Nonlocal elasticity tensors in dislocation and disclination cores
Taupin, V.; Gbemou, K.; Fressengeas, C.; Capolungo, L.
2017-03-01
Nonlocal elastic constitutive laws are introduced for crystals containing defects such as dislocations and disclinations. In addition to pointwise elastic moduli tensors adequately reflecting the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum and moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. The convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.
Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity
Arda, Mustafa; Aydogdu, Metin
2016-03-01
Torsional wave propagation in multiwalled carbon nanotubes is studied in the present work. Governing equation of motion of multiwalled carbon nanotube is obtained using Eringen's nonlocal elasticity theory. The effect of van der Waals interaction coefficient is considered between inner and outer nanotubes. Dispersion relations are obtained and discussed in detail. Effect of nonlocal parameter and van der Waals interaction to the torsional wave propagation behavior of multiwalled carbon nanotubes is investigated. It is obtained that torsional van der Waals interaction between adjacent tubes can change the rotational direction of multiwalled carbon nanotube as in-phase or anti-phase. The group and escape velocity of the waves converge to a limit value in the nonlocal elasticity approach.
Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection
Directory of Open Access Journals (Sweden)
S. P. Xu
2013-01-01
Full Text Available Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies.
Surface effects on static bending of nanowires based on non-local elasticity theory
Directory of Open Access Journals (Sweden)
Quan Wu
2015-10-01
Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
Vibration analysis of defective graphene sheets using nonlocal elasticity theory
Namin, S. F. Asbaghian; Pilafkan, R.
2017-09-01
Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.
Axial vibration analysis of nanocones based on nonlocal elasticity theory
Institute of Scientific and Technical Information of China (English)
Shu-Qi Guo; Shao-Pu Yang
2012-01-01
Carbon nanocones have quite fascinating electronic and structural properties,whose axial vibration is seldom investigated in previous studies.In this paper,based on a nonlocal elasticity theory,a nonuniform rod model is applied to investigate the small-scale effect and the nonuniform effect on axial vibration of nanocones.Using the modified Wentzel-Brillouin-Kramers (WBK) method,an asymptotic solution is obtained for the axial vibration of general nonuniform nanorods.Then,using similar procedure,the axial vibration of nanocones is analyzed for nonuniform parameters,mode number and nonlocal parameters.Explicit expressions are derived for mode frequencies of clamped-clamped and clamped-free boundary conditions.It is found that axial vibration frequencies are highly overestimated by the classical rod model because of ignorance of the effect of small length scale.
DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory
National Research Council Canada - National Science Library
Setoodeh, AliReza; Derahaki, Morteza; Bavi, Navid
2015-01-01
Abstract To investigate the thermal buckling of curved carbon nanotubes (CCNTs) embedded in an elastic medium, nonlocal elasticity theory is employed in combination with the theory of thin curved beams...
Modeling elastic tensile fractures in snow using nonlocal damage mechanics
Borstad, C. P.; McClung, D. M.
2011-12-01
The initiation and propagation of tensile fractures in snow and ice are fundamental to numerous important physical processes in the cryosphere, from iceberg calving to ice shelf rift propagation to slab avalanche release. The heterogeneous nature of snow and ice, their proximity to the melting temperature, and the varied governing timescales typically lead to nonlinear fracture behavior which does not follow the predictions of Linear Elastic Fracture Mechanics (LEFM). Furthermore, traditional fracture mechanics is formally inapplicable for predicting crack initiation in the absence of a pre-existing flaw or stress concentration. An alternative to fracture mechanics is continuum damage mechanics, which accounts for the material degradation associated with cracking in a numerically efficient framework. However, damage models which are formulated locally (e.g. stress and strain are defined as point properties) suffer from mesh-sensitive crack trajectories, spurious localization of damage and improper fracture energy dissipation with mesh refinement. Nonlocal formulations of damage, which smear the effects of the material heterogeneity over an intrinsic length scale related to the material microstructure, overcome these difficulties and lead to numerically efficient and mesh-objective simulations of the tensile failure of heterogeneous materials. We present the results of numerical simulations of tensile fracture initiation and propagation in cohesive snow using a nonlocal damage model. Seventeen beam bending experiments, both notched and unnotched, were conducted using blocks of cohesive dry snow extracted from an alpine snowpack. Material properties and fracture parameters were calculated from the experimental data using beam theory and quasi-brittle fracture mechanics. Using these parameters, a nonlocal isotropic damage model was applied to two-dimensional finite element meshes of the same scale as the experiments. The model was capable of simulating the propagation
Koutsoumaris, C. Chr.; Eptaimeros, K. G.; Zisis, T.; Tsamasphyros, G. J.
2016-12-01
The nonlocal theory of elasticity is widely employed to the study of nanoscale problems. The differential approach of Eringen's nonlocal beam theory has been widely used to solve problems whose size effect is substantial in structures. However, in the case of Euler-Bernoulli beam theory (EBBT), this approach reveals inconsistencies that do not allow for the energy functional formulation. To avoid these inconsistencies, an alternative route is to use the integral form of nonlocal elasticity. This study revolves around the nonlocal integral beam model for various attenuation functions with the intention to explore the static response of a beam (or a nanobeam) for different types of loadings and boundary conditions (BC).
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational
Analysis of a micro piezoelectric vibration energy harvester by nonlocal elasticity theory
Directory of Open Access Journals (Sweden)
Hao Chen
2016-04-01
Full Text Available A theoretical model of a micro piezoelectric energy harvester is proposed based on the nonlocal elasticity theory, which is operated in the flexural mode for scavenging ambient vibration energy. A nonlocal scale is defined as the product of internal characteristic length and a constant related to the material. The dependences of performance of the harvester upon the nonlocal scale and the scale ratio of the nonlocal scale to the external characteristic parameter are investigated in detail. Numerical results show that output power of the harvester decreases, and resonance frequency reduces gradually at first then increases rapidly when nonlocal scale increases. The results of nonlocal elasticity theory are compared with that of classic beam theory. All the results are helpful for material and structure design of the micro piezoelectric energy harvester.
Ebrahimi, Farzad; Reza Barati, Mohammad
2017-01-01
In this research, vibration characteristics of a flexoelectric nanobeam in contact with Winkler-Pasternak foundation is investigated based on the nonlocal elasticity theory considering surface effects. This nonclassical nanobeam model contains flexoelectric effect to capture coupling of strain gradients and electrical polarizations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, flexoelectric and surface effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying a Galerkin-based solution. Natural frequencies are verified with those of previous papers on nanobeams. It is illustrated that flexoelectricity, nonlocality, surface stresses, elastic foundation and boundary conditions affects considerably the vibration frequencies of piezoelectric nanobeams.
National Research Council Canada - National Science Library
Nami, Mohammad Rahim; Janghorban, Maziar
2013-01-01
.... In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates...
Nonlocal elasticity defined by Eringen's integral model: Introduction of a boundary layer method
National Research Council Canada - National Science Library
Abdollahi, R; Boroomand, B
2014-01-01
In this paper we consider a nonlocal elasticity theory defined by Eringen's integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs...
Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids
Indian Academy of Sciences (India)
D P Acharya; Asit Mondal
2002-12-01
This paper investigates Rayleigh waves, propagating on the surface of a visco-elastic solid under the linear theory of nonlocal elasticity. Dispersion relations are obtained. It is observed that the waves are dispersive in nature for small wavelengths. Numerical calculations and discussions presented in this paper lead us to some important conclusions.
Ebrahimi, Farzad; Reza Barati, Mohammad; Haghi, Parisa
2016-11-01
In this paper, the thermo-elastic wave propagation analysis of a temperature-dependent functionally graded (FG) nanobeam supported by Winkler-Pasternak elastic foundation is studied using nonlocal elasticity theory. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The temperature field has a nonlinear distribution called heat conduction across the nanobeam thickness. Temperature-dependent material properties change gradually in the spatial coordinate according to the Mori-Tanaka model. The governing equations of the wave propagation of the refined FG nanobeam are derived by using Hamilton's principle. The analytic dispersion relation of the embedded nonlocal functionally graded nanobeam is obtained by solving an eigenvalue problem. Numerical examples show that the wave characteristics of the functionally graded nanobeam are related to the temperature distribution, elastic foundation parameters, nonlocality and material composition.
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2013-01-01
Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.
Application of Nonlocal Elasticity Shell Model for Axial Buckling of Single-Walled Carbon Nanotubes
Directory of Open Access Journals (Sweden)
Farzad Khademolhosseini
2009-10-01
Full Text Available Recently, nano devices have been developed which use Carbon Nanotubes (CNTs as structural elements. To define the range of applicability of CNTs in such devices, it is important to investigate failure modes such as the axial buckling limit. Classical continuum models are inaccurate as they are unable to account for the size-effects in such devices. In this work, a modified nonlocal continuum shell model for the axial buckling of CNTs is proposed and compared with a nonlocal model for torsional buckling. This is done through modifying classical continuum models by incorporating basic concepts from nonlocal elasticity. Furthermore, molecular dynamics (MD simulations are performed on a range of nanotubes with different diameters. Compared to classical models, the modified nonlocal models provide a much better fit to MD simulation results. Using MD simulation results for axial buckling, values of the nonlocal constant and shell thickness are calculated.
Discrete model of dislocations in fractional nonlocal elasticity
National Research Council Canada - National Science Library
Tarasov, Vasily E
2016-01-01
Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used...
Nonlocal Elasticity Theory for Transient Analysis of Higher-Order Shear Deformable Nanoscale Plates
Directory of Open Access Journals (Sweden)
Woo-Young Jung
2014-01-01
Full Text Available The small scale effect on the transient analysis of nanoscale plates is studied. The elastic theory of the nano-scale plate is reformulated using Eringen’s nonlocal differential constitutive relations and higher-order shear deformation theory (HSDT. The equations of motion of the nonlocal theories are derived for the nano-scale plates. The Eringen’s nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. On the basis of those numerical results, the relations between nonlocal and local theory are investigated and discussed, as are the nonlocal parameter, aspect ratio, side-to-thickness ratio, nano-scale plate size, and time step effects on the dynamic response. In order to validate the present solutions, the reference solutions are employed and examined. The results of nano-scale plates using the nonlocal theory can be used as a benchmark test for the transient analysis.
Institute of Scientific and Technical Information of China (English)
U.GÜVEN
2015-01-01
In this paper, the propagation of longitudinal stress waves under a longitu-dinal magnetic field is addressed using a unified nonlocal elasticity model with two scale coeﬃcients. The analysis of wave motion is mainly based on the Love rod model. The effect of shear is also taken into account in the framework of Bishop’s correction. This analysis shows that the classical theory is not suﬃcient for this subject. However, this unified nonlocal elasticity model solely used in the present study reflects in a manner fairly realistic for the effect of the longitudinal magnetic field on the longitudinal wave propagation.
Discrete model of dislocations in fractional nonlocal elasticity
Directory of Open Access Journals (Sweden)
Vasily E. Tarasov
2016-01-01
Full Text Available Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used. The fractional differences allow us to describe long-range interactions in materials. In continuous limit the suggested discrete models give continuum models of dislocations in nonlocal continua. Fractional generalization of the Frenkel–Kontorova model by using long-range interactions is suggested. We also propose a fractional generalization of interacting atomic chains (IAC model of dislocations by considering long-range interacting chains.
Norouzzadeh, A.; Ansari, R.
2017-04-01
Stress-strain relation in Eringen's nonlocal elasticity theory was originally formulated within the framework of an integral model. Due to difficulty of working with that integral model, the differential model of nonlocal constitutive equation is widely used for nanostructures. However, paradoxical results may be obtained by the differential model for some boundary and loading conditions. Presented in this article is a finite element analysis of Timoshenko nano-beams based on the integral model of nonlocal continuum theory without employing any simplification in the model. The entire procedure of deriving equations of motion is carried out in the matrix form of representation, and hence, they can be easily used in the finite element analysis. For comparison purpose, the differential counterparts of equations are also derived. To study the outcome of analysis based on the integral and differential models, some case studies are presented in which the influences of boundary conditions, nonlocal length scale parameter and loading factor are analyzed. It is concluded that, in contrast to the differential model, there is no paradox in the numerical results of developed integral model of nonlocal continuum theory for different situations of problem characteristics. So, resolving the mentioned paradoxes by means of a purely numerical approach based on the original integral form of nonlocal elasticity theory is the major contribution of present study.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
DEFF Research Database (Denmark)
Eskildsen, M.R.; Fisher, I.R.; Gammel, P.L.
2000-01-01
Using small angle neutron scattering we have studied the square to hexagonal flux line lattice symmetry transition in different members of the borocarbide superconductors. The studies were performed using samples of ErNi2B2C, Lu(Ni1-xCox)(2)B2C with cobalt doping levels x = 1.5-9% and Y0.64Lu0.36...... that the transition onset follows a model by V. Kogan et nl., which includes non-local corrections to the London model due to the Fermi surface anisotropy of the borocarbides. (C) 2000 Elsevier Science B.V. All rights reserved....
Directory of Open Access Journals (Sweden)
Pisano Aurora Angela
2017-01-01
Full Text Available The structural symmetry and the appropriate definition of a reduced (symmetric mechanical/ numerical model is discussed within a nonlocal elasticity context. In particular, reference is made to an integral model of Eringen-type. The paper highlights how the classical, i.e. local, concepts of structural symmetry have to be rephrased through the definition of an enlarged symmetric model of the analyzed structure. This enlarged model, endowed with apposite nonlocal boundary conditions enforced in an iterative fashion, is proved to be able to recover the nonlocal effects that the neglected portion of the structure exerts on the portion chosen for the analysis. It is shown how the mirrored symmetric solution exactly matches the complete one. Theoretical issues and computational strategies referred to a nonlocal version of the finite element method are discussed with reference to the analysis of a case-study.
Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
Directory of Open Access Journals (Sweden)
Lee Haw-Long
2010-01-01
Full Text Available Abstract The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained.
Pisano, Aurora Angela; Fuschi, Paolo
2017-01-01
The structural symmetry and the appropriate definition of a reduced (symmetric) mechanical/ numerical model is discussed within a nonlocal elasticity context. In particular, reference is made to an integral model of Eringen-type. The paper highlights how the classical, i.e. local, concepts of structural symmetry have to be rephrased through the definition of an enlarged symmetric model of the analyzed structure. This enlarged model, endowed with apposite nonlocal boundary conditions enforced in an iterative fashion, is proved to be able to recover the nonlocal effects that the neglected portion of the structure exerts on the portion chosen for the analysis. It is shown how the mirrored symmetric solution exactly matches the complete one. Theoretical issues and computational strategies referred to a nonlocal version of the finite element method are discussed with reference to the analysis of a case-study.
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
Energy Technology Data Exchange (ETDEWEB)
Shen Huishen, E-mail: hsshen@mail.sjtu.edu.c [Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200030 (China); State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)
2010-08-30
A nonlocal shear deformable shell model is developed for buckling of microtubules embedded in an elastic matrix of cytoplasm under bending in thermal environments. The results reveal that the lateral constraint has a significant effect on the buckling moments of a microtubule when the foundation stiffness is sufficiently large.
Energy Technology Data Exchange (ETDEWEB)
Nazemnezhad, Reza, E-mail: rnazemnezhad@iust.ac.ir [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Hosseini-Hashemi, Shahrokh [School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Center of Excellence in Railway Transportation, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of)
2014-09-12
Free vibration of cantilever multi-layer graphene nanoribbons (MLGNRs) with interlayer shear effect is investigated using molecular dynamics simulations (MD) and nonlocal elasticity. Because of similarity of MLGNRs to sandwich structures, sandwich formulations are expressed in the nonlocal form. By comparing the first two frequencies of MLGNRs with various layers and lengths obtained using MD simulations with those of the nonlocal sandwich formulation; the nonlocal parameter is calibrated to match the results of two methods. The results reveal that the calibrated nonlocal parameter for predicting the second frequencies is dependent on the number of MLGNR layers, and it increases by increasing the number of layers. - Highlights: • Nonlocal parameter is calibrated for vibration of multi-layer graphene nanoribbons. • Interlayer shear effect between GNR layers is also considered. • Two first nonlocal frequencies are obtained using sandwich formulation. • Molecular dynamics simulations are done for nonlocal parameter calibration.
Institute of Scientific and Technical Information of China (English)
Sarp Adali
2012-01-01
Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.
Longitudinally Vibrating Elastic Rods with Locally and Non-Locally Reacting Viscous Dampers
Directory of Open Access Journals (Sweden)
Şefaatdin Yüksel
2005-01-01
Full Text Available Eigencharacteristics of a longitudinally vibrating elastic rod with locally and non-locally reacting damping are analyzed. The rod is considered as a continuous system and complex eigenfrequencies are determined as solution of a characteristic equation. The variation of the damping ratios with respect to damper locations and damping coefficients for the first four eigenfrequencies are obtained. It is shown that at any mode of locally or non-locally damped elastic rod, the variation of damping ratio with damper location is linearly proportional to absolute value of the mode shape of undamped system. It is seen that the increasing damping coefficient does not always increase the damping ratio and there are optimal values for the damping ratio. Optimal values for external damping coefficients of viscous dampers and locations of the dampers are presented.
Institute of Scientific and Technical Information of China (English)
CHENG Yan; TU Ya-Jing; ZENG Zhao-Yi; GOU Qing-Quan
2008-01-01
Shell model molecular dynamic simulation with interatomic pair potential is utilized to investigate the elastic and thermodynamic properties of gallium nitride with hexagonal wurtzite structure (w-GaN) at high pressure. The calculated elastic constants Cij at zero pressure and 300 K agree well with the experimental data and other calculated values. Meanwhile, the dependences of the relative volume V/Vo, elastic constants Cij, entropy S, enthalpy H, and heat capacities Cv and Cp on pressure are successfully obtained. From the elastic constants obtained, we also calculate the shear modulus G, bulk modulus B, Young's modulus E, Poisson's ratio v, Debye temperature ΘD, and shear anisotropic factor Ashear on pressures.
Energy Technology Data Exchange (ETDEWEB)
Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000 (China); Lei, Fang-Ming [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000 (China)
2009-09-25
Based on the nonlocal elastic theory, small scale effects are considered in the investigation of the mechanical properties of protein microtubules. A new prediction formula for the persistence lengths of microtubules with the consideration of the small scale effect is presented. Subsequently, the buckling of microtubules is studied based on a nonlocal elastic beam model. The predicted results of our model indicate that the length-dependence of persistence length is related not only to the shear terms, but also to the small scale effect. The Eular beam model, which is always considered unable to explain the length-dependence of microtubules, can capture the length-dependence of the persistence length of microtubules with the consideration of the small scale effect. The elastic buckling behaviors of microtubules in viscoelastic surrounding cytoplasm are also considered using the nonlocal Timoshenko beam model in this paper, and the results indicate that the small scale effect of microtubules also plays an important role in the buckling of microtubules.
Energy Technology Data Exchange (ETDEWEB)
Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)
2016-08-07
The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.
Nami, Mohammad Rahim; Janghorban, Maziar
2013-12-30
In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.
Directory of Open Access Journals (Sweden)
Mohammad Rahim Nami
2013-12-01
Full Text Available In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.
Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models
Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng
2017-02-01
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.
Off-shell and nonlocal effects in proton-nucleus elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Picklesimer, A.; Tandy, P.C.; Thaler, R.M.; Wolfe, D.H.
1984-04-01
The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60/sup 0/ and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.
Off-shell and nonlocal effects in proton-nucleus elastic scattering
Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.
1984-04-01
The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60° and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.
Global well-posedness for nonlinear nonlocal Cauchy problems arising in elasticity
Directory of Open Access Journals (Sweden)
Hantaek Bae
2017-02-01
Full Text Available In this article, we prove global well-posedness for a family of one dimensional nonlinear nonlocal Cauchy problems arising in elasticity. We consider the equation $$ u_{tt}-\\delta Lu_{xx}=\\big(\\beta \\ast [(1-\\deltau+u^{2n+1}]\\big_{xx}\\,, $$ where $L$ is a differential operator, $\\beta$ is an integral operator, and $\\delta =0$ or 1. (Here, the case $\\delta=1$ represents the additional doubly dispersive effect. We prove the global well-posedness of the equation in energy spaces.
Directory of Open Access Journals (Sweden)
B. Amirian
2013-01-01
Full Text Available This study is concerned with the thermal vibration analysis of a short single-walled carbon nanotube embedded in an elastic medium based on nonlocal Timoshenko beam model. A Winkler- and Pasternak-type elastic foundation is employed to model the interaction of short carbon nanotubes and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, Pasternak shear parameter, vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The present study shows that for high temperature changes, the effect of Winkler constant in different nonlocal parameters on nonlocal frequency is negligible. Furthermore, for all temperatures, the nonlocal frequencies are always smaller than the local frequencies in short carbon nanotubes. In addition, for high Pasternak modulus, by increasing the aspect ratio, the nonlocal frequency decreases. It is concluded that short carbon nanotubes have the higher frequencies as compared with long carbon nanotubes.
Shen, Hui-Shen
2010-06-01
Buckling and postbuckling analysis is presented for axially compressed microtubules (MTs) embedded in an elastic matrix of cytoplasm. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The surrounding elastic medium is modeled as a Pasternak foundation. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e (0) a is estimated by matching the buckling load from their vibrational behavior of MTs with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling load and postbuckling behavior of MTs are very sensitive to the small scale parameter e (0) a. The results reveal that the MTs under axial compressive loading condition have an unstable postbuckling path, and the lateral constraint has a significant effect on the postbuckling response of a microtubule when the foundation stiffness is sufficiently large.
Energy Technology Data Exchange (ETDEWEB)
Lazar, Markus, E-mail: lazar@fkp.tu-darmstadt.de [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Po, Giacomo, E-mail: gpo@ucla.edu [Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)
2015-07-31
In this paper, we derive the Green tensor of anisotropic gradient elasticity with separable weak non-locality, a special version of Mindlin's form II anisotropic gradient elasticity theory with up to six independent length scale parameters. The framework models materials where anisotropy is twofold, namely the bulk material anisotropy and a weak non-local anisotropy relevant at the nano-scale. In contrast with classical anisotropic elasticity, it is found that both the Green tensor and its gradient are non-singular at the origin, and that they rapidly converge to their classical counterparts away from the origin. Therefore, the Green tensor of Mindlin's anisotropic gradient elasticity with separable weak non-locality can be used as a physically-based regularization of the classical Green tensor for materials with strong anisotropy. - Highlights: • Theory of Mindlin's anisotropic gradient elasticity with separable weak non-locality is presented. • The non-singular (3D) Green tensor is given. • The gradient of the non-singular Green tensor is calculated.
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Energy Technology Data Exchange (ETDEWEB)
Koutsoumaris, C. Chr.; Tsamasphyros, G. J. [School of Applied Mathematical and Physical Sciences National Technical University of Athens (NTUA) 5 Iroon Polytechniou Str., Zografou, Zografou Campus, Athens, GR-157 73 (Greece); Vogiatzis, G. G.; Theodorou, D. N. [School of Chemical Engineering National Technical University of Athens (NTUA) 5 Iroon Polytechniou Str., Zografou, Zografou Campus, Athens, GR-157 73 (Greece)
2015-12-31
The nonlocal theory of elasticity is employed for the study of the free vibrations of carbon nanotubes (CNT). For the first time, a bi-Helmholtz operator has been used instead of the standard Helmholtz operator in a nonlocal beam model. Alongside the continuum formulation and its numerical solution, atomistic Molecular Dynamics (MD) simulations have been conducted in order to directly evaluate the eigenfrequencies of vibrating CNTs with a minimum of adjustable parameters. Our results show that the bi-Helmholtz operator is the most appropriate one to fit MD simulation results. However, the estimation of vibration eigenfrequencies from molecular simulations still remains an open (albeit well-posed) problem.
Institute of Scientific and Technical Information of China (English)
周振功; 王彪
2001-01-01
The scattering of harmonic waves by two collinear symmetric cracks is studied using the non-local theory. A one-dimensional non-local kernel was used to replace a twodimensional one for the dynamic problem to obtain the stress occurring at the crack tips. The Fourier transform was applied and a mixed boundary value problem was formulated. Then a set of triple integral equations was solved by using Schmidt's method. This method is more exact and more reasonable than Eringen' s for solving this problem. Contrary to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non- local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the lattice parameter and the circular frequency of incident wave.
Watt, J.P.; Peselnick, L.
1980-01-01
Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.
Ghadiri, Majid; Soltanpour, Mahdi; Yazdi, Ali; Safi, Mohsen
2016-05-01
Free transverse vibration of a size-dependent cracked functionally graded (FG) Timoshenko nanobeam resting on a polymer elastic foundation is investigated in the present study. Also, all of the surface effects: surface density, surface elasticity and residual surface tension are studied. Moreover, satisfying the balance condition between the nanobeam and its surfaces was discussed. According to the power-law distribution, it is supposed that the material properties of the FG nanobeam are varying continuously across the thickness. Considering the small-scale effect, the Eringen's nonlocal theory is used; accounting the effect of polymer elastic foundation, the Winkler model is proposed. For this purpose, the equations of motion of the FG Timoshenko nanobeam and boundary conditions are obtained using Hamilton's principle. To find the analytical solutions for equations of motion of the FG nanobeam, the separation of variables method is employed. Two cases of boundary conditions, i.e., simply supported-simply supported (SS) and clamped-clamped (CC) are investigated in the present work. Numerical results are demonstrating a good agreement between the results of the present study and some available cases in the literature. The emphasis of the present study is on investigating the effect of various parameters such as crack severity, crack position, gradient index, mode number, nonlocal parameter, elastic foundation parameter and nanobeam length. It is clearly revealed that the vibrational behavior of a FG nanobeam is depending significantly on these effects. Also, these numerical results can be serving as benchmarks for future studies of FG nanobeams.
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Norouzzadeh, A.; Ansari, R.; Rouhi, H.
2017-05-01
Differential form of Eringen's nonlocal elasticity theory is widely employed to capture the small-scale effects on the behavior of nanostructures. However, paradoxical results are obtained via the differential nonlocal constitutive relations in some cases such as in the vibration and bending analysis of cantilevers, and recourse must be made to the integral (original) form of Eringen's theory. Motivated by this consideration, a novel nonlocal formulation is developed herein based on the original formulation of Eringen's theory to study the buckling behavior of nanobeams. The governing equations are derived according to the Timoshenko beam theory, and are represented in a suitable vector-matrix form which is applicable to the finite-element analysis. In addition, an isogeometric analysis (IGA) is conducted for the solution of buckling problem. Construction of exact geometry using non-uniform rational B-splines and easy implementation of geometry refinement tools are the main advantages of IGA. A comparison study is performed between the predictions of integral and differential nonlocal models for nanobeams under different kinds of end conditions.
Wang, Wenjun; Li, Peng; Jin, Feng
2016-09-01
A novel two-dimensional linear elastic theory of magneto-electro-elastic (MEE) plates, considering both surface and nonlocal effects, is established for the first time based on Hamilton’s principle and the Lee plate theory. The equations derived are more general, suitable for static and dynamic analyses, and can also be reduced to the piezoelectric, piezomagnetic, and elastic cases. As a specific application example, the influences of the surface and nonlocal effects, poling directions, piezoelectric phase materials, volume fraction, damping, and applied magnetic field (i.e., constant applied magnetic field and time-harmonic applied magnetic field) on the magnetoelectric (ME) coupling effects are first investigated based on the established two-dimensional plate theory. The results show that the ME coupling coefficient has an obvious size-dependent characteristic owing to the surface effects, and the surface effects increase the ME coupling effects significantly when the plate thickness decreases to its critical thickness. Below this critical thickness, the size-dependent effect is obvious and must be considered. In addition, the output power density of a magnetic energy nanoharvester is also evaluated using the two-dimensional plate theory obtained, with the results showing that a relatively larger output power density can be achieved at the nanoscale. This study provides a mathematical tool which can be used to analyze the mechanical properties of nanostructures theoretically and numerically, as well as evaluating the size effect qualitatively and quantitatively.
Directory of Open Access Journals (Sweden)
Suchart Limkatanyu
2013-01-01
Full Text Available Nonlocal and surface effects are incorporated into a bar-elastic substrate element to account for small-scale and size-dependent effects on axial responses of nanowires embedded in elastic substrate media. The virtual displacement principle, employed to consistently derive the governing differential equation as well as the boundary conditions, forms the core of the displacement-based finite element formulation of the nanowire-elastic substrate element. The element displacement shape functions, analytically derived based on homogeneous solution to the governing differential equilibrium equation of the problem, result in the exact element stiffness matrix and equivalent load vector. Two numerical simulations employing the proposed model are performed to study characteristics and behavior of the nanowire-substrate system. The first simulation involves investigation of responses of the wire embedded in elastic substrate. The second examines influences of several system parameters on the contact stiffness and reveals the size-dependent effect on the effective Young's modulus of the system.
Energy Technology Data Exchange (ETDEWEB)
Dastjerdi, Shahriar; Aliabadi, Sharifeh; Jabbarzadeh Mehrdad [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2016-03-15
The constitutive equations of nano-plates embedded in elastic matrix are derived based on Eringen non-local elasticity theory. Considering the non-local differential constitutive relations of Eringen theory in Cartesian and cylindrical coordinates system based on the first and higher order shear deformation theories and using the Von Karman strain field, the equilibrium differential equations are derived in terms of generalized displacements and rotations. In addition, the obtained governing equations for single layer nano plates are developed for multi-layer nano-plates. Rectangular, annular/circular and sectorial nano-plates are considered. In the most of the investigations in non-local elasticity theory, the classical plate theory (CLPT) is used, however in this paper, the governing equations are derived based on both FSDT and HSDT theories because of obtaining more accurate results.
Energy Technology Data Exchange (ETDEWEB)
Berryman, J G
2004-09-16
Peselnick, Meister, and Watt have developed rigorous methods for bounding elastic constants of random polycrystals based on the Hashin-Shtrikman variational principles. In particular, a fairly complex set of equations that amounts to an algorithm has been presented previously for finding the bounds on effective elastic moduli for polycrystals having hexagonal, trigonal, and tetragonal symmetries. The more analytical approach developed here, although based on the same ideas, results in a new set of compact formulas for all the cases considered. Once these formulas have been established, it is then straightforward to perform what could be considered an analytic continuation of the formulas (into the region of parameter space between the bounds) that can subsequently be used to provide self-consistent estimates for the elastic constants in all cases. These self-consistent estimates are easily shown (essentially by construction) to lie within the bounds for all the choices of crystal symmetry considered. Estimates obtained this way are quite comparable to those found by the Gubernatis and Krumhansl CPA (coherent potential approximation), but do not require any computations of scattering coefficients.
Energy Technology Data Exchange (ETDEWEB)
Anjomshoa, Amin; Tahani, Masoud [Ferdowsi University, Mashhad (Iran, Islamic Republic of)
2016-06-15
In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.
On the theory of elastic properties of two-dimensional hexagonal structures
Davydov, S. Yu.; Posrednik, O. V.
2015-04-01
The properties of graphene and graphene-like materials (GLMs) have been considered using the Harrison bond-orbital method, within which the stability of GLMs with a high bond ionicity has been analyzed. For purely covalent crystals (graphene, silicene, and germanen) and GLMs with a low bond ionicity, the anharmonic elastic properties (Grüneisen constant, pressure and temperature dependences of the bulk modulus) have been considered. Within the Keating force constant model, the second- and third-order elastic constants and the pressure dependence of the second-order elastic constants have been determined. The parameters of the previously proposed empirical potential have been determined. The results obtained are compared with the available experimental data and calculation results of other studies.
Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory
Ansari, R.; Faraji Oskouie, M.; Sadeghi, F.; Bazdid-Vahdati, M.
2015-11-01
In this article, the free vibration of a fractional viscoelastic Timoshenko nanobeam is studied through inserting fractional calculus as a viscoelastic material compatibility equations in nonlocal beam theory. The material properties of a single-walled carbon nanotube (SWCNT) are used and two solution procedures are proposed to solve the obtained equations in the time domain. The former is a semi-analytical approach in which the Galerkin scheme is employed to discretize the governing equations in the spatial domain and the obtained set of ordinary differential equations is solved using a direct numerical integration scheme. On the contrary, the latter is entirely numerical in which the governing equations of system on the spatial and time domains are first discretized using general differential quadrature (GDQ) technique and finite difference (FD) scheme, respectively and then the set of algebraic equations is solved to arrive at the time response of system under different boundary conditions. Considering the second solution procedure as the main approach, its validity and accuracy are verified by the semi-analytical approach which is more difficult to enter various boundary conditions. Numerical results are also presented to get an insight into the effects of fractional derivative order, nonlocal parameter, viscoelasticity coefficient and nanobeam length on the time response of fractional viscoelastic Timoshenko nanobeams under different boundary conditions.
Energy Technology Data Exchange (ETDEWEB)
Atabakhshian, V.; Shooshtari, A.; Karimi, M., E-mail: karimi_mh@yahoo.com
2015-01-01
In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler–Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.
Atabakhshian, V.; Shooshtari, A.; Karimi, M.
2015-01-01
In this study, nonlinear vibration and stability of a fluid-conveying nanotube (FCNT), elastically coupled to a smart piezoelectric polymeric beam (PPB) is investigated based on nonlocal elasticity theory, Euler-Bernoulli beam model and energy approach. In order to obtain an active instability control of FCNT, the PPB is longitudinally polarized as an actuator while in the absence of an imposed electric field it is also possible to be used as an alarm biosensor. Simulating the above smart coupled nanobeam system alike the double nanobeam systems (which are relatively developed by other authors) leads to obtain nonlinear differential equations of motion. The linear natural and damping frequencies are achieved by ignoring all the system nonlinearities which are then considered to obtain nonlinear frequencies using an iterative method. The effects of geometric nonlinearity, small scale parameter, coupled medium constants, Knudsen number, temperature change, aspect ratio and external applied voltage on critical flow velocity are studied in details. It is concluded that applying an electric voltage on PPB will increase the stability of FCNT. It is hoped that this research will provide a new approach to smart instability control of FCNTs which is no yet reported.
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2012-11-15
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.
Abbasi, Mohammad; Karami Mohammadi, Ardeshir
2015-05-01
A relationship based on a nonlocal elasticity theory is developed to investigate the torsional sensitivity and resonant frequency of an atomic force microscope (AFM) with assembled cantilever probe (ACP). This ACP comprises a horizontal cantilever and a vertical extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidewalls of microstructures. First, the governing differential equations of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of nonlocal elasticity theory and Hamilton's principle. Afterward, a closed-form expression for the sensitivity of vibration modes has been obtained using the relationship between the resonant frequency and contact stiffness of cantilever and sample. These analysis accounts for a better representation of the torsional behavior of an AFM with sidewall probe where the small-scale effect are significant. The results of the proposed model are compared with those of classical beam theory. The results show that the sensitivities and resonant frequencies of ACP predicted by the nonlocal elasticity theory are smaller than those obtained by the classical beam theory.
Energy Technology Data Exchange (ETDEWEB)
Chen, Hailong; Jiao, Yang; Liu, Yongming, E-mail: Yongming.Liu@asu.edu
2015-04-17
A novel nonlocal lattice particle framework is proposed to investigate the microstructural effects, such as the crystallographic orientation distribution and grain boundary properties, on the mechanical performance of 2D polycrystalline materials. The classical approach of treating material anisotropy in other numerical methods, such as finite element method, is by transforming the material stiffness matrix for each crystallite. In the proposed method, the polycrystalline microstructures are constructed by rotating the underlying topological lattice structure consistently with the material crystallographic orientation while keeping the material stiffness matrix intact. By rotating the underlying lattice structure, the grain boundaries between different grains are naturally generated at locations where two crystallites meet. Thus, the grain boundary effect on the performance of the crystalline aggregates can be naturally incorporated. Parametric studies on the effects of crystallographic orientation distribution on both elastic and fracture behavior of polycrystalline materials are performed. The simulation results are compared with both analytical solutions and experimental observations in the open literature. Conclusions and discussions are drawn based on the current study.
Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics.
Ghavanloo, Esmaeal; Fazelzadeh, S Ahmad
2013-02-22
Radial vibration of spherical nanoparticles made of materials with anisotropic elasticity is theoretically investigated using nonlocal continuum mechanics. The anisotropic elastic model is reformulated using the nonlocal differential constitutive relations of Eringen. The nonlocal differential equation of radial motion is derived in terms of radial displacement. Cubic, hexagonal, trigonal and tetragonal symmetries of the elasticity are discussed. The suggested model is justified by a good agreement between the results given by the present model and available experimental data. Furthermore, the model is used to elucidate the effect of small scale on the vibration of several nanoparticles. Our results show that the small scale is essential for the radial vibration of the nanoparticles when the nanoparticle radius is smaller than 1.5 nm.
Directory of Open Access Journals (Sweden)
Adam Martowicz
2015-01-01
Full Text Available The paper addresses the problem of numerical dispersion in simulations of wave propagation in solids. This characteristic of numerical models results from both spatial discretization and temporal discretization applied to carry out transient analyses. A denser mesh of degrees of freedom could be a straightforward solution to mitigate numerical dispersion, since it provides more advantageous relation between the model length scale and considered wavelengths. However, this approach also leads to higher computational effort. An alternative approach is the application of nonlocal discretization schemes, which employ a relatively sparse spatial distribution of nodes. Numerical analysis carried out to study the propagation of elastic waves in isotropic solid materials is demonstrated. Fourier-based nonlocal discretization for continuum mechanics is introduced for a two-dimensional model undergoing out-of-plane wave propagation. The results show gradual increase of the effectiveness of this approach while expanding the region of nonlocal interactions in the numerical model. A challenging case of high ratio between the model length scale and wavelength is investigated to present capability of the proposed approach. The elaborated discretization method also provides the perspective of accurate representation of any arbitrarily shaped dispersion relation based on physical properties of modelled materials.
Directory of Open Access Journals (Sweden)
O. Rahmani
2016-01-01
Full Text Available Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physical and geometrical parameters on the buckling of nanowires is presented. It has been shown that by growing the ratio of surface area to bulk in nano-size structures, the effect of surface energy turn out to be important and should be taken into consideration. Moreover the results point out that surface elasticity and residual surface tension stimulus the buckling behavior of nanowires.
Wang, Yi-Ze; Wang, Yue-Sheng; Ke, Liao-Liang
2016-09-01
In the present work, the nonlinear vibration of a carbon nanotube which is subjected to the external parametric excitation is studied. By the nonlocal continuum theory and nonlinear von Kármán beam theory, the governing equation of the carbon nanotube is derived with the consideration of the large deformation. The principle parametric resonance of the nanotube is discussed and the approximation explicit solution is presented by the multiple scale method. Numerical calculations are performed. It can be observed that when the mode number is 1, the stable region can be significantly changed by the parametric excitation, length-to-diameter ratio and matrix stiffness. This phenomenon becomes different to appear if the mode number increases. Moreover, the small scale effects have great influences on the positive bifurcation point for the short carbon nanotube, and the nonlocal continuum theory can present the proper model.
Directory of Open Access Journals (Sweden)
Shahriar Dastjerdi
2016-06-01
Full Text Available Nonlinear bending analysis of orthotropic annular/circular graphene sheets has been studied based on the non-local elasticity theory. The first order shear deformation theory (FSDT is applied in combination with the nonlinear Von-Karman strain field. The obtained differential equations are solved by using two methods, first the differential quadrature method (DQM and a new semi-analytical polynomial method (SAPM which is innovated by the authors. Applying the DQM or SAPM, the differential equations are transformed to nonlinear algebraic equations system. Then the Newton–Raphson iterative scheme is used. First, the obtained results from DQM and SAPM are compared and it is concluded that although the SAPM’s formulation is considerably simpler than DQM, however, the SAPM’s results are so close to DQM. The results are validated with available papers. Finally, the effects of small scale parameter on the results, the comparison between local and non-local theories, and linear to nonlinear analyses are investigated.
Ansari, R.; Gholami, R.
2016-09-01
Considering the small scale effect together with the influences of transverse shear deformation, rotary inertia and the magneto-electro-thermo-mechanical coupling, the linear free vibration of magneto-electro-thermo-elastic (METE) rectangular nanoplates with various edge supports in pre- and post-buckled states is investigated herein. It is assumed that the METE nanoplate is subjected to the external in-plane compressive loads in combination with magnetic, electric and thermal loads. The Mindlin plate theory, von Kármán hypothesis and the nonlocal theory are utilized to develop a size-dependent geometrically nonlinear plate model for describing the size-dependent linear and nonlinear mechanical characteristics of moderately thick METE rectangular nanoplates. The nonlinear governing equations and the corresponding boundary conditions are derived using Hamilton’s principle which are then discretized via the generalized differential quadrature method. The pseudo-arc length continuation approach is used to obtain the equilibrium postbuckling path of METE nanoplates. By the obtained postbuckling response, and taking a time-dependent small disturbance around the buckled configuration, and inserting them into the nonlinear governing equations, an eigenvalue problem is achieved from which the frequencies of pre- and post-buckled METE nanoplates can be calculated. The effects of nonlocal parameter, electric, magnetic and thermal loadings, length-to-thickness ratio and different boundary conditions on the free vibration response of METE rectangular nanoplates in the pre- and post-buckled states are highlighted.
Energy Technology Data Exchange (ETDEWEB)
Hamdi, Ilyes, E-mail: ilyeshamdi@yahoo.f [Department of Electronics, Electro-technics and Automatics, Institute of Applied Sciences and Technology, 2100 Gafsa (Tunisia); UPMI units of research, Faculty of Sciences at Gafsa, 2100 Gafsa (Tunisia); Meskini, Noureddine [Physics Department, Faculty of Sciences at Tunis, 2092 Tunis (Tunisia)
2010-07-01
A first principles quantum mechanical approach is used to investigate the structural, elastic, vibrational and thermodynamic properties of the hexagonal boron nitride (h-BN) in the framework of the pseudopotential plane wave density-functional perturbation theory for the two popular exchange-correlation functionals: local density approximation and the revised Perdew-Burke-Ernzerhof generalized gradient approximation [Y. Zhang, W. Yang, Phys. Rev. Lett, 80 (1998), 890]. The LDA calculations of the structural parameters are in good agreement with experimental results, whereas GGA largely overestimated them. The computed elastic constants are improved by performing the calculations at room temperature and using the experimental lattice parameters. A good agreement with the experimental data is obtained for the phonon frequencies using both functionals. The thermodynamic properties such as the thermal equation of state, the in-plane and out-of-plane thermal expansion coefficients (LTEC), the bulk modulus and the heat capacity are calculated at the experimental lattice parameters using the quasiharmonic approximation (+ an empirical anharmonic term) for the Helmholtz free energy. Anharmonic corrections are important at high temperature. A good agreement with the experimental data for the LTEC has been obtained with the GGA functional, especially for the out-of-plane LTEC. In contrast with recent experimental findings, our calculated bulk modulus decreases with temperature for both functionals. This (decreasing) behavior is in a good agreement with other experimental data. The constant pressure heat capacity calculated with LDA and GGA is in very good agreement with experimental results.
Sedighi, H. M.; Yaghootian, A.
2016-01-01
This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped-clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency-amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Institute of Scientific and Technical Information of China (English)
谢帮华; 扶名福; 李云生
2015-01-01
According to the proposed two kinds of nonlocal computing element,established two different nonlocal elastic model.Combining with the principle of minimum potential energy is studied based on the nonlocal elastic model of circular slip surface in slope stability,and the nonlocal material parameters are discussed and analyzed.Studied the influnce of material parameter on the stability safety factor of slope, from microscopic point analysis the action mechanism problems of the macro engineering,found the change of nonlocal material parameters which have the microscopic properties,the slope safety factor change obvi-ously.When discussing the influence of related parameters on the slope safety factor,the slope stability safety factor based on the nonlocal model is very sensitive on the internal friction angle.It is shown that u-sing the nonlocal elastic model analysis the slope stability is more reliable,this research can provide the ref-erence for engineering of soil management.%根据提出的两种非局部计算元件，建立两种非局部弹性模型。结合最小势能原理研究了基于非局部弹性模型下圆弧滑裂面土坡的稳定性，并对非局部材料参数进行了讨论与分析。研究了材料参数对土坡安全数的影响，从微观的角度分析了宏观工程的作用机理，发现带微观性质的非局部材料参数变化时，土坡安全系数变化很明显。当讨论土体相关参数对安全系数的影响时，基于非局部模型的土坡稳定安全系数对内摩擦角的变化比较敏感。结果表明，采用非局部弹性模型分析土坡的稳定性更可靠，该研究可为工程中土坡治理提供参考依据。
Soutas-Little, Robert William
2010-01-01
According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke
Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens
2015-10-09
Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.
Study of Nonlocal Optical Potential
Institute of Scientific and Technical Information of China (English)
TIAN; Yuan
2013-01-01
It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form
Energy Technology Data Exchange (ETDEWEB)
Bannikov, Vyacheslav V.; Shein, Igor R.; Ivanovskii, Alexander L. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation)
2011-06-15
Very recently, two hexagonal rhenium sub-nitrides Re{sub 3}N and Re{sub 2}N, which belong to a rather rare group of known metal-rich (M/N > 1) nitrides of heavy 4d, 5d metals, have been successfully synthesized, and their potential technological applications as ultra-incompressible materials have been proposed. In this work, we present a detailed ab initio study of recently synthesized rhenium sub-nitrides in comparison with hcp-Re and wurtzite-like rhenium mono-nitride ReN, with the purpose to evaluate the trends of the elastic, electronic properties, and chemical bonding in the series of these hexagonal systems as a function of the Re/N stoichiometry: Re {yields} Re{sub 3}N {yields} Re{sub 2}N {yields} ReN. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Bannikov, Vyacheslav V.; Shein, Igor R.; Ivanovskii, Alexander L.
2011-06-01
Very recently, two new hexagonal rhenium sub-nitrides Re3N and Re2N, which belong to a rather rare group of known metal-rich (M/N > 1) nitrides of heavy 4d,5d metals, have been successfully synthesized, and their potential technological applications as ultra-incompressible materials have been proposed. In this work we present a detailed ab initio study of novel rhenium sub-nitrides in comparison with hcp-Re and wurtzite-like rhenium mono-nitride ReN, with the purpose to evaluate the trends of the elastic, electronic properties and chemical bonding in the series of these hexagonal systems as a function of the Re/N stoichiometry: Re \\rightarrow Re3N \\rightarrow Re2N \\rightarrow ReN.
Barnaby, Neil
2008-01-01
We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.
2005-07-01
thermo-elastic properties, stress concentration factors, and edge effect 5. FUNDING NUMBERS FA8655-05-1-5008 6. AUTHOR(S) 7...unbounded solids, Thermo-elastic properties, Stress concentration factors, edge effect , Non-linear elastic stress, Inclusion-reinforced materials...factors, and edge effect Project manager: Maslov Borys Petrovich, Dr. Sc. in Physics and Mathematics Phone: +380-44-454-7764, Fax: –, E-mail
Giddings, Steven B
2012-01-01
If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...
Energy Technology Data Exchange (ETDEWEB)
Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)
1995-05-01
The specific features of acoustic wave reflection are analyzed at the interface between two hexagonal crystals with a sliding contact between them. Attention is focused on the angles of incidence corresponding to excitation of the leaky wave. The conditions supporting the existence of leaky waves are found. The expressions illustrating the behavior of plane wave transformation coefficients for reflection, refraction, and excitation of interfacial oscillations are found in analytic form. In addition, the features of nonmirror reflection are studied for a slightly diverging acoustic beam having initially a rectangular profile. The study deals with the case when the tangential projection of the {open_quotes}mean{close_quotes} wavevector for the beam is close to or coincides with the real part of the wavevector of the leaky wave. 9 refs., 10 figs.
悬臂碳纳米管纯弯问题的非局部弹性解%Nonlocal Elastic Solutions of Pure Bending Problem of Cantilever Carbon Nanotubes
Institute of Scientific and Technical Information of China (English)
欧建华; 韩强
2011-01-01
Pure bending problem of cantilever carbon nanotubes( CNTs) is studied based on Eringen' s nonlocal elastic theory and cylinder shell semimoment theory, considering the influence of small scale effect, the stress-strain relationship of single-walled carbon nanotubes(SWCNTs) is given, and the theory solutions of internal force field and displacement field are obtained. It is shown that small scale effect will be prominent for CNTs with small radius.%基于Eringen非局部弹性理论和圆柱壳半无矩理论,研究了悬臂碳纳米管的纯弯曲问题.计及小尺度效应的影响,给出了单臂碳纳米管的应力-应变关系,得到了内力场和位移场的理论解.研究结果表明,对半径较小的碳纳米管,尺度效应较为明显.随着碳纳米管的半径增大,尺度效应逐渐减小.当碳纳米管的半径大于或等于8 nm时,可以忽略尺度效应的影响.
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.
Madeo, Angela; Neff, Patrizio; Ghiba, Ionel-Dumitrel; Rosi, Giuseppe
2016-10-01
In this paper we derive, by means of a suitable least action principle, the duality jump conditions to be imposed at surfaces of discontinuity of the material properties in non-dissipative, linear-elastic, isotropic, Mindlin's and relaxed micromorphic media, respectively. The introduced theoretical framework allows the transparent set-up of different types of micro-macro connections which are intrinsically compatible with the governing bulk equations. To illustrate the interest of the many introduced jump conditions, we focus on the case of an interface between a classical Cauchy continuum on one side and a relaxed micromorphic one on the other side. As expected, we find a complete reflection in the frequency intervals for which band-gaps are known to occur in the relaxed micromorphic continuum and precise microstructure-related reflective patterns are identified. We repeat a similar study for analogous connections between a classical Cauchy continuum and a Mindlin's micromorphic one and we show that the reflective properties of the considered interfaces are drastically modified due to the fact that band-gaps are not allowed in standard Mindlin's micromorphic media. The present work opens the way towards the possibility of conceiving complex metastructures in which band-gap metamaterials and classical materials are coupled together to produce structures with completely new and unorthodox properties with respect to wave propagation, transmission and reflection. Last, but not least, indirect measurements of the material coefficients of the relaxed micromorphic model based upon real experiments of reflection and transmission in band-gap metamaterials are uncovered by the present work which makes them finally realizable in the short term.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
Energy Technology Data Exchange (ETDEWEB)
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)
2016-08-15
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Mackintosh, R S
2016-01-01
The consequences for direct reactions of the dynamical non-locality generated by the excitation of the target and projectile are much less studied than the effects of non-locality arising from exchange processes. Here we are concerned with the dynamical non-locality due to projectile excitation in deuteron induced reactions. The consequences of this non-locality can be studied by the comparison of deuteron induced direct reactions calculated with alternative representations of the elastic channel wave functions: (i) the elastic channel wave functions from coupled channel (CC) calculations involving specific reaction processes, and, (ii) elastic channel wave functions calculated from local potentials that exactly reproduce the elastic scattering $S$-matrix from the same CC calculations. In this work we produce the local equivalent deuteron potentials required for the study of direct reactions involving deuterons. These will enable the study of the effects of dynamical non-locality following a method previously...
Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models
Energy Technology Data Exchange (ETDEWEB)
Rahmanian, M.; Torkaman-Asadi, M.A., E-mail: torkaman-asadi@ae.sharif.edu; Firouz-Abadi, R.D.; Kouchakzadeh, M.A.
2016-03-01
In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn.
Thermally induced microstrain broadening in hexagonal zinc
Energy Technology Data Exchange (ETDEWEB)
Lawson, Andrew C [Los Alamos National Laboratory; Valdez, James A [Los Alamos National Laboratory; Roberts, Joyce A [Los Alamos National Laboratory; Leineweber, Andreas [STUTTGART, GERMANY; Mittemeijer, E J [STUTTGART, GERMANY; Kreher, W [DRESDEN UNIV
2008-01-01
Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.
Fully nonlocal quantum correlations
Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán
2011-01-01
Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Origin and effect of nonlocality in a layered composite.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew
2014-01-01
A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the microscale deformation of a two-component layered medium, it is shown that nonlocal interactions necessarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The length scales that emerge involve the constituent material properties as well as their geometrical dimen- sions. A peridynamic material model for the smoothed displacement eld is derived. It is demonstrated by comparison with experimental data that the incorporation of non- locality in modeling dramatically improves the prediction of the stress concentration in an open hole tension test on a composite plate.
Mashhoon, B
2014-01-01
A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.
Strain analysis of nonlocal viscoelastic Kelvin bar in tension
Institute of Scientific and Technical Information of China (English)
ZHAO Xue-chuan; LEI Yong-jun; ZHOU Jian-ping
2008-01-01
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Nonlocality from Local Contextuality
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-01
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Nonlocality from Local Contextuality.
Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán
2016-11-25
We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect
Directory of Open Access Journals (Sweden)
O. Rahmani
2014-04-01
Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.
Millen, James
2016-04-01
George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Vibration of Timoshenko Beams Using Non-classical Elasticity Theories
Directory of Open Access Journals (Sweden)
J.V. Araújo dos Santos
2012-01-01
Full Text Available This paper presents a comparison among classical elasticity, nonlocal elasticity, and modified couple stress theories for free vibration analysis of Timoshenko beams. A study of the influence of rotary inertia and nonlocal parameters on fundamental and higher natural frequencies is carried out. The nonlocal natural frequencies are found to be lower than the classical ones, while the natural frequencies estimated by the modified couple stress theory are higher. The modified couple stress theory results depend on the beam cross-sectional size while those of the nonlocal theory do not. Convergence of both non-classical theories to the classical theory is observed as the beam global dimension increases.
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Non-local plasticity effects on fracture toughness
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
The Mode I fracture strength in a nonlocal elastic-plastic material is analyzed under quasi-static steady crack growth. The plastic deformations are modelled using a constitutive model, where nonlocal plasticity effects are included in the instantaneous hardening moduli through a gradient measure...... of the effective plastic strain. Fracture is modelled by a cohesive zone criterion. Results on the numerically obtained stress fields are presented, as well as results on the steady-state fracture toughness. It is shown that the nonlocal theory predicts lower steady-state fracture toughness compared to predictions...... by conventional J2-flow theory, since higher normal stresses in front of the crack tip are predicted. Furthermore, the nonlocal material description increases the range of applicability of the cohesive zone model, since steady-state crack growth is possible for significantly larger values of the maximum stress...
Directory of Open Access Journals (Sweden)
E. J. Farrell
1987-01-01
Full Text Available Explicit recurrences are derived for the matching polynomials of the basic types of hexagonal cacti, the linear cactus and the star cactus and also for an associated graph, called the hexagonal crown. Tables of the polynomials are given for each type of graph. Explicit formulae are then obtained for the number of defect-d matchings in the graphs, for various values of d. In particular, formulae are derived for the number of perfect matchings in all three types of graphs. Finally, results are given for the total number of matchings in the graphs.
Application of nonlocal models to nano beams. Part II: Thickness length scale effect.
Kim, Jun-Sik
2014-10-01
Applicability of nonlocal models to nano-beams is discussed in terms of the Eringen's nonlocal Euler-Bernoulli (EB) beam model. In literature, most work has taken the axial coordinate derivative in the Laplacian operator presented in nonlocal elasticity. This causes that the non-locality always makes the beam soften as compared to the local counterpart. In this paper, the thickness scale effect is solely considered to investigate if the nonlocal model can simulate stiffening effect. Taking the thickness derivative in the Laplacian operator leads to the presence of a surface stress state. The governing equation derived is compared to that of the EB model with the surface stress. The results obtained reveal that the nonlocality tends to decrease the bending moment stiffness whereas to increase the bending rigidity in the governing equation. This tendency also depends on the surface conditions.
On Bending of Bernoulli-Euler Nanobeams for Nonlocal Composite Materials
Directory of Open Access Journals (Sweden)
Luciano Feo
2016-01-01
Full Text Available Evaluation of size effects in functionally graded elastic nanobeams is carried out by making recourse to the nonlocal continuum mechanics. The Bernoulli-Euler kinematic assumption and the Eringen nonlocal constitutive law are assumed in the formulation of the elastic equilibrium problem. An innovative methodology, characterized by a lowering in the order of governing differential equation, is adopted in the present manuscript in order to solve the boundary value problem of a nanobeam under flexure. Unlike standard treatments, a second-order differential equation of nonlocal equilibrium elastic is integrated in terms of transverse displacements and equilibrated bending moments. Benchmark examples are developed, thus providing the nonlocality effect in nanocantilever and clampled-simply supported nanobeams for selected values of the Eringen scale parameter.
On wave propagation characteristics in fluid saturated porous materials by a nonlocal Biot theory
Tong, Lihong; Yu, Yang; Hu, Wentao; Shi, Yufeng; Xu, Changjie
2016-09-01
A nonlocal Biot theory is developed by combing Biot theory and nonlocal elasticity theory for fluid saturated porous material. The nonlocal parameter is introduced as an independent variable for describing wave propagation characteristics in poroelastic material. A physical insight on nonlocal term demonstrates that the nonlocal term is a superposition of two effects, one is inertia force effect generated by fluctuation of porosity and the other is pore size effect inherited from nonlocal constitutive relation. Models for situations of excluding fluid nonlocal effect and including fluid nonlocal effect are proposed. Comparison with experiment confirms that model without fluid nonlocal effect is more reasonable for predicting wave characteristics in saturated porous materials. The negative dispersion is observed theoretically which agrees well with the published experimental data. Both wave velocities and quality factors as functions of frequency and nonlocal parameter are examined in practical cases. A few new physical phenomena such as backward propagation and disappearance of slow wave when exceeding critical frequency and disappearing shear wave in high frequency range, which were not predicted by Biot theory, are demonstrated.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Disentangling Nonlocality and Teleportation
Hardy, L
1999-01-01
Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.
Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide
2016-01-01
We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Hobson, Art
2012-01-01
Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…
Indian Academy of Sciences (India)
Aurelien Drezet
2007-03-01
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.
Peters, Roswell D. M.
1982-01-01
A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.
Nonlocal plasticity effects on interaction of different size voids
DEFF Research Database (Denmark)
Tvergaard, Viggo; Niordson, Christian Frithiof
2004-01-01
A nonlocal elastic-plastic material model is used to show that the rate of void growth is significantly reduced when the voids are small enough to be comparable with a characteristic material length. For a very small void in the material between much larger voids the competition between...... an increased growth rate due to the stress concentrations around the larger voids and a reduced growth rate due to the nonlocal effects is studied. The analyses are based on an axisymmetric unit cell model with special boundary conditions, which allow for a relatively simple investigation of a full three...
Hexagonalization of Correlation Functions
Fleury, Thiago
2016-01-01
We propose a nonperturbative framework to study general correlation functions of single-trace operators in $\\mathcal{N}=4$ supersymmetric Yang-Mills theory at large $N$. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases,...
Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity
Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud
2017-01-01
Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.
DEFF Research Database (Denmark)
Gammel, P.L.; Bishop, D.J.; Eskildsen, M.R.
1999-01-01
We have studied, using small angle neutron scattering, the Bur line lattice square to hexagonal symmetry transition in single crystal Lu(Ni1-xCox)(2)B2C. Low Co concentrations (x < 0.1) which reduce the mean free path and increase the coherence length, also move the structural transition to highe...
Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza
2017-01-01
In this paper, wave propagation analysis of functionally graded size-dependent nanobeams embedded in elastic foundation exposed to a longitudinal magnetic field is conducted based on nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also the presence of cutoff and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.
Mechanical Hysteresis of Hexagonal Boron Nitride
Institute of Scientific and Technical Information of China (English)
ZHOU Aiguo; LI Haoran
2011-01-01
Hexagonal boron nitride (h-BN) is an important structural material with layered microstructure.Because of the plastic anisotropy,this material shows obvious mechanical hysteresis (nonlinear elastic deformation).There are hysteretic loops at the cyclical load-unload stress-strain curves of h-BN.Consequently,two hot-pressed h-BN cylinders with different textures were studied.The mechanical hysteresis is heavily texture-dependent.The area of hysteretic loop is linearly related with the square of loading stresslevel.Two minor loops attached on the hysteretic loops with the same extreme stresses have congruent shapes.It can be concluded that the mechanical hysteresis of h-BN can he explained by a Kink Nonlinear Elastic model developed from the study of a ternary carbide Ti3SiC2.
Thompson, Ian
2010-11-01
In all direct reactions to probe the structure of exotic nuclei at FRIB, optical potentials will be needed in the entrance and exit channels. At high energies Glauber approximations may be useful, but a low energies (5 to 20 MeV/nucleon) other approaches are required. Recent work of the UNEDF project [1] has shown that reaction cross sections at these energies can be accounted for by calculating all inelastic and transfer channels reachable by one particle-hole transitions from the elastic channel. In this model space, we may also calculate the two-step dynamic polarization potential (DPP) that adds to the bare folded potential to form the complex optical potential. Our calculations of the DPP, however, show that its non-localities are very significant, as well as the partial-wave dependence of both its real and imaginary components. The Perey factors (the wave function ratio to that from an equivalent local potential) are more than 20% different from unity, especially for partial waves inside grazing. These factors combine to suggest a reexamination of the validity of local and L-independent fitted optical potentials, especially for capture reactions that are dominated by low partial waves. Prepared by LLNL under Contract DE-AC52-07NA27344. [1] G.P.A. Nobre, F.S. Dietrich, J.E. Escher, I.J. Thompson, M. Dupuis, J. Terasaki and J. Engel, submitted to Phys. Rev. Letts., 2010.
Hexagonal graphene quantum dots
Ghosh, S.
2016-12-05
We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.
Nonlocal transformation optics
Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader
2011-01-01
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
Nonlocality of quantum correlations
Streltsov, A; Roga, W; Bruß, D; Illuminati, F
2012-01-01
We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.
Entanglement without hidden nonlocality
Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas
2016-11-01
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
Acausality in Nonlocal Gravity Theory
Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo
2016-01-01
We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianming; Yang, Yang [Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650051, Yunnan (China)
2015-03-10
According to Hamilton’s principle, a new mathematical model and analytical solutions for nonlocal Timoshenko beam model (ANT) is established based on nonlocal elastic continuum theory when shear deformation and nonlocal effect are considered. The new ANT equilibrium equations and boundary conditions are derived for bending analysis of carbon nanotubes (CNTs) with simply supported, clamped and cantilever. The ANT deflection solutions demonstrate that the CNT stiffness is enhanced by the presence of nonlocal stress effects. Furthermore, the new ANT model concluded verifiable bending behaviors for a cantilever CNT with point load at the free end, which depends on the strength of nonlocal stress. Therefore, this new model will gives a better prediction for mechanical behaviors of nanostructures.
Causality, Nonlocality, and Negative Refraction.
Forcella, Davide; Prada, Claire; Carminati, Rémi
2017-03-31
The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Nonlocal gravity: Conformally flat spacetimes
Bini, Donato
2016-01-01
The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.
Adali, Sarp
2009-05-01
Variational principles are derived for multiwalled carbon nanotubes undergoing vibrations. Derivations are based on the continuum modeling with the Euler-Bernoulli beam representing the nanotubes and small scale effects taken into account via the nonlocal elastic theory. Hamilton's principle for multiwalled nanotubes is given and Rayleigh's quotient for the frequencies is derived for nanotubes undergoing free vibrations. Natural and geometric boundary conditions are derived which lead to a set of coupled boundary conditions due to nonlocal effects.
Analytical theory of dark nonlocal solitons
DEFF Research Database (Denmark)
Kong, Qian; Wang, Qi; Bang, Ole;
2010-01-01
We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Energy Technology Data Exchange (ETDEWEB)
Kolenda, Stefan; Wolf, Michael J.; Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany)
2013-07-01
In normalmetal/superconductor hybrid structures nonlocal conductance is determined by crossed Andreev reflection (CAR) and elastic cotunneling (EC). This was investigated recently both experimentally and theoretically. Dynamical Coulomb blockade of EC and CAR was predicted theoretically. Here we report on experimental investigations of these effects. We found signatures of dynamical Coulomb blockade in local and nonlocal conductance in the normal state. In the superconducting state, we find s-shaped nonlocal differential conductance curves as a function of bias applied on both contacts. These curves were observed for bias voltages both below and above the gap. We compare our results to theory.
Wave propagation in nanostructures nonlocal continuum mechanics formulations
Gopalakrishnan, Srinivasan
2013-01-01
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...
On a class of nonlocal wave equations from applications
Beyer, Horst Reinhard; Aksoylu, Burak; Celiker, Fatih
2016-06-01
We study equations from the area of peridynamics, which is a nonlocal extension of elasticity. The governing equations form a system of nonlocal wave equations. We take a novel approach by applying operator theory methods in a systematic way. On the unbounded domain ℝn, we present three main results. As main result 1, we find that the governing operator is a bounded function of the governing operator of classical elasticity. As main result 2, a consequence of main result 1, we prove that the peridynamic solutions strongly converge to the classical solutions by utilizing, for the first time, strong resolvent convergence. In addition, main result 1 allows us to incorporate local boundary conditions, in particular, into peridynamics. This avenue of research is developed in companion papers, providing a remedy for boundary effects. As main result 3, employing spherical Bessel functions, we give a new practical series representation of the solution which allows straightforward numerical treatment with symbolic computation.
Chaoticons described by nonlocal nonlinear Schrödinger equation
Zhong, Lanhua; Li, Yuqi; Chen, Yong; Hong, Weiyi; Hu, Wei; Guo, Qi
2017-01-01
It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-like properties (with invariant statistic width and interaction of quasi-elastic collisions). PMID:28134268
Wang, Qi; E, Weinan; Liu, Chun; Zhang, Pingwen
2002-05-01
The Doi kinetic theory for flows of homogeneous, rodlike liquid crystalline polymers (LCPs) is extended to model flows of nonhomogeneous, rodlike LCPs through a nonlocal (long-range) intermolecular potential. The theory features (i) a nonlocal, anisotropic, effective intermolecular potential in an integral form that is consistent with the chemical potential, (ii) short-range elasticity as well as long-range isotropic and anisotropic elasticity, (iii) a closed-form stress expression accounting for the nonlocal molecular interaction, and (iv) an extra elastic body force exclusively associated with the integral form of the intermolecular potential. With the effective intermolecular potential, the theory is proven to be well posed in that it warrants a positive entropy production and thereby the second law of thermodynamics. Approximate theories are obtained by gradient expansions of the number density function in the free energy density.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-09-01
In this article, combined effect of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is investigated by developing various refined beam theories which capture shear deformation influences needless of any shear correction factor. The material properties of FG nanobeam are temperature dependent and change gradually along the thickness through the power-law model. Size-dependent description of the nanobeam is performed applying nonlocal elasticity theory of Eringen. Nonlocal governing equations of embedded FG nanobeam in hygro-thermal environment obtained from Hamilton's principle are solved analytically. To verify the validity of the developed theories, the results of the present work are compared with those available in the literature. The effects of various hygro-thermal loadings, elastic foundation, gradient index, nonlocal parameter, and slenderness ratio on the vibrational behavior of FG nanobeams modeled via various beam theories are explored.
Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago
2016-07-01
The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.
Observers in Spacetime and Nonlocality
Mashhoon, B
2012-01-01
Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...
An operational framework for nonlocality
Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel
2011-01-01
Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...
Nonlocal and quasilocal field theories
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Institute of Scientific and Technical Information of China (English)
Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun
2007-01-01
The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.
Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Directory of Open Access Journals (Sweden)
Zozulya V.V.
2017-09-01
Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.
Optimal measurements for nonlocal correlations
Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto
2016-08-01
A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.
Towards LHC physics with nonlocal Standard Model
Tirthabir Biswas; Nobuchika Okada
2015-01-01
We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...
Energy Technology Data Exchange (ETDEWEB)
Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)
2011-09-15
Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.
An Explanation for Saturn's Hexagon
Kohler, Susanna
2015-08-01
For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a
Solutions of Nonlocal -Laplacian Equations
Directory of Open Access Journals (Sweden)
Mustafa Avci
2013-01-01
Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.
Spontaneous Emission in Nonlocal Materials
Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V
2016-01-01
Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.
Classical and Quantum Nonlocal Supergravity
Giaccari, Stefano
2016-01-01
We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...
Directory of Open Access Journals (Sweden)
A. Ghorbanpour-Arani
2013-12-01
Full Text Available This paper is concerned with the surface and small scale effects on transverse vibration of a viscoelastic single-layered graphene sheet (SLGS subjected to an in-plane magnetic field. The SLGS is surrounded by an elastic medium which is simulated as Visco-Pasternak foundation. In order to investigate the small scale effects, the nonlocal elasticity theory is employed due to its simplicity and accuracy. The effect of structural damping of SLGS is taken into account based on Kelvin’s model on elastic materials. An analytical method is used to obtain the natural frequency of the system. A detailed parametric study is conducted to elucidate the effects of the surface layers, nonlocal parameter, magnetic field, Visco-Pasternak elastic medium, viscoelastic structural damping coefficient and aspect ratio of graphene sheet. The findings indicate that enhancing the magnetic field and the density of surface layers leads to an increase in the natural frequency of SLGS.
Nonlocal wave turbulence in non-Abelian plasmas
Mehtar-Tani, Yacine
2016-01-01
We investigate driven wave turbulence in non-Abelian plasmas, in the framework of kinetic theory where both elastic and inelastic processes are considered in the small angle approximation. The gluon spectrum, that forms in the presence of a steady source, is shown to be controlled by nonlocal interactions in momentum space, in contrast to the universal Kolmogorov-Zakharov spectra. Assuming strongly nonlocal interactions, we show that inelastic processes are dominant in the IR and cause a thermal bath to form below the forcing scale, as a result of a detailed balance between radiation and absorption of soft gluons by the hard ones. Above the forcing scale, the inelastic collision term reduces to an inhomogeneous diffusion-like equation yielding a spectrum that spreads to the UV as $t^{1/2}$, similarly to elastic processes. Due to nonlocal interactions the non-universal turbulent spectrum is not steady and flattens when time goes on toward the thermal distribution. This analysis is complemented by numerical sim...
Rayleigh-type waves in nonlocal micropolar solid half-space.
Khurana, Aarti; Tomar, S K
2017-01-01
Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this paper, thermo-mechanical buckling analysis of curved functionally graded (FG) nanobeams is carried out via an analytical solution method. Curved FG nanobeam is subjected to uniform, linear and nonlinear temperature distributions across the thickness. Three kinds of boundary condition namely, simply supported-simply supported, simply supported-clamped and clamped-clamped are investigated. Thermo-elastic properties of curved FG beam change in radial direction according to the power-law model. Nonlocal elasticity theory is adopted to capture the size effects. Nonlocal governing equations of curved FG nanobeam are obtained from Hamilton's principle based on Euler-Bernoulli beam model. Finally, the influences of thermal loadings, nonlocal parameter, opening angle, material composition, slenderness ratio and boundary conditions on the thermal buckling behavior of nanosize curved FG beams are explored.
Hexagonal tessellations in image algebra
Eberly, David H.; Wenzel, Dennis J.; Longbotham, Harold G.
1990-11-01
In image algebra '' the concept of a coordinate set X is general in that such a set is simply a subset of ndimensional Euclidean space . The standard applications in 2-dimensional image processing use coordinate sets which are rectangular arrays X 72 x ZZm. However some applications may require other geometries for the coordinate set. We look at three such related applications in the context of image algebra. The first application is the modeling of photoreceptors in primate retinas. These receptors are inhomogeneously distributed on the retina. The largest receptor density occurs in the center of the fovea and decreases radially outwards. One can construct a hexagonal tessellation of the retina such that each hexagon contains approximately the same number of receptors. The resulting tessellation called a sunflower heart2 consists of concentric rings of hexagons whose sizes increase as the radius of the ring increases. The second application is the modeling of the primary visual . The neurons are assumed to be uniformly distributed as a regular hexagonal lattice. Cortical neural image coding is modeled by a recursive convolution of the retinal neural image using a special set of filters. The third application involves analysis of a hexagonally-tessellated image where the pixel resolution is variable .
Nonlocal optical response in metallic nanostructures.
Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N
2015-05-13
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.
Nonlocal optical response in metallic nanostructures
DEFF Research Database (Denmark)
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn
2015-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....
Non-local plasticity effects on the tensile properties of a metal matrix composite
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2001-01-01
For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...
Bassani, J.L.; Needleman, A.; Giessen, E. van der
2001-01-01
A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory. Only single slip is permitted in the matrix material. The discrete dislocati
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Dynamic crack growth in a nonlocal progressively cavitating solid
DEFF Research Database (Denmark)
Needleman, A.; Tvergaard, Viggo
1998-01-01
Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... to increase and the crack speed to decrease with increasing values of the material characteristic length. The crack growth predictions using the nonlocal constitutive model exhibit less mesh sensitivity than the corresponding ones based on the local constitutive relation. However, for the largest value...
Nonlocal Measurements via Quantum Erasure.
Brodutch, Aharon; Cohen, Eliahu
2016-02-19
Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.
A nonlocal, ordinary, state-based plasticity model for peridynamics.
Energy Technology Data Exchange (ETDEWEB)
Mitchell, John Anthony
2011-05-01
An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in [3] without an integration strategy or yield criterion. This report addresses both of these issues and thus establishes the first ordinary, state-based peridynamics plasticity model. Integration of the flow rule follows along the lines of the classical theories of rate independent J{sub 2} plasticity. It uses elastic force state relations, an additive decomposition of the deformation state, an elastic force state domain, a flow rule, loading/un-loading conditions, and a consistency condition. Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The report also develops a useful non-local yield criterion that depends upon the yield stress and horizon for the material. The modulus state for both the ordinary elastic material and aforementioned plasticity model is also developed and presented.
Nonlocal optical response in metallic nanostructures
Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger
2014-01-01
This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...
Nonlocal higher order evolution equations
Rossi, Julio D.
2010-06-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.
Totality of Subquantum Nonlocal Correlations
Khrennikov, Andrei
2011-01-01
In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...
On Processing Hexagonally Sampled Images
2011-07-01
Definition Addition Negation Subtraction Scalar Multiplication 2121 2121 21 2 aacc aarr aa pp1...coordinate system for addressing a hexagonal grid that provides support for efficient image processing • Efficient ASA methods were shown for gradient
Anderson Localization in Nonlocal Nonlinear Media
Folli, Viola; 10.1364/OL.37.000332
2012-01-01
The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.
Solitons in nonlocal nonlinear media: Exact solutions
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole
2001-01-01
We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...
Exact Solutions in Nonlocal Linear Models
Vernov, S. Yu.
2008-01-01
A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.
Nonlocally Centralized Simultaneous Sparse Coding
Institute of Scientific and Technical Information of China (English)
雷阳; 宋占杰
2016-01-01
The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.
Energy Technology Data Exchange (ETDEWEB)
Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)
1996-08-01
The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.
Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)
2013-02-01
In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.
Directory of Open Access Journals (Sweden)
H. Rouhi
2015-01-01
Full Text Available A nonlocal elastic shell model considering the small scale effects is developed to study the free vibrations of multiwalled carbon nanotubes subject to different types of boundary conditions. Based on the nonlocal elasticity and the Flügge shell theory, the governing equations are derived which include the interaction of van der Waals forces between adjacent and nonadjacent layers. To analytically solve the problem, the Rayleigh-Ritz method is employed. In the present analysis, different combinations of layerwise boundary conditions are taken into account. Some new intertube resonant frequencies and the associated noncoaxial vibrational modes are identified owing to incorporating circumferential modes into the shell model.
Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood
2017-09-01
Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.
Nonlocal Response in Plasmonic Nanostructures
DEFF Research Database (Denmark)
Wubs, Martijn; Mortensen, N. Asger
2016-01-01
After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
A nonlocal discretization of fields
Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.
2001-01-01
A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Learning Non-Local Dependencies
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
Extreme nonlocality with one photon
Energy Technology Data Exchange (ETDEWEB)
Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)
2011-05-15
Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.
Natarajan, S; Bordas, S; Mahapatra, D Roy
2012-01-01
In this paper, the axial vibration of cracked beams, the free flexural vibrations of nanobeams and plates based on Timoshenko beam theory and first-order shear deformable plate theory, respectively, using Eringen's nonlocal elasticity theory is numerically studied. The field variable is approximated by Lagrange polynomials and non-uniform rational B-splines. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the natural frequency is numerically studied. The influence of a crack on axial vibration is also studied. The results obtained from this study are found to be in good agreement with those reported in the literature.
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Mohammadimehr, M.; Mohammadi-Dehabadi, A. A.; Maraghi, Z. Khoddami
2017-04-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
Energy Technology Data Exchange (ETDEWEB)
Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)
2017-04-01
In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.
EDGE-ORIENTED HEXAGONAL ELEMENTS
Institute of Scientific and Technical Information of China (English)
Chao Yang; Jiachang Sun
2007-01-01
In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q(3)1 and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L2 norm. This theoretical result is confirmed by the numerical tests.
Energy Technology Data Exchange (ETDEWEB)
Li, Yan.
1990-10-08
Ultrasonic techniques have recently been applied to the texture characterization in polycrystalline aggregates of hexagonal crystals. The basis of this application lies in the relations between the elastic constants {bar C}{sub ij} of the aggregates, which can be inferred from ultrasonic wave velocity measurements, and the orientation distribution coefficients. This communication present such relations for aggregates which possess orthotopic material symmetry and hexagonal crystal symmetry for Voigt, Reuss, and Hill averaging methods in a unified and concise representation.
Pan, Ernian; Waksmanski, Natalie
2016-09-01
In this paper, we present an exact closed-form solution for the three-dimensional deformation of a layered magnetoelectroelastic simply-supported plate with the nonlocal effect. The solution is achieved by making use of the pseudo-Stroh formalism and propagator matrix method. Our solution shows, for the first time, that for a homogeneous plate with traction boundary condition applied on its top or bottom surface, the induced stresses are independent of the nonlocal length whilst the displacements increase with increasing nonlocal length. Under displacement boundary condition over a homogeneous or layered plate, all the induced displacements and stresses are functions of the nonlocal length. Our solution further shows that regardless of the Kirchoff or Mindlin plate model, the error of the transverse displacements between the thin plate theory and the three-dimensional solution increases with increasing nonlocal length revealing an important feature for careful application of the thin plate theories towards the problem with nonlocal effect. Various other numerical examples are presented for the extended displacements and stresses in homogeneous elastic plate, piezoelectric plate, magnetostrictive plate, and in sandwich plates made of piezoelectric and magnetostrictive materials. These results should be very useful as benchmarks for future development of approximation plate theories and numerical modeling and simulation with nonlocal effect.
Discovery of Superconductivity in Hard Hexagonal ε-NbN.
Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng
2016-02-29
Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.
Energy Technology Data Exchange (ETDEWEB)
Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)
2015-07-15
In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.
Post Buckling Behaviour of a Nanobeam considering both the surface and nonlocal effects
Maitra, Rajarshi; Bose, Supratik
2012-07-01
Nano-scale beams and plates have been the key components of the sensor and actuator in nanoelectromechnical (NEMS) systems with wide applications in environmental monitoring, medical diagnostics, food processing, mining, bioengineering and defence. Nonlocal and surface effects have been incorporated to find critical load of a nano beam subjected to a transverse loading. The Nonlocal theory, expresses the stress field at a point in an elastic continuum in terms of not only strains at that point but also the strains throughout the body. The governing equation of a normal beam has been modified to achieve the governing differential equation of a nano beam. The post buckling behaviour of a nano beam has been tried to be assessed. The results showed that the surface effects try to delay the buckling process whereas the nonlocal effects contribute to the instability.
Chaudhury, Kunal N; Singer, Amit
2012-11-01
In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.
Extreme nonlocality with one photon
Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko
2009-01-01
The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.
Percolation transitions with nonlocal constraint.
Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong
2012-09-01
We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.
Horikis, Theodoros P
2016-01-01
The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.
Nonlocal Quantum Effects in Cosmology
Dumin, Yurii V
2014-01-01
Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...
Nonlocal reflection by photonic barriers
Vetter, R. -M.; A. Haibel; Nimtz, G.
2001-01-01
The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.
Diaz, Pablo; Walton, Mark
2016-01-01
With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...
Towards LHC physics with nonlocal Standard Model
Directory of Open Access Journals (Sweden)
Tirthabir Biswas
2015-09-01
Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.
Nonlocal transport in superconducting oxide nanostructures
Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy
2013-03-01
We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443
Detrimental nonlocality in luminescence measurements
Pluska, Mariusz; Czerwinski, Andrzej
2017-08-01
Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.
Modesto, Leonardo
2013-01-01
We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...
Nonlocal response of hyperbolic metasurfaces.
Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A
2015-11-16
We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.
Zhen, Ya-Xin
2017-02-01
In this paper, the transverse wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes is investigated based on nonlocal elasticity theory with consideration of surface effect. The governing equation is formulated utilizing nonlocal Euler-Bernoulli beam theory and Kelvin-Voigt model. Explicit wave dispersion relation is developed and wave phase velocities and frequencies are obtained. The effect of the fluid flow velocity, structural damping, surface effect, small scale effects and tube diameter on the wave propagation properties are discussed with different wave numbers. The wave frequency increases with the increase of fluid flow velocity, but decreases with the increases of tube diameter and wave number. The effect of surface elasticity and residual surface tension is more significant for small wave number and tube diameter. For larger values of wave number and nonlocal parameters, the real part of frequency ratio raises.
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
Energy Technology Data Exchange (ETDEWEB)
Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)
2016-06-06
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad
2016-06-01
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models
Making nonlocal reality compatible with relativity
Nikolic, H.
2010-01-01
It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.
Competing structures in two dimensions: Square-to-hexagonal transition
Gränz, Barbara; Korshunov, Sergey E.; Geshkenbein, Vadim B.; Blatter, Gianni
2016-08-01
We study a system of particles in two dimensions interacting via a dipolar long-range potential D /r3 and subject to a square-lattice substrate potential V (r ) with amplitude V and lattice constant b . The isotropic interaction favors a hexagonal arrangement of the particles with lattice constant a , which competes against the square symmetry of the underlying substrate lattice. We determine the minimal-energy states at fixed external pressure p generating the commensurate density n =1 /b2=(4/3 ) 1 /2/a2 in the absence of thermal and quantum fluctuations, using both analytical techniques based on the harmonic and continuum elastic approximations as well as numerical relaxation of particle configurations. At large substrate amplitude V >0.2 eD, with eD=D /b3 the dipolar energy scale, the particles reside in the substrate minima and hence arrange in a square lattice. Upon decreasing V , the square lattice turns unstable with respect to a zone-boundary shear mode and deforms into a period-doubled zigzag lattice. Analytic and numerical results show that this period-doubled phase in turn becomes unstable at V ≈0.074 eD towards a nonuniform phase developing an array of domain walls or solitons; as the density of solitons increases, the particle arrangement approaches that of a rhombic (or isosceles triangular) lattice. At a yet smaller substrate value estimated as V ≈0.046 eD, a further solitonic transition establishes a second nonuniform phase which smoothly approaches the hexagonal (or equilateral triangular) lattice phase with vanishing amplitude V . At small but finite amplitude V , the hexagonal phase is distorted and hexatically locked at an angle of φ ≈3 .8∘ with respect to the substrate lattice. The square-to-hexagonal transformation in this two-dimensional commensurate-incommensurate system thus involves a complex pathway with various nontrivial lattice- and modulated phases.
Nonlocal Gravity in the Solar System
Chicone, C
2015-01-01
The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.
Nonlocal gravity in the solar system
Chicone, C.; Mashhoon, B.
2016-04-01
The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.
Origin of Dynamical Quantum Non-locality
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Perturbative loop corrections and nonlocal gravity
Maggiore, Michele
2016-01-01
Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.
Local and Nonlocal Regularization to Image Interpolation
Directory of Open Access Journals (Sweden)
Yi Zhan
2014-01-01
Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.
Causality, Non-Locality and Negative Refraction
Forcella, Davide; Carminati, Rémi
2016-01-01
The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation uxt=F(x,t,u,ux
Directory of Open Access Journals (Sweden)
L. Byszewski
1990-01-01
Full Text Available The aim of the paper is to give two theorems about existence and uniqueness of continuous solutions for hyperbolic nonlinear differential problems with nonlocal conditions in bounded and unbounded domains. The results obtained in this paper can be applied in the theory of elasticity with better effect than analogous known results with classical initial conditions.
Vibration analysis of nonlocal beams made of functionally graded material in thermal environment
Ebrahimi, Farzad; Reza Barati, Mohammad
2016-08-01
In this paper, thermal vibration behavior of functionally graded (FG) nanobeams exposed to various kinds of thermo-mechanical loading including uniform, linear and non-linear temperature rise embedded in a two-parameter elastic foundation are investigated based on third-order shear deformation beam theory which considers the influence of shear deformation without the need to shear correction factors. Material properties of FG nanobeam are supposed to be temperature-dependent and vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The influence of small scale is captured based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The comparison of the obtained results is conducted with those of nonlocal Euler-Bernoulli beam theory and it is demonstrated that the proposed modeling predicts correctly the vibration responses of FG nanobeams. The influences of some parameters including gradient index, nonlocal parameter, mode number, foundation parameters and thermal loading on the thermo-mechanical vibration characteristics of the FG nanobeams are presented.
Ghadiri, Majid; Shafiei, Navvab; Akbarshahi, Amir
2016-07-01
This paper is proposed to study the free vibration of a rotating Timoshenko nanobeam based on the nonlocal theory considering thermal and surface elasticity effects. The governing equations and the related boundary conditions are derived using the Hamilton's principle. In order to solve the problem, generalized differential quadrature method is applied to discretize the governing differential equations corresponding to clamped-simply and clamped-free boundary conditions. In this article, the influences of some parameters such as nonlocal parameter, angular velocity, thickness of the nanobeam, and thermal and surface elasticity effects on the free vibration of the rotating nanobeam are investigated, and the results are compared for different boundary conditions. The results show that the surface effect and the nonlocal parameter and the temperature changes have significant roles, and they should not be ignored in the vibrational study of rotating nanobeams. Also, the angular velocity and the hub radius have more significant roles than temperature change effects on the nondimensional frequency. It is found that the nonlocal parameter behavior and the temperature change behavior on the frequency are different in the first mode for the rotating cantilever nanobeam.
Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory
Energy Technology Data Exchange (ETDEWEB)
Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)
2015-10-15
Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.
Vibration analysis of single-walled carbon peapods based on nonlocal Timoshenko beam theory
Ghadiri, Majid; Hajbarati, Hamid; Safi, Mohsen
2017-04-01
In this article, vibration behavior of single-walled carbon nanotube encapsulating C60 molecules is studied using the Eringen's nonlocal elasticity theory within the frame work of Timoshenko beam theory. The governing equation and boundary conditions are derived using Hamilton's principle. It is considered that the nanopeapod is embedded in an elastic medium and the C60 molecules are modeled as lumped masses attached to the nanobeam. The Galerkin's method is applied to determine the natural frequency of the nanobeam with clamped-clamped boundary conditions. Effects of nonlocality, foundation stiffness, and ratio of the fullerenes' mass to the nanotube's mass on the natural frequencies are investigated. In addition, by vanishing effects of shear deformation and rotary inertia, the results based on Euler-Bernoulli beam theory are presented.
Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.
Mélin, R.
2006-05-01
In connection with a recent experiment [Russo , Phys. Rev. Lett. 95, 027002 (2005)], we investigate the effect of weak localization on nonlocal transport in normal metal / insulator/superconductor / insulator / normal metal (NISIN) trilayers, with extended interfaces. The negative weak localization contribution to the crossed resistance can exceed in absolute value the positive elastic cotunneling contribution if the normal metal phase coherence length or the energy are large enough.
Sinha, S
2003-01-01
In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.
Nonlocality of a single particle
Dunningham, Jacob; Vedral, Vlatko
2007-01-01
There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...
Directory of Open Access Journals (Sweden)
Antoni Buades
2011-09-01
Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.
Monotone method for nonlinear nonlocal hyperbolic problems
Directory of Open Access Journals (Sweden)
Azmy S. Ackleh
2003-02-01
Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J
2010-01-01
I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal study of ultimate plasmon hybridization
DEFF Research Database (Denmark)
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.
2015-01-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Attraction of nonlocal dark optical solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw
2004-01-01
We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...
On instabilities in tensorial nonlocal gravity
Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R
2016-01-01
We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.
Multipole vector solitons in nonlocal nonlinear media.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru
2006-05-15
We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.
Creation of Entanglement with Nonlocal Operations
Institute of Scientific and Technical Information of China (English)
ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu
2005-01-01
We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.
Spectral Dimension from Causal Set Nonlocal Dynamics
Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo
2015-01-01
We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-10-01
In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.
Extremal hexagonal chains concerning largest eigenvalue
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, we define a roll-attaching operation of a hexagonal chain, and prove Gutman's conjecture affirmatively by using the operation. The idea of the proof is also applicable to the results concerning extremal hexagonal chains for the Hosoya index and Merrifield-Simmons index.
Nonlocal and quasi-local field theories
Tomboulis, E T
2015-01-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...
Nonlocal Galileons and self-acceleration
Gabadadze, Gregory; Yu, Siqing
2017-05-01
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Nonlocal Galileons and self-acceleration
Directory of Open Access Journals (Sweden)
Gregory Gabadadze
2017-05-01
Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
Virial Theorem in Nonlocal Newtonian Gravity
Directory of Open Access Journals (Sweden)
Bahram Mashhoon
2016-05-01
Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger; Wubs, Martijn
2013-01-01
in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Nonlocal thermal transport in solar flares
Karpen, Judith T.; Devore, C. Richard
1987-01-01
A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.
Non-local parallel transport in BOUT++
Omotani, J T; Havlickova, E; Umansky, M
2015-01-01
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, B
2015-01-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Virial Theorem in Nonlocal Newtonian Gravity
Mashhoon, Bahram
2016-05-01
Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.
Nonlocal Quantum Effects in Cosmology
Directory of Open Access Journals (Sweden)
Yurii V. Dumin
2014-01-01
Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.
The neglected nonlocal effects of deforestation
Winckler, Johannes; Reick, Christian; Pongratz, Julia
2017-04-01
Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation
Momentum-space optical potential SND elastic scattering calculations
Energy Technology Data Exchange (ETDEWEB)
Wolfe, D.H.; Hynes, M.V.; Picklesimer, A.; Tandy, P.C.; Thaler, R.M.
1983-01-01
Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scattering consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effects in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon. 3 references.
Momentum-space optical potential SND elastic scattering calculations
Wolfe, D. H.; Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.
1983-03-01
Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scatterig consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effectss in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon.
Energy Technology Data Exchange (ETDEWEB)
Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)
2017-04-15
Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)
Peselnick, L.; Meister, R.
1965-01-01
Variational principles of anisotropic elasticity have been applied to aggregates of randomly oriented pure-phase polycrystals having hexagonal symmetry and trigonal symmetry. The bounds of the effective elastic moduli obtained in this way show a considerable improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be in most cases a good approximation when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1965 The American Institute of Physics.
Energy Technology Data Exchange (ETDEWEB)
Alshits, V.I.; Gorkunova, A.S.; Shuvalov, A.L. [Russian Academy of Sciences, Moscow (Russian Federation)
1994-12-31
The characteristics of surface-wave modes with the propagation direction m in the plane of transverse isotropy are studied in a semiifinite hexagonal elastic medium with an arbitrary orientation of a free boundary set by the normal n. The parameters of bulk transonic and limiting elastic waves propagating in an equivalent unbound medium with the energy flux normal to the vector n are determined. Possible types of configurations of the refraction sheets in the cross section by a sagittal plane (m,n) and their relation to the parameters of the surface as well as limiting volume modes are analyzed. 14 refs., 4 figs.
Can EPR non-locality be geometrical?
Energy Technology Data Exchange (ETDEWEB)
Ne`eman, Y. [Tel-Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences]|[Univ. of Texas, Austin, TX (United States). Center for Particle Physics; Botero, A. [Texas Univ., Austin, TX (United States)
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Nonlocal Generalized Models of Predator-Prey Systems
Kuehn, Christian
2011-01-01
The method of generalized modeling has been applied successfully in many different contexts, particularly in ecology and systems biology. It can be used to analyze the stability and bifurcations of steady-state solutions. Although many dynamical systems in mathematical biology exhibit steady-state behaviour one also wants to understand nonlocal dynamics beyond equilibrium points. In this paper we analyze predator-prey dynamical systems and extend the method of generalized models to periodic solutions. First, we adapt the equilibrium generalized modeling approach and compute the unique Floquet multiplier of the periodic solution which depends upon so-called generalized elasticity and scale functions. We prove that these functions also have to satisfy a flow on parameter (or moduli) space. Then we use Fourier analysis to provide computable conditions for stability and the moduli space flow. The final stability analysis reduces to two discrete convolutions which can be interpreted to understand when the predator...
Hexagonal image processing a practical approach
Middleton, Lee
2006-01-01
This book provides an introduction to the processing of hexagonally sampled images, includes a survey of the work done in the field, and presents a novel framework for hexagonal image processing (HIP) based on hierarchical aggregates. The strengths offered by hexagonal lattices over square lattices to define digital images are considerable: higher packing density; uniform connectivity of points (pixels) in the lattice; better angular resolution by virtue of having more nearest neighbours; and superlative representation of curves. The utility of the HIP framework is shown by implementing severa
Local, nonlocal quantumness and information theoretic measures
Agrawal, Pankaj; Sazim, Sk; Chakrabarty, Indranil; Pati, Arun K.
2016-08-01
It has been suggested that there may exist quantum correlations that go beyond entanglement. The existence of such correlations can be revealed by information theoretic quantities such as quantum discord, but not by the conventional measures of entanglement. We argue that a state displays quantumness, that can be of local and nonlocal origin. Information theoretic measures not only characterize the nonlocal quantumness, but also the local quantumness, such as the “local superposition”. This can be a reason, why such measures are nonzero, when there is no entanglement. We consider a generalized version of the Werner state to demonstrate the interplay of local quantumness, nonlocal quantumness and classical mixedness of a state.
Nonlocal study of ultimate plasmon hybridization.
Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger
2015-03-01
Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider the transition from separated dimers via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a fundamental limit on the hybridization of the bonding plasmon modes due to nonlocality. Using transformation optics, we determine a simple analytical equation for the resonance energies.
Vliet, Jurg; Wel, Steven; Dowd, Dara
2011-01-01
While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots
Nonlocal-response diffusion model of holographic recording in photopolymer
Sheridan, John T.; Lawrence, Justin R.
2000-01-01
The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be completely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equation is then solved numerically, in low-harmonic approximation, to de...
Film edge nonlocal spin valves.
McCallum, Andrew T; Johnson, Mark
2009-06-01
Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low-power and high-speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, on the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.
Nonlocality in uniaxially polarizable media
Gorlach, Maxim A
2015-01-01
We reveal extraordinary electromagnetic properties for a general class of uniaxially polarizable media. Depending on parameters, such metamaterials may have wide range of nontrivial shapes of isofrequency contours including lemniscate, diamond and multiply connected curves with connectivity number reaching five. The possibility of the dispersion engineering paves a way to more flexible manipulation of electromagnetic waves. Employing first-principle considerations we prove that uniaxially polarizable media should be described in terms of the nonlocal permittivity tensor which by no means can be reduced to local permittivity and permeability even in the long-wavelength limit. We introduce an alternative set of local material parameters including quadrupole susceptibility capable to capture all of the second-order spatial dispersion effects.
Experimental many-pairs nonlocality
Poh, Hou Shun; Cerè, Alessandro; Bancal, Jean-Daniel; Cai, Yu; Sangouard, Nicolas; Scarani, Valerio; Kurtsiefer, Christian
2017-08-01
Collective measurements on large quantum systems together with a majority voting strategy can lead to a violation of the Clauser-Horne-Shimony-Holt Bell inequality. In the presence of many entangled pairs, this violation decreases quickly with the number of pairs and vanishes for some critical pair number that is a function of the noise present in the system. Here we show that a different binning strategy can lead to a more substantial Bell violation when the noise is sufficiently small. Given the relation between the critical pair number and the source noise, we then present an experiment where the critical pair number is used to quantify the quality of a high visibility photon pair source. Our results demonstrate nonlocal correlations using collective measurements operating on clusters of more than 40 photon pairs.
Experimental test of nonlocal causality.
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G; Fedrizzi, Alessandro
2016-08-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell's local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect.
Experimental test of nonlocal causality
Ringbauer, Martin; Giarmatzi, Christina; Chaves, Rafael; Costa, Fabio; White, Andrew G.; Fedrizzi, Alessandro
2016-01-01
Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way. We consider a relaxation of one of these assumptions, Bell’s local causality, by allowing outcome dependence: a direct causal influence between the outcomes of measurements of remote parties. We use interventional data from a photonic experiment to bound the strength of this causal influence in a two-party Bell scenario, and observational data from a Bell-type inequality test for the considered models. Our results demonstrate the incompatibility of quantum mechanics with a broad class of nonlocal causal models, which includes Bell-local models as a special case. Recovering a classical causal picture of quantum correlations thus requires an even more radical modification of our classical notion of cause and effect. PMID:27532045
Modeling of N2 adsorption in MCM-41 materials: hexagonal pores versus cylindrical pores.
Ustinov, Eugene A
2009-07-07
Low-temperature nitrogen adsorption in hexagonal pores and equivalent cylindrical pores is analyzed using nonlocal density functional theory extended to amorphous solids (NLDFT-AS). It is found that, despite significant difference of the density distribution over the cross-section of the pore, the capillary condensation/evaporation pressure is not considerably affected by the pore shape being slightly lower in the case of hexagonal geometry. However, the condensation/evaporation step in the hexagonal pore is slightly larger than that in the equivalent cylindrical pore because in the latter case the pore wall surface area and, hence, the amount adsorbed at pressures below the evaporation pressure are underestimated by 5%. We show that a dimensionless parameter defined as the ratio of the condensation/evaporation step and the upper value of the amount adsorbed at the condensation/evaporation pressure can be used as an additional criterion of the correct choice of the gas-solid molecular parameters along with the dependence of condensation/evaporation pressure on the pore diameter. Application of the criteria to experimental data on nitrogen adsorption on a series of MCM-41 silica at 77 K corroborates some evidence that the capillary condensation occurs at equilibrium conditions.
Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity
DEFF Research Database (Denmark)
Raza, Søren; Christensen, Thomas; Wubs, Martijn
2013-01-01
We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....
Some generalizations of the nonlocal transformations approach
Directory of Open Access Journals (Sweden)
V. A. Tychynin
2015-02-01
Full Text Available Some generalizations of a method of nonlocal transformations are proposed: a connection of given equations via prolonged nonlocal transformations and finding of an adjoint solution to the solutions of initial equation are considered. A concept of nonlocal transformation with additional variables is introduced, developed and used for searching symmetries of differential equations. A problem of inversion of the nonlocal transformation with additional variables is investigated and in some cases solved. Several examples are presented. Derived technique is applied for construction of the algorithms and formulae of generation of solutions. The formulae derived are used for construction of exact solutions of some nonlinear equations.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Family of nonlocal bound entangled states
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Employee Travel Data (Non-Local)
Montgomery County of Maryland — ‘This dataset provides information regarding the total approved actual expenses incurred by Montgomery County government employees traveling non-locally (over 75...
Vassiliev, Dmitri
2017-04-01
We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833
New hexagonal structure for silicon atoms
Naji, S.; Belhaj, A.; Labrim, H.; Benyoussef, A.; El Kenz, A.
2012-11-01
Motivated by recent experimental and theoretical works on silicene and its derived materials and based on the exceptional Lie algebra G2 we propose a new hexagonal symmetry producing the (√3 × √3)R30° superstructure for silicon atoms. The principal hexagonal unit cell contains twelve atoms instead of the usual structure involving only six ones and it is associated with the G2 root system. In this silicon atom configuration appears two hexagons of unequal side length at angle 30°. This atomic structure can be tessellated to exhibit two superstructures (1 × 1) and (√3 × √3)R30° on the same atomic sheet. To test this double hexagonal structure, we perform a numerical study using Ab-initio calculations based on FPLO9.00-34 code. We observe that the usual silicon electronic properties and the lattice parameters of planar geometry are modified. In particular, the corresponding material becomes a conductor rather than zero gaped semi-conductor arising in single hexagonal structure. Although the calculation is done for silicon atoms, we expect that this structure could be adapted to all two dimensional materials having a single hexagonal flat geometry.
Symmetric states: Their nonlocality and entanglement
Energy Technology Data Exchange (ETDEWEB)
Wang, Zizhu; Markham, Damian [CNRS LTCI, Département Informatique et Réseaux, Telecom ParisTech, 23 avenue d' Italie, CS 51327, 75214 Paris CEDEX 13 (France)
2014-12-04
The nonlocality of permutation symmetric states of qubits is shown via an extension of the Hardy paradox and the extension of the associated inequality. This is achieved by using the Majorana representation, which is also a powerful tool in the study of entanglement properties of symmetric states. Through the Majorana representation, different nonlocal properties can be linked to different entanglement properties of a state, which is useful in determining the usefulness of different states in different quantum information processing tasks.
On a Nonlocal Damping Model in Ferromagnetism
Directory of Open Access Journals (Sweden)
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Quantum theory of nonlocal nonlinear Schrodinger equation
Vyas, Vivek M
2015-01-01
Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.
Experimental falsification of Leggett's nonlocal variable model.
Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio
2007-11-23
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
Nonconventional thermodynamics, indeterminate couple stress elasticity and heat conduction
Alber, H.-D.; Hutter, K.; Tsakmakis, Ch.
2016-05-01
We present a phenomenological thermodynamic framework for continuum systems exhibiting responses which may be nonlocal in space and for which short time scales may be important. Nonlocality in space is engendered by state variables of gradient type, while nonlocalities over time can be modelled, e.g. by assuming the rate of the heat flux vector to enter into the heat conduction law. The central idea is to restate the energy budget of the system by postulating further balance laws of energy, besides the classical one. This allows for the proposed theory to deal with nonequilibrium state variables, which are excluded by the second law in conventional thermodynamics. The main features of our approach are explained by discussing micropolar indeterminate couple stress elasticity and heat conduction theories.
Directory of Open Access Journals (Sweden)
Iman Eshraghi
2016-09-01
Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-09-01
This article examines the application of nonlocal strain gradient elasticity theory to wave dispersion behavior of a size-dependent functionally graded (FG) nanobeam in thermal environment. The theory contains two scale parameters corresponding to both nonlocal and strain gradient effects. A quasi-3D sinusoidal beam theory considering shear and normal deformations is employed to present the formulation. Mori-Tanaka micromechanical model is used to describe functionally graded material properties. Hamilton's principle is employed to obtain the governing equations of nanobeam accounting for thickness stretching effect. These equations are solved analytically to find the wave frequencies and phase velocities of the FG nanobeam. It is indicated that wave dispersion behavior of FG nanobeams is significantly affected by temperature rise, nonlocality, length scale parameter and material composition.
Robust non-local median filter
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2017-04-01
This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.
Nonlocal Infrared Modifications of Gravity. A Review
Maggiore, Michele
2016-01-01
We review an approach developed in the last few years by our group in which GR is modified in the infrared, at an effective level, by nonlocal terms associated to a mass scale. We begin by recalling the notion of quantum effective action and its associated nonlocalities, illustrating some of their features with the anomaly-induced effective actions in $D=2$ and $D=4$. We examine conceptual issues of nonlocal theories such as causality, degrees of freedoms and ghosts, stressing the importance of the fact that these nonlocalities only emerge at the effective level. We discuss a particular class of nonlocal theories where the nonlocal operator is associated to a mass scale, and we show that they perform very well in the comparison with cosmological observations, to the extent that they fit CMB, supernovae, BAO and structure formation data at a level fully competitive with $\\Lambda$CDM, with the same number of free parameters. We explore some extensions of these `minimal' models, and we finally discuss some direc...
Effects of Nonlocality on Transfer Reactions
Titus, Luke J
2016-01-01
We solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10, 20, and 50 MeV. We found that for bound states the Perry corrected wave functions resulting from the local equation agreed well with that from the nonlocal equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception for a few partial waves. Nonlocality...
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod
2006-02-01
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy’s nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy’s argument.
Experimental Observation of Travelling Hexagon Patterns in Dielectric Barrier Discharge
Institute of Scientific and Technical Information of China (English)
董丽芳; 贺亚峰; 尹增谦; 柴志方
2003-01-01
Travelling hexagon patterns have been observed in dielectric barrier discharge in an air-argon mixture. The phase diagram of hexagon pattern appearance as functions of applied voltage and air concentration is given. The spatial frequency of hexagon pattern increases with increasing applied voltage and air concentration. The current waveforms of hexagon pattern also vary with the air concentration. The drift velocity of travelling hexagon pattern changes from 4mm/s to 18mm/s.
Nonlocal Theories in Continuum Mechanics
Directory of Open Access Journals (Sweden)
M. Jirásek
2004-01-01
Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems.
Spiralling solitons and multipole localized modes in nonlocal nonlinear media
DEFF Research Database (Denmark)
Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan
2007-01-01
We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...
Energy Technology Data Exchange (ETDEWEB)
Malmir, Hessam, E-mail: malmir@energy.sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Moghaddam, Nader Maleki [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology (Tehran Polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of); Zahedinejad, Ehsan [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)
2011-02-15
A hexagonal-structured reactor core (e.g. VVER-type) is mostly modeled by structured triangular and hexagonal mesh zones. Although both the triangular and hexagonal models give good approximations over the neutronic calculation of the core, there are some differences between them that seem necessary to be clarified. For this purpose, the neutronic calculations of a hexagonal-structured reactor core have to be performed using the structured triangular and hexagonal meshes based on box method of discretisation and then the results of two models should be benchmarked in different cases. In this paper, the box method of discretisation is derived for triangular and hexagonal meshes. Then, two 2-D 2-group static simulators for triangular and hexagonal geometries (called TRIDIF-2 and HEXDIF-2, respectively) are developed using the box method. The results are benchmarked against the well-known CITATION computer code in case of a VVER-1000 reactor core. Furthermore, the relative powers calculated by the TRIDIF-2 and HEXDIF-2 along with the ones obtained by the CITATION code are compared with the verified results which have been presented in the Final Safety Analysis Report (FSAR) of the aforementioned reactor. Different benchmark cases revealed the reliability of the box method in contrast with the CITATION code. Furthermore, it is shown that the triangular modeling of the core is more acceptable compared with the hexagonal one.
Free Vibrations of a Cantilevered SWCNT with Distributed Mass in the Presence of Nonlocal Effect
Directory of Open Access Journals (Sweden)
M. A. De Rosa
2015-01-01
Full Text Available The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.
A semi-nonlocal numerical approach for modeling of temperature-dependent crack-wave interaction
Martowicz, Adam; Kijanka, Piotr; Staszewski, Wieslaw J.
2016-04-01
Numerical tools, which are used to simulate complex phenomena for models of complicated shapes suffer from either long computational time or accuracy. Hence, new modeling and simulation tools, which could offer reliable results within reasonable time periods, are highly demanded. Among other approaches, the nonlocal methods have appeared to fulfill these requirements quite efficiently and opened new perspectives for accurate simulations based on crude meshes of the model's degrees of freedom. In the paper, the preliminary results are shown for simulations of the phenomenon of temperature-dependent crack-wave interaction for elastic wave propagation in a model of an aluminum plate. Semi-nonlocal finite differences are considered to solve the problem of thermoelasticity - based on the discretization schemes, which were already proposed by the authors and taken from the previously published work. Numerical modeling is used to examine wave propagation primarily in the vicinity of a notch. Both displacement and temperature fields are sought in the investigated case study.
Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam
Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.
2017-01-01
The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.
Free vibrations of a cantilevered SWCNT with distributed mass in the presence of nonlocal effect.
De Rosa, M A; Lippiello, M; Martin, H D
2015-01-01
The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT) in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.
Directory of Open Access Journals (Sweden)
Li Ming
2013-03-01
Full Text Available In this study, a single beam model has been developed to analyze the thermal vibration of Single-Walled Carbon Nanotubes (SWCNT. The nonlocal elasticity takes into account the effect of small size into the formulation and the boundary condition. With exact solution of the dynamic governing equations, the thermal-vibrational characteristics of a cantilever SWCNT are obtained. Influence of nonlocal small scale effects, temperature change and vibration modes of the CNT on the frequency are investigated. The present study shows that the additional boundary conditions from small scale do not change natural frequencies at different temperature change. Thus for simplicity, one can apply the local boundary condition to replace the small scale boundary condition.
Tang, Yugang; Liu, Ying; Zhao, Dong
2016-10-01
In this paper, the viscoelastic wave propagation in an embedded viscoelastic single-walled carbon nanotube (SWCNT) is studied based on the nonlocal strain gradient theory. The characteristic equation for the viscoelastic wave in SWCNTs is derived. The emphasis is placed on the influence of the tube diameter on the viscoelastic wave dispersion. A blocking diameter is observed, above which the wave could not propagate in SWCNTs. The results show that the blocking diameter is greatly dependent on the damping coefficient, the nonlocal and the strain gradient length scale parameters, as well as the Winkler modulus of the surrounding elastic medium. These findings may provide a prospective application of SWCNTs in nanodevices and nanocomposites.
Yang, Yang; Zhang, Lixiang; Lim, C. W.
2011-04-01
This paper is concerned with the characteristics of wave propagation in double-walled carbon nanotubes (DWCNTs). The DWCNTs is simulated with a Timoshenko beam model based on the nonlocal continuum elasticity theory, referred to as an analytically nonlocal Timoshenko-beam (ANT) model. The governing equations of the DWCNTs beam consist of a set of four equations that are derived from the variational principle of the beam with high-order boundary conditions at the both ends, in which the effects of the nano-scale nonlocality and the van der Waals interaction between inner and outer tubes are inclusive. The characteristics of the wave propagation in the DWCNTs beam were analyzed with the new ANT model proposed and the comparisons with the partially nonlocal Timoshenko-beam (PNT) models in publication were made in details. The results show that the nonlocal effects of the ANT model proposed in the present study on the wave propagations are more significant because it is in stronger stiffness enhancement to the DWCNTs beam.
Phase diagram of elastic spheres.
Athanasopoulou, L; Ziherl, P
2017-02-15
Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.
A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2014-01-01
A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...
Marzbanrad, Javad; Boreiry, Mahya; Shaghaghi, Gholam Reza
2017-04-01
In the present study, a generalized nonlocal beam theory is utilized to study the magneto-thermo-mechanical vibration characteristic of piezoelectric nanobeam by considering surface effects rested in elastic medium for various elastic boundary conditions. The nonlocal elasticity of Eringen as well as surface effects, including surface elasticity, surface stress and surface density are implemented to inject size-dependent effects into equations. Using the Hamilton's principle and Euler-Bernoulli beam theory, the governing differential equations and associated boundary conditions will be obtained. The differential transformation method (DTM) is used to discretize resultant motion equations and related boundary conditions accordingly. The natural frequencies are obtained for the various elastic boundary conditions in detail to show the significance of nonlocal parameter, external voltage, temperature change, surface effects, elastic medium, magnetic field and length of nanobeam. Moreover, it should be noted that by changing the spring stiffness at each end, the conventional boundary conditions will be obtained which are validated by well-known literature.
Specific non-local interactions are not necessary for recovering native protein dynamics.
Directory of Open Access Journals (Sweden)
Bhaskar Dasgupta
Full Text Available The elastic network model (ENM is a widely used method to study native protein dynamics by normal mode analysis (NMA. In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2 information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N restraints. This model, named the 'contact number diffusion' model (CND, includes specific distance restraints for only local (along the amino acid sequence atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.
Specific non-local interactions are not necessary for recovering native protein dynamics.
Dasgupta, Bhaskar; Kasahara, Kota; Kamiya, Narutoshi; Nakamura, Haruki; Kinjo, Akira R
2014-01-01
The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the 'contact number diffusion' model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Basic Functionalization of Hexagonal Mesoporous Silica
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
3-Aminopropyltricthoxysilanc (AM), 3-cthyldiaminopropyltrimcthoxysilane (ED) and 3-piperazinylpropyltriethoxysilanc (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The inerease in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED＞AM＞PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.
Hexagonal Structure of Baby Skyrmion Lattices
Hen, Itay
2007-01-01
We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit-cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter-Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-known rectangular lattice, in which splitting into half-Skyrmions is observed.
Variational Principles for Buckling of Microtubules Modeled as Nonlocal Orthotropic Shells
Directory of Open Access Journals (Sweden)
Sarp Adali
2014-01-01
Full Text Available A variational principle for microtubules subject to a buckling load is derived by semi-inverse method. The microtubule is modeled as an orthotropic shell with the constitutive equations based on nonlocal elastic theory and the effect of filament network taken into account as an elastic surrounding. Microtubules can carry large compressive forces by virtue of the mechanical coupling between the microtubules and the surrounding elastic filament network. The equations governing the buckling of the microtubule are given by a system of three partial differential equations. The problem studied in the present work involves the derivation of the variational formulation for microtubule buckling. The Rayleigh quotient for the buckling load as well as the natural and geometric boundary conditions of the problem is obtained from this variational formulation. It is observed that the boundary conditions are coupled as a result of nonlocal formulation. It is noted that the analytic solution of the buckling problem for microtubules is usually a difficult task. The variational formulation of the problem provides the basis for a number of approximate and numerical methods of solutions and furthermore variational principles can provide physical insight into the problem.
On the magnetorotational instability and elastic buckling.
Vasil, Geoffrey M
2015-05-08
This paper demonstrates an equivalence between rotating magnetized shear flows and a stressed elastic beam. This results from finding the same form of dynamical equations after an asymptotic reduction of the axis-symmetric magnetorotational instability (MRI) under the assumption of almost-critical driving. The analysis considers the MRI dynamics in a non-dissipative near-equilibrium regime. Both the magnetic and elastic systems reduce to a simple one-dimensional wave equation with a non-local nonlinear feedback. Under transformation, the equation comprises a large number of mean-field interacting Duffing oscillators. This system was the first proven example of a strange attractor in a partial differential equation. Finding the same reduced equation in two natural applications suggests the model might result from other applications and could fall into a universal class based on symmetry.
On the magnetorotational instability and elastic buckling
Vasil, Geoffrey M.
2015-01-01
This paper demonstrates an equivalence between rotating magnetized shear flows and a stressed elastic beam. This results from finding the same form of dynamical equations after an asymptotic reduction of the axis-symmetric magnetorotational instability (MRI) under the assumption of almost-critical driving. The analysis considers the MRI dynamics in a non-dissipative near-equilibrium regime. Both the magnetic and elastic systems reduce to a simple one-dimensional wave equation with a non-local nonlinear feedback. Under transformation, the equation comprises a large number of mean-field interacting Duffing oscillators. This system was the first proven example of a strange attractor in a partial differential equation. Finding the same reduced equation in two natural applications suggests the model might result from other applications and could fall into a universal class based on symmetry. PMID:27547088
Dynamics in Nonlocal Cosmological Models Derived from String Field Theory
Joukovskaya, Liudmila
2007-01-01
A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...
Nonlocal Optics of Plasmonic Nanowire Metamaterials
Wells, Brian M; Podolskiy, Viktor A
2014-01-01
We present an analytical description of the nonlocal optical response of plasmonic nanowire metamaterials that enable negative refraction, subwavelength light manipulation, and emission lifetime engineering. We show that dispersion of optical waves propagating in nanowire media results from coupling of transverse and longitudinal electromagnetic modes supported by the composite and derive the nonlocal effective medium approximation for this dispersion. We derive the profiles of electric field across the unit cell, and use these expressions to solve the long-standing problem of additional boundary conditions in calculations of transmission and reflection of waves by nonlocal nanowire media. We verify our analytical results with numerical solutions of Maxwell's equations and discuss generalization of the developed formalism to other uniaxial metamaterials.
Transfer reaction code with nonlocal interactions
Titus, L J; Nunes, F M
2016-01-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, $(d,N)$ or $(N,d)$, including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of $A(d,N)B$ or $B(N,d)A$. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of $E_d=10-70$ MeV, and provides cross sections with $4\\%$ accuracy.
Transfer reaction code with nonlocal interactions
Titus, L. J.; Ross, A.; Nunes, F. M.
2016-10-01
We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.
Towards an emerging understanding of non-locality phenomena and non-local transport
Ida, K.; Shi, Z.; Sun, H. J.; Inagaki, S.; Kamiya, K.; Rice, J. E.; Tamura, N.; Diamond, P. H.; Dif-Pradalier, G.; Zou, X. L.; Itoh, K.; Sugita, S.; Gürcan, O. D.; Estrada, T.; Hidalgo, C.; Hahm, T. S.; Field, A.; Ding, X. T.; Sakamoto, Y.; Oldenbürger, S.; Yoshinuma, M.; Kobayashi, T.; Jiang, M.; Hahn, S. H.; Jeon, Y. M.; Hong, S. H.; Kosuga, Y.; Dong, J.; Itoh, S.-I.
2015-01-01
In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed
Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams
Ebrahimi, Farzad; Barati, Mohammad Reza; Dabbagh, Ali
2016-11-01
The analysis of wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanobeam is performed in the framework of classical beam theory. To capture small-scale effects, the nonlocal elasticity theory of Eringen is applied. Furthermore, the material properties of nanobeam are assumed to vary gradually through the thickness based on power-law form. Nonlocal governing equations of MEE-FG nanobeam have been derived employing Hamilton's principle. The results of present research have been validated by comparing with those of previous investigations. An analytical solution of governing equations is utilized to obtain wave frequencies, phase velocities and escape frequencies. Effects of various parameters such as wave number, nonlocal parameter, gradient index, axial load, magnetic potential and electric voltage on wave dispersion characteristics of MEE-FG nanoscale beams are studied in detail.
Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate
Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad
2016-12-01
The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.
Classification of scalar and dyadic nonlocal optical response models
DEFF Research Database (Denmark)
Wubs, Martijn
2015-01-01
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...
Nonlocal regularization of abelian models with spontaneous symmetry breaking
Clayton, M. A.
2001-01-01
We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.
Elastic anisotropy of Earth's inner core.
Belonoshko, Anatoly B; Skorodumova, Natalia V; Rosengren, Anders; Johansson, Börje
2008-02-08
Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.
Nonlocality and entanglement as opposite properties
Vallone, G; Gómez, E S; Cañas, G; Larsson, J -A; Mataloni, P; Cabello, A
2011-01-01
We show that, for any chained Bell inequality with any number of settings, nonlocality and entanglement are not only essentially different properties but opposite ones. We first show that, in the absence of noise, the threshold detection efficiency for a loophole-free Bell test increases with the degree of entanglement, so that the closer the quantum states are to product states, the harder it is to reproduce the quantum predictions with local models. In the presence of white noise, we show that nonlocality and entanglement are simultaneously maximized only in the presence of extreme noise; in any other case, the lowest threshold detection efficiency is obtained by reducing the entanglement.
A Classical Framework for Nonlocality and Entanglement
Groessing, Gerhard; Pascasio, Johannes Mesa; Schwabl, Herbert
2012-01-01
Based on our model of quantum systems as emerging from the coupled dynamics between oscillating "bouncers" and the space-filling zero-point field, a sub-quantum account of nonlocal correlations is given. This is explicitly done for the example of the "double two-slit" variant of two-particle interferometry. However, it is also shown that the entanglement in two-particle interferometry is only a natural consequence of the fact that already a "single" two-slit experiment can be described on a sub-quantum level with the aid of "entangling currents" of a generally nonlocal nature.
Compressive Sensing via Nonlocal Smoothed Rank Function.
Fan, Ya-Ru; Huang, Ting-Zhu; Liu, Jun; Zhao, Xi-Le
2016-01-01
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction.
Reversed rainbow with a nonlocal metamaterial
Energy Technology Data Exchange (ETDEWEB)
Morgado, Tiago A., E-mail: tiago.morgado@co.it.pt; Marcos, João S.; Silveirinha, Mário G., E-mail: mario.silveirinha@co.it.pt [Department of Electrical Engineering, Instituto de Telecomunicações, University of Coimbra, 3030 Coimbra (Portugal); Costa, João T. [CST AG, Bad Nauheimer Strasse 19, 64289 Darmstadt (Germany); Costa, Jorge R. [Instituto de Telecomunicações and Instituto Universitário de Lisboa (ISCTE-IUL), 1649-026 Lisboa (Portugal); Fernandes, Carlos A. [Instituto de Telecomunicações, and Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)
2014-12-29
One of the intriguing potentials of metamaterials is the possibility to realize a nonlocal electromagnetic reaction, such that the effective medium response at a given point is fundamentally entangled with the macroscopic field distribution at long distances. Here, it is experimentally and numerically verified that a microwave nonlocal metamaterial formed by crossed metallic wires enables a low-loss broadband anomalous material response such that the refractive index decreases with frequency. Notably, it is shown that an electromagnetic beam refracted by our metamaterial prism creates a reversed microwave rainbow.
Breather solitons in highly nonlocal media
Alberucci, Alessandro; Assanto, Gaetano
2016-01-01
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science \\textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Low energy signatures of nonlocal field theories
Belenchia, Alessio; Benincasa, Dionigi M. T.; Martín-Martínez, Eduardo; Saravani, Mehdi
2016-09-01
The response of inertial particle detectors coupled to a scalar field satisfying nonlocal dynamics described by nonanalytic functions of the d'Alembertian operator □ is studied. We show that spontaneous emission processes of a low energy particle detector are very sensitive to high-energy nonlocality scales. This allows us to suggest a nuclear physics experiment (˜MeV energy scales) that outperforms the sensitivity of LHC experiments by many orders of magnitude. This may have implications for the falsifiability of theoretical proposals of quantum gravity.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description t...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
de Boer, Jan; van Smaalen, Sander; Petricek, Vaclav; Dusek, Michal P.; Verheijen, Marcel A.; Meijer, G.
1994-01-01
C60 crystals were grown from purified powder material with a multiple sublimation technique. In addition to crystals wit a cubic close-packed (ccp) arrangement, crystals were found with a hexagonal close-packed (hcp) structure. Detailed crystallographic evidence is given, including complete refineme
Aken, Bas B. van; Meetsma, Auke; Palstra, Thomas T.M.
2001-01-01
The crystal structure of hexagonal LuMnO3 at room temperature is isomorphous with YMnO3 and deviates in important details from early work. Mn is near the centre of its oxygen coordination environment. On the threefold axes, the apical O-Lu bonds have alternating long and short bond lengths, leading
Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear
Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.
2013-05-01
A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.
Effect of surface layer thickness on buckling and vibration of nonlocal nanowires
Energy Technology Data Exchange (ETDEWEB)
Hu, Kai-Ming; Zhang, Wen-Ming, E-mail: wenmingz@sjtu.edu.cn; Zhong, Zuo-Yang; Peng, Zhi-Ke; Meng, Guang
2014-01-31
In this Letter, the buckling and vibration behavior of nonlocal nanowires by incorporating surface elasticity is investigated. A modified core–shell model is developed to depict the size effect of Young's modulus and validated by the reported experimental data. Our results show that the buckling load and natural frequency of nanowires increase when the effect of surface layer thickness is taken into account. Moreover, as the diameter of nanowires is smaller than 50 nm, the influence of surface layer thickness becomes obvious. This work can be helpful in characterizing and predicting the buckling and vibration behavior of NWs.
Non-local plasticity effects on the tensile properties of a metal matrix composite
DEFF Research Database (Denmark)
Niordson, Christian Frithiof; Tvergaard, Viggo
2001-01-01
For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...
Institute of Scientific and Technical Information of China (English)
周振功; 杜善义; 王彪
2003-01-01
In this paper, the non-local theory of elasticity is applied to obtain the behavior of a Griffith crack in the piezoelectric materials under anti-plane shear loading for permeable crack surface conditions. By means of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations with the unknown variable being the jump of the displacement across the crack surfaces. These equations are solved by the Schmidt method. Numerical examples are provided.Unlike the classical elasticity solutions, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local elastic solutions yield a finite hoop stress at the crack tip,thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length and the lattice parameter of the materials, respectively.
Liang, Lin-mei; Li, Cheng-zu
2005-02-01
This Letter presents nonlocality without inequalities for two-qubit mixed states. This Letter was mainly sparked by Cabello's work [Phys. Rev. A 65 (2003) 032108] and is an extension of our recent work [Phys. Lett. A 318 (2003) 300].
Lyotropic hexagonal columnar liquid crystals of large colloidal gibbsite platelets
Mourad, M.C.D.; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N.W.
2010-01-01
We report the formation of hexagonal columnar liquid crystal phases in suspensions of large (570 nm diameter), sterically stabilized, colloidal gibbsite platelets in organic solvent. In thin cells these systems display strong iridescence originating from hexagonally arranged columns that are
Interaction of Nonlocal Incoherent White-Light Solitons
Institute of Scientific and Technical Information of China (English)
HUANG Chun-Fu; GUO Qi
2007-01-01
The propagation and interaction of nonlocal incoherent white-light solitons in strongly nonlocal kerr media is investigated. Numerical simulations show that the interaction properties of nonlocal incoherent white-light solitons are different from the case in local media. The interactions of nonlocal incoherent white-light solitons are always attractive independent of their relative phase, while the other parameters such as the extent of nonlocality and the input power have a great impact on the soliton interactions. Pertinent numerical examples are presented to show their propagation and interaction behaviour further.
Consequences and applications of the completeness of Hardy's nonlocality
Mansfield, Shane
2017-02-01
Logical nonlocality is completely characterized by Hardy's "paradox" in (2 ,2 ,l ) and (2 ,k ,2 ) scenarios. We consider a variety of consequences and applications of this fact. (i) Polynomial algorithms may be given for deciding logical nonlocality in these scenarios. (ii) Bell states are the only entangled two-qubit states which are not logically nonlocal under projective measurements. (iii) It is possible to witness Hardy nonlocality with certainty in a simple tripartite quantum system. (iv) Noncommutativity of observables is necessary and sufficient for enabling logical nonlocality.
Directory of Open Access Journals (Sweden)
M. Denche
1999-01-01
Full Text Available In the present paper we study nonlocal problems for ordinary differential equations with a discontinuous coefficient for the high order derivative. We establish sufficient conditions, known as regularity conditions, which guarantee the coerciveness for both the space variable and the spectral parameter, as well as guarantee the completeness of the system of root functions. The results obtained are then applied to the study of a nonlocal parabolic transmission problem.
Nonlocality as Evidence for a Multiverse Cosmology
Tipler, Frank J.
We show that observations of quantum nonlocaltiy can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
Nonlocality and discrete cellular methods in optics
Wijers, C.M.J.; Boeij, de P.L.
2001-01-01
A subdivision of space into discrete cells underlies the traditional discrete dipole model. This model presumes that only nonlocal electric interactions between cells govern the electromagnetic response of a condensed matter system. Apart from the case of simple dielectrics, this is not realistic. C
Energy Technology Data Exchange (ETDEWEB)
Nami, Mohammad Rahim [Shiraz University, Shiraz, Iran (Iran, Islamic Republic of); Janghorban, Maziar [Islamic Azad University, Marvdash (Iran, Islamic Republic of)
2015-06-15
In this work, dynamic analysis of rectangular nanoplates subjected to moving load is presented. In order to derive the governing equations of motion, second order plate theory is used. To capture the small scale effects, the nonlocal elasticity theory is adopted. It is assumed that the nanoplate is subjected to a moving concentrated load with the constant velocity V in the x direction. To solve the governing equations, state-space method is used to find the deflections of rectangular nanoplate under moving load. The results obtained here reveal that the nonlocality has significant effect on the deflection of rectangular nanoplate subjected to moving load.
Circumferential nonlocal effect on the buckling and vibration of nanotubes
Energy Technology Data Exchange (ETDEWEB)
Wang, Cheng Yuan, E-mail: cywang@ujs.edu.cn; Li, Xiao Hu; Luo, Ying
2016-04-01
The nonlocal beam theories are widely used to study the mechanics of cylindrical nanotubes (NTs). The one-dimensional models however are unable to account for the nonlocal effect in the circumferential direction, which may substantially affect the applicability of the nonlocal beam models. To address the issue this letter examines the circumferential nonlocal effect (CNE) on the buckling and vibration of the NTs. Here the CNE is characterized by the difference between the nonlocal beam model considering the axial nonlocal effect only and the nonlocal shell model with both axial and circumferential nonlocal effects. The aspect ratio and radius-dependence of the CNE are calculated for the singlewall carbon NTs selected as a typical example. The results show that the CNE is substantial for the buckling and vibration of the NTs with small radius (e.g., <1 nm) and aspect ratio (e.g., <15). It however decreases with the rising radius and the aspect ratio, and turns out to be small for relatively wide and long NTs. The nonlocal beam theories thus may overestimate the buckling load and vibration frequency for the thin and short NTs. - Highlights: • First revealed the substantial circumferential nonlocal effect (CNE) on nanotube buckling. • Achieved radius/aspect ratio-dependence of CNE on nanotube buckling and vibration. • Located the range of applicability of the nonlocal beam theory without CNE.
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Non-localized deformation in Cu−Zr multi-layer amorphous films under tension
Energy Technology Data Exchange (ETDEWEB)
Zhong, C. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, H. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9 (Canada); Cao, Q.P.; Wang, X.D. [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, D.X. [State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027 (China); Hu, J.W. [Hangzhou Workers Amateur University, Hangzhou 310027 (China); Liaw, P.K. [Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States); Jiang, J.Z., E-mail: jiangjz@zju.edu.cn [International Center for New-Structured Materials (ICNSM), Laboratory of New-Structured Materials, State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)
2016-09-05
In metallic glasses (MGs), plastic deformation at room temperature is dominated by highly localized shear bands. Here we report the non-localized deformation under tension in Cu−Zr multi-layer MGs with a pure amorphous structure using large-scale atomistic simulations. It is demonstrated that amorphous samples with high layer numbers, composed of Cu{sub 64}Zr{sub 36} and Cu{sub 40}Zr{sub 60}, or Cu{sub 64}Zr{sub 36} and Cu{sub 50}Zr{sub 50}, present obviously non-localized deformation behavior. We reveal that the deformation behavior of the multi-layer-structured MG films is related but not determined by the deformation behavior of the composed individual layers. The criterion for the deformation mode change for MGs with a pure amorphous structure, in generally, was suggested, i.e., the competition between the elastic-energy density stored and the energy density needed for forming one mature shear band in MGs. Our results provide a promising strategy for designing tensile ductile MGs with a pure amorphous structure at room temperature. - Highlights: • Tensile deformation behaviors in multi-layer MG films. • Films with high layer numbers confirmed with a non-localized deformation behavior. • The deformation mode is reasonably controlled by whether U{sub p} larger than U{sub SB.}.
Synthesis of silicon carbide hexagonal nanoprisms
Wu, R. B.; Yang, G. Y.; Pan, Y.; Chen, J. J.
2007-02-01
SiC hexagonal nanoprisms have been prepared by a reaction of multiwall carbon nanotubes and Si vapor in an Astro furnace at 1450 °C for 3 h. The polytype, morphology, crystal structure of the nanoprisms were studied by X-ray powder diffraction, scanning electron microscopy and high resolution transmission electron microscopy, showing their hexagonal nanoprism shapes with a 3C-SiC single crystal structure with a diameter of about 100 nm and 2 μm in length. The photoluminescence spectrum of the nanoprisms exhibits a significant blue-shift relative to bulk 3C-SiC and other nanostructured SiC. The possible growth mechanism that controls the nanostructure formation is also analysed.
Discrete breathers in hexagonal dusty plasma lattices.
Koukouloyannis, V; Kourakis, I
2009-08-01
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Experimental investigations of hexagonal crimping die failure
Directory of Open Access Journals (Sweden)
Veera kumar M
2016-06-01
Full Text Available This paper deals with the hexagonal crimping die failure of high carbon high chromium steel material. The failure modes were initially revealed and identified by the visual examination. Then the chemical analysis and metallographic examination havebeen carried at different positions of the failure die surface using scanning electron microscope (SEM. The microstructure evaluation reveals that failure occurs due to undissolved austenitic structure resulting in improper transition duringheat treatment.
On plastic flow in notched hexagonal close packed single crystals
Selvarajou, Balaji; Kondori, Babak; Benzerga, A. Amine; Joshi, Shailendra P.
2016-09-01
The micromechanics of anisotropic plastic flow by combined slip and twinning is investigated computationally in single crystal notched specimens. Constitutive relations for hexagonal close packed materials are used which take into account elastic anisotropy, thirty potential deformation systems, various hardening mechanisms and rate-sensitivity. The specimens are loaded perpendicular to the c-axis but the presence of a notch generates three-dimensional triaxial stress states. The study is motivated by recent experiments on a polycrystalline magnesium alloy. To enable comparisons with these where appropriate, three sets of activation thresholds for the various deformation systems are used. For the conditions that most closely mimic the alloy material, attention is focused on the relative roles of pyramidal and prismatic slip, as well as on the emergence of {1012bar}[101bar1] extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress triaxiality and plastic strain, inclusive of various system activities, are quantified along with their evolution upon straining. The implications of these findings in fundamental understanding of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.
Layered graphene structure of a hexagonal carbon
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bin, E-mail: beenchang@nuaa.edu.cn
2013-06-01
Experiments show that there is a novel hexagonal carbon polymorph restricted to the space group of P-62c, but the detailed atomic structure is not determined. Here we set carbon atoms occupying P-62c 4f or P-62c 2c and 2d Wyckoff positions, and calculate the total energy of the different cell structures changing the internal parameter by first-principles calculations, which demonstrates that the stable structures in energy (at local minima) are hexagonal carbon (P-62c 2c and 2d) and hexagonal diamond (P-62c 4f, z=1/16). The calculated bulk modulus 437±16 GPa and interlayer distance 2.062 Å of the layered graphene structure P-62c 2c and 2d are in good agreement with those of the proposed new carbon, which indicates that P-62c 2c and 2d is a possible precursor or intermediate hard phase during the structural transformation of carbon.
Ang, Yee Sin; Ang, Lay Kee; Zhang, Chao; Ma, Zhongshui
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide, proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We show that such band topology allows pure crossed Andreev reflection to be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels. We model the charge transport in an EuO-graphene/superconductor/EuO-graphene three-terminal device and found that the pure non-local conductance exhibits rapid on/off switching characteristic with a minimal subthreshold swing of ~ 20 mV. Non-local conductance oscillation is observed when the Fermi levels in the superconducting lead is varied. The oscillatory behavior is directly related to the quasiparticle propagation in the superconducting lead and hence can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene. The non-local current is 100% spin-polarized and is highly tunable in our proposed device. This opens up the possibility of highly tunable graphene-based spin transistor that operates purely in the non-local transport regime.
Classification of scalar and dyadic nonlocal optical response models.
Wubs, M
2015-11-30
Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.
Kiani, Keivan
2015-11-01
This study is devoted to examine load-bearing capacity of a nanosystem composed of two adjacent perpendicular single-walled carbon nanotubes (SWCNTs) which are embedded in an elastic matrix. Accounting for the nonlocality and the intertube van der Waals forces, the governing equations are established based on the nonlocal Euler-Bernoulli, Timoshenko, and higher-order beam theories. These are sets of coupled integro-ordinary differential equations whose analytical solutions are unavailable. Hence, an efficient meshless methodology is proposed and the discrete governing equations are obtained via Galerkin approach. By solving the resulting set of eigenvalue equations, the axial buckling load of the elastically embedded nanosystem is evaluated. The roles of the radius and slenderness ratio of the constitutive SWCNTs, free distance between two tubes, small-scale parameter, aspect ratio, transverse and rotational stiffness of the surrounding matrix on the axial buckling load of the nanosystem are comprehensively addressed. The obtained results can be regarded as a pivotal step for better understanding the mechanism of elastic buckling of more complex systems such as elastically embedded-orthogonal membranes or even forests of SWCNTs.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
LIANG Jun
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of displacements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. Numerical examples are provided to show the effects of the crack length, the parameter describing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
The nonlocal theory solution of a Mode-I crack in functionally graded materials
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The behavior of a Mode-I finite crack in functionally graded materials is investigated using the non-local theory. To make the analysis tractable, it is assumed that the shear modulus varies exponentially with coordinate vertical to the crack. The problem in this paper can be solved through the Fourier transform with the help of two pairs of dual integral equations, in which the unknown variables are jumps of dis- placements across crack surfaces. To solve dual integral equations, the jumps of displacements across crack surfaces are directly expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solu- tions yield a finite stress at crack tips, thus allowing us to use the maximum stress as a fracture crite- rion. Numerical examples are provided to show the effects of the crack length, the parameter describ- ing the functionally graded materials, the lattice parameter of materials and the materials constants upon the stress fields near crack tips.
Jandaghian, A. A.; Rahmani, O.
2016-03-01
In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.
Zhao, Xin
2013-05-01
Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.
Bahaadini, Reza; Hosseini, Mohammad; Jamalpoor, Ali
2017-03-01
On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton's principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.
Energy Technology Data Exchange (ETDEWEB)
Bahaadini, Reza [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Hosseini, Mohammad, E-mail: hosseini@sirjantech.ac.ir [Department of Mechanical Engineering, Sirjan University of Technology, 78137-33385 Sirjan, Islamic Republic of Iran (Iran, Islamic Republic of); Jamalpoor, Ali [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of)
2017-03-15
On the basis of nonlocal elasticity theory, this paper studies the dynamic structural instability behavior of cantilever nanotubes conveying fluid incorporating end concentrated follower force and distributed tangential load, resting on the visco-Pasternak substrate. In order to improve the accuracy of the results, surface effects, i.e. surface elasticity and residual stresses are considered. Extended Hamilton’s principle is implemented to obtain the nonlocal governing partial differential equation and related boundary conditions. Then, the extended Galerkin technique is used to convert partial differential equations into a general set of ordinary differential equations. Numerical results are expressed to reveal the variations of the critical flow velocity for flutter phenomenon of cantilever nanotubes with the various values of nonlocal parameter, mass ratios, nanotubes thickness, surface effects, various parameters of the visco-Pasternak medium, constant follower force and distributed compressive tangential load. Some numerical results of this research illustrated that the values of critical flutter flow velocity and stable region increase by considering surface effects. Also, critical flutter flow velocity decreases towards zero by increasing the value of the distributed compressive tangential load and constant follower force.
Institute of Scientific and Technical Information of China (English)
Jun Liang; Shiping Wu; Shanyi Du
2007-01-01
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Nonlocal Operational Calculi for Dunkl Operators
Directory of Open Access Journals (Sweden)
Ivan H. Dimovski
2009-03-01
Full Text Available The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_ku = f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
Nonlocal diffusion second order partial differential equations
Benedetti, I.; Loi, N. V.; Malaguti, L.; Taddei, V.
2017-02-01
The paper deals with a second order integro-partial differential equation in Rn with a nonlocal, degenerate diffusion term. Nonlocal conditions, such as the Cauchy multipoint and the weighted mean value problem, are investigated. The existence of periodic solutions is also studied. The dynamic is transformed into an abstract setting and the results come from an approximation solvability method. It combines a Schauder degree argument with an Hartman-type inequality and it involves a Scorza-Dragoni type result. The compact embedding of a suitable Sobolev space in the corresponding Lebesgue space is the unique amount of compactness which is needed in this discussion. The solutions are located in bounded sets and they are limits of functions with values in finitely dimensional spaces.
Quantum Loops in Non-Local Gravity
Talaganis, Spyridon
2015-01-01
In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.
Nonlocal Condensate Model for QCD Sum Rules
Hsieh, Ron-Chou
2009-01-01
We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.
Nonlocal inhomogeneous broadening in plasmonic nanoparticle ensembles
DEFF Research Database (Denmark)
Tserkezis, Christos; Maack, Johan Rosenkrantz; Liu, Z.
Nonclassical effects are increasingly more relevant in plasmonics as modern nanofabrication techniques rapidly approach the extreme nanoscale limits, for which departing from classical electrodynamics becomes important. One of the largest-scale necessary corrections towards this direction...... is to abandon the local response approximation (LRA) and take the nonlocal response of the metal into account, typically through the simple hydrodynamic Drude model (HDM), which predicts a sizedependent deviation of plasmon modes from the quasistatic (QS) limit. While this behaviour has been explored for simple...... averaging through both HDM and the recent Generalized Nonlocal Optical Response (GNOR) theory, which apart from the resonance frequency shifts accounts successfully for size-dependent damping as well. We examine NPs made of either ideal Drude-like metals [of plasmon frequency (wavelength) ωp (λp...
An Adaptive Iterated Nonlocal Interferometry Filtering Method
Directory of Open Access Journals (Sweden)
Lin Xue
2014-04-01
Full Text Available Interferometry filtering is one of the key steps in obtain high-precision Digital Elevation Model (DEM and Digital Orthophoto Map (DOM. In the case of low-correlation or complicated topography, traditional phase filtering methods fail in balancing noise elimination and phase preservation, which leads to inaccurate interferometric phase. This paper proposed an adaptive iterated nonlocal interferometry filtering method to deal with the problem. Based on the thought of nonlocal filtering, the proposed method filters the image with utilization of the image redundancy information. The smoothing parameter of the method is adaptive to the interferometry, and automatic iteration, in which the window size is adjusted, is applied to improve the filtering precision. Validity of the proposed method is verified by simulated and real data. Comparison with existed methods is given at the same time.
Nonlocal neurology: beyond localization to holonomy.
Globus, G G; O'Carroll, C P
2010-11-01
The concept of local pathology has long served neurology admirably. Relevant models include self-organizing nonlinear brain dynamics, global workspace and dynamic core theories. However such models are inconsistent with certain clinical phenomena found in Charles Bonnet syndrome, disjunctive agnosia and schizophrenia, where there is disunity of content within the unity of consciousness. This is contrasted with the split-brain case where there is disunity of content and disunity of consciousnesses. The development of quantum brain theory with it nonlocal mechanisms under the law of the whole ("holonomy") offers new possibilities for explaining disintegration within unity. Dissipative quantum brain dynamics and its approach to the binding problem, memory and consciousness are presented. A nonlocal neurology armed with a holonomic understanding might see more deeply into what clinical neurology has always aspired to: the patient as a whole.
Non-local geometry inside Lifshitz horizon
Hu, Qi; Lee, Sung-Sik
2017-07-01
Based on the quantum renormalization group, we derive the bulk geometry that emerges in the holographic dual of the fermionic U( N ) vector model at a nonzero charge density. The obstruction that prohibits the metallic state from being smoothly deformable to the direct product state under the renormalization group flow gives rise to a horizon at a finite radial coordinate in the bulk. The region outside the horizon is described by the Lifshitz geometry with a higher-spin hair determined by microscopic details of the boundary theory. On the other hand, the interior of the horizon is not described by any Riemannian manifold, as it exhibits an algebraic non-locality. The non-local structure inside the horizon carries the information on the shape of the filled Fermi sea.
Surface-enhanced Raman spectroscopy: nonlocal limitations
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, S.; Xiao, Sanshui;
2012-01-01
Giant field enhancement and field singularities are a natural consequence of the commonly employed local-response framework. We show that a more general nonlocal treatment of the plasmonic response leads to new and possibly fundamental limitations on field enhancement with important consequences ...... by periodic arrays of half-cylinders (up to 120 nm in radius), we find no enhancement factors exceeding 10 orders of magnitude (10(10)). (C) 2012 Optical Society of America...
Structure of Nonlocal Vacuum Condensate of Quarks
Institute of Scientific and Technical Information of China (English)
周丽娟; 马维兴
2003-01-01
The Dyson-Schwinger formalism is used to derive a fully dressed quark propagator. By use of the derived form of the quark propagator, the structure of non-local quark vacuum condensate is studied, and the values of local quark vacuum condensate as well as quark gluon mixed condensate are calculated. The theoretical predictions are in good agreement with the empirical one used commonly in the literature.
Popper's experiment, Copenhagen Interpretation and Nonlocality
Qureshi, T
2003-01-01
A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.
Nonlocal Optical Response of Plasmonic Nanowire Metamaterials
2014-01-01
exceptional properties that are not readily found in nature. There are numerous applications in modern optics which can be realized through the study and...K., R. C. McPhedran, and Vladimir M. Shalaev. " Electrodynamics of metal-dielectric composites and electromagnetic crystals." Physical Review B 62.12...16.10 (2008): 7460-7470. [41] Pokrovsky, A. L., and A. L. Efros. "Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals." Physical
Dual-switching behavior of nonlocal interfaces
Sánchez-Curto, Julio; Chamorro-Posada, Pedro
2017-05-01
Nonlinear interfaces separating two diffusive Kerr-type media exhibit dual switching between total internal reflection and transmission. This property is found within a weakly nonlocal regime when both a nonparaxial treatment of the problem and a full two-dimensional model for carrier diffusion are assumed. The theoretical model is shown to predict an effective cubic-quintic nonlinearity with competing terms that produces such property. The validity of the analysis is contrasted with a full set of numerical simulations.
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Maximum quantum nonlocality between systems that never interacted
Energy Technology Data Exchange (ETDEWEB)
Cabello, Adán, E-mail: adan@us.es [Departamento de Física Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain)
2012-12-03
We show that there is a stronger form of bipartite quantum nonlocality in which systems that never interacted are as nonlocal as allowed by no-signaling. For this purpose, we first show that nonlocal boxes, theoretical objects that violate a bipartite Bell inequality as much as the no-signaling principle allows and which are physically impossible for most scenarios, are feasible if the two parties have 3 measurements with 4 outputs. Then we show that, in this case, entanglement swapping allows us to prepare mixtures of nonlocal boxes using systems that never interacted. -- Highlights: ► We show quantum correlations as nonlocal as allowed by no-signaling between systems that never interacted. ► We show that nonlocal boxes are feasible if 2 parties have 3 measurements with 4 outputs. ► Experimental implementations of 1 and 2 are proposed.
Nonlocal modeling of granular flows down inclines.
Kamrin, Ken; Henann, David L
2015-01-07
Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.
Relativistic three-partite non-locality
Montakhab, A
2015-01-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and GHZ states which exhibit distinctly different type of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Svetlichny's inequality as the main measure of non-locality and uses the same angles in the rest frame ($S$) as well as the moving frame ($S^{\\prime}$), then maximally violated inequality in $S$ will decrease in the moving frame, and will eventually lead to lack of non-locality ( i.e. satisfaction of inequality) in the $v \\rightarrow c$ limit. This is shown for both GHZ and W states and in two different configurations which are commonly ...
Nonlocal Gravity and Structure in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Park, Sohyun [Penn State U., University Park, IGC
2014-08-26
The observed acceleration of the Universe can be explained by modifying general relativity. One such attempt is the nonlocal model of Deser and Woodard. Here we fix the background cosmology using results from the Planck satellite and examine the predictions of nonlocal gravity for the evolution of structure in the universe, confronting the model with three tests: gravitational lensing, redshift space distortions, and the estimator of gravity $E_G$. Current data favor general relativity (GR) over nonlocal gravity: fixing primordial cosmology with the best fit parameters from Planck leads to weak lensing results favoring GR by 5.9 sigma; redshift space distortions measurements of the growth rate preferring GR by 7.8 sigma; and the single measurement of $E_G$ favoring GR, but by less than 1-sigma. The significance holds up even after the parameters are allowed to vary within Planck limits. The larger lesson is that a successful modified gravity model will likely have to suppress the growth of structure compared to general relativity.
Directory of Open Access Journals (Sweden)
Niall J. English
2015-08-01
Full Text Available Equilibrium Born-Oppenheimer molecular dynamics simulations have been performed in the canonical ensemble to investigate the structural properties of liquid water and ice Ih (hexagonal ice at 298 and 273 K, respectively, using a state-of-the-art non-local correlation functional, whilst size effects have been examined explicitly in the case of liquid water. This has led to improved agreement with experiments for pair distribution functions, in addition to molecular dipole moments, vis-à-vis previous flavours of ab-initio molecular dynamics simulation of water, highlighting the importance of appropriate dispersion. Intramolecular geometry has also been examined, in addition to hydrogen-bonding interactions; it was found that an improved description of dispersion via non-local correlation helps to reduce over-structuring associated with the Perdew-Becke-Ernzerhof (PBE and other commonly-used functionals.
The frustrated Brownian motion of nonlocal solitary waves
Folli, Viola
2010-01-01
We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equation
The non-local content of quantum operations
Collins, D; Popescu, S; Collins, Daniel; Linden, Noah; Popescu, Sandu
2000-01-01
We show that quantum operations on multi-particle systems have a non-local content; this mirrors the non-local content of quantum states. We introduce a general framework for discussing the non-local content of quantum operations, and give a number of examples. Quantitative relations between quantum actions and the entanglement and classical communication resources needed to implement these actions are also described. We also show how entanglement can catalyse classical communication from a quantum action.
A Nonlocal Model for Carbon Nanotubes under Axial Loads
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2013-01-01
Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.
Proposal for revealing quantum nonlocality via local contextuality.
Cabello, Adán
2010-06-04
Two distant systems can exhibit quantum nonlocality even though the correlations between them admit a local model. This nonlocality can be revealed by testing extra correlations between successive measurements on one of the systems which do not admit a noncontextual model whatever the reduced state of this system is. This shows that quantum contextuality plays a fundamental role in quantum nonlocality, and allows an experimental test of the Kochen-Specker with locality theorem.
Survey on nonlocal games and operator space theory
Energy Technology Data Exchange (ETDEWEB)
Palazuelos, Carlos, E-mail: cpalazue@mat.ucm.es [Instituto de Ciencias Matemáticas (ICMAT), Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain); Vidick, Thomas, E-mail: vidick@cms.caltech.edu [Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California 91125 (United States)
2016-01-15
This review article is concerned with a recently uncovered connection between operator spaces, a noncommutative extension of Banach spaces, and quantum nonlocality, a striking phenomenon which underlies many of the applications of quantum mechanics to information theory, cryptography, and algorithms. Using the framework of nonlocal games, we relate measures of the nonlocality of quantum mechanics to certain norms in the Banach and operator space categories. We survey recent results that exploit this connection to derive large violations of Bell inequalities, study the complexity of the classical and quantum values of games and their relation to Grothendieck inequalities, and quantify the nonlocality of different classes of entangled states.
Nonlocal effects on dynamic damage accumulation in brittle solids
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1995-12-01
This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.
Implementation of nonlocal quantum swap operation on two entangled pairs
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 陈立冰; 郭光灿
2002-01-01
We propose a scheme for the implementation of nonlocal quantum swap operation on two spatially separated entangled pairs and we show that the operation can swap two qubits of these entangled pairs. We discuss the resourcesof the entangled qubits and classical communication bits required for the optimal implementation of the nonlocal quantum swap operation. We also put forward a scheme for probabilistic implementation of nonlocal swap operation via a nonmaximally entangled quantum channel. The probability of a successful nonlocal swap operation is obtained by introducing a collective unitary transformation.
Nonlocality Sudden Birth and Transfer in System and Environment
Institute of Scientific and Technical Information of China (English)
QIU Liang
2011-01-01
Dynamics of the nonlocality measured by the violation of Svetlichny's Bell-type inequality is investigated in the non-Markovian model. The phenomenon of nonlocality sudden birth for the atoms and the reservoirs is obtained.The evolution of the nonlocality among the atoms or the reservoirs depends on the choice of the atom detuning from the cavity pseudomode, the cavity pseudomode decay and the rotation angles. For the small pseudomode decay in the near-resonance regime, the initial atomic nonlocality is completely transferred to the reservoirs ultimately.
On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains
Institute of Scientific and Technical Information of China (English)
Fei LIANG; Qi Lin LIU; Yu Xiang LI
2013-01-01
In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.
Nonlocal optical properties in periodic lattice of graphene layers.
Chern, Ruey-Lin; Han, Dezhuan
2014-02-24
Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.
Method for exfoliation of hexagonal boron nitride
Lin, Yi (Inventor); Connell, John W. (Inventor)
2012-01-01
A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.
Diagonal form factors and hexagon form factors
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yunfeng [Institute for Theoretical Physics, ETH Zürich,Honggerberg, Zürich, 8093 (Switzerland); Petrovskii, Andrei [Institut de Physique Théorique, CEA, URA 2306 CNRS Saclay,Gif-sur-Yvette, F91191 (France)
2016-07-25
We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.
Nylon flocked swab severely reduces Hexagon Obti sensibility.
Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent
2015-02-01
Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
New non-local lattice models for the description of wave dispersion in concrete
Iliopoulos, Sokratis N.; Polyzos, Demosthenes; Aggelis, Dimitrios G.
2015-03-01
The propagation of longitudinal waves through concrete materials is strongly affected by dispersion. This is clearly indicated experimentally from the increase of phase velocity at low frequencies whereas many attempts have been made to explain this behavior analytically. Since the classical elastic theory for bulk media is by default non-dispersive, enhanced theories have been developed. The most commonly used higher order theory is the dipolar gradient elastic theory which takes into account the microstructural effects in heterogeneous media like concrete. The microstructural effects are described by two internal length scale parameters (g and h) which correspond to the micro-stiffness and micro-inertia respectively. In the current paper, this simplest possible version of the general gradient elastic theory proposed by Mindlin is reproduced through non-local lattice models consisting of discrete springs and masses. The masses simulate the aggregates of the concrete specimen whereas the springs are the mechanical similitude of the concrete matrix. The springs in these models are connecting the closest masses between them as well as the second or third closest to each other masses creating a non-local system of links. These non-neighboring interactions are represented by massless springs of constant stiffness while on the other hand one cannot neglect the significant mass of the springs connecting neighboring masses as this is responsible for the micro-inertia term. The major advantage of the presented lattice models is the fact that the considered microstructural effects can be accurately expressed as a function of the size and the mechanical properties of the microstructure.
Kamalakar, M. Venkata; Dankert, André; Kelly, Paul J.; Dash, Saroj P.
2016-02-01
Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in cobalt|few layer h-BN|graphene junctions leading to a large negative spin polarization in graphene at room temperature. Through nonlocal pure spin transport and Hanle precession measurements performed on devices with different interface barrier conditions, we associate the negative spin polarization with high resistance few layer h-BN|ferromagnet contacts. Detailed bias and gate dependent measurements reinforce the robustness of the effect in our devices. These spintronic effects in two-dimensional van der Waals heterostructures hold promise for future spin based logic and memory applications.
Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation
Institute of Scientific and Technical Information of China (English)
金艳; 贾曼; 楼森岳
2012-01-01
Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group Jnvariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.
Nonlocal Transport in the Reversed Field Pinch
Energy Technology Data Exchange (ETDEWEB)
Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.
2009-09-21
Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.
Nonlocal Crowd Dynamics Models for several Populations
Colombo, Rinaldo M
2011-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.
Non-local modeling of materials
DEFF Research Database (Denmark)
Niordson, Christian Frithiof
2002-01-01
Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...
Uncertainty, non-locality and Bell's inequality
Pati, A K
1998-01-01
We derive a Bell-like inequality involving all correlations in local observables with uncertainty free states and show that the inequality is violated in quantum mechanics for EPR and GHZ states. If the uncertainties are allowed in local observables then the statistical predictions of hidden variable theory is well respected in quantum world. We argue that the uncertainties play a key role in understanding the non-locality issues in quantum world. Thus we can not rule out the possibility that a local, realistic hidden variable theory with statistical uncertainties in the observables might reproduce all the results of quantum theory.
NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS
Institute of Scientific and Technical Information of China (English)
Rinaldo M. Colombo; Magali Lécureux-Mercier
2012-01-01
This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.
Nonlocal calculation for nonstrange dibaryons and tribaryons
Mota, R D; Fernández, F; Entem, D R; Garcilazo, H
2002-01-01
We study the possible existence of nonstrange dibaryons and tribaryons by solving the bound-state problem of the two- and three-body systems composed of nucleons and deltas. The two-body systems are $NN$, $N\\Delta$, and $\\Delta\\Delta$, while the three-body systems are $NNN$, $NN\\Delta$, $N\\Delta\\Delta$, and $\\Delta\\Delta\\Delta$. We use as input the nonlocal $NN$, $N\\Delta$, and $\\Delta\\Delta$ potentials derived from the chiral quark cluster model by means of the resonating group method. We compare with previous results obtained from the local version based on the Born-Oppenheimer approximation.
Nonlocal formalism for nanoplasmonics: Phenomenological and semi-classical considerations
DEFF Research Database (Denmark)
Mortensen, N. Asger
2013-01-01
The plasmon response of metallic nanostructures is anticipated to exhibit nonlocal dynamics of the electron gas when exploring the true nanoscale. We extend the local-response approximation (based on Ohm's law) to account for a general short-range nonlocal response of the homogeneous electron gas...
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
On nonlocal symmetries of some shallow water equations
Energy Technology Data Exchange (ETDEWEB)
Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)
2007-04-27
A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.
Solutions to nonlocal fractional differential equations using a noncompact semigroup
Directory of Open Access Journals (Sweden)
Shaochun Ji
2013-10-01
Full Text Available This article concerns the existence of solutions to nonlocal fractional differential equations in Banach spaces. By using a type of newly-defined measure of noncompactness, we discuss this problem in general Banach spaces without any compactness assumptions to the operator semigroup. Some existence results are obtained when the nonlocal term is compact and when is Lipschitz continuous.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K.S.; Abulizi, G.; Jong, de M.P.; Wiel, van der W.G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is we
A Note on a Nonlocal Nonlinear Reaction-Diffusion Model
Walker, Christoph
2011-01-01
We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.
Nonlocal thin films in calculations of the Casimir force
Esquivel-Sirvent, R.; Svetovoy, V.B.
2005-01-01
The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th
Anomalous interaction of nonlocal solitons in media with competing nonlinearities
DEFF Research Database (Denmark)
Esbensen, B. K.; Bache, Morten; Bang, Ole
2012-01-01
We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....
Spectral dimension from nonlocal dynamics on causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo
2016-02-01
We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.
Modulational instability in the nonlocal chi(2)-model
DEFF Research Database (Denmark)
Wyller, John Andreas; Krolikowski, Wieslaw; Bang, Ole
2007-01-01
We investigate in detail the linear regime of the modulational instability (MI) properties of the plane waves of the nonlocal model for chi((2))- media formulated in Nikolov et al. [N.I. Nikolov, D. Neshev, O. Bang, W.Z. Krolikowski, Quadratic solitons as nonlocal solitons, Phys. Rev. E 68 (2003...... in the parameter space for which a fundamental gain band exists, and regions for which higher order gain bands and modulational stability exist. We also show that the MI analysis for the nonlocal model is applicable in the finite walk-off case. Finally, we show that the plane waves of the nonlocal chi((2))-model...... of the nonlocal chi((2))-model, by using the singular perturbational approach. The other branch of the plane waves (i.e. the nonadiabatic branch or the optical branch) is always modulationally unstable. We compare the MI results for the adiabatic branch with the predictions obtained from the full chi((2))-model...
Notes on nonlocal projective measurements in relativistic systems
Lin, Shih-Yuin
2013-01-01
In quantum mechanical bipartite systems, naive extensions of von Neumann's projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of "R-nonlocal" variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement "Q-nonlocal". After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the "R-nonlocal" variable or the quantum nondemolition verification of a Fock state, are all suppres...
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-01
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Elliptically distributed lozenge tilings of a hexagon
Betea, Dan
2011-01-01
We present a detailed study of a 4 parameter family of elliptic weights on tilings of a hexagon introduced by Borodin, Gorin and Rains, and generalize some of their results. In the process, we connect the combinatorics of the model with the theory of elliptic special functions. We first analyze some properties of the measure and introduce canonical coordinates that are useful for combinatorially interpreting results. We then show how the computed $n$-point function (called the elliptic Selberg density) and transitional probabilities connect to the theory of $BC_n$-symmetric multivariate elliptic special functions and difference operators discovered by Rains. In particular, the difference operators intrinsically capture the combinatorial model under study, while the elliptic Selberg density is a generalization (deformation) of probability distributions pervasive in the theory of random matrices and interacting particle systems. Based on quasi-commutation relations between elliptic difference operators, we cons...
Quantum emission from hexagonal boron nitride monolayers
Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor
2016-01-01
Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.
The hexagon hypothesis: Six disruptive scenarios.
Burtles, Jim
2015-01-01
This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.
Permeation of Light Gases through Hexagonal Ice
Directory of Open Access Journals (Sweden)
Luis Gales
2012-09-01
Full Text Available Gas separation using porous solids have attracted great attention due to their energetic applications. There is an enormous economic and environmental interest in the development of improved technologies for relevant processes, such as H_{2} production, CO_{2} separation or O_{2} and N_{2} purification from air. New materials are needed for achieving major improvements. Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low pore tortuosity and high pore density, are promising candidates for membrane synthesis. Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly growing ice crystals inside capillary tubes we were able to measure the permeation of several gas species through ice crystals and investigate its relation with both the size of the guest molecules and temperature of the crystal.
Dancoff Correction in Square and Hexagonal Lattices
Energy Technology Data Exchange (ETDEWEB)
Carlvik, I.
1966-11-15
This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.
Combinatorics of giant hexagonal bilayer hemoglobins.
Hanin, L G; Vinogradov, S N
2000-01-01
The paper discusses combinatorial and probabilistic models allowing to characterize various aspects of spacial symmetry and structural heterogeneity of the giant hexagonal bilayer hemoglobins (HBL Hb). Linker-dodecamer configurations of HBL are described for two and four linker types (occurring in the two most studied HBL Hb of Arenicola and Lumbricus, respectively), and the most probable configurations are found. It is shown that, for HBL with marked dodecamers, the number of 'normal-marked' pairs of dodecamers in homological position follows a binomial distribution. The group of symmetries of the dodecamer substructure of HBL is identified with the dihedral group D6. Under natural symmetry assumptions, the total dipole moment of the dodecamer substructure of HBL is shown to be zero. Biological implications of the mathematical findings are discussed.
Structure of grain boundaries in hexagonal materials
Sarrazit, F
1998-01-01
which allows the behaviour of line-defects to be studied in complex interfacial processes. The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work invol...
Fu, Jia; Bernard, Fabrice; Kamali-Bernard, Siham
2017-02-01
X-ray method to test the material properties and to obtain elastic constants is commonly based on the Reuss model and Kroner model. Y parameter has been turned out to be an effective method to estimate elastic properties of polycrystalline material. Since Y-parameters of cubic polycrystalline material based on the certain uniform stress (Reuss model) has not been given, our work aims to complete this part of the theoretical analysis, which can effectively compare elastic constants measured by the X-ray diffraction method. The structural and the elastic properties of cubic structures (CaO and MgO) and hexagonal structures (CH and Calcite CaCO3) are investigated by the density functional theory method. And then the credibility of Y parameters for determing elastic moduli of cubic structures is proved and elastic properties in typical crystallographic planes of [100], [110] and [111] are also calculated. Meanwhile, Young's moduli of CH and Calcite structure are 58.08 GPa and 84.549 GPa, which are all close to references. Elastic properties of cubic and hexagonal structures under various pressures are calculated and the surface constructions of elastic moduli are drawn, showing the anisotropy at various directions. The crystal structure investigated in this work are typical of some primary or secondary components of Hardened Cements Pastes and their homogenized elastic properties are needed in a hierarchical multi-scale modeling, such as the one developed by some of the authors of this paper.
Nonlocalized cluster dynamics and nuclear molecular structure
Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi
2013-01-01
A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...
Nonlinear structure formation in Nonlocal Gravity
Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia
2014-01-01
We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d'Alembertian operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from $\\Lambda{\\rm CDM}$ by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength ($\\sim 6\\%$ larger today). Compared to $\\Lambda{\\rm CDM}$ today, in the nonlocal model, massive haloes are slightly more abundant (by $\\sim 10\\%$ at $M \\sim 10^{14} M_{\\odot}/h$) and concentrated ($\\approx 8\\%$ enhancement over a range of mass scales), but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo concentrations is however essential to ensure the good performance of the halo model on small scales. For...
Structure of nonlocality of plasma turbulence
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Non-local models for ductile failure
César de Sá, José; Azinpour, Erfan; Santos, Abel
2016-08-01
Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching
Energy Technology Data Exchange (ETDEWEB)
Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)
2017-05-15
As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.
Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan (Iran, Islamic Republic of); Roudbari, M.A.; Amir, S. [Department of Mechanical Engineering, Faculty of Engineering, Kashan (Iran, Islamic Republic of)
2012-09-01
In this study, an analytical method of the small scale parameter on the vibration of single-walled Boron Nitride nanotube (SWBNNT) under a moving nanoparticle is presented. SWBNNT is embedded in bundle of carbon nanotubes (CNTs) which is simulated as Pasternak foundation. Using Euler-Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. The effects of electric field, elastic medium, slenderness ratio and small scale parameter are investigated on the vibration behavior of SWBNNT under a moving nanoparticle. Results indicate the importance of using surrounding elastic medium in decrease of normalized dynamic deflection. Indeed, the normalized dynamic deflection decreases with the increase of the elastic medium stiffness values. The electric field has significant role on the nondimensional fundamental frequencies, as a smart controller. The results of this work is hoped to be of use in design and manufacturing of smart nano-electro-mechanical devices in advanced medical applications such as drug delivery systems with great applications in biomechanics.
Ansari, R.; Norouzzadeh, A.
2016-10-01
The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.
Influence of imperfect end boundary condition on the nonlocal dynamics of CNTs
Fathi, Reza; Lotfan, Saeed; Sadeghi, Morteza H.
2017-03-01
Imperfections that unavoidably occur during the fabrication process of carbon nanotubes (CNTs) have a significant influence on the vibration behavior of CNTs. Among these imperfections, the boundary condition defect is studied in this investigation based on the nonlocal elasticity theory. To this end, a mathematical model of the non-ideal end condition in a cantilever CNT is developed by a strongly non-linear spring to study its effect on the vibration behavior. The weak form equation of motion is derived via Hamilton's principle and solved based on Rayleigh-Ritz approach. Once the frequency response function (FRF) of the CNT is simulated, it is found that the defect parameter injects noise to the FRF in the range of lower frequencies and as a result the small scale effect on the FRF remains undisturbed in high frequency ranges. Besides, in this work a process is introduced to estimate the nonlocal and defect parameters for establishing the mathematical model of the CNT based on FRF, which can be competitive because of its lower instrumentation and data analysis costs. The estimation process relies on the resonance frequencies and the magnitude of noise in the frequency response function of the CNT. The results show that the constructed dynamic response of the system based on estimated parameters is in good agreement with the original response of the CNT.
Structural and elastic properties of Ce2O3 under pressure from LDA+ U method
Qi, Yuan-Yuan; Niu, Zhen-Wei; Cheng, Cai; Cheng, Yan
2013-08-01
We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+ U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a 0 and c/c 0, ratio c/a, and normalized primitive volume V/V 0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C 44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.
Nonlocal Mumford-Shah regularizers for color image restoration.
Jung, Miyoun; Bresson, Xavier; Chan, Tony F; Vese, Luminita A
2011-06-01
We propose here a class of restoration algorithms for color images, based upon the Mumford-Shah (MS) model and nonlocal image information. The Ambrosio-Tortorelli and Shah elliptic approximations are defined to work in a small local neighborhood, which are sufficient to denoise smooth regions with sharp boundaries. However, texture is nonlocal in nature and requires semilocal/non-local information for efficient image denoising and restoration. Inspired from recent works (nonlocal means of Buades, Coll, Morel, and nonlocal total variation of Gilboa, Osher), we extend the local Ambrosio-Tortorelli and Shah approximations to MS functional (MS) to novel nonlocal formulations, for better restoration of fine structures and texture. We present several applications of the proposed nonlocal MS regularizers in image processing such as color image denoising, color image deblurring in the presence of Gaussian or impulse noise, color image inpainting, color image super-resolution, and color filter array demosaicing. In all the applications, the proposed nonlocal regularizers produce superior results over the local ones, especially in image inpainting with large missing regions. We also prove several characterizations of minimizers based upon dual norm formulations.
Kiani, Keivan
2017-08-01
Until now various aspects of vibrations of single-walled carbon nanotubes (SWCNTs) have been explored; however, their dynamics and possible instabilities because of the excitation of matrix have not been addressed methodically. By considering a harmonic transverse excitation, the explicit expressions of elastic fields are obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam models. The roles of the nonlocality, slenderness ratio, amplitude and frequency of matrix excitation and interactional behavior of the embedded nanotube on the dynamic transverse displacements of SWCNTs are comprehensively displayed. The capabilities of the Rayleigh model as well as the Timoshenko model in capturing the deflection of the nanostructure based on the higher-order beam theory are also explained in some detail. The nonlocal elastodynamic fields of the nanostructure in the resonance state as well as the critical values of lateral and rotational stiffness of the matrix are also introduced and the influences of crucial factors on such parameters are explained and discussed carefully.
Energy Technology Data Exchange (ETDEWEB)
Firouz-Abadi, R. D.; Fotouhi, M. M.; Permoon, M. R.; Haddadpour, H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2012-02-15
The small-scale effect on the natural frequencies and buckling of pressurized nanotubes is investigated in this study. Based on the firstorder shear deformable shell theory, the nonlocal theory of elasticity is used to account for the small-scale effect and the governing equations of motion are obtained. Applying modal analysis technique and based on Galerkin's method a procedure is proposed to obtain natural frequencies of vibrations. For the case of nanotubes with simply supported boundary conditions, explicit expressions are obtained which establish the dependency of the natural frequencies and buckling loads of the nanotube on the small-scale parameter and natural frequencies obtained by local continuum mechanics. The obtained solutions generalize the results of nano-bar and -beam models and are verified by the literature. Based on several numerical studies some conclusions are drawn about the small-scale effect on the natural frequencies and buckling pressure of the nanotubes.
Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect
Schumer, Rina; Taloni, Alessandro; Furbish, David Jon
2017-03-01
Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.
Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics.
Luca, Vittorio; Griffith, Christopher S; Hanna, John V
2009-07-06
Low-temperature (25-600 degrees C) thermal transformations have been studied for hydrothermally prepared, microcrystalline hexagonal tungsten bronze (HTB) phases A(x)WO(3+x/2).zH(2)O as a function of temperature, where A is an exchangeable cation (in this case Na(+) or Cs(+)) located in hexagonal structural tunnels. Thermal treatment of the as-prepared sodium- and cesium-exchanged phases in air were monitored using a conventional laboratory-based X-ray diffractometer, while thermal transformations in vacuum were studied using synchrotron X-ray and neutron diffraction. Concurrent thermogravimetric, diffuse reflectance infrared (DRIFT), and (23)Na and (133)Cs magic angle spinning (MAS) NMR spectroscopic studies have also been undertaken. For the cesium variant, cell volume contraction occurred from room temperature to about 350 degrees C, the regime in which water was "squeezed" out of tunnel sites. This was followed by a lattice expansion in the 350-600 degrees C temperature range. Over the entire temperature range, a net thermal contraction was observed, and this was the result of an anisotropic change in the cell dimensions which included a shortening of the A-O2 bond length. These changes explain why Cs(+) ions are locked into tunnel positions at temperatures as low as 400 degrees C, subsequently inducing a significant reduction in Cs(+) extractability under low pH (nitric acid) conditions. The changing Cs(+) speciation as detected by (133)Cs MAS NMR showed a condensation from multiple Cs sites, presumably associated with differing modes of Cs(+) hydration in the tunnels, to a single Cs(+) environment upon thermal transformation and water removal. While similar lattice contraction was observed for the as-prepared sodium variant, the smaller radius of Na(+) caused it to be relatively easily removed with acid in comparison to the Cs(+) variant. From (23)Na MAS NMR studies of the parent material, complex Na(+) speciation was observed with dehydrated and various
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Degenerate-band-edge engineering inspired by nonlocal transformation optics
Directory of Open Access Journals (Sweden)
Moccia Massimo
2016-01-01
Full Text Available We address the engineering of degenerate-band-edge effects in nonlocal metamaterials. Our approach, inspired by nonlocal-transformation-optics concepts, is based on the approximation of analytically-derived nonlocal constitutive “blueprints”. We illustrate the synthesis procedure, and present and validate a possible implementation based on multilayered metamaterials featuring anisotropic constituents. We also elucidate the physical mechanisms underlying our approach and proposed configuration, and highlight the substantial differences with respect to other examples available in the topical literature.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Generic features of modulational instability in nonlocal Kerr media
DEFF Research Database (Denmark)
Wyller, John; Krolikowski, Wieslaw; Bang, Ole
2002-01-01
The modulational instability (MI) of plane waves in nonlocal Kerr media is studied for a general response function. Several generic properties are proven mathematically, with emphasis on how new gain bands are formed through a bifurcation process when the degree of nonlocality, sigma, passes...... the nonlocality tends to suppress MI, but can never remove it completely, irrespectively of the shape of the response function. For a defocusing nonlinearity the stability properties depend sensitively on the profile of the response function. For response functions with a positive-definite spectrum...
Unusual resonances in nanoplasmonic structures due to nonlocal response
DEFF Research Database (Denmark)
Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka
2011-01-01
We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the local-response Drude model. Avoiding the usual quasistatic approximation, we...... find that such resonances do indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific example we consider nanosized metallic cylinders...
Theory of nonlocal soliton interaction in nematic liquid crystals
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bang, Ole; Krolikowski, Wieslaw
2005-01-01
We investigate interactions between spatial nonlocal bright solitons in nematic liquid crystals using an analytical “effective particle” approach as well as direct numerical simulations. The model predicts attraction of out-of-phase solitons and the existence of their stable bound state....... This nontrivial property is solely due to the nonlocal nature of the nonlinear response of the liquid crystals. We further predict and verify numerically the critical outwards angle and degree of nonlocality which determine the transition between attraction and repulsion of out-of-phase solitons....
Stochastic waves in a Brusselator model with nonlocal interaction.
Biancalani, Tommaso; Galla, Tobias; McKane, Alan J
2011-08-01
We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.
Non-local thin films in Casimir force calculations
Esquivel, R
2005-01-01
he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.
Incompressible turbulence as non-local field theory
Indian Academy of Sciences (India)
Mahendra K Verma
2005-03-01
It is well-known that incompressible turbulence is non-local in real space because sound speed is infinite in incompressible fluids. The equation in Fourier space indicates that it is non-local in Fourier space as well. However, the shell-to-shell energy transfer is local. Contrast this with Burgers equation which is local in real space. Note that the sound speed in Burgers equation is zero. In our presentation we will contrast these two equations using non-local field theory. Energy spectrum and renormalized parameters will be discussed.
Measurement of elastic nonlinearity of soft solid with transient elastography
Catheline, S.; Gennisson, J.-L.; Fink, M.
2003-12-01
Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus μ (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.
Measurement of elastic nonlinearity of soft solid with transient elastography.
Catheline, S; Gennisson, J L; Fink, M
2003-12-01
Transient elastography is a powerful tool to measure the speed of low-frequency shear waves in soft tissues and thus to determine the second-order elastic modulus mu (or the Young's modulus E). In this paper, it is shown how transient elastography can also achieve the measurement of the nonlinear third-order elastic moduli of an Agar-gelatin-based phantom. This method requires speed measurements of polarized elastic waves measured in a statically stressed isotropic medium. A static uniaxial stress induces a hexagonal anisotropy (transverse isotropy) in solids. In the special case of uniaxially stressed isotropic media, the anisotropy is not caused by linear elastic coefficients but by the third-order nonlinear elastic constants, and the medium recovers its isotropic properties as soon as the uniaxial stress disappears. It has already been shown how transient elastography can measure the elastic (second-order) moduli in a media with transverse isotropy such as muscles. Consequently this method, based on the measurement of the speed variations of a low-frequency (50-Hz) polarized shear strain waves as a function of the applied stress, allows one to measure the Landau moduli A, B, C that completely describe the third-order nonlinearity. The several orders of magnitude found among these three constants can be justified from the theoretical expression of the internal energy.
Nonlocality Distillation and Trivial Communication Complexity for High-Dimensional Systems
Institute of Scientific and Technical Information of China (English)
Yan Li; Xiang-Jun Ye; Jing-Ling Chen
2016-01-01
A nonlocality distillation protocol for arbitrary high-dimensional systems is proposed.We study the nonlocality distillation in the 2-input d-output bi-partite case.Firstly,we give the one-parameter nonlocal boxes and their correlated distilling protocol.Then,we generalize the one-parameter nonlocality distillation protocol to the two-parameter case.Furthermore,we introduce a contracting protocol testifying that the 2-input d-output nonlocal boxes make communication complexity trivial.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
Directory of Open Access Journals (Sweden)
P.G.L. Leach
2005-11-01
Full Text Available We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R. The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
The quantum handshake entanglement, nonlocality and transactions
Cramer, John G
2016-01-01
This book shines bright light into the dim recesses of quantum theory, where the mysteries of entanglement, nonlocality, and wave collapse have motivated some to conjure up multiple universes, and others to adopt a "shut up and calculate" mentality. After an extensive and accessible introduction to quantum mechanics and its history, the author turns attention to his transactional model. Using a quantum handshake between normal and time-reversed waves, this model provides a clear visual picture explaining the baffling experimental results that flow daily from the quantum physics laboratories of the world. To demonstrate its powerful simplicity, the transactional model is applied to a collection of counter-intuitive experiments and conceptual problems.
Understanding quantum interference in General Nonlocality
Wanng, Hai-Jhun
2010-01-01
In this paper we attempt to give an understanding of quantum double-slit interference of fermions in the framework of General Nonlocality (GN) [J. Math. Phys. 49, 033513 (2008)] by studying the self-interaction of matter wave. From the metric of the GN, we derive a special formalism to interpret the interference contrast when the self-interaction is perturbative. According to the formalism, the characteristic of interference pattern is in agreement with experiment qualitatively. As examples, we apply the formalism to the cases governed by Schr\\"odinger current and Dirac current respectively, both of which are relevant to topology. The gap between these two cases corresponds to a spin-current effect, which is possible to test in the near future. In addition, a general interference formalism for both perturbative and non-perturbative self-interactions is presented. By analyzing the general formalism we predict that in the nonperturbative limit there is no interference at all.
A nonlocal spatial model for Lyme disease
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Photonic multipartite entanglement conversion using nonlocal operations
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
A simple nonlocal model for exchange.
Janesko, Benjamin G
2009-12-21
This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.
A quantum loophole to Bell nonlocality
Romero-Rochin, Victor
2015-01-01
We argue that the conclusion of Bell theorem, namely, that there must be spatial non-local correlations in certain experimental situations, does not apply to typical individual measurements performed on entangled EPR pairs. Our claim is based on three points, (i) on the notion of quantum {\\it complete measurements}; (ii) on Bell results on local yet distant measurements; and (iii) on the fact that perfect simultaneity is banned by the quantum mechanics. We show that quantum mechanics indicates that, while the measurements of the pair members are indeed space-like separated, the pair measurement is actually a sequence of two complete measurements, the first one terminating the entanglement and, therefore, the second one becoming unrelated to the initial preparation of the entangled pair. The outstanding feature of these measurements is that neither of them violates the principle of locality. We discuss that the present measurement viewpoint appears to run contrary to the usual interpretation of "superposition"...
Construction of nonlocal multipartite quantum states
Zhang, Zhi-Chao; Zhang, Ke-Jia; Gao, Fei; Wen, Qiao-Yan; Oh, C. H.
2017-05-01
For general bipartite quantum systems, many sets of locally indistinguishable orthogonal product states have been constructed so far. Here, we first present a general method to construct multipartite orthogonal product states in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥4 ) by using some locally indistinguishable bipartite orthogonal product states. And we prove that these multipartite orthogonal quantum states cannot be distinguished by local operations and classical communication. Furthermore, in d1⊗d2⊗⋯⊗dn(d1 ,2 ,⋯,n≥3 ,n ≥5 ) , we give a general method to construct a much smaller number of locally indistinguishable multipartite orthogonal product states for even and odd n separately. In addition, we also present a general method to construct complete orthogonal product bases for the multipartite quantum systems. Our results demonstrate the phenomenon of nonlocality without entanglement for the multipartite quantum systems.
Elastically Decoupling Dark Matter
Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2015-01-01
We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
Paro, Alberto
2013-01-01
Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java
RESTUDY OF THEORIES FOR ELASTIC SOLIDS WITH MICROSTRUCTURE
Institute of Scientific and Technical Information of China (English)
戴天民
2002-01-01
The dynamical theories of elastic solids with microstructure are restudied and the reason why so many notations have been introduced for derivation of basic equations for such theories is given. In view of the existing problems in those theories the rather general principle of power and energy rate is postulated and the equations of motion, the balance equations of energy rate and energy and the boundary conditions for local and nonlocal theories are naturally derived with help of that principle and the generalized Piola' s theorem. These basic equations and the boundary conditions together with the initial conditions may be used to solve the mixed problems of the dynamical theory of elastic solids with microstructure.
Bootstrapping the Three-Loop Hexagon
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP
2011-11-08
We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.
Hexagonal boron-nitride nanomesh magnets
Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J.
2016-09-01
The formation of magnetic and spintronic devices using two-dimensional (2D) atom-thin layers has attracted attention. Ferromagnetisms (FMs) arising from zigzag-type atomic structure of edges of 2D atom-thin materials have been experimentally observed in graphene nanoribbons, hydrogen (H)-terminated graphene nanomeshes (NMs), and few-layer oxygen (O)-terminated black phosphorus NMs. Herein, we report room-temperature edge FM in few-layer hexagonal boron-nitride (hBN) NMs. O-terminated hBNNMs annealed at 500 °C show the largest FM, while it completely disappears in H-terminated hBNNMs. When hBNNMs are annealed at other temperatures, amplitude of the FM significantly decreases. These are highly in contrast to the case of graphene NMs but similar to the cases of black phosphorus NM and suggest that the hybridization of the O atoms with B(N) dangling bonds of zigzag pore edges, formed at the 500 °C annealing, strongly contribute to this edge FM. Room-temperature FM realizable only by exposing hBNNMs into air opens the way for high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.
Hyperbolic phonon polaritons in hexagonal boron nitride
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Instability of vibrational modes in hexagonal lattice
Korznikova, Elena A.; Bachurin, Dmitry V.; Fomin, Sergey Yu.; Chetverikov, Alexander P.; Dmitriev, Sergey V.
2017-02-01
The phenomenon of modulational instability is investigated for all four delocalized short-wave vibrational modes recently found for the two-dimensional hexagonal lattice with the help of a group-theoretic approach. The polynomial pair potential with hard-type quartic nonlinearity ( β-FPU potential with β > 0) is used to describe interactions between atoms. As expected for the hard-type anharmonic interactions, for all four modes the frequency is found to increase with the amplitude. Frequency of the modes I and III bifurcates from the upper edge of the phonon spectrum, while that of the modes II and IV increases from inside the spectrum. It is also shown that the considered model supports spatially localized vibrational mode called discrete breather (DB) or intrinsic localized mode. DB frequency increases with the amplitude above the phonon spectrum. Two different scenarios of the mode decay were revealed. In the first scenario (for modes I and III), development of the modulational instability leads to a formation of long-lived DBs that radiate their energy slowly until thermal equilibrium is reached. In the second scenario (for modes II and IV) a transition to thermal oscillations of atoms is observed with no formation of DBs.
Performance of the ARIANNA Hexagonal Radio Array
Barwick, S W; Besson, D Z; Binder, G; Binns, W R; Boersma, D; Bose, R G; Braun, D L; Buckley, J H; Bugaev, V; Buitink, S; Dookayka, K; Dowkontt, P F; Duffin, T; Euler, S; Gerhardt, L; Gustafsson, L; Hallgren, A; Hanson, J C; Israel, M H; Kiryluk, J; Klein, S; Kleinfelder, S; Nelles, A; Niederhausen, H; Olevitch, M A; Persichelli, C; Ratzlaff, K; Rauch, B F; Reed, C; Roumi, M; Samanta, A; Simburger, G E; Stezelberger, T; Tatar, J; Uggerhoj, U; Walker, J; Young, R
2015-01-01
Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf of Antarctica has been completed. This detector serves as a pilot program to the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very high energy neutrinos by observing the radio pulse generated by neutrino-induced charged particle showers in the ice. All HRA stations ran reliably and took data during the entire 2014-2015 austral summer season. A new radio signal direction reconstruction procedure is described, and is observed to have a resolution better than a degree. The reconstruction is used in a preliminary search for potential neutrino candidate events in the data from one of the newly installed detector stations. Three cuts are used to separate radio backgrounds from neutrino signals. The cuts are found to filter out all data recorded by the station during the season while preserving 85.4% of simulated neutrino events that trigger the station. This efficiency is similar to that found in analyses of previ...
Whole Core Transport Calculation Methodology for a Hexagonal Core
Energy Technology Data Exchange (ETDEWEB)
Cho, J. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.; Joo, H. G
2007-07-15
This report discusses the hexagonal module implemented to the DeCART code and the performance of them. The implemented hexagonal module includes the hexagonal ray tracing and the CMFD acceleration modules. The performance of the implemented hexagonal module is examined for 4 tests of: (1) CMFD acceleration test, (2) the accuracy test of the hexagonal module, (3) the performance test for 2-D NGNP problem and (4) the applicability test for 3-D NGNP problem. The features of the implemented hexagonal modules are: (1) The Modular ray tracing scheme based on a hexagonal assembly and a path linking scheme between the modular rays. (2) Segment generation based on the structure unit. (3) Cell ray approximation: This feature is developed to reduce the memory required to store the segment information. (4) Modified cycle ray scheme that begins the ray tracing at a given surface and finishes if the reflected ray meets the starting surface. This feature is developed to reduce the memory required for the angular flux at the core boundary. (5) Fixed assembly geometry. The pin geometry of the single pin per assembly problem is different from that of the multi-pin problem. The core geometry of a single assembly problem is also different from that of the multi-assembly problem. (6) CMFD module based on unstructured cell. This feature is to deal with the irregular gap cells that are positioned at the assembly boundaries. The examination results of the 4 tests can be summarized as: (1) The CMFD acceleration test shows that the CMFD module speedups about greater than 200 for the core problem. (2) The accuracy test shows that the hexagonal MOC module produces an accurate solution of less than 60 pcm of eigenvalue and less than 2 % of local pin power errors. (3) The performance test for 2-D NGNP problem shows that the implemented hexagonal module works soundly and produces a reasonable solution by cooperating with the existing DeCART library and the other modules. (4) The applicability
Calculation of the Electroelastic Green's Function of the Hexagonal Infinite Medium
Michelitsch, Thomas
2015-01-01
The electroelastic 4 $\\times$ 4 Green's function of a piezoelectric hexagonal (transversely isotropic) infinitely extended medium is calculated explicitly in closed compact form (eqs. (73) ff. and (88) ff., respectively) by using residue calculation. The results can also be derived from Fredholm's method [2]. In the case of vanishing piezoelectric coupling the derived Green's function coincides with two well known results: Kr{\\"o}ner 's expressions for the elastic Green's function tensor [4] is reproduced and the electric part then coincides with the electric potential (solution of Poisson equation) which is caused by a unit point charge. The obtained electroelastic Green's function is useful for the calculation of the electroelastic Eshelby tensor [16].
Nonlocal viscous transport and the effect on fluid stress.
Todd, B D; Hansen, J S
2008-11-01
We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.
NONDENSELY DEFINED IMPULSIVE NEUTRAL FUNCTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS
Institute of Scientific and Technical Information of China (English)
Yueju Cao; Xianlong Fu
2009-01-01
In this paper, using a fixed point theorem for condensing multi-valued maps, we investigate the existence of integral solutions to a class of nondensely defined neutral evolution impulsive differential inclusions with nonlocal conditions in Banach spaces.
Controllability of semilinear integrodifferential equations with nonlocal conditions
Directory of Open Access Journals (Sweden)
Rahima Atmania
2005-07-01
Full Text Available We establish sufficient conditions for the controllability of some semilinear integrodifferential systems with nonlocal condition in a Banach space. The results are obtained using the Schaefer fixed-point theorem and semigroup theory.
Tests of quantum-gravity-induced nonlocality via optomechanical experiments
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2017-01-01
The nonrelativistic limit of nonlocal modifications to the Klein-Gordon operator is studied, and the experimental possibilities of casting stringent constraints on the nonlocality scale via planned and/or current optomechanical experiments are discussed. Details of the perturbative analysis and semianalytical simulations leading to the dynamic evolution of a quantum harmonic oscillator in the presence of nonlocality reported in [A. Belenchia, D. M. T. Benincasa, S. Liberati, F. Marin, F. Marino, and A. Ortolan, Phys. Rev. Lett. 116, 161303 (2016), 10.1103/PhysRevLett.116.161303] are given, together with a comprehensive account of the experimental methodology with particular regard to sensitivity limitations related to thermal decoherence time and active cooling of the oscillator. Finally, a strategy for detecting nonlocality scales of the order of 10-22÷10-26 m by means of the spontaneous time-periodic squeezing of quantum-coherent states is provided.
Controllability of impulsive functional differential systems with nonlocal conditions
Directory of Open Access Journals (Sweden)
Yansheng Liu
2013-08-01
Full Text Available In this article, we study the controllability of impulsive functional differential equations with nonlocal conditions. We establish sufficient conditions for controllability, via the measure of noncompactness and Monch fixed point theorem.
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2016-08-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the parties share nonlocal correlations as given by the Popescu-Rohrlich box. This means that communication is not required for efficient instantaneous nonlocal quantum computation. Exploiting the well-known relation to position-based cryptography, our result also implies the impossibility of secure position-based cryptography against adversaries with nonsignaling correlations. Furthermore, our construction establishes a quantum analog of the classical communication complexity collapse under nonsignaling correlations.
Entanglement and nonlocality in multi-particle systems
Reid, M D; Drummond, P D
2011-01-01
Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hidden-variable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.
Self-adjoint integral operator for bounded nonlocal transport
Maggs, J. E.; Morales, G. J.
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
Understanding quantum non-locality through pseudo-telepathy game
Kunkri, Samir
2006-11-01
Usually by quantum non-locality we mean that quantum mechanics can not be replaced by local realistic theory. On the other hand this nonlocal feature of quantum mechanics can not be used for instantaneous communication and hence it respect Einstein's special theory of relativity. But still it is not trivial as proved by various quantum information processing using entangled states. Recently there have been studies of hypothetical non-local system again respecting no-signalling which is beyond quantum mechanics. Here we study the power of such a hypothetical nonlocal box first suggested by Popescu et.al. in the context of recently suggested pseudo-telepathy game constructed from a Kochen-Specker set.
Local orthogonality provides a tight upper bound for Hardy's nonlocality
Das, Subhadipa; Banik, Manik; Gazi, Md. Rajjak; Rai, Ashutosh; Kunkri, Samir
2013-12-01
The amount of nonlocality in quantum theory is limited compared to that allowed in generalized no-signaling theory [S. Popescu and D. Rohrlich, Found. Phys.FNDPA40015-901810.1007/BF02058098 24, 379 (1994)]. This feature, for example, gets manifested in the amount of Bell inequality violation as well as in the degree of success probability of Hardy's (Cabello's) nonlocality argument. Physical principles like information causality and macroscopic locality have been proposed for analyzing restricted nonlocality in quantum mechanics, viz. explaining the Cirel'son bound. However, these principles are not very successful in explaining the maximum success probability of Hardy's as well as Cabello's argument in quantum theory. Here we show that a recently proposed physical principle, namely local orthogonality, does better by providing a tighter upper bound on the success probability for Hardy's nonlocality. This bound is relatively closer to the corresponding quantum value compared to the bounds achieved from other principles.
Causal Set theory, non-locality and phenomenology
Belenchia, Alessio
2015-01-01
This proceeding is based on a talk prepared for the XIV Marcel Grossmann meeting. We review some results on causal set inspired non-local theories as well as work in progress concerning their phenomenology.
Observation of two-dimensional nonlocal gap solitons
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Bennett, Francis H.; Neshev, Dragomir N.
2009-01-01
We demonstrate, both theoretically and experimentally, the existence of nonlocal gap solitons in twodimensional periodic photonic structures with defocusing thermal nonlinearity. We employ liquid-infiltrated photonic crystal fibers and show how the system geometry can modify the effective respons...
Nonlocal quintic nonlinearity by cascaded THG in dispersive media
DEFF Research Database (Denmark)
Eilenberger, F.; Bache, Morten; Minardi, S.;
2011-01-01
We discuss a perturbed nonlocal cubicquintic equation describing the propagation of light pulses in a dispersive, cubic nonlinearmedium in the presence of phase and velocity mismatched third harmonic generation....
Nonlocal scalar quantum field theory from causal sets
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano
2015-03-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Nonlocal Scalar Quantum Field Theory from Causal Sets
Belenchia, Alessio; Liberati, Stefano
2014-01-01
We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.
Local implementation of nonlocal operations with block forms
Zhao, Ning Bo; Wang, An Min
2008-07-01
We investigate the local implementation of nonlocal operations with the block matrix form, and propose a protocol for any diagonal or offdiagonal block operation. We generalize this method to the two-party multiqubit case and the multiparty case. We also compare the local implementation of nonlocal block operations with the remote implementation of local operations [Huelga , Phys. Rev. A 63, 042303 (2001)], and point out a relation between them.
Acceleration-Induced Nonlocal Electrodynamics in Minkowski Spacetime
Muench, U; Mashhoon, B; Muench, Uwe; Hehl, Friedrich W.; Mashhoon, Bahram
2000-01-01
We discuss two nonlocal models of electrodynamics in which the nonlocality is induced by the acceleration of the observer. Such an observer actually measures an electromagnetic field that exhibits persistent memory effects. We compare Mashhoon's model with a new ansatz developed here in the framework of charge & flux electrodynamics with a constitutive law involving the Levi-Civita connection as seen from the observer's local frame and conclude that they are in partial agreement only for the case of constant acceleration.
Noether's theorem in non-local field theories
Krivoruchenko, M I
2016-01-01
Explicit expressions are constructed for a locally conserved vector current associated with a continuous internal symmetry and for energy-momentum and angular-momentum density tensors associated with the Poincar\\'e group in field theories with higher-order derivatives and in non-local field theories. An example of non-local charged scalar field equations with broken C and CPT symmetries is considered. For this case, we find simple analytical expressions for the conserved currents.
Nonlocal correlations: Fair and Unfair Strategies in Bayesian Game
Roy, Arup; Mukherjee, Amit; Guha, Tamal; Ghosh, Sibasish; Bhattacharya, Some Sankar; Banik, Manik
2016-01-01
Interesting connection has been established between two apparently unrelated concepts, namely, quantum nonlocality and Bayesian game theory. It has been shown that nonlocal correlations in the form of advice can outperform classical equilibrium strategies in common interest Bayesian games and also in conflicting interest games. However, classical equilibrium strategies can be of two types, fair and unfair. Whereas in fair equilibrium payoffs of different players are same, in unfair case they ...
Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation
Broadbent, Anne
2015-01-01
In instantaneous nonlocal quantum computation, two parties cooperate in order to perform a quantum computation on their joint inputs, while being restricted to a single round of simultaneous communication. Previous results showed that instantaneous nonlocal quantum computation is possible, at the cost of an exponential amount of prior shared entanglement (in the size of the input). Here, we show that a linear amount of entanglement suffices, (in the size of the computation), as long as the pa...
Self-organization analysis for a nonlocal convective Fisher equation
Energy Technology Data Exchange (ETDEWEB)
Cunha, J.A.R. da [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Penna, A.L.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)], E-mail: penna.andre@gmail.com; Vainstein, M.H. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Morgado, R. [International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil); Departamento de Matematica, Universidade de Brasilia, 70910-900 Brasilia DF (Brazil); Oliveira, F.A. [Instituto de Fisica, Universidade de Brasilia, 70919-970 Brasilia DF (Brazil); International Center for Condensed Matter Physics, CP 04513, 70919-970 Brasilia DF (Brazil)
2009-02-02
Using both an analytical method and a numerical approach we have investigated pattern formation for a nonlocal convective Fisher equation with constant and spatial velocity fields. We analyze the limits of the influence function due to nonlocal interaction and we obtain the phase diagram of critical velocities v{sub c} as function of the width {mu} of the influence function, which characterize the self-organization of a finite system.
Twisted Backgrounds, PP-Waves and Nonlocal Field Theories
Alishahiha, M; Alishahiha, Mohsen; Ganor, Ori J.
2003-01-01
We study partially supersymmetric plane-wave like deformations of string theories and M-theory on brane backgrounds. These deformations are dual to nonlocal field theories. We calculate various expectation values of configurations of closed as well as open Wilson loops and Wilson surfaces in those theories. We also discuss the manifestation of the nonlocality structure in the supergravity backgrounds. A plane-wave like deformation of little string theory has also been studied.