits are derived. To identify the peculiarities of confidence ellipses, we consider the variation of eccentricity and area over the period of a periodic trajectory. We show that the dynamics of eccentricity of noisy limit cycle, up to triple period, has the number of minima coinciding with the cycle's multiplicity, whereas this is not in the case of quadruple cycle. The profiles of function for the areas of confidence ellipses characterize the heterogeneous anatomy of stochastic attractors and possess scaling properties for multiple cycles. Considering the eccentricity and area of confidence ellipses for the spiral trajectory existing in the vicinity of Shilnikov homoclinic loop, the intensive oscillations of eccentricity and area are observed when the confidence ellipses are derived for the flow near the one dimensional manifold of Shilnikov's orbit.
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
Hidden Markov Model for Stock Selection
Directory of Open Access Journals (Sweden)
Nguyet Nguyen
2015-10-01
Full Text Available The hidden Markov model (HMM is typically used to predict the hidden regimes of observation data. Therefore, this model finds applications in many different areas, such as speech recognition systems, computational molecular biology and financial market predictions. In this paper, we use HMM for stock selection. We first use HMM to make monthly regime predictions for the four macroeconomic variables: inflation (consumer price index (CPI, industrial production index (INDPRO, stock market index (S&P 500 and market volatility (VIX. At the end of each month, we calibrate HMM’s parameters for each of these economic variables and predict its regimes for the next month. We then look back into historical data to find the time periods for which the four variables had similar regimes with the forecasted regimes. Within those similar periods, we analyze all of the S&P 500 stocks to identify which stock characteristics have been well rewarded during the time periods and assign scores and corresponding weights for each of the stock characteristics. A composite score of each stock is calculated based on the scores and weights of its features. Based on this algorithm, we choose the 50 top ranking stocks to buy. We compare the performances of the portfolio with the benchmark index, S&P 500. With an initial investment of $100 in December 1999, over 15 years, in December 2014, our portfolio had an average gain per annum of 14.9% versus 2.3% for the S&P 500.
Microgenetic analysis of hidden figures
Marković Slobodan S.; Gvozdenović Vasilije P.
2006-01-01
In this study the phenomenological and processual aspects of the perception of hidden figures were compared. The question was whether the more probable percepts of hidden figures, compared to the less probable percepts, were generated in earlier stages of the perceptual process. In the pilot study the subjects were asked to say what they see in a complex linear pattern. The three most frequent and the three least frequent perceptual descriptions were selected. In the experiment the microgenes...
Wang, Frédéric
2010-01-01
We give an overview of the Hidden Subgroup Problem (HSP) as of July 2010, including new results discovered since the survey of arXiv:quant-ph/0411037v1. We recall how the problem provides a framework for efficient quantum algorithms and present the standard methods based on coset sampling. We study the Dihedral and Symmetric HSPs and how they relate to hard problems on lattices and graphs. Finally, we conclude with the known solutions and techniques, describe connections with efficient algorithms as well as miscellaneous variants of HSP. We also bring various contributions to the topic. We show that in theory, we can solve HSP over a given group inductively: the base case is solving HSP over its simple factor groups and the inductive step is building efficient oracles over a normal subgroup N and over the factor group G/N. We apply this analysis to the Dedekindian HSP to get an alternative abelian HSP algorithm based on a change of the underlying group. We also propose a quotient reduction by the normal group...
Managing Hidden Costs of Offshoring
DEFF Research Database (Denmark)
Larsen, Marcus M.; Pedersen, Torben
2014-01-01
This chapter investigates the concept of the ‘hidden costs’ of offshoring, i.e. unexpected offshoring costs exceeding the initially expected costs. Due to the highly undefined nature of these costs, we position our analysis towards the strategic responses of firms’ realisation of hidden costs. In......-by-doing process, where hidden costs motivate firms and their employees to search for new and better knowledge on how to successfully manage the organisation. We illustrate this thesis based on the case of the LEGO Group.......This chapter investigates the concept of the ‘hidden costs’ of offshoring, i.e. unexpected offshoring costs exceeding the initially expected costs. Due to the highly undefined nature of these costs, we position our analysis towards the strategic responses of firms’ realisation of hidden costs....... In this regard, we argue that a major response to the hidden costs of offshoring is the identification and utilisation of strategic mechanisms in the organisational design to eventually achieving system integration in a globally dispersed and disaggregated organisation. This is heavily moderated by a learning...
The Hidden Costs of Offshoring
DEFF Research Database (Denmark)
Møller Larsen, Marcus; Manning, Stephan; Pedersen, Torben
2011-01-01
This study seeks to explain hidden costs of offshoring, i.e. unexpected costs resulting from the relocation of business tasks and activities outside the home country. We develop a model that highlights the role of complexity, design orientation and experience in explaining hidden costs of offshor...... of our study is to suggest how hidden costs of offshoring can be mitigated through an explicit orientation towards improving organizational processes and structures as well as experience with offshoring.......This study seeks to explain hidden costs of offshoring, i.e. unexpected costs resulting from the relocation of business tasks and activities outside the home country. We develop a model that highlights the role of complexity, design orientation and experience in explaining hidden costs...... of offshoring. Specifically, we propose that hidden costs can be explained by the combination of increasing structural, operational and social complexity of offshoring activities. In addition, we suggest that firm orientation towards organizational design as part of an offshoring strategy and offshoring...
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2014-01-01
Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Nonlocal Optics of Plasmonic Nanowire Metamaterials
Wells, Brian M; Podolskiy, Viktor A
2014-01-01
We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal electromagnetic modes supported by the composite and derive the nonlocal effective medium approximation for this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell's equations and discuss generalization of the developed formalism to other uniaxial metamaterials.
Transfer reaction code with nonlocal interactions
Titus, L J; Nunes, F M
2016-01-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.
Transfer reaction code with nonlocal interactions
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-10-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.
Hidden symmetries of the Higgs oscillator and the conformal algebra
Evnin, Oleg
2016-01-01
We give a solution to the long-standing problem of constructing the generators of hidden symmetries of the quantum Higgs oscillator, a particle on a d-sphere moving in a central potential varying as the inverse cosine-squared of the polar angle. This superintegrable system is known to possess a rich algebraic structure, including a hidden SU(d) symmetry that can be deduced from classical conserved quantities and degeneracies of the quantum spectrum. The quantum generators of this SU(d) have not been constructed thus far, except at d=2, and naive quantization of classical conserved quantities leads to deformed Lie algebras with quadratic terms in the commutation relations. The nonlocal generators we obtain here satisfy the standard su(d) Lie algebra, and their construction relies on a recently discovered realization of the conformal algebra, which contains a complete set of raising and lowering operators for the Higgs oscillator. This operator structure has emerged from a relation between the Higgs oscillator ...
Hidden symmetry of the quantum Calogero-Moser system
DEFF Research Database (Denmark)
Kuzentsov, Vadim b
1996-01-01
The hidden symmetry of the quantum Calogero-Moser system with an inverse-square potential is algebraically demonstrated making use of Dunkl's operators. We find the underlying algebra explaining the super-integrability phenomenon for this system. Applications to related multi-variable Bessel...
Towards an emerging understanding of non-locality phenomena and non-local transport
Ida, K.; Shi, Z.; Sun, H. J.; Inagaki, S.; Kamiya, K.; Rice, J. E.; Tamura, N.; Diamond, P. H.; Dif-Pradalier, G.; Zou, X. L.; Itoh, K.; Sugita, S.; Gürcan, O. D.; Estrada, T.; Hidalgo, C.; Hahm, T. S.; Field, A.; Ding, X. T.; Sakamoto, Y.; Oldenbürger, S.; Yoshinuma, M.; Kobayashi, T.; Jiang, M.; Hahn, S. H.; Jeon, Y. M.; Hong, S. H.; Kosuga, Y.; Dong, J.; Itoh, S.-I.
2015-01-01
In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Nonlocal regularization of abelian models with spontaneous symmetry breaking
Clayton, M. A.
2001-01-01
We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.
Nonlocality and entanglement as opposite properties
Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A
2011-01-01
We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.
A Classical Framework for Nonlocality and Entanglement
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert
2012-01-01
Based on our model of quantum systems as emerging from the coupled dynamics between oscillating "bouncers" and the space-filling zero-point field, a sub-quantum account of nonlocal correlations is given. This is explicitly done for the example of the "double two-slit" variant of two-particle interferometry. However, it is also shown that the entanglement in two-particle interferometry is only a natural consequence of the fact that already a "single" two-slit experiment can be described on a sub-quantum level with the aid of "entangling currents" of a generally nonlocal nature.
Compressive Sensing via Nonlocal Smoothed Rank Function.
Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Breather solitons in highly nonlocal media
Alberucci, Alessandro; Assanto, Gaetano
2016-01-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science \\textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Low energy signatures of nonlocal field theories
Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi
2016-09-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Liang, Lin-mei; Li, Cheng-zu
2005-02-01
This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].
A nonlocal, ordinary, state-based plasticity model for peridynamics.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, John Anthony
2011-05-01
An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in [3] without an integration strategy or yield criterion. This report addresses both of these issues and thus establishes the first ordinary, state-based peridynamics plasticity model. Integration of the flow rule follows along the lines of the classical theories of rate independent J{sub 2} plasticity. It uses elastic force state relations, an additive decomposition of the deformation state, an elastic force state domain, a flow rule, loading/un-loading conditions, and a consistency condition. Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The report also develops a useful non-local yield criterion that depends upon the yield stress and horizon for the material. The modulus state for both the ordinary elastic material and aforementioned plasticity model is also developed and presented.
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Consequences and applications of the completeness of Hardy's nonlocality
Mansfield, Shane
2017-02-01
Logical nonlocality is completely characterized by Hardy's "paradox" in (2 ,2 ,l ) and (2 ,k ,2 ) scenarios. We consider a variety of consequences and applications of this fact. (i) Polynomial algorithms may be given for deciding logical nonlocality in these scenarios. (ii) Bell states are the only entangled two-qubit states which are not logically nonlocal under projective measurements. (iii) It is possible to witness Hardy nonlocality with certainty in a simple tripartite quantum system. (iv) Noncommutativity of observables is necessary and sufficient for enabling logical nonlocality.
Stargate of the Hidden Multiverse
Directory of Open Access Journals (Sweden)
Alexander Antonov
2016-02-01
Full Text Available Concept of Monoverse, which corresponds to the existing broad interpretation of the second postulate of the special theory of relativity, is not consistent with the modern astrophysical reality — existence of the dark matter and the dark energy, the total mass-energy of which is ten times greater than the mass-energy of the visible universe (which has been considered as the entire universe until very recent . This concept does not allow to explain their rather unusual properties — invisibility and lack of baryon content — which would seem to even destroy the very modern understanding of the term ‘matter’. However, all numerous alternative concepts of Multiverses, which have been proposed until today, are unable to explain these properties of the dark matter and dark energy. This article describes a new concept: the concept of the hidden Multiverse and hidden Supermultiverse, which mutual invisibility of parallel universes is explained by the physical reality of imaginary numbers. This concept completely explains the phenomenon of the dark matter and the dark energy. Moreover, it is shown that the dark matter and the dark energy are the experimental evidence for the existence of the hidden Multiverse. Described structure of the hidden Multiverse is fully consistent with the data obtained by the space stations WMAP and Planck. An extremely important property of the hidden Multiverse is an actual possibility of its permeation through stargate located on the Earth.
Hidden photons in connection to dark matter
Energy Technology Data Exchange (ETDEWEB)
Andreas, Sarah; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Goodsell, Mark D. [CPhT, Ecole Polytechnique, Palaiseau (France)
2013-06-15
Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter.We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J.
We show that observations of quantum nonlocaltiy can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Nonlocality and discrete cellular methods in optics
Wijers, C.M.J.; Boeij, de P.L.
2001-01-01
A subdivision of space into discrete cells underlies the traditional discrete dipole model. This model presumes that only nonlocal electric interactions between cells govern the electromagnetic response of a condensed matter system. Apart from the case of simple dielectrics, this is not realistic. C
Circumferential nonlocal effect on the buckling and vibration of nanotubes
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng Yuan, E-mail: cywang@ujs.edu.cn; Li, Xiao Hu; Luo, Ying
2016-04-01
The nonlocal beam theories are widely used to study the mechanics of cylindrical nanotubes (NTs). The one-dimensional models however are unable to account for the nonlocal effect in the circumferential direction, which may substantially affect the applicability of the nonlocal beam models. To address the issue this letter examines the circumferential nonlocal effect (CNE) on the buckling and vibration of the NTs. Here the CNE is characterized by the difference between the nonlocal beam model considering the axial nonlocal effect only and the nonlocal shell model with both axial and circumferential nonlocal effects. The aspect ratio and radius-dependence of the CNE are calculated for the singlewall carbon NTs selected as a typical example. The results show that the CNE is substantial for the buckling and vibration of the NTs with small radius (e.g., <1 nm) and aspect ratio (e.g., <15). It however decreases with the rising radius and the aspect ratio, and turns out to be small for relatively wide and long NTs. The nonlocal beam theories thus may overestimate the buckling load and vibration frequency for the thin and short NTs. - Highlights: • First revealed the substantial circumferential nonlocal effect (CNE) on nanotube buckling. • Achieved radius/aspect ratio-dependence of CNE on nanotube buckling and vibration. • Located the range of applicability of the nonlocal beam theory without CNE.
The Hidden Costs of Offshoring
DEFF Research Database (Denmark)
Møller Larsen, Marcus; Manning, Stephan; Pedersen, Torben
2011-01-01
experience moderate the relationship between complexity and hidden costs negatively i.e. reduces the cost generating impact of complexity. We develop three hypotheses and test them on comprehensive data from the Offshoring Research Network (ORN). In general, we find support for our hypotheses. A key result...... of offshoring. Specifically, we propose that hidden costs can be explained by the combination of increasing structural, operational and social complexity of offshoring activities. In addition, we suggest that firm orientation towards organizational design as part of an offshoring strategy and offshoring...
Hidden symmetries in jammed systems
Morse, Peter K.; Corwin, Eric I.
2016-07-01
There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.
Hidden Crises and Communication : An Interactional Analysis of Hidden Crises
Klarenbeek, Annette
2011-01-01
In this paper I describe the ways in which the communication discipline can make a hidden crisis transparent. For this purpose I examine the concept of crisis entrepreneurship from a communication point of view. Using discourse analysis, I analyse the discursive practices of crisis entrepreneurs in
Nonlocal Symmetry and Interaction Solutions of a Generalized Kadomtsev—Petviashvili Equation
Huang, Li-Li; Chen, Yong; Ma, Zheng-Yi
2016-08-01
A generalized Kadomtsev—Petviashvili equation is studied by nonlocal symmetry method and consistent Riccati expansion (CRE) method in this paper. Applying the truncated Painlevé analysis to the generalized Kadomtsev—Petviashvili equation, some Bäcklund transformations (BTs) including auto-BT and non-auto-BT are obtained. The auto-BT leads to a nonlocal symmetry which corresponds to the residual of the truncated Painlevé expansion. Then the nonlocal symmetry is localized to the corresponding nonlocal group by introducing two new variables. Further, by applying the Lie point symmetry method to the prolonged system, a new type of finite symmetry transformation is derived. In addition, the generalized Kadomtsev—Petviashvili equation is proved consistent Riccati expansion (CRE) solvable. As a result, the soliton-cnoidal wave interaction solutions of the equation are explicitly given, which are difficult to be found by other traditional methods. Moreover, figures are given out to show the properties of the explicit analytic interaction solutions. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of under Grant Nos. 11275072 and 11435005, Doctoral Program of Higher Education of China under Grant No. 20120076110024, the Network Information Physics Calculation of Basic Research Innovation Research Group of China under Grant No. 61321064, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213, and Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14A010005
Vargas-Magaña, Rosa; Panayotaros, Panayotis
2015-11-01
We study the problem of wave propagation in a long-wave asymptotic regime over variable bottom of an ideal irrotational fluid in the framework of the Hamiltonian formulation in which the non-local Dirichlet-Neumann (DtN) operator appears explicitly in the Hamiltonian. We propose a non-local Hamiltonian model for bidirectional wave propagation in shallow water that involves pseudodifferential operators that approximate the DtN operator for variable depth. These models generalize the Boussinesq system as they include the exact dispersion relation in the case of constant depth. We present results for the normal modes and eigenfrequencies of the linearized problem. We see that variable topography introduces effects such as steepening of normal modes with increasing variation of depth, as well as amplitude modulation of the normal modes in certain wavelength ranges. Numerical integration shows that the constant depth nonlocal Boussinesq model with quadratic nonlinearity can capture the evolution obtained with higher order approximations of the DtN operator. In the case of variable depth we observe certain oscillations in width of the crest and also some interesting textures in the evolution of wave crests during the passage from obstacles.
Modeling Multiple Risks: Hidden Domain of Attraction
Mitra, Abhimanyu
2011-01-01
Hidden regular variation is a sub-model of multivariate regular variation and facilitates accurate estimation of joint tail probabilities. We generalize the model of hidden regular variation to what we call hidden domain of attraction. We exhibit examples that illustrate the need for a more general model and discuss detection and estimation techniques.
Pentaquark states with hidden charm
Bijker, Roelof
2017-07-01
I develop an extension of the usual three-flavor quark model to four flavors (u, d, s and c), and discuss the classification of pentaquark states with hidden charm. This work is motivated by the recent observation of such states by the LHCb Collatoration at CERN.
Microgenetic analysis of hidden figures
Directory of Open Access Journals (Sweden)
Marković Slobodan S.
2006-01-01
Full Text Available In this study the phenomenological and processual aspects of the perception of hidden figures were compared. The question was whether the more probable percepts of hidden figures, compared to the less probable percepts, were generated in earlier stages of the perceptual process. In the pilot study the subjects were asked to say what they see in a complex linear pattern. The three most frequent and the three least frequent perceptual descriptions were selected. In the experiment the microgenesis of the perception of hidden figures was investigated. The primed matching paradigm and the same-different task were used. In each experiment two types of test figures were contrasted: the more frequent and the less frequent ones. There were two prime types: identical (equal to test figures and complex (the pattern with hidden test figures. The prime duration was varied, 50 ms and 400 ms. The main result indicates that in the case of complex priming the more frequent test figures were processed significantly faster than the less frequent ones in both prime duration conditions. These results suggest that the faster the processing of a figure, the more probable the perceptual generation of this figure.
Classification of scalar and dyadic nonlocal optical response models.
Wubs, M
2015-11-30
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.
A hybridizable discontinuous Galerkin method for solving nonlocal optical response models
Li, Liang; Mortensen, N Asger; Wubs, Martijn
2016-01-01
We propose Hybridizable Discontinuous Galerkin (HDG) methods for solving the frequency-domain Maxwell's equations coupled to the Nonlocal Hydrodynamic Drude (NHD) and Generalized Nonlocal Optical Response (GNOR) models, which are employed to describe the optical properties of nano-plasmonic scatterers and waveguides. Brief derivations for both the NHD model and the GNOR model are presented. The formulations of the HDG method are given, in which we introduce two hybrid variables living only on the skeleton of the mesh. The local field solutions are expressed in terms of the hybrid variables in each element. Two conservativity conditions are globally enforced to make the problem solvable and to guarantee the continuity of the tangential component of the electric field and the normal component of the current density. Numerical results show that the proposed HDG methods converge at optimal rate. We benchmark our implementation and demonstrate that the HDG method has the potential to solve complex nanophotonic pro...
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Nonlocal Operational Calculi for Dunkl Operators
Directory of Open Access Journals (Sweden)
Ivan H. Dimovski
2009-03-01
Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
Nonlocal diffusion second order partial differential equations
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Quantum Loops in Non-Local Gravity
Talaganis, Spyridon
2015-01-01
In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.
Nonlocal Condensate Model for QCD Sum Rules
Hsieh, Ron-Chou
2009-01-01
We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... averaging through both HDM and the recent Generalized Nonlocal Optical Response (GNOR) theory, which apart from the resonance frequency shifts accounts successfully for size-dependent damping as well. We examine NPs made of either ideal Drude-like metals [of plasmon frequency (wavelength) ωp (λp...
An Adaptive Iterated Nonlocal Interferometry Filtering Method
Directory of Open Access Journals (Sweden)
Lin Xue
2014-04-01
Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.
Nonlocal neurology: beyond localization to holonomy.
Globus, G G; O'Carroll, C P
2010-11-01
The concept of local pathology has long served neurology admirably. Relevant models include self-organizing nonlinear brain dynamics, global workspace and dynamic core theories. However such models are inconsistent with certain clinical phenomena found in Charles Bonnet syndrome, disjunctive agnosia and schizophrenia, where there is disunity of content within the unity of consciousness. This is contrasted with the split-brain case where there is disunity of content and disunity of consciousnesses. The development of quantum brain theory with it nonlocal mechanisms under the law of the whole ("holonomy") offers new possibilities for explaining disintegration within unity. Dissipative quantum brain dynamics and its approach to the binding problem, memory and consciousness are presented. A nonlocal neurology armed with a holonomic understanding might see more deeply into what clinical neurology has always aspired to: the patient as a whole.
Non-local geometry inside Lifshitz horizon
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Nonlocal Symmetries, Explicit Solutions, and Wave Structures for the Korteweg-de Vries Equation
Ma, Zheng-Yi; Fei, Jin-Xi
2016-08-01
From the known Lax pair of the Korteweg-de Vries (KdV) equation, the Lie symmetry group method is successfully applied to find exact invariant solutions for the KdV equation with nonlocal symmetries by introducing two suitable auxiliary variables. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to the hyperbolic and Jacobi elliptic functions are derived. Figures show the physical interaction between the cnoidal waves and a solitary wave.
Levchenko, E. A.; Trifonov, A. Yu.; Shapovalov, A. V.
2014-04-01
A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.
Surface-enhanced Raman spectroscopy: nonlocal limitations
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, S.; Xiao, Sanshui;
2012-01-01
Giant field enhancement and field singularities are a natural consequence of the commonly employed local-response framework. We show that a more general nonlocal treatment of the plasmonic response leads to new and possibly fundamental limitations on field enhancement with important consequences ...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...
Structure of Nonlocal Vacuum Condensate of Quarks
Institute of Scientific and Technical Information of China (English)
周丽娟; 马维兴
2003-01-01
The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.
Nonlocal Optical Response of Plasmonic Nanowire Metamaterials
2014-01-01
exceptional properties that are not readily found in nature. There are numerous applications in modern optics which can be realized through the study and...K., R. C. McPhedran, and Vladimir M. Shalaev. " Electrodynamics of metal-dielectric composites and electromagnetic crystals." Physical Review B 62.12...16.10 (2008): 7460-7470. [41] Pokrovsky, A. L., and A. L. Efros. "Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals." Physical
Dual-switching behavior of nonlocal interfaces
Sánchez-Curto, Julio; Chamorro-Posada, Pedro
2017-05-01
Nonlinear interfaces separating two diffusive Kerr-type media exhibit dual switching between total internal reflection and transmission. This property is found within a weakly nonlocal regime when both a nonparaxial treatment of the problem and a full two-dimensional model for carrier diffusion are assumed. The theoretical model is shown to predict an effective cubic-quintic nonlinearity with competing terms that produces such property. The validity of the analysis is contrasted with a full set of numerical simulations.
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Maximum quantum nonlocality between systems that never interacted
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adán, E-mail: adan@us.es [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)
2012-12-03
We show that there is a stronger form of bipartite quantum nonlocality in which systems that never interacted are as nonlocal as allowed by no-signaling. For this purpose, we first show that nonlocal boxes, theoretical objects that violate a bipartite Bell inequality as much as the no-signaling principle allows and which are physically impossible for most scenarios, are feasible if the two parties have 3 measurements with 4 outputs. Then we show that, in this case, entanglement swapping allows us to prepare mixtures of nonlocal boxes using systems that never interacted. -- Highlights: ► We show quantum correlations as nonlocal as allowed by no-signaling between systems that never interacted. ► We show that nonlocal boxes are feasible if 2 parties have 3 measurements with 4 outputs. ► Experimental implementations of 1 and 2 are proposed.
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Relativistic three-partite non-locality
Montakhab, A
2015-01-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and GHZ states which exhibit distinctly different type of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Svetlichny's inequality as the main measure of non-locality and uses the same angles in the rest frame ($S$) as well as the moving frame ($S^{\\prime}$), then maximally violated inequality in $S$ will decrease in the moving frame, and will eventually lead to lack of non-locality ( i.e. satisfaction of inequality) in the $v \\rightarrow c$ limit. This is shown for both GHZ and W states and in two different configurations which are commonly ...
Nonlocal Gravity and Structure in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Nonintentional behavioural responses to psi : hidden targets and hidden observers
Anderson, Mary-Jane Charlotte
2012-01-01
Psi is the phenomenon of apparently responding to or receiving information by means other than the recognised senses. Psi information may influence human behaviour, without the individual intending this or even being aware of it. This thesis seeks to investigate nonintentional behavioural responses to psi. We present five empirical studies that investigated nonintentional behavioural responses to psi information. In each study, the psi information was hidden from participants, ...
Webb, G M; McKenzie, J F; Hu, Q; Zank, G P
2013-01-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabelling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabelling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler Poincar\\'e variational approach is also used to derive conservation laws associated with fluid relabelling symmetries using Noether's second theorem.
The frustrated Brownian motion of nonlocal solitary waves
Folli, Viola
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation
The non-local content of quantum operations
Collins, D; Popescu, S; Collins, Daniel; Linden, Noah; Popescu, Sandu
2000-01-01
We show that quantum operations on multi-particle systems have a non-local content; this mirrors the non-local content of quantum states. We introduce a general framework for discussing the non-local content of quantum operations, and give a number of examples. Quantitative relations between quantum actions and the entanglement and classical communication resources needed to implement these actions are also described. We also show how entanglement can catalyse classical communication from a quantum action.
A Nonlocal Model for Carbon Nanotubes under Axial Loads
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2013-01-01
Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.
Proposal for revealing quantum nonlocality via local contextuality.
Cabello, Adán
2010-06-04
Two distant systems can exhibit quantum nonlocality even though the correlations between them admit a local model. This nonlocality can be revealed by testing extra correlations between successive measurements on one of the systems which do not admit a noncontextual model whatever the reduced state of this system is. This shows that quantum contextuality plays a fundamental role in quantum nonlocality, and allows an experimental test of the Kochen-Specker with locality theorem.
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
Nonlocal effects on dynamic damage accumulation in brittle solids
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1995-12-01
This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.
Implementation of nonlocal quantum swap operation on two entangled pairs
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 陈立冰; 郭光灿
2002-01-01
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs. We discuss the resourcesof the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation. We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel. The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.
Nonlocality Sudden Birth and Transfer in System and Environment
Institute of Scientific and Technical Information of China (English)
QIU Liang
2011-01-01
Dynamics of the nonlocality measured by the violation of Svetlichny's Bell-type inequality is investigated in the non-Markovian model. The phenomenon of nonlocality sudden birth for the atoms and the reservoirs is obtained.The evolution of the nonlocality among the atoms or the reservoirs depends on the choice of the atom detuning from the cavity pseudomode, the cavity pseudomode decay and the rotation angles. For the small pseudomode decay in the near-resonance regime, the initial atomic nonlocality is completely transferred to the reservoirs ultimately.
On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains
Institute of Scientific and Technical Information of China (English)
Fei LIANG; Qi Lin LIU; Yu Xiang LI
2013-01-01
In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Nonlocal Theories in Continuum Mechanics
Directory of Open Access Journals (Sweden)
M. Jirásek
2004-01-01
Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems.
Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation
Institute of Scientific and Technical Information of China (English)
金艳; 贾曼; 楼森岳
2012-01-01
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group Jnvariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.
Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction
Directory of Open Access Journals (Sweden)
Chengzhi Deng
2014-01-01
Full Text Available Recent developments in compressive sensing (CS show that it is possible to accurately reconstruct the magnetic resonance (MR image from undersampled k-space data by solving nonsmooth convex optimization problems, which therefore significantly reduce the scanning time. In this paper, we propose a new MR image reconstruction method based on a compound regularization model associated with the nonlocal total variation (NLTV and the wavelet approximate sparsity. Nonlocal total variation can restore periodic textures and local geometric information better than total variation. The wavelet approximate sparsity achieves more accurate sparse reconstruction than fixed wavelet l0 and l1 norm. Furthermore, a variable splitting and augmented Lagrangian algorithm is presented to solve the proposed minimization problem. Experimental results on MR image reconstruction demonstrate that the proposed method outperforms many existing MR image reconstruction methods both in quantitative and in visual quality assessment.
Internal noise-driven generalized Langevin equation from a nonlocal continuum model.
Sarkar, Saikat; Chowdhury, Shubhankar Roy; Roy, Debasish; Vasu, Ram Mohan
2015-08-01
Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.
Nonlocal Transport in the Reversed Field Pinch
Energy Technology Data Exchange (ETDEWEB)
Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.
2009-09-21
Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.
Nonlocal Crowd Dynamics Models for several Populations
Colombo, Rinaldo M
2011-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
Energy Technology Data Exchange (ETDEWEB)
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)
2016-08-15
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Non-local modeling of materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...
NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS
Institute of Scientific and Technical Information of China (English)
Rinaldo M. Colombo; Magali Lécureux-Mercier
2012-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.
Nonlocal calculation for nonstrange dibaryons and tribaryons
Mota, R D; Fernández, F; Entem, D R; Garcilazo, H
2002-01-01
We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are $NN$, $N\\Delta$, and $\\Delta\\Delta$, while the three-body systems are $NNN$, $NN\\Delta$, $N\\Delta\\Delta$, and $\\Delta\\Delta\\Delta$. We use as input the nonlocal $NN$, $N\\Delta$, and $\\Delta\\Delta$ potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations
DEFF Research Database (Denmark)
Mortensen, N. Asger
2013-01-01
The plasmon response of metallic nanostructures is anticipated to exhibit nonlocal dynamics of the electron gas when exploring the true nanoscale. We extend the local-response approximation (based on Ohm's law) to account for a general short-range nonlocal response of the homogeneous electron gas...
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
On nonlocal symmetries of some shallow water equations
Energy Technology Data Exchange (ETDEWEB)
Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)
2007-04-27
A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.
Solutions to nonlocal fractional differential equations using a noncompact semigroup
Directory of Open Access Journals (Sweden)
Shaochun Ji
2013-10-01
Full Text Available This article concerns the existence of solutions to nonlocal fractional differential equations in Banach spaces. By using a type of newly-defined measure of noncompactness, we discuss this problem in general Banach spaces without any compactness assumptions to the operator semigroup. Some existence results are obtained when the nonlocal term is compact and when is Lipschitz continuous.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
A Note on a Nonlocal Nonlinear Reaction-Diffusion Model
Walker, Christoph
2011-01-01
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.
Nonlocal thin films in calculations of the Casimir force
Esquivel-Sirvent, R.; Svetovoy, V.B.
2005-01-01
The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Spectral dimension from nonlocal dynamics on causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo
2016-02-01
We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
On quantum algorithms for noncommutative hidden subgroups
Energy Technology Data Exchange (ETDEWEB)
Ettinger, M. [Los Alamos National Lab., NM (United States); Hoeyer, P. [Odense Univ. (Denmark)
1998-12-01
Quantum algorithms for factoring and discrete logarithm have previously been generalized to finding hidden subgroups of finite Abelian groups. This paper explores the possibility of extending this general viewpoint to finding hidden subgroups of noncommutative groups. The authors present a quantum algorithm for the special case of dihedral groups which determines the hidden subgroup in a linear number of calls to the input function. They also explore the difficulties of developing an algorithm to process the data to explicitly calculate a generating set for the subgroup. A general framework for the noncommutative hidden subgroup problem is discussed and they indicate future research directions.
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Modulational instability in the nonlocal chi(2)-model
DEFF Research Database (Denmark)
Wyller, John Andreas; Krolikowski, Wieslaw; Bang, Ole
2007-01-01
We investigate in detail the linear regime of the modulational instability (MI) properties of the plane waves of the nonlocal model for chi((2))- media formulated in Nikolov et al. [N.I. Nikolov, D. Neshev, O. Bang, W.Z. Krolikowski, Quadratic solitons as nonlocal solitons, Phys. Rev. E 68 (2003...... in the parameter space for which a fundamental gain band exists, and regions for which higher order gain bands and modulational stability exist. We also show that the MI analysis for the nonlocal model is applicable in the finite walk-off case. Finally, we show that the plane waves of the nonlocal chi((2))-model...... of the nonlocal chi((2))-model, by using the singular perturbational approach. The other branch of the plane waves (i.e. the nonadiabatic branch or the optical branch) is always modulationally unstable. We compare the MI results for the adiabatic branch with the predictions obtained from the full chi((2))-model...
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-01
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Hidden Markov Models for indirect classification of occupant behaviour
DEFF Research Database (Denmark)
Liisberg, Jon Anders Reichert; Møller, Jan Kloppenborg; Bloem, H.
2016-01-01
Even for similar residential buildings, a huge variability in the energy consumption can be observed. This variability is mainly due to the different behaviours of the occupants and this impacts the thermal (temperature setting, window opening, etc.) as well as the electrical (appliances, TV....... This paper focuses on the use of Hidden Markov Models (HMMs) to create methods for indirect observations and characterisation of occupant behaviour. By applying homogeneous HMMs on the electricity consumption of fourteen apartments, three states describing the data were found suitable. The most likely...
Nonlocalized cluster dynamics and nuclear molecular structure
Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi
2013-01-01
A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...
Nonlinear structure formation in Nonlocal Gravity
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2014-01-01
We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Non-local models for ductile failure
César de Sá, José; Azinpour, Erfan; Santos, Abel
2016-08-01
Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching
Estimating an Activity Driven Hidden Markov Model
Meyer, David A.; Shakeel, Asif
2015-01-01
We define a Hidden Markov Model (HMM) in which each hidden state has time-dependent $\\textit{activity levels}$ that drive transitions and emissions, and show how to estimate its parameters. Our construction is motivated by the problem of inferring human mobility on sub-daily time scales from, for example, mobile phone records.
Insight: Exploring Hidden Roles in Collaborative Play
Directory of Open Access Journals (Sweden)
Tricia Shi
2015-06-01
Full Text Available This paper looks into interaction modes between players in co-located, collaborative games. In particular, hidden traitor games, in which one or more players is secretly working against the group mission, has the effect of increasing paranoia and distrust between players, so this paper looks into the opposite of a hidden traitor – a hidden benefactor. Rather than sabotaging the group mission, the hidden benefactor would help the group achieve the end goal while still having a reason to stay hidden. The paper explores what games with such a role can look like and how the role changes player interactions. Finally, the paper addresses the divide between video game and board game interaction modes; hidden roles are not common within video games, but they are of growing prevalence in board games. This fact, combined with the exploration of hidden benefactors, reveals that hidden roles is a mechanic that video games should develop into in order to match board games’ complexity of player interaction modes.
Nonlocal Mumford-Shah regularizers for color image restoration.
Jung, Miyoun; Bresson, Xavier; Chan, Tony F; Vese, Luminita A
2011-06-01
We propose here a class of restoration algorithms for color images, based upon the Mumford-Shah (MS) model and nonlocal image information. The Ambrosio-Tortorelli and Shah elliptic approximations are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, texture is nonlocal in nature and requires semilocal/non-local information for efficient image denoising and restoration. Inspired from recent works (nonlocal means of Buades, Coll, Morel, and nonlocal total variation of Gilboa, Osher), we extend the local Ambrosio-Tortorelli and Shah approximations to MS functional (MS) to novel nonlocal formulations, for better restoration of fine structures and texture. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, color image super-resolution, and color filter array demosaicing. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. We also prove several characterizations of minimizers based upon dual norm formulations.
Helioscope bounds on hidden sector photons
Energy Technology Data Exchange (ETDEWEB)
Redondo, J.
2007-12-15
The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to {chi}
Heating up the Galaxy with hidden photons
Energy Technology Data Exchange (ETDEWEB)
Dubovsky, Sergei [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Hernández-Chifflet, Guzmán [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY, 10003 (United States); Instituto de Física, Facultad de Ingeniería, Universidad de la República,Montevideo, 11300 (Uruguay)
2015-12-29
We elaborate on the dynamics of ionized interstellar medium in the presence of hidden photon dark matter. Our main focus is the ultra-light regime, where the hidden photon mass is smaller than the plasma frequency in the Milky Way. We point out that as a result of the Galactic plasma shielding direct detection of ultra-light photons in this mass range is especially challenging. However, we demonstrate that ultra-light hidden photon dark matter provides a powerful heating source for the ionized interstellar medium. This results in a strong bound on the kinetic mixing between hidden and regular photons all the way down to the hidden photon masses of order 10{sup −20} eV.
Helioscope bounds on hidden sector photons
Energy Technology Data Exchange (ETDEWEB)
Redondo, J.
2007-12-15
The flux of hypothetical ''hidden photons'' from the Sun is computed under the assumption that they interact with normal matter only through kinetic mixing with the ordinary standard model photon. Requiring that the exotic luminosity is smaller than the standard photon luminosity provides limits for the mixing parameter down to {chi}
Institute of Scientific and Technical Information of China (English)
陈珂; 陈小英; 徐科
2007-01-01
如今Web上越来越多的信息可以通过查询接口获得,但为了获取某Hidden Web站点的页面,用户不得不键入一系列的关键词.由于没有直接指向Hidden Web页面的静态链接,当前大多搜索引擎不能发现和索引这些页面.然而,研究表明,由Hidden Web站点提供的高质量的信息对许多用户来说非常有价值.文章通过研究针对特定类型的表单,建立一个有效的Hidden Web爬虫,以便获取Hidden Web后台数据库信息.
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Generic features of modulational instability in nonlocal Kerr media
DEFF Research Database (Denmark)
Wyller, John; Krolikowski, Wieslaw; Bang, Ole
2002-01-01
The modulational instability (MI) of plane waves in nonlocal Kerr media is studied for a general response function. Several generic properties are proven mathematically, with emphasis on how new gain bands are formed through a bifurcation process when the degree of nonlocality, sigma, passes...... the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum...
Unusual resonances in nanoplasmonic structures due to nonlocal response
DEFF Research Database (Denmark)
Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka
2011-01-01
We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the local-response Drude model. Avoiding the usual quasistatic approximation, we...... find that such resonances do indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific example we consider nanosized metallic cylinders...
Theory of nonlocal soliton interaction in nematic liquid crystals
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw
2005-01-01
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....
Strain analysis of nonlocal viscoelastic Kelvin bar in tension
Institute of Scientific and Technical Information of China (English)
ZHAO Xue-chuan; LEI Yong-jun; ZHOU Jian-ping
2008-01-01
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.
Stochastic waves in a Brusselator model with nonlocal interaction.
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.
Non-local thin films in Casimir force calculations
Esquivel, R
2005-01-01
he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.
Incompressible turbulence as non-local field theory
Indian Academy of Sciences (India)
Mahendra K Verma
2005-03-01
It is well-known that incompressible turbulence is non-local in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is non-local in Fourier space as well. However, the shell-to-shell energy transfer is local. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using non-local field theory. Energy spectrum and renormalized parameters will be discussed.
Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems
Institute of Scientific and Technical Information of China (English)
Yan Li; Xiang-Jun Ye; Jing-Ling Chen
2016-01-01
A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed.We study the nonlocality distillation in the 2-input d-output bi-partite case.Firstly,we give the one-parameter nonlocal boxes and their correlated distilling protocol.Then,we generalize the one-parameter nonlocality distillation protocol to the two-parameter case.Furthermore,we introduce a contracting protocol testifying that the 2-input d-output nonlocal boxes make communication complexity trivial.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
The quantum handshake entanglement, nonlocality and transactions
Cramer, John G
2016-01-01
This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.
Understanding quantum interference in General Nonlocality
Wanng, Hai-Jhun
2010-01-01
In this paper we attempt to give an understanding of quantum double-slit interference of fermions in the framework of General Nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-interaction of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-interaction is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schr\\"odinger current and Dirac current respectively, both of which are relevant to topology. The gap between these two cases corresponds to a spin-current effect, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and non-perturbative self-interactions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all.
A nonlocal spatial model for Lyme disease
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
A simple nonlocal model for exchange.
Janesko, Benjamin G
2009-12-21
This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.
A quantum loophole to Bell nonlocality
Romero-Rochin, Victor
2015-01-01
We argue that the conclusion of Bell theorem, namely, that there must be spatial non-local correlations in certain experimental situations, does not apply to typical individual measurements performed on entangled EPR pairs. Our claim is based on three points, (i) on the notion of quantum {\\it complete measurements}; (ii) on Bell results on local yet distant measurements; and (iii) on the fact that perfect simultaneity is banned by the quantum mechanics. We show that quantum mechanics indicates that, while the measurements of the pair members are indeed space-like separated, the pair measurement is actually a sequence of two complete measurements, the first one terminating the entanglement and, therefore, the second one becoming unrelated to the initial preparation of the entangled pair. The outstanding feature of these measurements is that neither of them violates the principle of locality. We discuss that the present measurement viewpoint appears to run contrary to the usual interpretation of "superposition"...
Construction of nonlocal multipartite quantum states
Zhang, Zhi-Chao; Zhang, Ke-Jia; Gao, Fei; Wen, Qiao-Yan; Oh, C. H.
2017-05-01
For general bipartite quantum systems, many sets of locally indistinguishable orthogonal product states have been constructed so far. Here, we first present a general method to construct multipartite orthogonal product states in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥4 ) by using some locally indistinguishable bipartite orthogonal product states. And we prove that these multipartite orthogonal quantum states cannot be distinguished by local operations and classical communication. Furthermore, in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥5 ) , we give a general method to construct a much smaller number of locally indistinguishable multipartite orthogonal product states for even and odd n separately. In addition, we also present a general method to construct complete orthogonal product bases for the multipartite quantum systems. Our results demonstrate the phenomenon of nonlocality without entanglement for the multipartite quantum systems.
Hidden scale invariance of metals
DEFF Research Database (Denmark)
Hummel, Felix; Kresse, Georg; Dyre, Jeppe C.
2015-01-01
available. Hidden scale invariance is demonstrated in detail for magnesium by showing invariance of structure and dynamics. Computed melting curves of period three metals follow curves with invariance (isomorphs). The experimental structure factor of magnesium is predicted by assuming scale invariant...... of metals making the condensed part of the thermodynamic phase diagram effectively one dimensional with respect to structure and dynamics. DFT computed density scaling exponents, related to the Grüneisen parameter, are in good agreement with experimental values for the 16 elements where reliable data were......Density functional theory (DFT) calculations of 58 liquid elements at their triple point show that most metals exhibit near proportionality between the thermal fluctuations of the virial and the potential energy in the isochoric ensemble. This demonstrates a general “hidden” scale invariance...
Hidden scale in quantum mechanics
Giri, Pulak Ranjan
2007-01-01
We show that the intriguing localization of a free particle wave-packet is possible due to a hidden scale present in the system. Self-adjoint extensions (SAE) is responsible for introducing this scale in quantum mechanical models through the nontrivial boundary conditions. We discuss a couple of classically scale invariant free particle systems to illustrate the issue. In this context it has been shown that a free quantum particle moving on a full line may have localized wave-packet around the origin. As a generalization, it has also been shown that particles moving on a portion of a plane or on a portion of a three dimensional space can have unusual localized wave-packet.
Phase transitions, interfacial fluctuations and hidden symmetries for fluids near structured walls
Indian Academy of Sciences (India)
A O Parry; J M Romero-Enrique
2005-05-01
Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.
Stochastic precipitation generator with hidden state covariates
Kim, Yongku; Lee, GyuWon
2017-08-01
Time series of daily weather such as precipitation, minimum temperature and maximum temperature are commonly required for various fields. Stochastic weather generators constitute one of the techniques to produce synthetic daily weather. The recently introduced approach for stochastic weather generators is based on generalized linear modeling (GLM) with covariates to account for seasonality and teleconnections (e.g., with the El Niño). In general, stochastic weather generators tend to underestimate the observed interannual variance of seasonally aggregated variables. To reduce this overdispersion, we incorporated time series of seasonal dry/wet indicators in the GLM weather generator as covariates. These seasonal time series were local (or global) decodings obtained by a hidden Markov model of seasonal total precipitation and implemented in the weather generator. The proposed method is applied to time series of daily weather from Seoul, Korea and Pergamino, Argentina. This method provides a straightforward translation of the uncertainty of the seasonal forecast to the corresponding conditional daily weather statistics.
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Discrete model of dislocations in fractional nonlocal elasticity
National Research Council Canada - National Science Library
Tarasov, Vasily E
2016-01-01
Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used...
Nonlocal viscous transport and the effect on fluid stress.
Todd, B D; Hansen, J S
2008-11-01
We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.
NONDENSELY DEFINED IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS
Institute of Scientific and Technical Information of China (English)
Yueju Cao; Xianlong Fu
2009-01-01
In this paper, using a fixed point theorem for condensing multi-valued maps, we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.
Controllability of semilinear integrodifferential equations with nonlocal conditions
Directory of Open Access Journals (Sweden)
Rahima Atmania
2005-07-01
Full Text Available We establish sufficient conditions for the controllability of some semilinear integrodifferential systems with nonlocal condition in a Banach space. The results are obtained using the Schaefer fixed-point theorem and semigroup theory.
Tests of quantum-gravity-induced nonlocality via optomechanical experiments
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2017-01-01
The nonrelativistic limit of nonlocal modifications to the Klein-Gordon operator is studied, and the experimental possibilities of casting stringent constraints on the nonlocality scale via planned and/or current optomechanical experiments are discussed. Details of the perturbative analysis and semianalytical simulations leading to the dynamic evolution of a quantum harmonic oscillator in the presence of nonlocality reported in [A. Belenchia, D. M. T. Benincasa, S. Liberati, F. Marin, F. Marino, and A. Ortolan, Phys. Rev. Lett. 116, 161303 (2016), 10.1103/PhysRevLett.116.161303] are given, together with a comprehensive account of the experimental methodology with particular regard to sensitivity limitations related to thermal decoherence time and active cooling of the oscillator. Finally, a strategy for detecting nonlocality scales of the order of 10-22÷10-26 m by means of the spontaneous time-periodic squeezing of quantum-coherent states is provided.
Controllability of impulsive functional differential systems with nonlocal conditions
Directory of Open Access Journals (Sweden)
Yansheng Liu
2013-08-01
Full Text Available In this article, we study the controllability of impulsive functional differential equations with nonlocal conditions. We establish sufficient conditions for controllability, via the measure of noncompactness and Monch fixed point theorem.
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2016-08-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Self-adjoint integral operator for bounded nonlocal transport
Maggs, J. E.; Morales, G. J.
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
Understanding quantum non-locality through pseudo-telepathy game
Kunkri, Samir
2006-11-01
Usually by quantum non-locality we mean that quantum mechanics can not be replaced by local realistic theory. On the other hand this nonlocal feature of quantum mechanics can not be used for instantaneous communication and hence it respect Einstein's special theory of relativity. But still it is not trivial as proved by various quantum information processing using entangled states. Recently there have been studies of hypothetical non-local system again respecting no-signalling which is beyond quantum mechanics. Here we study the power of such a hypothetical nonlocal box first suggested by Popescu et.al. in the context of recently suggested pseudo-telepathy game constructed from a Kochen-Specker set.
Local orthogonality provides a tight upper bound for Hardy's nonlocality
Das, Subhadipa; Banik, Manik; Gazi, Md. Rajjak; Rai, Ashutosh; Kunkri, Samir
2013-12-01
The amount of nonlocality in quantum theory is limited compared to that allowed in generalized no-signaling theory [S. Popescu and D. Rohrlich, Found. Phys.FNDPA40015-901810.1007/BF02058098 24, 379 (1994)]. This feature, for example, gets manifested in the amount of Bell inequality violation as well as in the degree of success probability of Hardy's (Cabello's) nonlocality argument. Physical principles like information causality and macroscopic locality have been proposed for analyzing restricted nonlocality in quantum mechanics, viz. explaining the Cirel'son bound. However, these principles are not very successful in explaining the maximum success probability of Hardy's as well as Cabello's argument in quantum theory. Here we show that a recently proposed physical principle, namely local orthogonality, does better by providing a tighter upper bound on the success probability for Hardy's nonlocality. This bound is relatively closer to the corresponding quantum value compared to the bounds achieved from other principles.
Causal Set theory, non-locality and phenomenology
Belenchia, Alessio
2015-01-01
This proceeding is based on a talk prepared for the XIV Marcel Grossmann meeting. We review some results on causal set inspired non-local theories as well as work in progress concerning their phenomenology.
Observation of two-dimensional nonlocal gap solitons
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bennett, Francis H.; Neshev, Dragomir N.
2009-01-01
We demonstrate, both theoretically and experimentally, the existence of nonlocal gap solitons in twodimensional periodic photonic structures with defocusing thermal nonlinearity. We employ liquid-infiltrated photonic crystal fibers and show how the system geometry can modify the effective respons...
Nonlocal quintic nonlinearity by cascaded THG in dispersive media
DEFF Research Database (Denmark)
Eilenberger, F.; Bache, Morten; Minardi, S.;
2011-01-01
We discuss a perturbed nonlocal cubicquintic equation describing the propagation of light pulses in a dispersive, cubic nonlinearmedium in the presence of phase and velocity mismatched third harmonic generation....
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Local implementation of nonlocal operations with block forms
Zhao, Ning Bo; Wang, An Min
2008-07-01
We investigate the local implementation of nonlocal operations with the block matrix form, and propose a protocol for any diagonal or offdiagonal block operation. We generalize this method to the two-party multiqubit case and the multiparty case. We also compare the local implementation of nonlocal block operations with the remote implementation of local operations [Huelga , Phys. Rev. A 63, 042303 (2001)], and point out a relation between them.
Acceleration-Induced Nonlocal Electrodynamics in Minkowski Spacetime
Muench, U; Mashhoon, B; Muench, Uwe; Hehl, Friedrich W.; Mashhoon, Bahram
2000-01-01
We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare Mashhoon's model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive law involving the Levi-Civita connection as seen from the observer's local frame and conclude that they are in partial agreement only for the case of constant acceleration.
Noether's theorem in non-local field theories
Krivoruchenko, M I
2016-01-01
Explicit expressions are constructed for a locally conserved vector current associated with a continuous internal symmetry and for energy-momentum and angular-momentum density tensors associated with the Poincar\\'e group in field theories with higher-order derivatives and in non-local field theories. An example of non-local charged scalar field equations with broken C and CPT symmetries is considered. For this case, we find simple analytical expressions for the conserved currents.
Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game
Roy, Arup; Mukherjee, Amit; Guha, Tamal; Ghosh, Sibasish; Bhattacharya, Some Sankar; Banik, Manik
2016-01-01
Interesting connection has been established between two apparently unrelated concepts, namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations in the form of advice can outperform classical equilibrium strategies in common interest Bayesian games and also in conflicting interest games. However, classical equilibrium strategies can be of two types, fair and unfair. Whereas in fair equilibrium payoffs of different players are same, in unfair case they ...
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2015-01-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the pa...
Self-organization analysis for a nonlocal convective Fisher equation
Energy Technology Data Exchange (ETDEWEB)
Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)
2009-02-02
Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.
Twisted Backgrounds, PP-Waves and Nonlocal Field Theories
Alishahiha, M; Alishahiha, Mohsen; Ganor, Ori J.
2003-01-01
We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.
Nonlocal Problems for Fractional Differential Equations via Resolvent Operators
Directory of Open Access Journals (Sweden)
Zhenbin Fan
2013-01-01
Full Text Available We discuss the continuity of analytic resolvent in the uniform operator topology and then obtain the compactness of Cauchy operator by means of the analytic resolvent method. Based on this result, we derive the existence of mild solutions for nonlocal fractional differential equations when the nonlocal item is assumed to be Lipschitz continuous and neither Lipschitz nor compact, respectively. An example is also given to illustrate our theory.
Hidden torsion, 3-manifolds, and homology cobordism
Cha, Jae Choon
2011-01-01
This paper continues our exploration of homology cobordism of 3-manifolds using our recent results on Cheeger-Gromov rho-invariants associated to amenable representations. We introduce a new type of torsion in 3-manifold groups we call hidden torsion, and an algebraic approximation we call local hidden torsion. We construct infinitely many hyperbolic 3-manifolds which have local hidden torsion in the transfinite lower central subgroup. By realizing Cheeger-Gromov invariants over amenable groups, we show that our hyperbolic 3-manifolds are not pairwise homology cobordant, yet remain indistinguishable by any prior known homology cobordism invariants.
Visible Effects of Invisible Hidden Valley Radiation
Carloni, Lisa
2010-01-01
Assuming there is a new gauge group in a Hidden Valley, and a new type of radiation, can we observe it through its effect on the kinematic distributions of recoiling visible particles? Specifically, what are the collider signatures of radiation in a hidden sector? We address these questions using a generic SU(N)-like Hidden Valley model that we implement in Pythia. We find that in both the e+e- and the LHC cases the kinematic distributions of the visible particles can be significantly affected by the valley radiation. Without a proper understanding of such effects, inferred masses of "communicators" and of invisible particles can be substantially off.
Microscopic Description of the Granular Fluidity Field in Nonlocal Flow Modeling
Zhang, Qiong; Kamrin, Ken
2017-02-01
A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.
Unsharp spin observables, non-locality and Fry, Walther and Li experiment
Indian Academy of Sciences (India)
Sisir Roy
2001-02-01
Recently it has been demonstrated that Bell inequalities for spin 1/2 particles must be modiﬁed if unsharp spin observables are considered, and furthermore, the modiﬁed Bell inequalities may not be violated by quantum mechanics if the observables are sufﬁciently unsharp. In case of massive particles there may be more imperfection than seems to appear in the photon EPR experiments. So the experiment proposed by Fry, Walther and Li can place experimental limits on the unsharpness of spin variables. It sheds new light on the much debated issues like non-local correlations in quantum mechanics.
Microscopic Description of the Granular Fluidity Field in Nonlocal Flow Modeling.
Zhang, Qiong; Kamrin, Ken
2017-02-03
A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.
Institute of Scientific and Technical Information of China (English)
Jingsun Yao; Jiaqi Mo
2005-01-01
The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.
A Systems-Theoretical Generalization of Non-Local Correlations
von Stillfried, Nikolaus
Non-local correlations between quantum events are not due to a causal interaction in the sense of one being the cause for the other. In principle, the correlated events can thus occur simultaneously. Generalized Quantum Theory (GQT) formalizes the idea that non-local phenomena are not exclusive to quantum mechanics, e.g. due to some specific properties of (sub)atomic particles, but that they instead arise as a consequence of the way such particles are arranged into systems. Non-local phenomena should hence occur in any system which fulfils the necessary systems-theoretical parameters. The two most important parameters with respect to non-local correlations seem to be a conserved global property of the system as a whole and sufficient degrees of freedom of the corresponding property of its subsystems. Both factors place severe limitations on experimental observability of the phenomena, especially in terms of replicability. It has been suggested that reported phenomena of a so-called synchronistic, parapsychological or paranormal kind could be understood as instances of systems-inherent non-local correlations. From a systems-theoretical perspective, their phenomenology (including the favorable conditions for their occurrence and their lack of replicability) displays substantial similarities to non-local correlations in quantum systems and matches well with systems-theoretical parameters, thus providing circumstantial evidence for this hypothesis.
Nonlocality and purity in atom-field coupling system
Institute of Scientific and Technical Information of China (English)
Cai Xin; Huang Guang-Ming; Li Gao-Xiang
2005-01-01
The effects of initial field state and thermal environment on quantum nonlocality and linear entropy in an atomfield coupling system are investigated. We found that if the cavity is lossless and the reservoir is in vacuum, the atom-field state can exhibit quantum nonlocality periodically and the linear entropies of the atom and the field also oscillate periodically with a period the same as that of quantum nonlocality. And if the cavity dissipation is very weak and the average photon number of the reservoir is very small, the quantum nonlocality will be lost and the linear entropies of the atom and the field oscillate with a decreasing amplitude. The rapidity of the loss of the quantum nonlocality depends on the amplitude of the initial squeezed coherent state, the cavity damping constant κ and the average photon number N of the thermal reservoir. The stronger the field and the larger the constant κ and the average photon number N could be, the more rapidly the nonlocality decreases.
On the power of non-local boxes
Broadbent, A J
2005-01-01
A non-local box is a virtual device that has the following property: given that Alice inputs a bit at her end of the device and that Bob does likewise, it produces two bits, one at Alice's end and one at Bob's end, such that the XOR of the outputs is equal to the AND of the inputs. This box, inspired from the CHSH inequality, was first proposed by Popescu and Rohrlich to examine the question: given that a maximally entangled pair of qubits is non-local, why is it not maximally non-local? We believe that understanding the power of this box will yield insight into the non-locality of quantum mechanics. It was shown recently by Cerf, Gisin, Massar and Popescu, that this imaginary device is able to simulate correlations from any measurement on a singlet state. Here, we show that the non-local box can in fact do much more: through the simulation of the magic square pseudo-telepathy game and the Mermin-GHZ pseudo-telepathy game, we show that the non-local box can simulate quantum correlations that no entangled pair...
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Hidden Markov Modeling for Weigh-In-Motion Estimation
Energy Technology Data Exchange (ETDEWEB)
Abercrombie, Robert K [ORNL; Ferragut, Erik M [ORNL; Boone, Shane [ORNL
2012-01-01
This paper describes a hidden Markov model to assist in the weight measurement error that arises from complex vehicle oscillations of a system of discrete masses. Present reduction of oscillations is by a smooth, flat, level approach and constant, slow speed in a straight line. The model uses this inherent variability to assist in determining the true total weight and individual axle weights of a vehicle. The weight distribution dynamics of a generic moving vehicle were simulated. The model estimation converged to within 1% of the true mass for simulated data. The computational demands of this method, while much greater than simple averages, took only seconds to run on a desktop computer.
Inference in Hidden Markov Models with Explicit State Duration Distributions
Dewar, Michael; Wood, Frank
2012-01-01
In this letter we borrow from the inference techniques developed for unbounded state-cardinality (nonparametric) variants of the HMM and use them to develop a tuning-parameter free, black-box inference procedure for Explicit-state-duration hidden Markov models (EDHMM). EDHMMs are HMMs that have latent states consisting of both discrete state-indicator and discrete state-duration random variables. In contrast to the implicit geometric state duration distribution possessed by the standard HMM, EDHMMs allow the direct parameterisation and estimation of per-state duration distributions. As most duration distributions are defined over the positive integers, truncation or other approximations are usually required to perform EDHMM inference.
Hidden systematics of fission channels
Directory of Open Access Journals (Sweden)
Schmidt Karl-Heinz
2013-12-01
of the fissioning system obey a hidden systematics that can be explained by the number of states in the vicinity of the outer fission barrier as a function of mass asymmetry, if the potential is constructed as the sum of the macroscopic contribution of the compound nucleus and empirically determined fragment shells. This hidden systematics also explains the transition from asymmetric to symmetric fission around 226Th and around 258Fm.
Internal variables in thermoelasticity
Berezovski, Arkadi
2017-01-01
This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material’s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
UV Photography Shows Hidden Sun Damage
... mcat1=de12", ]; for (var c = 0; c UV photography shows hidden sun damage A UV photograph gives ... developing skin cancer and prematurely aged skin. Normal photography UV photography 18 months of age: This boy's ...
Faddeev-Jackiw approach to hidden symmetries
Wotzasek, C
1994-01-01
The study of hidden symmetries within Dirac's formalism does not possess a systematic procedure due to the lack of first-class constraints to act as symmetry generators. On the other hand, in the Faddeev-Jackiw approach, gauge and reparametrization symmetries are generated by the null eigenvectors of the sympletic matrix and not by constraints, suggesting the possibility of dealing systematically with hidden symmetries through this formalism. It is shown in this paper that indeed hidden symmetries of noninvariant or gauge fixed systems are equally well described by null eigenvectors of the sympletic matrix, just as the explicit invariances. The Faddeev-Jackiw approach therefore provide a systematic algorithm for treating all sorts of symmetries in an unified way. This technique is illustrated here by the SL(2,R) Kac-Moody current algebra of the 2-D induced gravity proposed by Polyakov, which is a hidden symmetry in the canonical approach of constrained systems via Dirac's method, after conformal and reparamet...
Fibroid Tumors in Women: A Hidden Epidemic?
... Issue Past Issues Fibroid Tumors in Women: A Hidden Epidemic? Past Issues / Spring 2007 Table of Contents ... fibroids@rics.bwh.harvard.edu , or visit our Web site: www.fibroids.net . You may also write ...
Hidden Regular Variation: Detection and Estimation
Mitra, Abhimanyu
2010-01-01
Hidden regular variation defines a subfamily of distributions satisfying multivariate regular variation on $\\mathbb{E} = [0, \\infty]^d \\backslash \\{(0,0, ..., 0) \\} $ and models another regular variation on the sub-cone $\\mathbb{E}^{(2)} = \\mathbb{E} \\backslash \\cup_{i=1}^d \\mathbb{L}_i$, where $\\mathbb{L}_i$ is the $i$-th axis. We extend the concept of hidden regular variation to sub-cones of $\\mathbb{E}^{(2)}$ as well. We suggest a procedure of detecting the presence of hidden regular variation, and if it exists, propose a method of estimating the limit measure exploiting its semi-parametric structure. We exhibit examples where hidden regular variation yields better estimates of probabilities of risk sets.
A Unified Sheaf-Theoretic Account Of Non-Locality and Contextuality
Abramsky, Samson
2011-01-01
A number of landmark results in the foundations of quantum mechanics show that quantum systems exhibit behaviour that defies explanation in classical terms, and that cannot be accounted for in such terms even by postulating "hidden variables" as additional unobserved factors. Much has been written on these matters, but there is surprisingly little unanimity even on basic definitions or the inter-relationships among the various concepts and results. We use the mathematical language of sheaves and monads to give a very general and mathematically robust description of the behaviour of systems in which one or more measurements can be selected, and one or more outcomes observed. We say that an empirical model is extendable if it can be extended consistently to all sets of measurements, regardless of compatibility. A hidden-variable model is factorizable if, for each value of the hidden variable, it factors as a product of distributions on the basic measurements. We prove that an empirical model is extendable if an...
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics
2002-09-01
Nonlocal properties of fluctuations in confined plasmas are briefly surveyed. Contributions to understanding the bifurcation phenomena, improved confinement, and transient transport problem are explained. The theoretical progress in this aspect is addressed: Namely, the fluctuations are not excited by linear instabilities but are dressed with other turbulent fluctuations or fluctuations of meso-scale. Nonlinear interactions of fluctuations with different scale lengths are essential in dictating the dynamics of turbulence and turbulent transport. There are activators and suppressers in global inhomogeneities for evolution of turbulence. Turbulent fluctuations, on the other hand, induce or destroy these global inhomogeneities. Finally, statistical nature of turbulence is addressed. (author)
Hidden figures are ever present.
Mens, L H; Leeuwenberg, E L
1988-11-01
Preference judgments about alternative interpretations of unambiguous patterns can be explained in terms of a rivalry between a preferred and a second-best interpretation (cf. Leeuwenberg & Buffart, 1983). We tested whether this second-best interpretation corresponds to a suppressed but concurrently present interpretation or whether it merely reflects an alternative view that happens to be preferred less often. Two patterns were present immediately following each other with a very short onset asynchrony: a complete pattern and one out of three possible subpatterns of it, corresponding to the best, the second best, or an odd interpretation of the complete pattern. Subjects indicated which subpattern was presented by choosing among the three subpatterns shown after each trial. The scores, corrected for response-bias effects, indicated a relative facilitation of the second-best interpretation, in agreement with its predicted "hidden" presence. This result is more in line with theories that capitalize on the quality of the finally selected representation than with processing models aimed at reaching one single solution as fast and as economically as possible.
Hidden Local Symmetry and Beyond
Yamawaki, Koichi
2016-01-01
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H= SU(2)_L x SU(2)_R/SU(2)_V with additional symmetry, the nonlinearly realized scale symmetry. Then the SM does have a dynamical gauge boson of the SU(2)_V HLS, "SM rho meson", in addition to the Higgs as a pseudo dilaton as well as the NG bosons to be absorbed into the W and Z. Based on the recent work done with S. Matsuzaki and H. Ohki, I discuss a novel possibility that the SM rho meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "Dark SM skyrmi...
Hidden local symmetry and beyond
Yamawaki, Koichi
Gerry Brown was a godfather of our hidden local symmetry (HLS) for the vector meson from the birth of the theory throughout his life. The HLS is originated from very nature of the nonlinear realization of the symmetry G based on the manifold G/H, and thus is universal to any physics based on the nonlinear realization. Here, I focus on the Higgs Lagrangian of the Standard Model (SM), which is shown to be equivalent to the nonlinear sigma model based on G/H = SU(2)L × SU(2)R/SU(2)V with additional symmetry, the nonlinearly-realized scale symmetry. Then, the SM does have a dynamical gauge boson of the SU(2)V HLS, "SM ρ meson", in addition to the Higgs as a pseudo-dilaton as well as the NG bosons to be absorbed in to the W and Z. Based on the recent work done with Matsuzaki and Ohki, I discuss a novel possibility that the SM ρ meson acquires kinetic term by the SM dynamics itself, which then stabilizes the skyrmion dormant in the SM as a viable candidate for the dark matter, what we call "dark SM skyrmion (DSMS)".
Constraining solar hidden photons using HPGe detector
Energy Technology Data Exchange (ETDEWEB)
Horvat, R.; Kekez, D., E-mail: Dalibor.Kekez@irb.hr; Krčmar, M.; Krečak, Z.; Ljubičić, A.
2013-04-25
In this Letter we report on the results of our search for photons from a U(1) gauge factor in the hidden sector of the full theory. With our experimental setup we observe the single spectrum in a HPGe detector arising as a result of the photoelectric-like absorption of hidden photons emitted from the Sun on germanium atoms inside the detector. The main ingredient of the theory used in our analysis, a severely constrained kinetic mixing from the two U(1) gauge factors and massive hidden photons, entails both photon into hidden state oscillations and a minuscule coupling of hidden photons to visible matter, of which the latter our experimental setup has been designed to observe. On a theoretical side, full account was taken of the effects of refraction and damping of photons while propagating in Sun's interior as well as in the detector. We exclude hidden photons with kinetic couplings χ>(2.2×10{sup −13}–3×10{sup −7}) in the mass region 0.2 eV≲m{sub γ{sup ′}}≲30 keV. Our constraints on the mixing parameter χ in the mass region from 20 eV up to 15 keV prove even slightly better then those obtained recently by using data from the CAST experiment, albeit still somewhat weaker than those obtained from solar and HB stars lifetime arguments.
Lorentz Invariant CPT Violating Effects for a Class of Gauge-invariant Nonlocal Thirring Models
Patra, Pinaki
2013-01-01
CPT violation and Lorentz invariance can coexist in the framework of non-local field theory. Local gauge-invariance may not hold for the few non-local interaction terms. However, the gauge-invariance for the non-local interaction term can be formulated by the inclusion of Swinger non-integrable phase factor. In this article we have proposed a class of CPT violating Lorentz invariant Nonlocal Gauge-invariant models which can be termed as non-local gauge-invariant Thirring models. The inclusion of non-locality will modify the current conservation laws. Also, the possible particle antiparticle mass-splitting in this respect is discussed.
Diagnostics of nonlocal plasmas: advanced techniques
Mustafaev, Alexander; Grabovskiy, Artiom; Strakhova, Anastasiya; Soukhomlinov, Vladimir
2014-10-01
This talk generalizes our recent results, obtained in different directions of plasma diagnostics. First-method of flat single-sided probe, based on expansion of the electron velocity distribution function (EVDF) in series of Legendre polynomials. It will be demonstrated, that flat probe, oriented under different angles with respect to the discharge axis, allow to determine full EVDF in nonlocal plasmas. It is also shown, that cylindrical probe is unable to determine full EVDF. We propose the solution of this problem by combined using the kinetic Boltzmann equation and experimental probe data. Second-magnetic diagnostics. This method is implemented in knudsen diode with surface ionization of atoms (KDSI) and based on measurements of the magnetic characteristics of the KDSI in presence of transverse magnetic field. Using magnetic diagnostics we can investigate the wide range of plasma processes: from scattering cross-sections of electrons to plasma-surface interactions. Third-noncontact diagnostics method for direct measurements of EVDF in remote plasma objects by combination of the flat single-sided probe technique and magnetic polarization Hanley method.
Let's call it Nonlocal Quantum Physics
Requardt, M
2000-01-01
In the following we undertake to derive quantum theory as a stochastic low-energy and coarse-grained theory from a more primordial discrete and basically geometric theory living on the Planck scale and which (as we argue) possibly underlies also \\tit{string theory}. We isolate the so-called \\tit{ideal elements} which represent at the same time the cornerstones of the framework of ordinary quantum theory and show how and why they encode the \\tit{non-local} aspects, being ubiquituous in the quantum realm, in a, on the surface, local way. We show that the quantum non-locality emerges in our approach as a natural consequence of the underlying \\tit{two-storey} nature of space-time or the physical vacuum, that is, quantum theory turns out to be a residual effect of the geometric depth structure of space-time on the Planck scale. We indicate how the \\tit{measurement problem} and the emergence of the \\tit{macroscopic sub-regime} can be understood in this framework.
Exploring nonlocal observables in shock wave collisions
Ecker, Christian; Stanzer, Philipp; Stricker, Stefan A; van der Schee, Wilke
2016-01-01
We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large 't Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: hi...
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
Nonlinear and Nonlocal Feedbacks in an Aquaplanet
Feldl, N.; Roe, G.
2012-12-01
The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.
Imaginary part of action, Future functioning as hidden variables
Nielsen, H B
2009-01-01
A model -- by myself and Masao Ninomiya -- which in principle predicts the initial conditions in a way as to minimze a certain functional of the history of the Universe through both past and future -- a functional conceived of as an imaginary part of the action -- is suggested to be also helpful in solving some problems for quantum mechanics. Especially as our model almost makes it possible in principle to calculate the full history of the universe, it even makes it in principle calculable, which one among several measurement results in a quantum experiment will actually be realized! Our "complex action model" thus is a special case of superdeterminism - in Bells way - and does not have true causality, but rather even in some cases true backward causation. In fact we claim in our model that the SSC (Superconducting Supercollider) were stopped by the US Congress due to the backward causation from the big amounts of Higgs particles, which it would have produced, if it had been allowed to run. The noumenon ("das...
Imaginary part of action, Future functioning as hidden variables
Nielsen, H.B.
2009-01-01
A model -- by myself and Masao Ninomiya -- which in principle predicts the initial conditions in a way as to minimze a certain functional of the history of the Universe through both past and future -- a functional conceived of as an imaginary part of the action -- is suggested to be also helpful in solving some problems for quantum mechanics. Especially as our model almost makes it possible in principle to calculate the full history of the universe, it even makes it in principle calculable, w...
Directory of Open Access Journals (Sweden)
Rubing Xi
2014-01-01
Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.
Non-local magnetoresistance in YIG/Pt nanostructures
Energy Technology Data Exchange (ETDEWEB)
Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Examining the effect of nonlocality in (d ,n ) transfer reactions
Ross, A.; Titus, L. J.; Nunes, F. M.
2016-07-01
Background: In the past year we have been exploring the effect of the explicit inclusion of nonlocality in (d ,p ) reactions. Purpose: The goal of this paper is to extend previous studies to (d ,n ) reactions, which, although similar to (d ,p ) reactions, have specific properties that merit inspection. Method: We apply our methods (both the distorted-wave Born approximation and the adiabatic wave approximation) to (d ,n ) reactions on 16O,40Ca,48Ca,126Sn,132Sn , and 208Pb at 20 and 50 MeV. Results: We look separately at the modifications introduced by nonlocality in the final bound and scattering states as well as the consequences reflected on the differential angular distributions. The cross sections obtained when using nonlocality explicitly are significantly different than those using the local approximation, just as in (d ,p ) reactions. Due to the particular role of the Coulomb force in the bound state, often we found the effects of nonlocality to be larger in (d ,n ) than in (d ,p ) reactions. Conclusions: Our results confirm the importance of including nonlocality explicitly in deuteron-induced reactions.
Nonlocal dielectric effects in core-shell nanowires.
Energy Technology Data Exchange (ETDEWEB)
McMahon, J. M.; Gray, S. K.; Schatz, G. C. (Center for Nanoscale Materials); ( CSE); (Northwestern Univ.)
2010-01-01
We study the optical spectra and near fields of core-shell nanowires (nanoshells), using a recently developed finite-difference method that allows for a spatially nonlocal dielectric response. We first analyze the parameters of the nonlocal model by making comparisons with related experimental data and previous theoretical work. We then investigate how nonlocal effects are dependent on nanoshell features, such as shell thickness, overall size, and the ratio of core radius to shell radius. We demonstrate that the shell thickness along the longitudinal direction of the incident light is the primary controlling factor of nonlocal effects, which appear as anomalous absorption resonances and blueshifts in the localized surface plasmon resonance (LSPR) positions, relative to local theory. In addition, we show that the amount of blueshift depends on the order of the LSPR. The optical responses of nanoshells immersed in various refractive index (RI) environments are also studied. We show that the nonlocal anomalous absorption features are relatively insensitive to RI changes, but the blueshift of the dipolar LSPR varies nonlinearly.
Localized solutions for a nonlocal discrete NLS equation
Energy Technology Data Exchange (ETDEWEB)
Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)
2015-09-04
We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.
Evidence of Non-local Chemical, Thermal and Gravitational Effects
Directory of Open Access Journals (Sweden)
Hu H.
2007-04-01
Full Text Available Quantum entanglement is ubiquitous in the microscopic world and manifests itself macroscopically under some circumstances. But common belief is that it alone cannot be used to transmit information nor could it be used to produce macroscopic non- local effects. Yet we have recently found evidence of non-local effects of chemical substances on the brain produced through it. While our reported results are under independent verifications by other groups, we report here our experimental findings of non-local chemical, thermal and gravitational effects in simple physical systems such as reservoirs of water quantum-entangled with water being manipulated in a remote reservoir. With the aids of high-precision instruments, we have found that the pH value, temperature and gravity of water in the detecting reservoirs can be non-locally affected through manipulating water in the remote reservoir. In particular, the pH value changes in the same direction as that being manipulated; the temperature can change against that of local environment; and the gravity apparently can also change against local gravity. These non-local effects are all reproducible and can be used for non-local signalling and many other purposes. We suggest that they are mediated by quantum entanglement between nuclear and/or electron spins in treated water and discuss the implications of these results.
Nonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery
Directory of Open Access Journals (Sweden)
Ruyi Feng
2016-03-01
Full Text Available Subpixel mapping is a method of enhancing the spatial resolution of images, which involves dividing a mixed pixel into subpixels and assigning each subpixel to a definite land-cover class. Traditionally, subpixel mapping is based on the assumption of spatial dependence, and the spatial correlation information among pixels and subpixels is considered in the prediction of the spatial locations of land-cover classes within the mixed pixels. In this paper, a novel subpixel mapping method for hyperspectral remote sensing imagery based on a nonlocal method, namely nonlocal total variation subpixel mapping (NLTVSM, is proposed to use the nonlocal self-similarity prior to improve the performance of the subpixel mapping task. Differing from the existing spatial regularization subpixel mapping technique, in NLTVSM, the nonlocal total variation is used as a spatial regularizer to exploit the similar patterns and structures in the image. In this way, the proposed method can obtain an optimal subpixel mapping result and accuracy by considering the nonlocal spatial information. Compared with the classical and state-of-the-art subpixel mapping approaches, the experimental results using a simulated hyperspectral image, two synthetic hyperspectral remote sensing images, and a real hyperspectral image confirm that the proposed algorithm can obtain better results in both visual and quantitative evaluations.
Probing hidden sector photons through the Higgs window
Energy Technology Data Exchange (ETDEWEB)
Ahlers, M. [Oxford Univ. (United Kingdom). Rudolf Peierls Centre for Theoretical Physics; Jaeckel, J. [Durham Univ. (United Kingdom). Inst. for Particle Physics and Phenomenology; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-07-15
We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the Standard Model Higgs via a renormalizable quartic term - sometimes called the Higgs Portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light-shining-through-the-wall experiments as well as cosmological, astrophysical, and non-Newtonian force measurements. For hidden-photons receiving their mass from a hidden-Higgs we find in the small mass regime significantly stronger bounds than the bounds on massive hidden sector photons alone. (orig.)
Collapse suppression and soliton stabilization through nonlocality in bulk Kerr media
DEFF Research Database (Denmark)
Bang, Ole; Chemineau, E. T.; Krolikowski, Wieslaw
2000-01-01
We show that self-focusing cannot occur in bulk Kerr media with a nonlocal nonlinear response. We find the stationary solutions and show that nonlocality makes them stable. The results are verified numerically....
Slater's nonlocal exchange potential and beyond
Howard, I. A.; March, N. H.
The local density approximation (LDA) to the exchange potential Vx(r), namely the ρ1/3 electron gas form, was already transcended in Slater's 1951 paper. Here, using Dirac's 1930 form for the exchange energy density γx(r), the Slater (Sl) nonlocal exchange potential V Slx(r) is defined by 2γx(r)/ρ(r). In spherical atomic ions, say the Be or Ne-like series, this form V Slx(r) already has the correct behavior in both r → 0 and r → ∞ limits when known properties of the exchange energy density γx(r) and the ground-state electron density ρ(r) are invoked. As examples, some emphasis will first be given to the use of the so-called 1/Z expansion in such spherical atomic ions, for which analytic results can be obtained for both γx(r) and ρ(r) as the atomic number Z becomes large. The usefulness of the 1/Z expansion is directly demonstrated for the U atomic ion with 18 electrons by comparison with the optimized effective potential prediction. A rather general integral equation for the exchange potential is then proposed. Finally, without appeal to large Z, two-level systems are considered, with specific reference to the Be atom and to the LiH molecule. In all cases treated, the Slater potential V Slx(r) is a valuable starting point, even though it needs appreciable quantitative corrections reflecting directly atomic shell structure.
Nonlocal means filter-based speckle tracking.
Afsham, Narges; Rasoulian, Abtin; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert
2015-08-01
The objective of sensorless freehand 3-D ultrasound imaging is to eliminate the need for additional tracking hardware and reduce cost and complexity. However, the accuracy of current out-of-plane pose estimation is main obstacle for full 6-degree-of-freedom (DoF) tracking. We propose a new filter-based speckle tracking framework to increase the accuracy of out-of-plane displacement estimation. In this framework, we use the displacement estimation not only for the specific speckle pattern, but for the entire image. We develop a nonlocal means (NLM) filter based on a probabilistic normal variance mixture model of ultrasound, known as Rician-inverse Gaussian (RiIG). To aggregate the local displacement estimations, Stein's unbiased risk estimate (SURE) is used as a quality measure of the estimations. We derive an explicit analytical form of SURE for the RiIG model and use it as a weight factor. The proposed filter-based speckle tracking framework is formulated and evaluated for three commonly used noise models, including the RiIG model. The out-of-plane estimations are compared with our previously proposed model-based algorithm in a set of ex vivo experiments for different tissue types. We show that the proposed RiIG filter-based method is more accurate and less tissue-dependent than the other methods. The proposed method is also evaluated in vivo on the spines of five different subjects to assess the feasibility of a clinical application. The 6-DoF transform parameters are estimated and compared with the electromagnetic tracker measurements. The results show higher tracking accuracy for typical small lateral displacements and tilt rotations between image pairs.
Lepton mixing from the hidden sector
Ludl, P O
2015-01-01
Experimental results indicate a possible relation between the lepton and quark mixing matrices of the form U_PMNS \\approx V_CKM^\\dagger U_X, where U_X is a matrix with special structure related to the mechanism of neutrino mass generation. We propose a framework which can realize such a relation. The main ingredients of the framework are the double seesaw mechanism, SO(10) Grand Unification and a hidden sector of theory. The latter is composed of singlets (fermions and bosons) of the GUT symmetry with masses between the GUT and Planck scale. The interactions in this sector obey certain symmetries G_hidden. We explore the conditions under which symmetries G_hidden can produce flavour structures in the visible sector. Here the key elements are the basis-fixing symmetry and mediators which communicate information about properties of the hidden sector to the visible one. The interplay of SO(10) symmetry, basis-fixing symmetry identified as Z2 x Z2 and G_hidden can lead to the required form of U_X. A different kin...
Fitting Hidden Markov Models to Psychological Data
Directory of Open Access Journals (Sweden)
Ingmar Visser
2002-01-01
Full Text Available Markov models have been used extensively in psychology of learning. Applications of hidden Markov models are rare however. This is partially due to the fact that comprehensive statistics for model selection and model assessment are lacking in the psychological literature. We present model selection and model assessment statistics that are particularly useful in applying hidden Markov models in psychology. These statistics are presented and evaluated by simulation studies for a toy example. We compare AIC, BIC and related criteria and introduce a prediction error measure for assessing goodness-of-fit. In a simulation study, two methods of fitting equality constraints are compared. In two illustrative examples with experimental data we apply selection criteria, fit models with constraints and assess goodness-of-fit. First, data from a concept identification task is analyzed. Hidden Markov models provide a flexible approach to analyzing such data when compared to other modeling methods. Second, a novel application of hidden Markov models in implicit learning is presented. Hidden Markov models are used in this context to quantify knowledge that subjects express in an implicit learning task. This method of analyzing implicit learning data provides a comprehensive approach for addressing important theoretical issues in the field.
Analysis of radial nonlocal effect on the structural response of carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Pradhan, S.C., E-mail: scp@aero.iitkgp.ernet.in; Mandal, U.
2013-11-01
In this Letter, finite element model is developed to study the effect of nonlocal parameter in the radial structural response of carbon nanotubes. Timoshenko beam model is employed. The influence of nonlocal parameter in the radial direction due to interaction of atoms is defined as the radial nonlocal effect. It is found that there is significant influence of radial nonlocal effect on the structural response of the carbon nanotubes.
Probing Hidden Sector Photons through the Higgs Window.
Ahlers, M.; Jaeckel, J; Redondo, J.; Ringwald, A.
2008-01-01
We investigate the possibility that a (light) hidden sector extra photon receives its mass via spontaneous symmetry breaking of a hidden sector Higgs boson, the so-called hidden-Higgs. The hidden-photon can mix with the ordinary photon via a gauge kinetic mixing term. The hidden-Higgs can couple to the Standard Model Higgs via a renormalizable quartic term - sometimes called the Higgs Portal. We discuss the implications of this light hidden-Higgs in the context of laser polarization and light...
Sheridan, J. T.; Kelly, J. V.; O'Brien, G.; Gleeson, M. R.; O'Neill, F. T.
2004-12-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is described as non-local as it is assumed that monomers are polymerized to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The material model is non-linear as a general non-linear material response to the incident light is included. Typically the numerical method of solution has involved retaining only up to four harmonics of the Fourier series of monomer concentration in the calculations. In this paper a general set of coupled first-order differential equations is derived which allow the inclusion of a higher number of harmonics. The resulting effect on the convergence of the algorithm, as the number of harmonics retained is increased, is investigated. Special care is taken to note the effect of physical parameters, i.e. the non-local material variance σ, the power-law degree k, and the rates of diffusion, D, and polymerization, F0.
Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity
Arda, Mustafa; Aydogdu, Metin
2016-03-01
Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.
Bell on Bell's theorem: The changing face of nonlocality
Brown, Harvey R
2015-01-01
Between 1964 and 1990, the notion of nonlocality in Bell's papers underwent a profound change as his nonlocality theorem gradually became detached from quantum mechanics, and referred to wider probabilistic theories involving correlations between separated beables. The proposition that standard quantum mechanics is itself nonlocal (more precisely, that it violates `local causality') became divorced from the Bell theorem per se from 1976 on, although this important point is widely overlooked in the literature. In 1990, the year of his death, Bell would express serious misgivings about the mathematical form of the local causality condition, and leave ill-defined the issue of the consistency between special relativity and violation of the Bell-type inequality. In our view, the significance of the Bell theorem, both in its deterministic and stochastic forms, can only be fully understood by taking into account the fact that a fully Lorentz-covariant version of quantum theory, free of action-at-a-distance, can be a...
Bounding the persistency of the nonlocality of W states
Diviánszky, Péter; Trencsényi, Réka; Bene, Erika; Vértesi, Tamás
2016-04-01
The nonlocal properties of the W states are investigated under particle loss. By removing all but two particles from an N -qubit W state, the resulting two-qubit state is still entangled. Hence, the W state has high persistency of entanglement. We ask an analogous question regarding the persistency of nonlocality [see N. Brunner and T. Vértesi, Phys. Rev. A 86, 042113 (2012), 10.1103/PhysRevA.86.042113]. Namely, we inquire what is the minimal number of particles that must be removed from the W state so that the resulting state becomes local. We bound this value in function of N qubits by considering Bell nonlocality tests with two alternative settings per site. In particular, we find that this value is between 2 N /5 and N /2 for large N . We also develop a framework to establish bounds for more than two settings per site.
Near field radiative heat transfer between two nonlocal dielectrics
Singer, F; Joulain, Karl
2015-01-01
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...
Quantum theory is classical mechanics with non-local existence
Hegseth, John
2009-01-01
I propose a new and direct connection between classical mechanics and quantum mechanics where I derive the quantum mechanical propagator from a variational principle. This variational principle is Hamilton's modified principle generalized to allow many paths due to the non-local existence of particles in phase space. This principle allows a physical system to evolve non-locally in phase space while still allowing a representation that uses many classical paths. Whereas a point in phase space represents a classical system's state, I represent the state of a non-local system by a mixed trajectory. This formulation naturally leads to the transactional interpretation for resolving the paradoxes of the measurement problem. This principle also suggests a more flexible framework for formulating theories based on invariant actions and provides a single conceptual framework for discussing many areas of science.
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
A Caveat on Building Nonlocal Models of Cosmology
Tsamis, N C
2014-01-01
Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.
Generalized conservation laws in non-local field theories
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Generalised conservation laws in non-local field theories
Kegeles, Alexander
2015-01-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalised conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalisation of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Modelling population growth with delayed nonlocal reaction in 2-dimensions.
Liang, Dong; Wu, Jianhong; Zhang, Fan
2005-01-01
In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.
The Nonlocal p-Laplacian Evolution for Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2011-01-01
Full Text Available This paper presents an image interpolation model with nonlocal p-Laplacian regularization. The nonlocal p-Laplacian regularization overcomes the drawback of the partial differential equation (PDE proposed by Belahmidi and Guichard (2004 that image density diffuses in the directions pointed by local gradient. The grey values of images diffuse along image feature direction not gradient direction under the control of the proposed model, that is, minimal smoothing in the directions across the image features and maximal smoothing in the directions along the image features. The total regularizer combines the advantages of nonlocal p-Laplacian regularization and total variation (TV regularization (preserving discontinuities and 1D image structures. The derived model efficiently reconstructs the real image, leading to a natural interpolation, with reduced blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
Nonlocal quartic interactions and universality classes in perovskite manganites.
Singh, Rohit; Dutta, Kishore; Nandy, Malay K
2015-07-01
A modified Ginzburg-Landau model with a screened nonlocal interaction in the quartic term is treated via Wilson's renormalization-group scheme at one-loop order to explore the critical behavior of the paramagnetic-to-ferromagnetic phase transition in perovskite manganites. We find the Fisher exponent η to be O(ε) and the correlation exponent to be ν=1/2+O(ε) through epsilon expansion in the parameter ε=d(c)-d, where d is the space dimension, d(c)=4+2σ is the upper critical dimension, and σ is a parameter coming from the nonlocal interaction in the model Hamiltonian. The ensuing critical exponents in three dimensions for different values of σ compare well with various existing experimental estimates for perovskite manganites with various doping levels. This suggests that the nonlocal model Hamiltonian contains a wide variety of such universality classes.
Nonlocal thermal transport across embedded few-layer graphene sheets.
Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui
2014-12-17
Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g. the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.
Image and video restorations via nonlocal kernel regression.
Zhang, Haichao; Yang, Jianchao; Zhang, Yanning; Huang, Thomas S
2013-06-01
A nonlocal kernel regression (NL-KR) model is presented in this paper for various image and video restoration tasks. The proposed method exploits both the nonlocal self-similarity and local structural regularity properties in natural images. The nonlocal self-similarity is based on the observation that image patches tend to repeat themselves in natural images and videos, and the local structural regularity observes that image patches have regular structures where accurate estimation of pixel values via regression is possible. By unifying both properties explicitly, the proposed NL-KR framework is more robust in image estimation, and the algorithm is applicable to various image and video restoration tasks. In this paper, we apply the proposed model to image and video denoising, deblurring, and superresolution reconstruction. Extensive experimental results on both single images and realistic video sequences demonstrate that the proposed framework performs favorably with previous works both qualitatively and quantitatively.
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Directory of Open Access Journals (Sweden)
Maxim A. Molchan
2007-08-01
Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Bound on Hardy's nonlocality from the principle of information causality
Ahanj, Ali; Kunkri, Samir; Rai, Ashutosh; Rahaman, Ramij; Joag, Pramod S.
2010-03-01
Recently, the principle of nonviolation of information causality [Nature 461, 1101 (2009)] has been proposed as one of the foundational properties of nature. We explore the Hardy’s nonlocality theorem for two-qubit systems, in the context of generalized probability theory, restricted by the principle of nonviolation of information causality. Applying a sufficient condition for information causality violation, we derive an upper bound on the maximum success probability of Hardy’s nonlocality argument. We find that the bound achieved here is higher than that allowed by quantum mechanics but still much less than what the no-signaling condition permits. We also study the Cabello type nonlocality argument (a generalization of Hardy’s argument) in this context.
Hidden Statistics Approach to Quantum Simulations
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the
Non-locality of Entangled Coherent States and Its Evolution in a Thermal Reservoir
Institute of Scientific and Technical Information of China (English)
GONG Ren-Shan
2005-01-01
Regarding the necessary and sufficient condition violating Bell-CHSH's inequality as criterion for nonlocality of entangled states, we present a perturbative calculation determining non-locality of evolving entangled states.Furthermore, by means of the perturbative calculation, the non-locality and its evolution of two kinds of entangled coherent states in a thermal reservoir are discussed.
Supersymmetric leptogenesis and light hidden sectors
Weniger, Christoph
2010-01-01
Thermal leptogenesis and supergravity are attractive scenarios for physics beyond the standard model. However, it is well known that the super-weak interaction of the gravitino often leads to problems with primordial nucleosynthesis in the standard scenario of matter parity conserving MSSM + three right-handed neutrinos. We will present and compare two related solutions to these problems: 1) The conflict between BBN and leptogenesis can be avoided in presence of a hidden sector with light supersymmetric particles which open new decay channels for the dangerous long-lived particles. 2) If there is a condensate in the hidden sector, such additional decay channels can be alternatively opened by dynamical breaking of matter parity in the hidden sector.
Discrete model of dislocations in fractional nonlocal elasticity
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2016-01-01
Full Text Available Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used. The fractional differences allow us to describe long-range interactions in materials. In continuous limit the suggested discrete models give continuum models of dislocations in nonlocal continua. Fractional generalization of the Frenkel–Kontorova model by using long-range interactions is suggested. We also propose a fractional generalization of interacting atomic chains (IAC model of dislocations by considering long-range interacting chains.
Nonlocal plasticity effects on interaction of different size voids
DEFF Research Database (Denmark)
Tvergaard, Viggo; Niordson, Christian Frithiof
2004-01-01
A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three...
Single-particle nonlocality and entanglement with the vacuum
Björk, G; Sánchez-Soto, L L
2001-01-01
We propose a single-particle experiment that is equivalent to the conventional two-particle experiment used to demonstrate a violation of Bell's inequalities. Hence, we argue that quantum mechanical nonlocality can be demonstrated by single-particle states. The validity of such a claim has been discussed in the literature, but without reaching a clear consensus. We show that the disagreement can be traced to what part of the total state of the experiment one assigns to the (macroscopic) measurement apparatus. However, with a conventional and legitimate interpretation of the measurement process one is led to the conclusion that even a single particle can show nonlocal properties.
Nonlocal Classical Matter in Self-contained Machian Relativism
Bulyzhenkov-Widicker, I E
2007-01-01
The continuous elementary source in Einstein's gravitational theory is the r^{-4} radial distribution of the energy-momentum tensor density. The space energy integral of such an infinite (astro)source-particle is finite and determines its nonlocal gravitational charge for the energy-to-energy attraction of other (astro)particles. Non-empty flat space of the undivided material Universe is charged continuously by the world energy density of the global ensemble of overlapping radial particles. Nonlocal gravitational/inertial energy-charges incorporate Machian relativism quantitatively into Einstein's gravitation for self-contained GR-SR relations without references to Newton's mass-to-mass attraction.
Accelerating cosmologies from non-local higher-derivative gravity
Capozziello, Salvatore; Nojiri, Shin'ichi; Odintsov, Sergei D
2008-01-01
We study accelerating cosmological solutions of a general class of non-linear gravities which depend on Gauss-Bonnet and other higher derivative invariants. To achieve this goal a local formulation with auxiliary scalars for arbitrary higher-derivative non-local gravity is developed. It is demonstrated that non-local Gauss-Bonnet gravity can be reduced, in the local formulation, to a model of string-inspired scalar-Gauss-Bonnet gravity. A natural unification, in the theory here developed, of the early-time inflation epoch with a late-time acceleration stage can also be realized.
Accelerating cosmologies from non-local higher-derivative gravity
Energy Technology Data Exchange (ETDEWEB)
Capozziello, Salvatore [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas ICE/CSIC-IEEC, Campus UAB, Facultat de Ciencies, Torre C5-Parell-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)], E-mail: nojiri@phys.nagoya-u.ac.jp; Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain)
2009-01-12
We study accelerating cosmological solutions of a general class of non-linear gravities which depend on Gauss-Bonnet and other higher derivative invariants. To achieve this goal a local formulation with auxiliary scalars for arbitrary higher-derivative non-local gravity is developed. It is demonstrated that non-local Gauss-Bonnet gravity can be reduced, in the local formulation, to a model of string-inspired scalar-Gauss-Bonnet gravity. A natural unification, in the theory here developed, of the early-time inflation epoch with a late-time acceleration stage can also be realized.
Localization of Nonlocal Symmetries and Symmetry Reductions of Burgers Equation
Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun
2017-05-01
The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method. The auto-Bäcklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained. Supported by the Global Change Research Program China under Grant No. 2015CB953904, the National Natural Science Foundations of China under Grant Nos. 11435005, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, and K. C. Wong Magna Fund in Ningbo University
Dynamical quenching with non-local alpha and downward pumping
Brandenburg, A; Käpylä, P J
2014-01-01
In light of new results, the one-dimensional mean-field dynamo model of Brandenburg & Kapyla (2007) with dynamical quenching and a nonlocal Babcock-Leighton alpha effect is re-examined for the solar dynamo. We extend the one-dimensional model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non-locality in the alpha effect, and possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number.
Inhomogeneous broadening in non-interacting nonlocal plasmonic ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
2016-01-01
The importance of inhomogeneous broadening due to the size dependence of plasmon resonances in few-nm metallic particle ensembles is investigated through different models describing the nonlocal optical response of plasmonic nanospheres. Modal shifts and plasmon line broadening are shown to become...... important within the first-order correction to classical electrodynamics provided by the hydrodynamic Drude model, but turn out to be less prominent once additional single-particle size-dependent damping mechanisms are accounted for through the recently developed Generalized Nonlocal Optical Response theory...
Dynamical nonlocal coherent-potential approximation for itinerant electron magnetism.
Rowlands, D A; Zhang, Yu-Zhong
2014-11-26
A dynamical generalisation of the nonlocal coherent-potential approximation is derived based upon the functional integral approach to the interacting electron problem. The free energy is proven to be variational with respect to the self-energy provided a self-consistency condition on a cluster of sites is satisfied. In the present work, calculations are performed within the static approximation and the effect of the nonlocal physics on the formation of the local moment state in a simple model is investigated. The results reveal the importance of the dynamical correlations.
A Nonlocal Poisson-Fermi Model for Ionic Solvent
Xie, Dexuan; Eisenberg, Bob; Scott, L Ridgway
2016-01-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-type kernel function. Moreover, the Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Finally, numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Strong field ionization and gauge dependence of nonlocal potentials
Rensink, T C
2016-01-01
Nonlocal potential models have been used in place of the Coulomb potential in the Schrodinger equation as an efficient means of exploring high field laser-atom interaction in previous works. Al- though these models have found use in modeling phenomena including photo-ionization and ejected electron momentum spectra, they are known to break electromagnetic gauge invariance. This paper examines if there is a preferred gauge for the linear field response and photoionization characteristics of nonlocal atomic binding potentials in the length and velocity gauges. It is found that the length gauge is preferable for a wide range of parameters.
Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.
Sahin, Buyukdagli; Ralf, Blossey
2014-07-16
We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.
To the non-local theory of cold nuclear fusion.
Alexeev, Boris V
2014-10-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.
Low-Energy Signatures of Nonlocal Field Theories
Belenchia, Alessio; Martin-Martinez, Eduardo; Saravani, Mehdi
2016-01-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by non-analytic functions of the d'Alembertian operator $\\Box$ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy non-locality scales. This allows us to suggest a nuclear physics experiment ($\\sim$ MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
Geophysical Investigations at Hidden Dam, Raymond, California Flow Simulations
Minsley, Burke J.; Ikard, Scott
2010-01-01
Numerical flow modeling and analysis of observation-well data at Hidden Dam are carried out to supplement recent geophysical field investigations at the site (Minsley and others, 2010). This work also is complementary to earlier seepage-related studies at Hidden Dam documented by Cedergren (1980a, b). Known seepage areas on the northwest right abutment area of the downstream side of the dam was documented by Cedergren (1980a, b). Subsequent to the 1980 seepage study, a drainage blanket with a sub-drain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren (1980a, b) suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain in the downstream portion of the dam. The current modeling study is aimed at quantifying how variability in dam and foundation hydrologic properties influences seepage as a function of reservoir stage. Flow modeling is implemented using the COMSOL Multiphysics software package, which solves the partially saturated flow equations in a two-dimensional (2D) cross-section of Hidden Dam that also incorporates true downstream topography. Use of the COMSOL software package provides a more quantitative approach than the flow net analysis by Cedergren (1980a, b), and allows for rapid evaluation of the influence of various parameters such as reservoir level, dam structure and geometry, and hydrogeologic properties of the dam and foundation materials. Historical observation-well data are used to help validate the flow simulations by comparing observed and predicted water levels for a range of reservoir elevations. The flow models are guided by, and
Hidden Markov models estimation and control
Elliott, Robert J; Moore, John B
1995-01-01
As more applications are found, interest in Hidden Markov Models continues to grow. Following comments and feedback from colleagues, students and other working with Hidden Markov Models the corrected 3rd printing of this volume contains clarifications, improvements and some new material, including results on smoothing for linear Gaussian dynamics. In Chapter 2 the derivation of the basic filters related to the Markov chain are each presented explicitly, rather than as special cases of one general filter. Furthermore, equations for smoothed estimates are given. The dynamics for the Kalman filte
Hidden simplicity of gauge theory amplitudes
Energy Technology Data Exchange (ETDEWEB)
Drummond, J M, E-mail: drummond@lapp.in2p3.f [LAPTH, Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux, Cedex (France)
2010-11-07
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in N=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Hidden simplicity of gauge theory amplitudes
Drummond, J. M.
2010-11-01
These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the Britto, Cachzo, Feng and Witten (BCFW) recursion relations we solve the tree-level S-matrix in \\ {N}=4 super Yang-Mills theory and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.
Hidden neural networks: application to speech recognition
DEFF Research Database (Denmark)
Riis, Søren Kamaric
1998-01-01
We evaluate the hidden neural network HMM/NN hybrid on two speech recognition benchmark tasks; (1) task independent isolated word recognition on the Phonebook database, and (2) recognition of broad phoneme classes in continuous speech from the TIMIT database. It is shown how hidden neural networks...... (HNNs) with much fewer parameters than conventional HMMs and other hybrids can obtain comparable performance, and for the broad class task it is illustrated how the HNN can be applied as a purely transition based system, where acoustic context dependent transition probabilities are estimated by neural...
Dark Radiation from a hidden U(1)
Vogel, Hendrik
2015-01-01
We discuss the impact of a hidden sector consisting of Minicharged Particles (MCPs) and massless hidden photons on the expansion history of our Universe. We present parameter scans for the amount of extra relativistic particles (Neff) and the abundance of light nuclei for fermionic MCPs with masses between ~100 keV and 10 GeV and minicharges in the range 10^(-11)-1. Current CMB and BBN data significantly constrain the available parameter space of MCPs. The shown results are a valuable indicator for future experimental searches and are presented in a flexible way so that more accurate results on Neff can be easily interpreted.
Hidden Symmetries, Central Charges and All That
de Wit, Bernard; Wit, Bernard de; Nicolai, Hermann
2001-01-01
In this review we discuss hidden symmetries of toroidal compactifications of eleven-dimensional supergravity. We recall alternative versions of this theory which exhibit traces of the hidden symmetries when still retaining the massive Kaluza-Klein states. We reconsider them in the broader perspective of M-theory which incorporates a more extended variety of BPS states. We also argue for a new geometry that may underly these theories. All our arguments point towards an extension of the number of space-time coordinates beyond eleven.
Hidden Subgroup States are Almost Orthogonal
Ettinger, M; Knill, E H; Ettinger, Mark; Hoyer, Peter; Knill, Emanuel
1999-01-01
It is well known that quantum computers can efficiently find a hidden subgroup $H$ of a finite Abelian group $G$. This implies that after only a polynomial (in $\\log |G|$) number of calls to the oracle function, the states corresponding to different candidate subgroups have exponentially small inner product. We show that this is true for noncommutative groups also. We present a quantum algorithm which identifies a hidden subgroup of an arbitrary finite group $G$ in only a linear (in $\\log |G|$) number of calls to the oracle function. This is exponentially better than the best classical algorithm. However our quantum algorithm requires an exponential amount of time, as in the classical case.
Searching for hidden sectors in multiparticle production at the LHC
Sanchis-Lozano, Miguel-Angel; Moreno-Picot, Salvador
2015-01-01
We study the impact of a hidden sector beyond the Standard Model, e.g. a Hidden Valley model, on factorial moments and cumulants of multiplicity distributions in multiparticle production with a special emphasis on the prospects for LHC results.
Entropy Rate for Hidden Markov Chains with rare transitions
2010-01-01
We consider Hidden Markov Chains obtained by passing a Markov Chain with rare transitions through a noisy memoryless channel. We obtain asymptotic estimates for the entropy of the resulting Hidden Markov Chain as the transition rate is reduced to zero.
The Corporate Illiterates: The Hidden Illiterates of Silicon Valley.
Chase, Sharon
1991-01-01
Describes the writing and business communication problems of college-educated workers in Silicon Valley. Discusses hidden illiterates in the universities and in the workplace. Offers solutions for professors and managers faced with the problem of hidden illiterates. (PRA)
Design and Implementation of Domain based Semantic Hidden Web Crawler
Manvi; Bhatia, Komal Kumar; Dixit, Ashutosh
2015-01-01
Web is a wide term which mainly consists of surface web and hidden web. One can easily access the surface web using traditional web crawlers, but they are not able to crawl the hidden portion of the web. These traditional crawlers retrieve contents from web pages, which are linked by hyperlinks ignoring the information hidden behind form pages, which cannot be extracted using simple hyperlink structure. Thus, they ignore large amount of data hidden behind search forms. This paper emphasizes o...
Institute of Scientific and Technical Information of China (English)
Qun Li; Yiheng Chen
2009-01-01
The present investigation of the crack problem in piezoelectric materials is performed based on the non-local theory. After some manipulations, the impermeable crack,the permeable crack (the crack gap is full of NaCI solution),and the semi-permeable crack (the crack gap is full of air or silicon oil) are reduced to a uniform formulation by assuming the normal electric displacement on the crack surfaces to be an unknown variable. Thus, a triple integral equation with the unknown normal electric displacement is established. By using the Newton iterative method and solving the triple integral equation, it is found that the normal electric displacement on the crack surfaces is no longer a constant as determined by previous studies, rather, it depends upon the remote combined electromechanical loadings. Numerical results of the stresses and electric displacement fields show that there are no singularities at the crack tips so that the stresses remain finite. It is of great significance that the concrete electric boundary condition on the crack surfaces exerts significant influence on the near-tip fields and in this way plays an important role in evaluating the crack stability in the non-local piezoelectric materials. More specifically, the impermeable crack model always overestimates the finite stresses at the crack tips, whereas the permeable crack model always underestimates them.
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon-Vey invariant for special flows for which the magnetic helicity is zero are also discussed.
On the numerical solution of the diffusion equation with a nonlocal boundary condition
Directory of Open Access Journals (Sweden)
Dehghan Mehdi
2003-01-01
Full Text Available Parabolic partial differential equations with nonlocal boundary specifications feature in the mathematical modeling of many phenomena. In this paper, numerical schemes are developed for obtaining approximate solutions to the initial boundary value problem for one-dimensional diffusion equation with a nonlocal constraint in place of one of the standard boundary conditions. The method of lines (MOL semidiscretization approach is used to transform the model partial differential equation into a system of first-order linear ordinary differential equations (ODEs. The partial derivative with respect to the space variable is approximated by a second-order finite-difference approximation. The solution of the resulting system of first-order ODEs satisfies a recurrence relation which involves a matrix exponential function. Numerical techniques are developed by approximating the exponential matrix function in this recurrence relation. We use a partial fraction expansion to compute the matrix exponential function via Pade approximations, which is particularly useful in parallel processing. The algorithm is tested on a model problem from the literature.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
LIANG Jun
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of displacements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. Numerical examples are provided to show the effects of the crack length, the parameter describing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solu- tions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture crite- rion. Numerical examples are provided to show the effects of the crack length, the parameter describ- ing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational