WorldWideScience

Sample records for nonlocal heat transport

  1. Theory of nonlocal heat transport in fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Maximov, A.V. (Tesla Labs., Inc., La Jolla, CA (United States)); Silin, V.P. (P.N. Lebedev Inst., Russian Academy of Sciences, Moscow (Russia))

    1993-01-25

    A new analytic solution of the electron kinetic equation describing the interacting of the electromagnetic heating field with plasma is obtained in the region of plasma parameters where the Spitzer-Harm classical theory is invalid. A novel expression for the nonlocal electron thermal conductivity is derived. (orig.).

  2. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  3. Momentum transport and non-local transport in heat-flux-driven magnetic reconnection in HEDP

    Science.gov (United States)

    Liu, Chang; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    Strong magnetic fields are readily generated in high-energy-density plasmas and can affect the heat confinement properties of the plasma. Magnetic reconnection can in turn be important as an inverse process, which destroys or reconfigures the magnetic field. Recent theory has demonstrated a novel physics regime for reconnection in high-energy-density plasmas where the magnetic field is advected into the reconnection layer by plasma heat flux via the Nernst effect. In this work we elucidate the physics of the electron dissipation layer in this heat-flux-driven regime. Through fully kinetic simulation and a new generalized Ohm's law, we show that momentum transport due to the heat-flux-viscosity effect provides the dissipation mechanism to allow magnetic field line reconnection. Scaling analysis and simulations show that the characteristic width of the current sheet in this regime is several electron mean-free-paths. These results additionally show a coupling between non-local transport and momentum transport, which in turn affects the dynamics of the magnetic field. This work was supported by the U.S. Department of Energy under Contract No. DE-SC0008655.

  4. Heat Transport of Non-Local Effect with Modulated SMBI on HL-2A

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-Juan; DING Xuan-Tong; YAO Liang-Hua; FENG Bei-Bin; LIU Ze-Tian; GAO Ya-Dong; LI Wei; LI Xue-Hong; DUAN Xu-Ru; YANG Qing-Wei

    2009-01-01

    Modulated supersonic molecular beam (SMB) injection is introduced to study transport features of non-local transport phenomenon on HL-2A.Repetitive non-local effect induced by modulated SMBI allows Fourier transformation of the temperature perturbation,yielding detailed investigation of the pulse propagation. Fourier analysis provides evidence for existence of internal transport barriers.Meanwhile,experimental progress of nonlocal effect was made in the HL-2A Tokamak in 2007.The core electron temperature Te rise increases from 18% to more than 40% and the duration of the Te rise could be prolonged by changing the conditions of SMB injection.

  5. Nonlocal thermal transport in solar flares

    Science.gov (United States)

    Karpen, Judith T.; Devore, C. Richard

    1987-01-01

    A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.

  6. Towards an emerging understanding of non-locality phenomena and non-local transport

    Science.gov (United States)

    Ida, K.; Shi, Z.; Sun, H. J.; Inagaki, S.; Kamiya, K.; Rice, J. E.; Tamura, N.; Diamond, P. H.; Dif-Pradalier, G.; Zou, X. L.; Itoh, K.; Sugita, S.; Gürcan, O. D.; Estrada, T.; Hidalgo, C.; Hahm, T. S.; Field, A.; Ding, X. T.; Sakamoto, Y.; Oldenbürger, S.; Yoshinuma, M.; Kobayashi, T.; Jiang, M.; Hahn, S. H.; Jeon, Y. M.; Hong, S. H.; Kosuga, Y.; Dong, J.; Itoh, S.-I.

    2015-01-01

    In this paper, recent progress on experimental analysis and theoretical models for non-local transport (non-Fickian fluxes in real space) is reviewed. The non-locality in the heat and momentum transport observed in the plasma, the departures from linear flux-gradient proportionality, and externally triggered non-local transport phenomena are described in both L-mode and improved-mode plasmas. Ongoing evaluation of ‘fast front’ and ‘intrinsically non-local’ models, and their success in comparisons with experimental data, are discussed

  7. Nonlocal transport in superconducting oxide nanostructures

    Science.gov (United States)

    Veazey, Joshua; Cheng, Guanglei; Lu, Shicheng; Tomczyk, Michelle; Irvin, Patrick; Huang, Mengchen; Wung Bark, Chung; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2013-03-01

    We report nonlocal transport signatures in the superconducting state of nanostructures formed[2] at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Nonlocal resistances (nonlocal voltage divided by current) are as large as 200 Ω when 2-10 μm separate the current-carrying segments from the voltage-sensing leads. The nonlocal resistance reverses sign at the local critical current of the superconducting state. Features observed in the nonlocal V-I curves evolve with back gate voltage and magnetic field, and are correlated with the local four-terminal V-I curves. We discuss how nonlocal and local transport effects in LaAlO3/SrTiO3 nanostructures may result from the electronic phase separation and superconducting inhomogeneity reported by others in planar structures[3]. This work is supported by AFOSR (FA9550-10-1-0524) and NSF DMR-0906443

  8. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, Thierry, E-mail: thierry.goudon@inria.fr [Team COFFEE, INRIA Sophia Antipolis Mediterranee (France); Labo. J.A. Dieudonne CNRS and Univ. Nice-Sophia Antipolis (UMR 7351), Parc Valrose, 06108 Nice cedex 02 (France); Parisot, Martin, E-mail: martin.parisot@gmail.com [Project-Team SIMPAF, INRIA Lille Nord Europe, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d' Ascq cedex (France)

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  9. Non-local model analysis of heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  10. Non-local parallel transport in BOUT++

    CERN Document Server

    Omotani, J T; Havlickova, E; Umansky, M

    2015-01-01

    Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.

  11. Numerical investigation of non-local electron transport in laser-produced plasmas

    Institute of Scientific and Technical Information of China (English)

    Dong Ya-Lin; Zhao Bin; Zheng Jian

    2007-01-01

    Non-local electron transport in laser-produced plasmas under inertial confinement fusion (ICF) conditions is studied based on Fokker-Planck (FP) and hydrodynamic simulations. A comparison between the classical Spitzer-H(a)rm (SH)transport model and non-local transport models has been made. The result shows that among those non-local models the Epperlein and Short (ES) model of heat flux is in reasonable agreement with the FP simulation in overdense region.However, the non-local models are invalid in the hot underdense plasmas. Hydrodynamic simulation is performed with the flux limiting model and the non-local model, separately. The simulation results show that in the underdense region of the laser-produced plasmas the temperature given by the flux limiting model is significantly higher than that given with the non-local model.

  12. Comparison of the nonlocal electron transport phenomenon between LHD and TFTR

    Science.gov (United States)

    Tamura, Naoki; Fredrickson, Eric; Inagaki, Shigeru; Ida, Katsumi; Tsuchiya, Hayato; Tokuzawa, Tokihiko; Itoh, Kimitaka; Nagayama, Yoshio; Yamada, Hiroshi; Morisaki, Tomohiro; LHD Team

    2016-10-01

    In order to gain a predictive capability to achieve high-performance fusion plasmas, a better understanding of electron heat transport in magnetically confined plasmas is highly required. Although recent experiments and simulations in the fusion research have revealed important characteristics of electron heat transport, there still are a number of outstanding issues in electron heat transport such as nonlocality, which is defined as an instant interaction of transport at between distant locations. The nonlocality in electron heat transport is believed to be particularly prominent in a so-called nonlocal transport phenomenon, a sudden jump in core electron temperature right after an edge cooling, which has been firstly discovered in tokamak and recently done in helical device, the Large Helical Device (LHD). Experimental results obtained in the LHD provided new insights on the nonlocal transport phenomenon. In this contribution, we will discuss and compare the nonlocal transport phenomena observed in LHD and TFTR with analysis techniques developed for the LHD, which will provide a clearer understanding on the nonlocality in electron heat transport. This work is supported by Japan/U.S. Cooperation in Fusion Research and Development.

  13. Nonlocal Transport in the Reversed Field Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, G.; White, R. B.; Cappello, S.; Marrelli, L.

    2009-09-21

    Several heuristic models for nonlocal transport in plasmas have been developed, but they have had a limited possibility of detailed comparision with experimental data. Nonlocal aspects introduced by the existence of a known spectrum of relatively stable saturated tearing modes in a low current reversed field pinch offers a unique possibility for such a study. A numerical modelling of the magnetic structure and associated particle transport is carried out for the reversed-field pinch experiment at the Consorzio RFX, Padova, Italy. A reproduction of the tearing mode spectrum with a guiding center code1 reliably reproduces the observed soft X-ray tomography. Following particle trajectories in the stochastic magnetic field shows the transport across the unperturbed flux surfaces to be due to a spectrum of Levy flights, with the details of the spectrum position dependent. The resulting transport is subdiffusive, and cannot be described by Rechester-Rosenbluth diffusion, which depends on a random phase approximation. If one attempts to fit the local transport phenomenologically, the subdiffusion can be fit with a combination of diffusion and inward pinch2. It is found that whereas passing particles explore the stochastic field and hence participate in Levy flights, the trapped particles experience normal neoclassical diffusion. A two fluid nonlocal Montroll equation is used to model this transport, with a Levy flight defined as the motion of an ion during the period that the pitch has one sign. The necessary input to the Montroll equation consists of a time distribution for the Levy flights, given by the pitch angle scattering operator, and a distribution of the flight distances, determined numerically using a guiding center code. Results are compared to experiment. The relation of this formulation to fractional kinetics is also described.

  14. Dynamics between the fishbone instability and nonlocal transient transport in HL-2A NBI plasmas

    Science.gov (United States)

    Chen, W.; Xu, Y.; Ding, X. T.; Shi, Z. B.; Jiang, M.; Zhong, W. L.; Ji, X. Q.; HL-2A Team

    2016-04-01

    Understanding of nonlocal electron heat transport is of key importance for current magnetic confinement fusion research. Global nonlocal response presents a fundamental challenge to the standard anomalous transport model based on local microinstabilities and turbulence. Here, we present for the first time a new nonlocal phenomenon triggered by the fishbone instability in HL-2A neutral beam injection plasmas. Rapid core heating leads to a simultaneous decrease in temperature at the plasma edge. The effect reveals fast anomalous transport of core heat pulses to the plasma edge, not compatible with diffusive time scales. More importantly, Δ {{T}\\text{e}}/text{e}}> variations at different locations are restricted by the intensity of magnetic fluctuations. The Δ {{T}\\text{e}}/text{e}}> and {{≤ft(δ {{B}θ}\\right)}\\text{rms}} form two types of hysteresis loops at two sides of the inversion radius. The ECEIs show that the 2D mode structure of the fishbone is intensive shearing/spiraling during the nonlocal transport. Experimental results suggest that magnetic perturbation, long-range correlation, mesoscale structure and E× B flow play crucial roles in the nonlocal response. The Hurst exponent and auto-correlation coefficient indicate that the nonlocal transport is potentially linked to the self-organized critical (SOC) dynamics. This work will be beneficial for understanding of the plasma dynamics in future fusion reactors.

  15. Self-adjoint integral operator for bounded nonlocal transport

    Science.gov (United States)

    Maggs, J. E.; Morales, G. J.

    2016-11-01

    An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.

  16. Nonlocal viscous transport and the effect on fluid stress.

    Science.gov (United States)

    Todd, B D; Hansen, J S

    2008-11-01

    We demonstrate that, in general, only for fluid flows in which the gradient of the strain rate is constant or zero can the classical Navier-Stokes equations with constant transport coefficients be considered exact. This is typical of two of the most common types of flow: Couette and Poiseuille. For more complicated flow fields in which the streaming velocity involves higher order nonlinear terms, the use of nonlocal constitutive equations gives an exact description of the flow. These constitutive equations involve nonlocal transport kernels. For momentum transport we demonstrate that nonlocality will be significant for any particular flow field if the even moments of the nonlocal viscosity kernel are non-negligible. This corresponds to the condition that the strain rate varies appreciably over the width of the kernel in real space. Such conditions are likely to be dominant for nanofluidic flows.

  17. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  18. Nonlocal thermal transport across embedded few-layer graphene sheets.

    Science.gov (United States)

    Liu, Ying; Huxtable, Scott T; Yang, Bao; Sumpter, Bobby G; Qiao, Rui

    2014-12-17

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g. the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. The nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transport involving few-layer graphene sheets or other ultra-thin layered materials.

  19. Near field radiative heat transfer between two nonlocal dielectrics

    CERN Document Server

    Singer, F; Joulain, Karl

    2015-01-01

    We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwell's equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the...

  20. Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer

    CERN Document Server

    Omotani, John

    2013-01-01

    By using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an ELM crash in the JET SOL, simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.

  1. Nonlocally of plasma fluctuations and transport in magnetically confined plasmas theoretical background of nonlocality in fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan); Itoh, Sanae-I.; Yagi, Masatoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2002-09-01

    Nonlocal properties of fluctuations in confined plasmas are briefly surveyed. Contributions to understanding the bifurcation phenomena, improved confinement, and transient transport problem are explained. The theoretical progress in this aspect is addressed: Namely, the fluctuations are not excited by linear instabilities but are dressed with other turbulent fluctuations or fluctuations of meso-scale. Nonlinear interactions of fluctuations with different scale lengths are essential in dictating the dynamics of turbulence and turbulent transport. There are activators and suppressers in global inhomogeneities for evolution of turbulence. Turbulent fluctuations, on the other hand, induce or destroy these global inhomogeneities. Finally, statistical nature of turbulence is addressed. (author)

  2. Specific heat of a non-local attractive Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Calegari, E.J., E-mail: eleonir@ufsm.br [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Lobo, C.O. [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Magalhaes, S.G. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210, 346, Niterói, Rio de Janeiro (Brazil); Chaves, C.M.; Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2013-10-01

    The specific heat C(T) of an attractive (interaction G<0) non-local Hubbard model is investigated within a two-pole approximation that leads to a set of correlation functions, which play an important role as a source of anomalies as the pseudogap. For a giving range of G and n{sub T} (where n{sub T}=n{sub ↑}+n{sub ↓}), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap eliminates the two peak structure. The effects of the second nearest-neighbor hopping on C(T) are also investigated.

  3. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    Science.gov (United States)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  4. Nonlocal spin-transport measurement of superconductor-ferromagnet nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kolenda, Stefan; Wolf, Michael J.; Huebler, Florian; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany)

    2015-07-01

    We present measurements of the nonlocal conductance of nanostructures with several ferromagnetic electrodes lying perpendicular on a superconducting wire. In these structures nonlocal conductance is mostly given by diffusion of quasiparticles, which are injected by one of the electrodes and detected by an other one. Applying a magnetic field induces a Zeeman splitting in the quasiparticles density of states, which suppresses the relaxation of injected spin imbalance, thus spin transport over distances of several micrometers is found. While in the previous experiments the magnetic field was aligned parallel to the ferromagnetic electrodes, we also show measurements applying the magnetic field noncollinear with the magnetization of the ferromagnetic electrodes. We compare our results to the previous case.

  5. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence (France)

    2015-08-15

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  6. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Science.gov (United States)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-01

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  7. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer

    Science.gov (United States)

    Lyashenko, V.; Kobilskaya, O.

    2015-10-01

    In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.

  8. On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains

    Institute of Scientific and Technical Information of China (English)

    Fei LIANG; Qi Lin LIU; Yu Xiang LI

    2013-01-01

    In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.

  9. An improved and fully implicit multi-group non-local electron transport model and its validations

    Science.gov (United States)

    Sijoy, C. D.; Mishra, V.; Chaurasia, S.

    2017-09-01

    The combined effect of thermal flux inhibition and non-local electron heat flux in the radiation hydrodynamics (RHD) simulation of laser-driven systems can be accurately predicted by using non-local electron transport (NLET) models. These models can avoid commonly used space and time-independent ad-hoc flux-limiting procedures. However, the use of classical electron collision frequency in these models is rigorously valid for high temperature non-degenerate plasmas. In laser-driven systems, the electron thermal energy transport is important in regions between the critical density and ablation surface where the plasma is partially degenerate. Therefore, an improved model for electron collision frequency in this regime is required to accurately predict the thermal energy transport. Previously, we have reported an improved single group non-local electron transport model by using a wide-range electron collision frequency model valid from warm-dense matter (WDM) to fully ionized plasmas. In this work, we have extended this idea into a two-dimensional multi-group non-local electron transport (MG-NLET) model. Moreover, we have used a fully implicit numerical integration scheme in which the models for multi-group thermal radiation transport, laser absorption, electron-ion thermal energy relaxation and ion heat conduction are included in a single step. The performance of this improved MG-NLET model has been assessed by comparing the simulated foil trajectories with the reported experimental data for laser-driven plastic foils. The results indicate that the improved model yields results that are in better agreement with the experimental data.

  10. Observation of Non-Local Transport Phenomena with SMBI in HL-2A

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-Juan; LIU Yong; DING Xuan-Tong; YAO Liang-Hua; FENG Bei-Bin; LI Wei; PAN Yu-Dong; LIU Ze-Tian; DUAN Xu-Ru; YANG Qing-Wei

    2007-01-01

    The non-local transport phenomenon induced by supersonic molecular beam injection (SMBI) was first observed in the HL-2A tokomak. In comparison with the phenomena induced by other methods in various tokamaks, it has its own feature: the effect induced by SMBI in HL-2A lasts much longer than that induced by pellet injection in other similar size tokomaks. Both the bolometer radiation and Hα emission decrease when the non-local effect appears. This suggests that an electron transport barrier has been formed at the position just outside the q = 1 surface when the non-local effect appears.

  11. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    NARCIS (Netherlands)

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert; Van Wees, Bart J.

    2016-01-01

    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the t

  12. The evidence for non-local transport in TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Gentle, K.W.; Bravenec, R.V.; Cima, G. [and others

    1996-11-11

    The electron temperature response of a tokamak to rapid edge cooling has characteristics difficult to reconcile with local transport analysis. The initial observations in TEXT have been extended to a wider range of plasma and perturbation parameters, including auxiliary heating, and the associated turbulence changes have been measured across the plasma radius. The fast edge temperature drops and core temperature increases are quantified by more extensive analysis. A perturbation complementary to edge cooling, edge heating by a fast current ramp, evokes a completely complementary plasma response.

  13. Continuous Time Random Walks for Non-Local Radial Solute Transport

    CERN Document Server

    Dentz, Marco; Borgne, Tanguy le

    2016-01-01

    This paper derives and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneou...

  14. Self-similar variables and the problem of nonlocal electron heat conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I.; Bakunin, O.G. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center]|[Kurchatov Inst. of Atomic Energy, Moscow (Russian Federation)

    1993-10-01

    Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z{sub eff}. For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, {gamma}{sub T}, to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a {open_quotes}symmetrized{close_quotes} kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z{sub eff} (Z{sub eff} {ge} (L/{gamma}{sub T}){sup 1/2}). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r.

  15. Fragility of Nonlocal Edge-Mode Transport in the Quantum Spin Hall State

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-07-01

    Nonlocal currents and voltages are better at withstanding the deleterious effects of dephasing than local currents and voltages in nanoscale systems. This hypothesis is known to be true in quantum Hall setups. We test this hypothesis in a four-terminal quantum spin Hall setup wherein we compare the local resistance measurement with the nonlocal one. In addition to inelastic-scattering-induced dephasing, we also test the resilience of the resistance measurements in the aforesaid setups to disorder and spin-flip scattering. We find the axiom that nonlocal resistance is less affected by the detrimental effects of disorder and dephasing to be untrue, in general, for the quantum spin Hall case. This has important consequences since it is widely communicated that nonlocal transport through edge channels in topological insulators have potential applications in low-power information processing.

  16. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  17. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi, E-mail: sugahara@isl.titech.ac.jp [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, Yokohama (Japan)

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  18. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    Science.gov (United States)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  19. The dilemma of hyperbolic heat conduction and its settlement by incorporating spatially nonlocal effect at nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. Jun; Li, Chen-Lin; Xue, Zhang-Na; Tian, Xiao-Geng, E-mail: tiansu@mail.xjtu.edu.cn

    2016-01-08

    To model transiently thermal responses of numerous thermal shock issues at nano-scale, Fourier heat conduction law is commonly extended by introducing time rate of heat flux, and comes to hyperbolic heat conduction (HHC). However, solution to HHC under Dirichlet boundary condition depicts abnormal phenomena, e.g. heat conducts from the cold to the hot, and there are two temperatures at one location. In this paper, HHC model is further perfected with the aids of spatially nonlocal effect, and the exceeding temperature as well as the discontinuity at the wave front are avoided. The effect of nonlocal parameter on temperature response is discussed. From the analysis, the importance of size effect for nano-scale heat conduction is emphasized, indicating that spatial and temporal extensions should be simultaneously made to nano-scale heat conduction. Beyond that, it is found that heat flux boundary conditions should be directly given, instead of Neumann boundary condition, which does not make sense any longer for non-classical heat conductive models. And finally, it is observed that accurate solution to such problems may be obtained using Laplace transform method, especially for the time-dependent boundary conditions, e.g. heat flux boundary condition. - Highlights: • The dilemma of hyperbolic heat conduction is summarized. • Paradox of heat conduction from the cold to the hot. • Paradox of two temperature at one material point. • The dilemma is overcome with the aids of spatially nonlocal effect. • Heat flux boundary condition of non-classical models is discussed.

  20. A note on analytical solutions of nonlinear fractional 2D heat equation with non-local integral terms

    Indian Academy of Sciences (India)

    O S IYIOLA; F D ZAMAN

    2016-10-01

    In this paper, we consider the (2+1) nonlinear fractional heat equation with non-local integral terms and investigate two different cases of such non-local integral terms. The first has to do with the time-dependent non-local integral term and the second is the space-dependent non-local integral term. Apart from the nonlinear nature of these formulations, the complexity due to the presence of the non-local integral terms impelled us to use a relatively new analytical technique called q-homotopy analysis method to obtain analytical solutions to both cases in the form of convergent series with easily computable components. Our numerical analysis enables us to show the effects of non-local terms and the fractional-order derivative on the solutions obtained by this method.

  1. Nonlocal thermal transport in solar flares. II - Spectroscopic diagnostics

    Science.gov (United States)

    Karpen, Judith T.; Cheng, Chung-Chieh; Doschek, George A.; Devore, C. Richard

    1989-01-01

    Physical parameters obtained for a flaring solar atmosphere in an earlier paper are used here to predict time-dependent emission-line profiles and integrated intensities as a function of position for two spectral lines commonly observed during solar flares: the X-ray resonance lines of Ca XIX and Mg XI. Considerations of ionization nonequilibrium during the rise phase of the flare are addressed, and the effects on the predicted spectral-line characteristics are discussed. It is concluded that some spectroscopic diagnostics favor the nonlocal model, but other long-standing discrepancies between the numerical models and the observations remain unresolved.

  2. Heat transport within the Earth

    CERN Document Server

    Herndon, J Marvin

    2011-01-01

    Numerous attempts have been made to interpret Earth's dynamic processes based upon heat transport concepts derived from ordinary experience. But, ordinary experience can be misleading, especially when underlain by false assumptions. Geodynamic considerations traditionally have embraced three modes of heat transport: conduction, convection, and radiation. Recently, I introduced a fourth, "mantle decompression thermal tsunami" that, I submit, is responsible for emplacing heat at the base of the Earth's crust. Here, I review thermal transport within the Earth and speculate that there might be a fifth mode: "heat channeling", involving heat transport from the core to "hot-spots" such as those that power the Hawaiian Islands and Iceland.

  3. The Role of Nonlocal Sediment Transport in Shaping Impact Crater Walls on Earth and Mars

    Science.gov (United States)

    Abbott, A. M.; Furbish, D. J.

    2013-12-01

    With increasing interest in the concept of ';nonlocal' sediment transport on steep, regolith covered hillslopes, clearer connections between theoretical formulations of nonlocal transport and natural landforms are needed. Scree slopes that form within impact craters provide useful, interesting study sites, due in part to their reasonably well-known initial morphologies. Recent research also suggests that the surface of Mars may be more erosionally active than previously thought. By using elevations derived from LiDAR data for Earth and HiRISE images for Mars together with a probabilistic description of nonlocal transport that includes entrainment and disentrainment rates, comparisons are made between Barringer Meteorite Crater in Arizona and Martian craters of various ages. This enables commentary on whether nonlocal transport produces similar slopes, despite the differing transport processes and acceleration due to gravity for the two planets. Physical insight is obtained through laboratory experiments where gravel particles are dropped on a loose granular slope composed of similar sized gravel inclined at different slopes, including the angle of repose and a flat layer of gravel. Total travel distances were obtained for approximately 500 particles dropped from three different heights for each slope angle. The resulting distributions of travel distances are exponential-like, but for steeper slopes these distributions may decay less rapidly than an exponential function, indicating a decreasing likelihood of disentrainment with increasing travel distance. These approximately dynamically scaled experiments will help clarify the relationship between drop height, slope, surface roughness, and mean travel distance. A description of the disentrainment rate based partly on these findings will to be incorporated in a numerical model that simulates impact crater erosion for Earth and Mars. This will test the theoretical similarity of two locations that are physically very

  4. Thermodynamic framework for a generalized heat transport equation

    Directory of Open Access Journals (Sweden)

    Guo Yangyu

    2016-06-01

    Full Text Available In this paper, a generalized heat transport equation including relaxational, nonlocal and nonlinear effects is provided, which contains diverse previous phenomenological models as particular cases. The aim of the present work is to establish an extended irreversible thermodynamic framework, with generalized expressions of entropy and entropy flux. Nonlinear thermodynamic force-flux relation is proposed as an extension of the usual linear one, giving rise to the nonlinear terms in the heat transport equation and ensuring compatibility with the second law. Several previous results are recovered in the linear case, and some additional results related to nonlinear terms are also obtained.

  5. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model

    Directory of Open Access Journals (Sweden)

    Atangana Abdon

    2016-01-01

    Full Text Available In this manuscript we proposed a new fractional derivative with non-local and no-singular kernel. We presented some useful properties of the new derivative and applied it to solve the fractional heat transfer model.

  6. On a difference scheme for nonlocal heat transfer boundary-value problem

    Science.gov (United States)

    Akhymbek, Meiram E.; Sadybekov, Makhmud A.

    2016-08-01

    In this paper, we propose a new method of solving nonlocal problems for the heat equation with finite difference method. The main important feature of these problems is their non-self-adjointness. This non-self-adjointness causes major difficulties in their analytical and numerical solving. The problems, which boundary conditions do not possess strong regularity, are less studied. The scope of study of the paper justifies possibility of building a stable difference scheme with weights for abovementioned type of problems.

  7. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  8. A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    YANJINHAI

    1996-01-01

    The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.

  9. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-02-06

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  10. Simulations of anti-parallel reconnection using a nonlocal heat flux closure

    Science.gov (United States)

    Ng, Jonathan; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, W.

    2017-08-01

    The integration of kinetic effects in fluid models is important for global simulations of the Earth's magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics of large reconnecting systems, and that higher-order fluid moment models can account for some of these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diagonal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in the fluid framework. The closure is tested using the island coalescence problem, which is sensitive to ion dynamics. We demonstrate that the nonlocal closure is able to self-consistently reproduce the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-tuning of relaxation coefficients present in earlier models.

  11. Contribution of weak localization to nonlocal transport at normal metal/superconductor double interfaces

    Science.gov (United States)

    Mélin, R.

    2006-05-01

    In connection with a recent experiment [Russo , Phys. Rev. Lett. 95, 027002 (2005)], we investigate the effect of weak localization on nonlocal transport in normal metal / insulator/superconductor / insulator / normal metal (NISIN) trilayers, with extended interfaces. The negative weak localization contribution to the crossed resistance can exceed in absolute value the positive elastic cotunneling contribution if the normal metal phase coherence length or the energy are large enough.

  12. A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.

  13. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    Science.gov (United States)

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert A.; van Wees, Bart J.

    2016-11-01

    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the thermally generated magnons, or the nonlocal spin Seebeck effect (SSE), we observed a sign reversal which occurs at a certain heater-detector distance, and it is influenced by both the opacity of the YIG/heater interface and the YIG thickness. Our nonlocal SSE results can be qualitatively explained by the bulk-driven SSE mechanism together with the magnon diffusion model. Using a two-dimensional finite element model (2D-FEM), we estimated the bulk spin Seebeck coefficient of YIG at room temperature. The quantitative disagreement between the experimental and modeled results indicates more complex processes going on in addition to magnon diffusion and relaxation, especially close to the contacts.

  14. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  15. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    Science.gov (United States)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  16. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  17. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  18. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  19. A mixed SOC-turbulence model for nonlocal transport and space-fractional Fokker-Planck equation

    CERN Document Server

    Milovanov, Alexander V

    2013-01-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker-Planck equation with space-fractional derivatives from a stochastic Markovian process with the transition probabilities defined in reciprocal space.

  20. A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Milovanov, Alexander V. [ENEA National Laboratory, Centro Ricerche Frascati, I-00044 Frascati, Rome (Italy); Department of Space Plasma Physics, Space Research Institute, Russian Academy of Sciences, 117997 Moscow (Russian Federation); Juul Rasmussen, Jens [Physics Department, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-04-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker–Planck equation with space-fractional derivatives from a stochastic Markov process with the transition probabilities defined in reciprocal space. The hybrid model observes the Sparre Andersen universality and defines a new universality class of SOC.

  1. Spectral non-uniform temperature and non-local heat transfer in the spin Seebeck effect.

    Science.gov (United States)

    Tikhonov, Konstantin S; Sinova, Jairo; Finkel'stein, Alexander M

    2013-01-01

    Recently discovered spin-dependent thermoelectric effects have merged spin, charge, and thermal physics, known as spin caloritronics, of which the spin Seebeck effect is its most puzzling. Here we present a theory of this effect driven by subthermal non-local phonon heat transfer and spectral non-uniform temperature. The theory explains its non-local behaviour from the fact that phonons that store the energy (thermal) and the phonons that transfer it (subthermal) are located in different parts of the spectrum and have different kinetics. This gives rise to a spectral phonon distribution that deviates from local equilibrium along the substrate and is sensitive to boundary conditions. The theory also predicts a non-magnon origin of the effect in ferromagnetic metals in agreement with observations in recent experiments. Equilibration of the heat flow from the substrate to the Pt probe and backwards leads to a vertical spin current produced by the spin-polarized electrons dragged by the thermal phonons.

  2. Nonlocal Transport Processes and the Fractional Cattaneo-Vernotte Equation

    Directory of Open Access Journals (Sweden)

    J. F. Gómez Aguilar

    2016-01-01

    Full Text Available The Cattaneo-Vernotte equation is a generalization of the heat and particle diffusion equations; this mathematical model combines waves and diffusion with a finite velocity of propagation. In disordered systems the diffusion can be anomalous. In these kinds of systems, the mean-square displacement is proportional to a fractional power of time not equal to one. The anomalous diffusion concept is naturally obtained from diffusion equations using the fractional calculus approach. In this paper we present an alternative representation of the Cattaneo-Vernotte equation using the fractional calculus approach; the spatial-time derivatives of fractional order are approximated using the Caputo-type derivative in the range (0,2]. In this alternative representation we introduce the appropriate fractional dimensional parameters which characterize consistently the existence of the fractional space-time derivatives into the fractional Cattaneo-Vernotte equation. Finally, consider the Dirichlet conditions, the Fourier method was used to find the full solution of the fractional Cattaneo-Vernotte equation in analytic way, and Caputo and Riesz fractional derivatives are considered. The advantage of our representation appears according to the comparison between our model and models presented in the literature, which are not acceptable physically due to the dimensional incompatibility of the solutions. The classical cases are recovered when the fractional derivative exponents are equal to 1.

  3. Spin-Hall Non-Local Transport Mediated by a Magnetic Insulator

    Science.gov (United States)

    Ramezani Masir, Massoud; Chen, Hua; Sodemann, Inti; MacDonald, Allan. H.

    Magnetic systems with easy-plane order support dissipationless spin supercurrents that can lead to non-local coupling between electrically separated conductors. Recently the electrical properties of a system containing two magnetic multilayer stacks with perpendicular magnetic anisotropy electrodes and a shared easy-plane magnetic layer have been discussed. In this research we discuss a closely related system in which the two conducting channels that are coupled by the easy-plane magnetic layer are co-planar thin film metals with large spin Hall effects. We theoretically explained the non-local relationship between the current-voltage relationships of two thin film metallic conductors. Coupling occurs because both conductors inject spins into the magnetic insulator and because this information is communicated between conductors via exchange interactions within the magnetic system. We investigate the non-local transport properties of the system in the macrospin and long thin nanomagnet limits, deriving conditions for the critical currents and using solutions to the Landau-Liftshitz-Gilbert equation to characterize the dynamic steady state case. This work was supported by as part of SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # SC0012670.

  4. Self-organized criticality revisited: non-local transport by turbulent amplification

    Science.gov (United States)

    Milovanov, A. V.; Rasmussen, J. J.

    2015-12-01

    > We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves as a competing key factor an inverse cascade of the energy in reciprocal space. Then relaxation of slowly increasing stresses will give rise to intermittent bursts of transport in real space and outstanding transport events beyond the range of applicability of the `conventional' SOC. Also, we are concerned with the causes and origins of non-local transport in magnetized plasma, and show that this type of transport occurs naturally in self-consistent strong turbulence via a complexity coupling to the inverse cascade. We expect these coupling phenomena to occur in the parameter range of strong nonlinearity and time scale separation when the Rhines time in the system is small compared with the instability growth time.

  5. Surface hall effect and nonlocal transport in SmB₆: evidence for surface conduction.

    Science.gov (United States)

    Kim, D J; Thomas, S; Grant, T; Botimer, J; Fisk, Z; Xia, Jing

    2013-11-06

    A topological insulator (TI) is an unusual quantum state in which the insulating bulk is topologically distinct from vacuum, resulting in a unique metallic surface that is robust against time-reversal invariant perturbations. The surface transport, however, remains difficult to isolate from the bulk conduction in most existing TI crystals (particularly Bi₂Se₃, Bi₂Te₃ and Sb₂Te₃) due to impurity caused bulk conduction. We report in large crystals of topological Kondo insulator (TKI) candidate material SmB₆ the thickness-independent surface Hall effects and non-local transport, which persist after various surface perturbations. These results serve as proof that at low temperatures SmB₆ has a metallic surface that surrounds an insulating bulk, paving the way for transport studies of the surface state in this proposed TKI material.

  6. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    Science.gov (United States)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  7. UNIFORM BLOW-UP PROFILES FOR HEAT EQUATIONS WITH COUPLING NONLOCAL SOURCES OF ASYMMETRIC MIXED TYPE NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Kong Linghua; Wang Jinhuan; Zheng Sining

    2012-01-01

    This article deals with a nonlocal heat system subject to null Dirichlet boundary conditions,where the coupling nonlocal sources consist of mixed type asymmetric nonlinearities.We at first give the criterion for simultaneous blow-up of solutions,and then establish the uniform blow-up profiles of solutions near the blow-up time.It is observed that not only the simultaneous blow-up rates of the two components u and v are asymmetric,but also the blow-up rates of the same component u (or v) may be in different levels under different dominations.

  8. Self-organized criticality revisited: non-local transport by turbulent amplification

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rasmussen, Jens Juul

    2015-01-01

    We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves as a compet......We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves...... with the causes and origins of non-local transport in magnetized plasma, and show that this type of transport occurs naturally in self-consistent strong turbulence via a complexity coupling to the inverse cascade. We expect these coupling phenomena to occur in the parameter range of strong nonlinearity and time...

  9. Fluctuation signatures of rotation reversals and non-local transport events in KSTAR L-mode plasmas

    CERN Document Server

    Shi, Yuejiang

    2016-01-01

    Experiments in KSTAR tokamak show that non-local heat transport (NLT) is closely connected to toroidal rotation reversal. We demonstrate that NLT can be affected by electron cyclotron resonance heating (ECH), and the intrinsic rotation direction follows the changes of NLT. The cut-off density of NLT can be significantly extended by ECH. Without ECH, NLT disappears as the line averaged density ne increases above 1.25*10e19me-3. By applying ECH, NLT reappears with the ne= 2.4*10e19me-3. At the same density level, the core toroidal rotation also changes from counter-current to co-current direction by applying ECH. The poloidal flow of turbulence in core plasma estimated from MIR is in electron diamagnetic direction in ECH plasmas and ion diamagnetic direction in high density OH plasma. The auto-power spectra of density fluctuation measured by MIR are almost the same in the outer region for ECH and OH plasma. On the other hand, in the core region of ECH plasmas, the power spectra of the density fluctuations are b...

  10. A simple exposure-time theory for all time-nonlocal transport formulations and beyond.

    Science.gov (United States)

    Ginn, T. R.; Schreyer, L. G.

    2016-12-01

    Anomalous transport or better put, anomalous non-transport, of solutes or flowing water or suspended colloids or bacteria etc. has been the subject of intense analyses with multiple formulations appearing in scientific literature from hydrology to geomorphology to chemical engineering, to environmental microbiology to mathematical physics. Primary focus has recently been on time-nonlocal mass conservation formulations such as multirate mass transfer, fractional-time advection-dispersion, continuous-time random walks, and dual porosity modeling approaches, that employ a convolution with a memory function to reflect respective conceptual models of delays in transport. These approaches are effective or "proxy" ones that do not always distinguish transport from immobilzation delays, are generally without connection to measurable physicochemical properties, and involve variously fractional calculus, inverse Laplace or Fourier transformations, and/or complex stochastic notions including assumptions of stationarity or ergodicity at the observation scale. Here we show a much simpler approach to time-nonlocal (non-)transport that is free of all these things, and is based on expressing the memory function in terms of a rate of mobilization of immobilized mass that is a function of the continguous time immobilized. Our approach treats mass transfer completely independently from the transport process, and it allows specification of actual immobilization mechanisms or delays. To our surprize we found that for all practical purposes any memory function can be expressed this way, including all of those associated with the multi-rate mass transfer approaches, original powerlaw, different truncated powerlaws, fractional-derivative, etc. More intriguing is the fact that the exposure-time approach can be used to construct heretofore unseen memory functions, e.g., forms that generate oscillating tails of breakthrough curves such as may occur in sediment transport, forms for delay

  11. A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Milovanov, Alexander V.

    2014-01-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable...... with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker-Planck equation with space-fractional derivatives from a stochastic Markov process...... with the transition probabilities defined in reciprocal space. The hybrid model observes the Sparre Andersen universality and defines a new universality class of SOC. (C) 2014 Elsevier B.V. All rights reserved....

  12. Fractional-order theory of heat transport in rigid bodies

    Science.gov (United States)

    Zingales, Massimiliano

    2014-11-01

    The non-local model of heat transfer, used to describe the deviations of the temperature field from the well-known prediction of Fourier/Cattaneo models experienced in complex media, is framed in the context of fractional-order calculus. It has been assumed (Borino et al., 2011 [53], Mongioví and Zingales, 2013 [54]) that thermal energy transport is due to two phenomena: (i) A short-range heat flux ruled by a local transport equation; (ii) A long-range thermal energy transfer proportional to a distance-decaying function, to the relative temperature and to the product of the interacting masses. The distance-decaying function is assumed in the functional class of the power-law decay of the distance yielding a novel temperature equation in terms of α-order Marchaud fractional-order derivative (0⩽α⩽1). Thermodynamical consistency of the model is provided in the context of Clausius-Plank inequality. The effects induced by the boundary conditions on the temperature field are investigated for diffusive as well as ballistic local heat flux. Deviations of the temperature field from the linear distributions in the neighborhood of the thermostated zones of small-scale conductors are qualitatively predicted by the used fractional-order heat transport model, as shown by means of molecular dynamics simulations.

  13. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  14. Heat transport in a chaotic magnetic field; Transport de la chaleur dans un champ magnetique chaotique

    Energy Technology Data Exchange (ETDEWEB)

    Feron, Samuel [Service de Physique des Plasmas de Fusion, Dept. de Recherches sur la Fusion Controlee, Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1997-09-25

    Heat transport in a plasma with a magnetic perturbation of amplitude b and a transverse diffusion of typical scale {delta} is investigated. On Tore Supra, such a perturbation is induced at the edge by the Ergodic Divertor. Classically, the heat transport is expected to be diffusive, but the experimental evidence does not support such a model. The main experimental features are temperature modulations and a transport barrier which allows no loss of confinement in the core plasma. An analysis of both temperature field and magnetic perturbation indicates clearly delimited regions of strong and weak transport that are related to the loss of memory on a field line due to the transverse diffusion. Furthermore, the perturbation is strongly space-dependent. This implies non-local transport and a region (separatrix) in which the Chirikov parameter is less than one. This analysis leads to a 1D analytical model which recovers modulations. A transport barrier is also expected, assuming a dissymmetrical transport process around the separatrix. A mapping transport code has also been developed which takes the basic features of ergodic divertor into account. Both experimental results, modulations, and a transport barrier are recovered. The latter depends on the ratio b/{delta}, but occurs without any assumption of dissymmetrical transport. For the same ratio b/{delta} as Tore Supra, the core confinement, as with the experiment, is not affected. A lower ratio leads to a loss of confinement, while a larger value produces improved confinement. The barrier can be attributed to non diffusive transport out of islands located around separatrix. The trapping mechanisms in these islands, combined with some small level of transverse transport, reduce the probability for particles to flow back to the perturbed region. A dissymmetrical process then appears and allows for a transport barrier. (author) 90 refs., 65 figs.

  15. Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices

    Science.gov (United States)

    Leighton, Chris

    2015-03-01

    Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature

  16. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    Science.gov (United States)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  17. Vibronic enhancement of excitation energy transport: Interplay between local and non-local exciton-phonon interactions

    Science.gov (United States)

    Lee, Myeong H.; Troisi, Alessandro

    2017-02-01

    It has been reported in recent years that vibronic resonance between vibrational energy of the intramolecular nuclear mode and excitation-energy difference is crucial to enhance excitation energy transport in light harvesting proteins. Here we investigate how vibronic enhancement induced by vibronic resonance is influenced by the details of local and non-local exciton-phonon interactions. We study a heterodimer model with parameters relevant to the light-harvesting proteins with the surrogate Hamiltonian quantum dynamics method in a vibronic basis. In addition, the impact of field-driven excitation on the efficiency of population transfer is compared with the instantaneous excitation, and the effect of multi-mode vibronic coupling is presented in comparison with the coupling to a single effective vibrational mode. We find that vibronic enhancement of site population transfer is strongly suppressed with the increase of non-local exciton-phonon interaction and increasing the number of strongly coupled high-frequency vibrational modes leads to a further decrease in vibronic enhancement. Our results indicate that vibronic enhancement is present but may be much smaller than previously thought and therefore care needs to be taken when interpreting its role in excitation energy transport. Our results also suggest that non-local exciton-phonon coupling, which is related to the fluctuation of the excitonic coupling, may be as important as local exciton-phonon coupling and should be included in any quantum dynamics model.

  18. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  19. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  20. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  1. Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown

    Science.gov (United States)

    Sahimi, Muhammad

    1998-12-01

    We review and discuss recent progress in modelling non-linear and non-local transport processes in heterogeneous media. The non-locality that we consider is caused by long-range correlations that either exist in the morphology of the media, or are caused by the transport processes themselves. The interplay between the non-linearity and non-locality is discussed in depth with the aim of establishing that, often non-linearity and non-locality are “two sides of the same coin”, such that one may have no meaning without the presence of the other one. First, we discuss linear and scalar, but non-local transport processes and, in particular, consider those in percolation systems with long-range correlations. It appears that there are significant differences between percolative transport processes in which the long-range correlations (or the covariance function) decrease with the distance r between two points, and those in which they increase as r does. Application of this problem to flow and transport in geological formations is discussed. We then consider linear vector percolation, one type of which, the rigidity percolation, provides an example of a non-local vector transport in heterogeneous media. Applications of vector percolation to modelling elastic properties of glasses, composite solids and rock, mechanical and viscoelastic properties of polymers, and vibrations and dynamical properties of heterogeneous materials are discussed. Non-linear and non-local scalar transport processes are discussed next, including various breakdown phenomena in disordered composites, power-law transport, piecewise linear transport characterized by a threshold, and non-linear processes that arise as a result of imposing a large external potential gradient on a heterogeneous medium. Their relevance to flow of non-Newtonian fluids in porous media, to electrical currents and dielectric breakdown in composite solids and doped polycrystalline semiconductors, and several other problems is

  2. Does Model Development Ahead of Data Collection Have Merit? A Case for Advancing Non-Local Fluvial Transport Theories

    Science.gov (United States)

    Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.

    2013-12-01

    The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are

  3. Heat transport experiments on the HSX stellarator

    Science.gov (United States)

    Weir, Gavin McCabe

    It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission line have been installed and tested to facilitate modulated heating experiments on HSX, and a multi-pass absorption model accurately predicts the total absorption and spatial extent of the electron cyclotron resonance heating during a modulation experiment. The electron cyclotron emission measured by an absolutely calibrated 16-channel radiometer is used to measure the local electron temperature and its response to the modulated heating. The amplitude and phase of the heat wave through the foot of the steep electron temperature gradient region of the plasma, 0.2It has been observed in tokamaks that temperature profiles are resilient to changes in heating, and that this effect has not been observed in conventional stellarators. Electron temperature profile resiliency is attributed to anomalous transport driven by turbulent micro-instabilities, and the resulting stiffness in the electron heat flux is measured using a combination of steady-state and perturbative experiments. In this work, stiffness measurements are presented in the quasihelically symmetric configuration of the Helically Symmetric eXperiment (HSX), in which the neoclassical transport is comparable to a tokamak and turbulent transport dominates throughout the plasma. A second gyrotron and transmission

  4. Vibrational Heat Transport in Molecular Junctions

    Science.gov (United States)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  5. Heat Transfer in Directional Water Transport Fabrics

    Directory of Open Access Journals (Sweden)

    Chao Zeng

    2016-10-01

    Full Text Available Directional water transport fabrics can proactively transfer moisture from the body. They show great potential in making sportswear and summer clothing. While moisture transfer has been previously reported, heat transfer in directional water transport fabrics has been little reported in research literature. In this study, a directional water transport fabric was prepared using an electrospraying technique and its heat transfer properties under dry and wet states were evaluated, and compared with untreated control fabric and the one pre-treated with NaOH. All the fabric samples showed similar heat transfer features in the dry state, and the equilibrium temperature in the dry state was higher than for the wet state. Wetting considerably enhanced the thermal conductivity of the fabrics. Our studies indicate that directional water transport treatment assists in moving water toward one side of the fabric, but has little effect on thermal transfer performance. This study may be useful for development of “smart” textiles for various applications.

  6. Modelling heat transport through completely positive maps

    CERN Document Server

    Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu

    2007-01-01

    We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.

  7. Vapor-phase heat-transport system

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.

    1983-01-01

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  8. The Potential Importance of Non-Local, Deep Transport on the Energetics, Momentum, Chemistry, and Aerosol Distributions in the Atmospheres of Earth, Mars and Titan

    CERN Document Server

    Rafkin, Scot

    2010-01-01

    A review of non-local, deep transport mechanisms in the atmosphere of Earth provides a good foundation for examining whether similar mechanisms are operating in the atmospheres of Mars and Titan. On Earth, deep convective clouds in the tropics constitute the upward branch of the Hadley Cell and provide a conduit through which energy, moisture, momentum, aerosols and chemical species are moved from the boundary layer to the upper troposphere and lower stratosphere. This transport produces mid-tropospheric minima in quantities such as water vapor and moist static energy and maxima where the clouds detrain. Analogs to this terrestrial transport are found in the strong and deep thermal circulations associated with topography on Mars and with Mars dust storms. Observations of elevated dust layers on Mars further support the notion that non-local deep transport is an important mechanism in the atmosphere of Mars. On Titan, the presence of deep convective clouds almost assures that non-local, deep transport is occur...

  9. Heat transport in coupled inhomogeneous chains

    Institute of Scientific and Technical Information of China (English)

    Hu Tao; Bai Meng; Hu Ke; Tang Yi

    2011-01-01

    We first investigate the heat transport in a network model consisting of two coupled dimerized chains. Results indicate that the thermal resistance of each chain increases with the decrease of the mass ratio γ of the two types of atoms. Then, we find, when a light impurity or a heavy one is added in the two coupled homogeneous chains and coupled with a particle of another chain, the interface thermal resistances Rlint andRγint present different dependences on the mass ratio γ'. Finally, a persistent circulation of energy current is observed in coupled inhomogeneous chains with two pairs of interchain coupling.

  10. Heat Transport of Electron-Doped Cobaltates

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIANG Ying; FENG Shi-Ping; CHEN Wei-Yeu

    2006-01-01

    Within the t-J model, the heat transport of electron-doped cobaltates is studied based on the fermionspin theory. It is shown that the temperature-dependent thermal conductivity is characterized by the low-temperature peak located at a finite temperature. The thermal conductivity increases monotonously with increasing temperature at low-temperatures T < 0.1 J, and then decreases with increasing temperature for higher temperatures T > 0.1 J, in qualitative agreement with experimental result observed from NaxCoO2.

  11. Self-similar Solutions for a Transport Equation with Non-local Flux

    Institute of Scientific and Technical Information of China (English)

    Angel CASTRO; Diego C(O)RDOBA

    2009-01-01

    The authors construct self-similar solutions for an N-dimensional transport equation,where the velocity is given by the Riezs transform.These solutions imply nonuniqueness of weak solution.In addition,self-similar solution for a one-dimensional conservative equation involving the Hilbert transform is obtained.

  12. Suprathermal Electrons in the Solar Corona: Can Nonlocal Transport Explain Heliospheric Charge States?

    CERN Document Server

    Cranmer, Steven R

    2014-01-01

    There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfven waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturb...

  13. Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)

    2014-04-20

    We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.

  14. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the viewpoint of heat transfer, heat transport potential capacity and its dissipation are defined based on the essence of heat transport phenomenon. Respectively, their physical meanings are the overall heat transfer capabilityand the dissipation rate of the heat transfer capacity. Then the least dissipation principle of heat transport potential capacity is presented to enhance the heat conduction efficiency in the heat conduction optimization. The principle is,for a conduction process with the constant integral of the thermal conductivityover the region, the optimal distribution of thermal conductivity, which corresponds to the highest heat conduction efficiency, is characterized by the least dissipation of heat transport potential capacity. Finally the principle is applied to some cases in heat conduction optimization.

  15. Signatures of nonlocal Cooper-pair transport and of a singlet-triplet transition in the critical current of a double-quantum-dot Josephson junction

    Science.gov (United States)

    Probst, B.; Domínguez, F.; Schroer, A.; Yeyati, A. Levy; Recher, P.

    2016-10-01

    We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all possible charging states, where we account for on-site interactions exactly. Our results provide clear signatures of nonlocal spin-entangled pairs, which support interpretations of recent experiments [R. S. Deacon, A. Oiwa, J. Sailer, S. Baba, Y. Kanai, K. Shibata, K. Hirakawa, and S. Tarucha, Nat. Commun. 6, 7446 (2015), 10.1038/ncomms8446]. In addition, we find that the ground state with one electron on each quantum dot can undergo a tunable singlet-triplet phase transition in the regime where the superconducting gap in the leads is not too large, which gives rise to an additional new signature of nonlocal Cooper-pair transport.

  16. Homogeneous and non-local heterogeneous transport phenomena with VAT application analysis

    Energy Technology Data Exchange (ETDEWEB)

    Catton, I.; Travkin, V.S. [Univ. of California, Los Angeles, CA (United States)

    1997-12-31

    Some fundamental questions about the mathematical description of transport phenomena in heterogeneous media are addressed to highlight the importance of the smallest scale, of using the correct equations and of choosing a consistent set of scaling parameters. Micro-pore flow is treated using a viscosity correlation that properly treats the near wall region in a capillary. Equations resulting from use of volume averaging theory (VAT) are compared with exact solutions and it shown that certain terms normally ignored must be retained. A consistent set of scaling parameters are derived and shown to yield consistent results over a wide range of different media morphologies.

  17. Nonlocal Inflation

    CERN Document Server

    Barnaby, Neil

    2008-01-01

    We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.

  18. Heat in the Barents Sea: transport, storage, and surface fluxes

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2010-02-01

    Full Text Available A column model is set up for the Barents Sea to explore sensitivity of surface fluxes and heat storage from varying ocean heat transport. Mean monthly ocean transport and atmospheric forcing are synthesised and force the simulations. Results show that by using updated ocean transports of heat and freshwater the vertical mean hydrographic seasonal cycle can be reproduced fairly well.

    Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production.

    The northern Barents Sea receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss annually in the north. The balance is achieved by a heat loss through long wave radiation all year, removing most of the summer solar heating.

    During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. The Barents Sea responds to such large changes by adjusting temperature and heat loss. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport leads to a spreading of warm water further north.

  19. Exact solution of a Lévy walk model for anomalous heat transport

    Science.gov (United States)

    Dhar, Abhishek; Saito, Keiji; Derrida, Bernard

    2013-01-01

    The Lévy walk model is studied in the context of the anomalous heat conduction of one-dimensional systems. In this model, the heat carriers execute Lévy walks instead of normal diffusion as expected in systems where Fourier's law holds. Here we calculate exactly the average heat current, the large deviation function of its fluctuations, and the temperature profile of the Lévy walk model maintained in a steady state by contact with two heat baths (the open geometry). We find that the current is nonlocally connected to the temperature gradient. As observed in recent simulations of mechanical models, all the cumulants of the current fluctuations have the same system-size dependence in the open geometry. For the ring geometry, we argue that a size-dependent cutoff time is necessary for the Lévy walk model to behave like mechanical models. This modification does not affect the results on transport in the open geometry for large enough system sizes.

  20. Barents Sea heattransport, storage and surface fluxes

    Directory of Open Access Journals (Sweden)

    Ø. Skagseth

    2009-07-01

    Full Text Available Sensitivity of the Barents Sea to variation in ocean heat transport and surface fluxes is explored using a 1-D column model. Mean monthly ocean transport and atmospheric forcing are synthesised and force model results that reproduce the observed winter convection and surface warming and freshening well. Model results are compared to existing estimates of the ocean to air heat fluxes and horizontally averaged profiles for the southern and northern Barents Sea. Our results indicate that the ~70 TW of heat transported to the Barents Sea by ocean currents is lost in the southern Barents Sea as latent, sensible, and long wave radiation, each contributing 23–39 TW to the total heat loss. Solar radiation adds 26 TW in the south, as there is no significant ice production. The northern Barents Sea, the major part of the area, receives little ocean heat transport. This leads to a mixed layer at the freezing point during winter and significant ice production. There is little net surface heat loss in the north, the balance is achieved by long wave loss removing most of the solar heating, and the model also suggests a positive sensible heat gain. During the last decade the Barents Sea has experienced an atmospheric warming and an increased ocean heat transport. Despite large changes the Barents Sea heat loss remains robust, the temperature adjusts, and the yearly cycle remains. Decreasing the ocean heat transport below 50 TW starts a transition towards Arctic conditions. The heat loss in the Barents Sea depend on the effective area for cooling, and an increased heat transport probably leads to a spreading of warm water further north.

  1. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  2. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction......The project is a basic study on the expected thermal behaviour of gravel storage initiated as a part of a research and demonstration gravel storage for seasonal heat storage.The goal of the investigation is to determine the heat transfer between heat pipes and sand-gravel storage media by carrying...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  3. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  4. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, Taha Jibril

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of extern

  5. Carbon nanostructured surfaces for enhanced heat transport

    NARCIS (Netherlands)

    Taha, T.J.

    2015-01-01

    The advancement of high performance thermal systems has stimulated interest in methods to improve heat transfer rates. Considerable efforts have been made to increase heat transfer rates by implementing passive convective heat transfer enhancement methods that require no direct consumption of

  6. Nonviolent nonlocality

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...

  7. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2012-04-01

    Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.

  8. A thermodynamic view of heat transfer in different transport regimes

    Science.gov (United States)

    Schubler, Gulru Babac

    2016-11-01

    The nature of the heat transfer process changes substantially according to transport regime. A thermodynamic view to micro/nano scale flows is considered to get a better understanding within this regime dependent change. The transport processes are expressed as a polytropic process and T-s diagram of different transport regimes are presented. In addition, a molecular dynamic simulation of nano channel flows is presented. Since the polytropic processes are strongly related with the heat capacities, the heat capacity calculations are also taken into account in MD simulations. The theoretical predictions are approved with the molecular dynamic simulations for monatomic gases.

  9. Experimental Study of Heat Transport in Fractured Network

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Allegretti, Nicoletta M.; Redondo, Jose M.; Tarquis, Ana Maria

    2015-04-01

    Fractured rocks play an important role in transport of natural resources or contaminants transport through subsurface systems. In recent years, interest has grown in investigating heat transport by means of tracer tests, driven by the important current development of geothermal applications. In literature different methods are available for predicting thermal breakthrough in fractured reservoirs based on the information coming from tracer tests. Geothermal energy is one of the largest sources of renewable energies that are extracted from the earth. The growing interest in this new energy source has stimulated attempts to develop methods and technologies for extracting energy also from ground resource at low temperature. An example is the exploitation of low enthalpy geothermal energy that can be obtained at any place with the aid of ground-source heat pump system from the soil, rock and groundwater. In such geothermal systems the fluid movement and thermal behavior in the fractured porous media is very important and critical. Existing theory of fluid flow and heat transport through porous media is of limited usefulness when applied to fractured rocks. Many field and laboratory tracer tests in fractured media show that fracture -matrix exchange is more significant for heat than mass tracers, thus thermal breakthrough curves (BTCs) are strongly controlled by matrix thermal diffusivity. In this study the behaviour of heat transport in a fractured network at bench scale has been investigated. Heat tracer tests on an artificially created fractured rock sample have been carried out. The observed thermal BTCs obtained with six thermocouple probes located at different locations in the fractured medium have been modeled with the Explicit Network Model (ENM) based an adaptation of Tang's solution for solute transport in a semi-infinite single fracture embedded in a porous matrix. The ENM model is able to represent the behavior of observed heat transport except where the

  10. Modification of atomic physics rates due to nonlocal electron parallel heat transport in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Allais, F. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Matte, J.P. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada)]. E-mail: matte@inrs-emt.uquebec.ca; Alouani-Bibi, F. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Kim, C.G. [INRS-Energie, Materiaux et Telecommunications, 1650 boul. Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada); Stotler, D.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Rognlien, T.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2005-03-01

    The effect of steep temperature gradients on the rate of ionization of atomic hydrogen is studied numerically with the electron kinetic code 'FPI' [Phys. Rev. Lett. 72 (1994) 1208]. A set of cross sections ['Atomic and Plasma-Material Interaction data for fusion'. Supplement to the journal Nucl. Fusion 4 (1993)] has been used which gives the same rates of radiation, ionization and recombination as in the well known edge modeling codes 'UEDGE' and 'DEGAS' for Maxwellian electron energy distribution functions. For this purpose, 30 energy levels are included in the computation, as stepwise ionization is dominant. The enhancement of the ionization rate by non-Maxwellian effects in the colder part of the plasma is significant.

  11. Constructs of highly effective heat transport paths by bionic optimization

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xinguang; (程新广); LI; Zhixin; (李志信); GUO; Zengyuan; (过增元)

    2003-01-01

    The optimization approach based on the biological evolution principle is used to construct the heat transport paths for volume-to-point problem. The transport paths are constructed by inserting high conductivity materials in the heat conduction domain where uniform or nonuniform heat sources exist. In the bionic optimization process, the optimal constructs of the high conductivity material are obtained by numerically simulating the evolution and degeneration process according to the uniformity principle of the temperature gradient. Finally, preserving the features of the optimal constructs, the constructs are regularized for the convenience of engineering manufacture. The results show that the construct obtained by bionic optimization is approximate to that obtained by the tree-network constructal theory when the heat conduction is enhanced for the domain with a uniform heat source and high conductivity ratio of the inserting material to the substrate, the high conductivity materials are mainly concentrated on the heat outlet for the case with a uniform heat source and low thermal conductivity ratio, and for the case with nonuniform heat sources, the high conductivity material is concentrated in the heat source regions and construacts several highly effective heat transport paths to connect the regions to the outlet.

  12. Behaviors of Electron Heat Transportation in HT-7 Sawtoothing Plasma

    Institute of Scientific and Technical Information of China (English)

    Hu Liqun; Xu Yi; Wan Baonian; Shi Yuejiang; Zhen Xiangjun; Chen Zhongyong; Lin Shiyao; HT-7 Team

    2005-01-01

    It is found that in HT-7 ohmic plasma, main energy loss comes from electron heat conduction, hence quantitative data of electron heat diffusivity is a very important issue for investigation of electron heat transportation behavior in different target plasmas so as to get high performance plasma. A time-to-peak method of the heat pulse propagation originating from the sawtooth activity on the soft x-ray intensity signal has been adopted to experimentally determine electron heat diffusivity XHPe on the HT-7 tokamak. Aiming to improve the signal-to-noise (S/N)ratio of the original signal to get a stable and reasonable electron heat diffusivity XHDe value, some data processing methods, including average of tens of sawteeth, is discussed. The electron heat diffusivity XHPe is larger than XPBe which is determined from the balance of background plasma power. Based on variation of the measured electron heat diffusivity XHPe, performances of different high confinement plasmas are analyzed.

  13. Transport coefficient and heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Hiroki; Itoh, Sanae-I.; Kubota, Tetsuyuki; Toda, Shinichiro [Kyushu Univ., Fukuoka (Japan); Hanada, Kazuaki [Tokyo Univ. (Japan)

    1995-04-01

    The problem of deducing {Chi}{sub e} from heat pulse propagation measurements is addressed. It is indicated that diffusive models can not explain the experimental observations on WT-3 tokamak. The equation taking account of the convective term gives a good fit to experimental results. It may indicate that for the sawtooth free plasma, there exists a convection of heat pulse. 9 refs., 4 figs., 1 tab.

  14. The impact of oceanic heat transport on the atmospheric circulation

    Directory of Open Access Journals (Sweden)

    M.-A. Knietzsch

    2014-11-01

    Full Text Available A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo–Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3 PW, an increase of the oceanic heat transport leads to an increase of the global mean near-surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycle but of different relative magnitude for the individual components. The available potential energy of the zonal mean flow and its conversion to eddy available potential energy are affected most. Both the Hadley and Ferrel cell show a decline for increasing oceanic heat transport, with the Hadley cell being more sensitive. Both cells exhibit a poleward shift of their maxima, and the Hadley cell broadens for larger oceanic transports. The partitioning, by means of the Kuo–Eliassen equation, reveals that zonal mean diabatic heating and friction are the most important sources for changes of the Hadley cell, while the behaviour of the Ferrell cell is mostly controlled by friction.

  15. Experimental investigation of heat transport through single synthetic fractures

    Science.gov (United States)

    Pastore, Nicola; Cherubini, Claudia; Giasi, Concetta I.; Redondo, Jose M.

    2017-04-01

    In fractured geothermal reservoirs, heat transport is highly influenced by the presence of the fractures, so appropriate knowledge of heat behaviour in fractured porous media is essential for accurate prediction of the energy extraction in geothermal reservoirs. The present study focuses on the study of heat transport within single synthetic fractures. In particular manner several tests have been carried out in order to explore the role of fracture roughness, aperture variability and the fracture-matrix ratio on the heat transport dynamics. The Synfrac program together with a 3d printer have been used to build several fracture planes having different geometrical characteristics that have been moulded to generate concrete porous fractured blocks. The tests regard the observation of the thermal breakthrough curves obtained through a continuous flow injection in correspondence of eight thermocouples located uniformly on the fractured blocks. The physical model developed permits to reproduce and understand adequately some features of heat transport dynamics in fractured media. The results give emphasis on the errors of the assumptions commonly used in heat transport modelling.

  16. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  17. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  18. The impact of oceanic heat transport on the atmospheric circulation

    CERN Document Server

    Knietzsch, Marc-Andre; Lunkeit, Frank

    2014-01-01

    A general circulation model of intermediate complexity with an idealized earthlike aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is put on the Lorenz energy cycle and the atmospheric mean meridional circulation. The latter is analysed by means of the Kuo-Eliassen equation. The atmospheric heat transport compensates the imposed oceanic heat transport changes to a large extent in conjunction with significant modification of the general circulation. Up to a maximum about 3PW, an increase of the oceanic heat transport leads to an increase of the global mean near surface temperature and a decrease of its equator-to-pole gradient. For larger transports, the gradient is reduced further but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. A larger oceanic heat transport leads to a reduction of all reservoirs and conversions of the Lorenz energy cycl...

  19. An oceanic heat transport pathway to the Amundsen Sea Embayment

    Science.gov (United States)

    Rodriguez, Angelica R.; Mazloff, Matthew R.; Gille, Sarah T.

    2016-05-01

    The Amundsen Sea Embayment (ASE) on the West Antarctic coastline has been identified as a region of accelerated glacial melting. A Southern Ocean State Estimate (SOSE) is analyzed over the 2005-2010 time period in the Amundsen Sea region. The SOSE oceanic heat budget reveals that the contribution of parameterized small-scale mixing to the heat content of the ASE waters is small compared to advection and local air-sea heat flux, both of which contribute significantly to the heat content of the ASE waters. Above the permanent pycnocline, the local air-sea flux dominates the heat budget and is controlled by seasonal changes in sea ice coverage. Overall, between 2005 and 2010, the model shows a net heating in the surface above the pycnocline within the ASE. Sea water below the permanent pycnocline is isolated from the influence of air-sea heat fluxes, and thus, the divergence of heat advection is the major contributor to increased oceanic heat content of these waters. Oceanic transport of mass and heat into the ASE is dominated by the cross-shelf input and is primarily geostrophic below the permanent pycnocline. Diagnosis of the time-mean SOSE vorticity budget along the continental shelf slope indicates that the cross-shelf transport is sustained by vorticity input from the localized wind-stress curl over the shelf break.

  20. Heat transport in bubbling turbulent convection

    NARCIS (Netherlands)

    Lakkaraju, R.; Stevens, R.J.A.M.; Oresta, P.; Verzicco, R.; Lohse, D.; Prosperetti, A.

    2013-01-01

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to giv

  1. Experimental investigation on heat transport in gravel-sand materials

    DEFF Research Database (Denmark)

    Maureschat, Gerald; Heller, Alfred

    1997-01-01

    out in a small size experiment. The experiment consists of a highly insulated box filled with two kinds of sand material crossed by a plastic heat pipe. Heat transfer is measured under dry and water satured conditions in a cross-section.The conclusions are clear. To obtain necessary heat conduction...... in sand-gravel material, the storage media is to be water satured. In this case, handling of such material on site is rather complex. The conduction is highly dependent on the thermal properties of the storage media and so is the overall thermal performance of a storage applying such media. For sandy...... media no convectional heat transport is found. It would be relevant to extend the investigation to media that enables convectional heat transport. A last conclusion is that such experiments, necessary for proper designing of sand-gravel storage types, are a very cheap form of collecting information...

  2. Measurement of Heat Propagation in a Laser Produced Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G; Glenzer, S H; Knight, J; Niemann, C; Price, D; Froula, D H; Edwards, J; Town, R P J; Brantov, A; Bychenkov, V Y; Rozmus, W

    2003-08-22

    We present the observation of a nonlocal heat wave by measuring spatially and temporally resolved electron temperature profiles in a laser produced nitrogen plasma. Absolutely calibrated measurements have been performed by resolving the ion-acoustic wave spectra across the plasma volume with Thomson scattering. We find that the experimental electron temperature profiles disagree with flux-limited models, but are consistent with transport models that account for the nonlocal effects in heat conduction by fast electrons.

  3. Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation

    Science.gov (United States)

    Rashidi-Huyeh, M.; Volz, S.; Palpant, B.

    2008-09-01

    Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by thermal phenomena of different origins, the accurate description of which is crucial for interpreting experimental results: hot electron-gas generation, electron-phonon coupling, heat transfer to the particle environment, and heat propagation in the latter. Regarding this last mechanism, it is well known that heat transport in nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In these cases heat transport may rather be described by the Boltzmann transport equation. We present a numerical model allowing to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle core under subpicosecond pulsed excitation as well as that in the surrounding shell dielectric medium. For this, we have used the electron-phonon coupling equation in the particle with a source term linked with the laser pulse absorption and the ballistic-diffusive equations for heat conduction in the host medium. Either thermalizing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fourier’s law. Consequently, the particle-temperature rise is larger and its cooling dynamics might be slower than that obtained by using Fourier’s law. This difference is attributed to the nonlocal and nonequilibrium heat conductions in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing pump-probe experiments performed on single nanoparticles or nanocomposite media.

  4. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  5. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  6. Effect of Joule heating on electrokinetic transport.

    Science.gov (United States)

    Cetin, Barbaros; Li, Dongqing

    2008-03-01

    The Joule heating (JH) is a ubiquitous phenomenon in electrokinetic flow due to the presence of electrical potential gradient and electrical current. JH may become pronounced for applications with high electrical potential gradients or with high ionic concentration buffer solutions. In this review, an in-depth look at the effect of JH on electrokinetic processes is provided. Theoretical modeling of EOF and electrophoresis (EP) with the presence of JH is presented and the important findings from the previous studies are examined. A numerical study of a fused-silica capillary PCR reactor powered by JH is also presented to extend the discussion of favorable usage of JH.

  7. Heat transport at the boundary of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Herrmann, A.; Murmann, H.; Reimerdes, H.; Schweinzer, J.; Suttrop, W.; Salzmann, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany). EURATOM-IPP Association; ASDEX Upgrade Team; NBI Group

    1997-01-17

    The flow of heat in the scrape-off layer region of ASDEX Upgrade is investigated and compared with simple modelling. Parallel heat transport is found to be consistent with electron heat conduction based on Spitzer-Haerm conductivity. Cross-field heat transport is characterized using radial e-folding distances for power, temperature and plasma pressure, which are all found to vary weakly over a wide range of discharge conditions. Type I ELMs, also characterized, introduce a discreteness to the power flow into the SOL and carry approximately half of the power exhaust from the discharge. The divertor plates are effectively screened from the ELM energy, even in low radiation discharges, suggesting enhanced radiation rates during ELMs. (orig.)

  8. Heat transport at the boundary of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States); Hermann, A.; Murmann, H. [IPP-EURATOM Association, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)] [and others

    1997-07-01

    The flow of heat in the scrape-off layer (SOL) region of ASDEX Upgrade is investigated and compared with simple modelling. Parallel heat transport is found to be consistent with electron heat conduction based on Spitzer-Harm conductivity. Cross-field heat transport is characterized using radial e-folding distances for power, temperature and plasma pressure, which are all found to vary weakly over a wide range of discharge conditions. Type I ELMs, also characterized, introduce a discreteness to the power flow into the SOL and carry approximately half of the power exhaust from the discharge. The divertor plates are effectively screened from the ELM energy, even in low-radiation discharges, suggesting enhanced radiation rates during ELMs. (Author).

  9. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  10. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;

    1987-01-01

    The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...

  11. Laboratory experimental investigation of heat transport in fractured media

    Science.gov (United States)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicoletta Maria

    2017-01-01

    Low enthalpy geothermal energy is a renewable resource that is still underexploited nowadays in relation to its potential for development in society worldwide. Most of its applications have already been investigated, such as heating and cooling of private and public buildings, road defrosting, cooling of industrial processes, food drying systems or desalination. Geothermal power development is a long, risky and expensive process. It basically consists of successive development stages aimed at locating the resources (exploration), confirming the power generating capacity of the reservoir (confirmation) and building the power plant and associated structures (site development). Different factors intervene in influencing the length, difficulty and materials required for these phases, thereby affecting their cost. One of the major limitations related to the installation of low enthalpy geothermal power plants regards the initial development steps that are risky and the upfront capital costs that are huge. Most of the total cost of geothermal power is related to the reimbursement of invested capital and associated returns. In order to increase the optimal efficiency of installations which use groundwater as a geothermal resource, flow and heat transport dynamics in aquifers need to be well characterized. Especially in fractured rock aquifers these processes represent critical elements that are not well known. Therefore there is a tendency to oversize geothermal plants. In the literature there are very few studies on heat transport, especially on fractured media. This study is aimed at deepening the understanding of this topic through heat transport experiments in fractured networks and their interpretation. Heat transfer tests have been carried out on the experimental apparatus previously employed to perform flow and tracer transport experiments, which has been modified in order to analyze heat transport dynamics in a network of fractures. In order to model the obtained

  12. Heat transport in the Hadean mantle: From heat pipes to plates

    Science.gov (United States)

    Kankanamge, Duminda G. J.; Moore, William B.

    2016-04-01

    Plate tectonics is a unique feature of Earth, and it plays a dominant role in transporting Earth's internally generated heat. It also governs the nature, shape, and the motion of the surface of Earth. The initiation of plate tectonics on Earth has been difficult to establish observationally, and modeling of the plate breaking process has not consistently accounted for the nature of the preplate tectonic Earth. We have performed numerical simulations of heat transport in the preplate tectonic Earth to understand the transition to plate tectonic behavior. This period of time is dominated by volcanic heat transport called the heat pipe mode of planetary cooling. These simulations of Earth's mantle include heat transport by melting and melt segregation (volcanism), Newtonian temperature-dependent viscosity, and internal heating. We show that when heat pipes are active, the lithosphere thickens and lithospheric isotherms are kept flat by the solidus. Both of these effects act to suppress plate tectonics. As volcanism wanes, conduction begins to control lithospheric thickness, and large slopes arise at the base of the lithosphere. This produces large lithospheric stress and focuses it on the thinner regions of the lithosphere resulting in plate breaking events.

  13. Phonon heat transport in gallium arsenide

    Indian Academy of Sciences (India)

    Richa Saini; Vinod Ashokan; B D Indu; R Kumar

    2012-03-01

    The lifetimes of quantum excitations are directly related to the electron and phonon energy linewidths of a particular scattering event. Using the versatile double time thermodynamic Green’s function approach based on many-body theory, an ab-initio formulation of relaxation times of various contributing processes has been investigated with newer understanding in terms of the linewidths of electrons and phonons. The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering. The lattice thermal conductivities of three samples of GaAs have been analysed on the basis of modified Callaway model and a fairly good agreement between theory and experimental observations has been reported.

  14. Unidirectional Heat Transport Driven by Rotating Cholesteric Droplets

    Science.gov (United States)

    Sato, Sayumi; Bono, Shinji; Tabe, Yuka

    2017-02-01

    When a cholesteric liquid crystal (LC) is submitted to a thermal gradient, it exhibits continuous director rotation. The phenomenon is called the Lehmann effect and is understood as a thermomechanical coupling in chiral LCs without mirror symmetry. Since the Lehmann effect is considered to possess time-reversal symmetry, one can expect the inverse process, i.e., rotating chiral LCs to pump heat along the rotational axis. We report the first observation of heat transport driven by rotating cholesteric droplets. This result suggests a new function of the cholesterics as a micro heat pump.

  15. Turbulent heat transport and its anisotropy in an impinging jet

    Directory of Open Access Journals (Sweden)

    Petera Karel

    2015-01-01

    Full Text Available The turbulent heat transport is anisotropic in many cases as reported by several researchers. RANS-based turbulence models use the turbulent viscosity when expressing the turbulent heat flux in the energy balance (analogy of the Reynolds stresses in the momentum balance. The turbulent (eddy viscosity calculation comes from the Boussinesq analogy mainly and it represents just a scalar value, hence a possible anisotropy in the turbulent flow field cannot be simply transferred to the temperature field. The computational cost of a LES-based approach can be too prohibitive in complex cases, therefore simpler explicit algebraic heat flux models describing the turbulent heat flux in the time-averaged energy equation could be used to get more accurate CFD results. This paper compares several turbulence models for the case of a turbulent impinging jet and deals with a methodology of implementing a user-defined function describing the anisotropic turbulent heat flux in a CFD code.

  16. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording

    Science.gov (United States)

    Budaev, Bair V.; Bogy, David B.

    2012-06-01

    This paper compares different mechanisms of heat transport across nano-scale gaps and discusses the role of electromagnetic phenomena in heat transport in general nano-scale layered structures. The results of the analysis suggest that heat transfer across sub-5 nm gaps like that appearing in prototypes of heat assisted magnetic recording (HAMR) systems is dominated by direct intermolecular interactions between the separated bodies and is little affected by electromagnetic radiation. The analysis further suggests that local heating for HAMR with sub-5 nm spacing can be more efficiently achieved by a Joule heater that is simpler to fabricate than laser-based optical systems and is less destructive for the nano-scale transducers than laser radiation, which may lead to their structural damage and short duration life of nanoscale transducers.

  17. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  18. Temporal Non-locality

    Science.gov (United States)

    Filk, Thomas

    2013-04-01

    In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

  19. Nonlocal incoherent solitons

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Wyller, John

    2004-01-01

    We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....

  20. NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.

  1. Heat Transport in Confined Strongly Coupled 2D Dust Clusters

    CERN Document Server

    Kudelis, Giedrius; Bonitz, Michael

    2013-01-01

    Dusty plasmas are a model system for studying strong correlation. The dust grains' size of a few micro-meters and their characteristic oscillation frequency of a few hertz allows for an investigation of many particle effects on an atomic level. In this article, we model the heat transport through an axially confined 2D dust cluster from the center to the outside. The system behaves particularly interesting since heat is not only conducted within the dust component but also transfered to the neutral gas. Fitting the analytical solution to the obtained radial temperature profiles allows to determine the heat conductivity $\\kheat$. The heat conductivity is found to be constant over a wide range of coupling strengths even including the phase transition from solid to liquid here, as it was also found in extended systems by V. Nosenko et al. in 2008 \\cite{PhysRevLett.100.025003}

  2. Perturbative Heat Transport Experiments on TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Eguilor, S.; Castejon, F.; Luna, E. de la; Cappa, A.; Likin, K.; Fernandez, A.; Tj-II, T.

    2002-07-01

    Heat wave experiments are performed on TJ-II stellarator plasmas to estimate both heat diffusivity and power deposition profiles. High frequency ECRH modulation experiments are used to obtain the power deposition profiles, which is observed to be wider and duller than estimated by tracing techniques. The causes of this difference are discussed in the paper. Fourier analysis techniques are used to estimate the heat diffusivity in low frequency ECRH modulation experiments. This include the power deposition profile as a new ingredient. ECHR switch on/off experiments are exploited to obtain power deposition and heat diffusivities profile. Those quantities are compared with the obtained by modulation experiments and transport analysis, showing a good agreement. (Author) 18 refs.

  3. Heat Transport Effects in Rotating Gases and Plasmas

    Science.gov (United States)

    Kolmes, Elijah; Geyko, Vasily; Fisch, Nathaniel

    2016-10-01

    In some contexts, rotating gases and plasmas exhibit heat transport effects that are substantially different from what would be found in the absence of rotation. For instance, a Ranque-Hilsch vortex tube is a device which separates an input stream of (neutral) gas into hot and cold streams by setting up a rotating flow in a specially designed cylindrical chamber. One class of vortex tube models involves radial motion that carries gas up and down the pressure gradients set up by the centrifugal potential inside the tube and which results in adiabatic heating and cooling of the radially moving material. The approach of producing heat transport in a rotating flow using pressure gradients and motion along those gradients may have applications in plasma systems. We discuss possible applications for rotational heat transport effects in plasma systems, including Z-pinch configurations. Princeton Plasma Physics Laboratory; U.S. Defense Reduction Agency Grant No. HDTRA1-11-1-0037; and the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948.

  4. Optimal Heat Transport in Rayleigh-B\\'enard Convection

    CERN Document Server

    Sondak, David; Waleffe, Fabian

    2015-01-01

    Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...

  5. Boundary fluxes for nonlocal diffusion

    Science.gov (United States)

    Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi

    We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.

  6. Mobile heat accumulators for lorry or train transport?; Mobile Waermespeicher fuer den LKW- oder Zugtransport?

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, Philipp

    2013-07-01

    Where heat grids cannot be laid for geographic reasons, mobile heat accumulators may be appropriate. The mobile heat accumulators are transported by lorry or train between the heat source and the heat sink. The waste heat can be decoupled from biogas plants, waste incineration plants or industrial sites. Existing road or rail networks can be used for transportation. Decisive factors to achieve low heat production costs are: free waste heat, large and continuous heat quantities as well as a short distance between the heat source and the heat sink. (orig.)

  7. Water, heat and salt transport through the Strait of Otranto

    Science.gov (United States)

    Yari, Sadegh; Gačić, Miroslav; Kovačević, Vedrana; Cardin, Vanessa

    2010-05-01

    The water, heat and salt transports through the Strait of Otranto are estimated applying direct method to historical current and hydrographical data (from December 94 through November 95). A variational inverse method based on a variational principle and a finite element solver is used to reconstruct the current, temperature and salinity fields across the Strait section from sparse measurements. The mean annual inflow and outflow water transport rates are estimated as 0.901±0.039 Sv and -0.939±0.315 Sv, respectively, and the net transport for the period of study is equal to -0.032±0.208 Sv. Thus, on a yearly time interval, the inflow and the outflow are practically compensated. The heat and salt transports due to advection process are estimated for five monthly periods, namely December 1994, February, May, August and November 1995. Considering these five periods representative of the seasonal cycle during the year, their average values show that there is a net heat advection into the Adriatic Sea on a yearly basis. The estimated value of advected heat and the corresponding error are 2.408±0.490 TW, which is equivalent to a heat gain of 17.37±3.53 W m-2 for the whole basin. This value is compared to the heat loss of -36±152 (std) W m-2 through the air-sea interface calculated by means of bulk formulas over the Adriatic Sea. The two values are expected to be balance each other in order to close the heat budget of the basin. The possible reasons for this difference to occur are discussed. On a yearly basis, the salt transport is estimated as an input of salt equal to 0.05×106 Kg s-1. The average annual fresh water budget is estimated as -0.002 Sv, equivalent to the mass of fresh water of 2.00×106Kg s-1 or to the level of 0.45 m yr-1 for the entire Adriatic Sea. The import of salt that is less than the gain of fresh water is in agreement with the fact that the Adriatic Sea is a dilution basin.

  8. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Science.gov (United States)

    Carlomagno, I.; Cimmelli, V. A.; Sellitto, A.

    2017-04-01

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  9. Heat transport in a chaotic magnetic field; Transport de la chaleur dans un champ magnetique chaotique

    Energy Technology Data Exchange (ETDEWEB)

    Feron, S. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Grenoble-1 Univ., 38 (France)

    1997-12-01

    Heat transport in a plasma with a magnetic perturbation of amplitude b and a transverse diffusion of typical scale {delta} is investigated. On Tore Supra, such a perturbation is induced at the edge by the Ergodic Divertor. Classically, the heat transport is expected to be diffusive, but the experimental evidence does not support such a model. The main experimental features are temperature modulations and a transport barrier which allows no loss of confinement in the core plasma. An analysis of both temperature filed nd magnetic perturbation indicates clearly delimited regions of strong and weak transport that are related to the loss of memory on a filed line due to the transverse diffusion. Furthermore, the perturbation is strongly space-dependent. This implies non local transport and a region (separatrix) in which the Chirikov parameter is less that one. This analysis leads to a 1D analytical model which recovers modulations. A transport barrier is also expected, assuming a dissymmetrical transport process around the separatrix. A mapping transport code has also been developed which takes the basic features of the ergodic divertor into account. Both experimental results, modulations, and a transport barrier are recovered. The latter depends on the ratio b/{delta}, but occurs without any assumption of dissymmetrical transport. For the same ratio b/{delta} as Tore Supra, the core confinement, as with the experiment, is not affected. A lower ratio leads to a loss of confinement, while a larger value produces improved confinement. The barrier can be attributed to non diffusive transport out of islands located around the separatrix. The trapping mechanisms in these islands, combined with some small level of transverse transport, reduce the probability for particles to flow back to the perturbed region. A dissymmetrical process then appears and allows for a transport barrier. (author) 90 refs.

  10. Molecular-dynamics calculation of the vacancy heat of transport

    Energy Technology Data Exchange (ETDEWEB)

    Schelling, Patrick K.; Ernotte, Jacques; Shokeen, Lalit; Tucker, William C. [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Woods Halley, J. [Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 555455 (United States)

    2014-07-14

    We apply the recently developed constrained-dynamics method to elucidate the thermodiffusion of vacancies in a single-component material. The derivation and assumptions used in the method are clearly explained. Next, the method is applied to compute the reduced heat of transport Q{sub v}{sup *}−h{sub fv} for vacancies in a single-component material. Results from simulations using three different Morse potentials, with one providing an approximate description of Au, and an embedded-atom model potential for Ni are presented. It is found that the reduced heat of transport Q{sub v}{sup *}−h{sub fv} may take either positive or negative values depending on the potential parameters and exhibits some dependence on temperature. It is also found that Q{sub v}{sup *}−h{sub fv} may be correlated with the activation entropy. The results are discussed in comparison with experimental and previous simulation results.

  11. Analysis of coupled heat and moisture transport on parallel computers

    Science.gov (United States)

    Koudelka, Tomáš; Krejčí, Tomáš

    2017-07-01

    Coupled analysis of heat and moisture transport in complicated structural elements or in whole structures deserves a special attention because after space discretization, large number of degrees of freedom are needed. This paper describes possible solution of such problems based on domain decomposition methods executed on parallel computers. The Schur complement method is used with respect to nonsymmetric systems of algebraic equations. The method described is an alternative to other methods, e.g. two or more scale homogenization.

  12. Internal transport barrier with ICRH minority heating on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, G.T.; Bourdelle, C.; Garbet, X.; Antar, G.; Aniel, T.; Basiuk, V.; Becoulet, A.; Devynck, P.; Lasalle, J.; Martin, G.; Saint-Laurent, F. [Association Euratom-CEA, CEA/Cadarache, Dept. de Recherches sur la Fusion Controlee (DRFC), 13 - Saint-Paul-lez-Durance (France); Budny, R.V. [Princeton Plasma Physics Lab., N.J. (United States)

    2000-02-01

    Recently reversed magnetic shear (s) operation was performed using only ion cyclotron resonance frequency minority heating (ICRH) during current ramp-up. A wide region of reserved magnetic shear has been obtained. For the first time, an electron internal transport barrier sustained by ICRH is observed, with a dramatic drop of density fluctuations. This barrier was maintained, on the current flat top, for about 2 s. (authors)

  13. Climate in the Absence of Ocean Heat Transport

    Science.gov (United States)

    Rose, B. E. J.

    2015-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on the climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify this by comparing a realistic control climate simulation with a slab ocean simulation in which OHT is disabled. Using the state-of-the-art CESM with a realistic present-day continental configuration, I show that the absence of OHT leads to a 23 K global cooling and massive expansion of sea ice to near 30º latitude in both hemisphere. The ice expansion is asymmetric, with greatest extent in the South Pacific and South Indian ocean basins. I discuss implications of this enormous and asymmetric climate change for atmospheric circulation, heat transport, and tropical precipitation. Parameter sensitivity studies show that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT, with some perturbations sufficient to cause a runaway Snowball Earth glaciation. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is still rather uncertain. I will also present some ideas on adapting the simple energy balance model to account for the enhanced sensitivity of sea ice to heating from the ocean.

  14. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  15. Effects of chemical bonding on heat transport across interfaces.

    Science.gov (United States)

    Losego, Mark D; Grady, Martha E; Sottos, Nancy R; Cahill, David G; Braun, Paul V

    2012-04-22

    Interfaces often dictate heat flow in micro- and nanostructured systems. However, despite the growing importance of thermal management in micro- and nanoscale devices, a unified understanding of the atomic-scale structural features contributing to interfacial heat transport does not exist. Herein, we experimentally demonstrate a link between interfacial bonding character and thermal conductance at the atomic level. Our experimental system consists of a gold film transfer-printed to a self-assembled monolayer (SAM) with systematically varied termination chemistries. Using a combination of ultrafast pump-probe techniques (time-domain thermoreflectance, TDTR, and picosecond acoustics) and laser spallation experiments, we independently measure and correlate changes in bonding strength and heat flow at the gold-SAM interface. For example, we experimentally demonstrate that varying the density of covalent bonds within this single bonding layer modulates both interfacial stiffness and interfacial thermal conductance. We believe that this experimental system will enable future quantification of other interfacial phenomena and will be a critical tool to stimulate and validate new theories describing the mechanisms of interfacial heat transport. Ultimately, these findings will impact applications, including thermoelectric energy harvesting, microelectronics cooling, and spatial targeting for hyperthermal therapeutics.

  16. Transport in multiterminal normal-superconductor devices : Reciprocity relations, negative and nonlocal resistances, and reentrance of the proximity effect

    NARCIS (Netherlands)

    denHartog, SG; Kapteyn, CMA; vanWees, BJ; Klapwijk, TM; Borghs, G; Hartog, S.G. den

    1996-01-01

    We have investigated transport in a cross-shaped two-dimensional electron gas with superconducting electrodes coupled to two opposite arms. Multiterminal resistances, measured as a function of the superconducting phase difference and the magnetic flux, are analyzed in terms of an extended Landauer-B

  17. Quantum Thermodynamics in Strong Coupling: Heat Transport and Refrigeration

    Directory of Open Access Journals (Sweden)

    Gil Katz

    2016-05-01

    Full Text Available The performance characteristics of a heat rectifier and a heat pump are studied in a non-Markovian framework. The device is constructed from a molecule connected to a hot and cold reservoir. The heat baths are modelled using the stochastic surrogate Hamiltonian method. The molecule is modelled by an asymmetric double-well potential. Each well is semi-locally connected to a heat bath composed of spins. The dynamics are driven by a combined system–bath Hamiltonian. The temperature of the baths is regulated by a secondary spin bath composed of identical spins in thermal equilibrium. A random swap operation exchange spins between the primary and secondary baths. The combined system is studied in various system–bath coupling strengths. In all cases, the average heat current always flows from the hot towards the cold bath in accordance with the second law of thermodynamics. The asymmetry of the double well generates a rectifying effect, meaning that when the left and right baths are exchanged the heat current follows the hot-to-cold direction. The heat current is larger when the high frequency is coupled to the hot bath. Adding an external driving field can reverse the transport direction. Such a refrigeration effect is modelled by a periodic driving field in resonance with the frequency difference of the two potential wells. A minimal driving amplitude is required to overcome the heat leak effect. In the strong driving regime the cooling power is non-monotonic with the system–bath coupling.

  18. Why convective heat transport in the solar nebula was inefficient

    Science.gov (United States)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  19. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    Science.gov (United States)

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical

  20. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  1. Nonlinear and Nonlocal Feedbacks in an Aquaplanet

    Science.gov (United States)

    Feldl, N.; Roe, G.

    2012-12-01

    The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.

  2. Heat transport capability and compensation chamber influence in loop heat pipes performance

    Energy Technology Data Exchange (ETDEWEB)

    Riehl, Roger R. [National Institute for Space Research-Space Mechanics and Control Division-DMC/Satelite Av. dos Astronautas 1758, Sao Jose dos Campos, SP, 12227-010 (Brazil); Siqueira, Tulio C.P.A. [Universidade Federal de Ouro Preto-Departamento de Engenharia de Controle e Automacao Ouro Preto, MG, 35400-000 (Brazil)

    2006-08-15

    The development of the loop heat pipe technology for application in future space missions requires that certain aspects related to the operation of this device in regard to the heat transport, geometry and selected working fluid must be carefully considered. As efforts have been focused in the construction of loop heat pipes able to manage up to 80W of applied heat using an alternative working fluid, designing and testing these devices have shown important results. Two loop heat pipes have been built and tested, where they differ from each other on their compensation chamber geometry and use high grade acetone as working fluid, in substitution of the so-used ammonia. Life tests have shown reliable operation for both loop heat pipes with successful startups and continuous operation without temperature overshoot or evaporator dryout. The life tests results investigation have generated important data that has been applied on the design and construction of loop heat pipes toward their use in future space applications. (author)

  3. Fully nonlocal quantum correlations

    CERN Document Server

    Aolita, Leandro; Acín, Antonio; Chiuri, Andrea; Vallone, Giuseppe; Mataloni, Paolo; Cabello, Adán

    2011-01-01

    Quantum mechanics is a nonlocal theory, but not as nonlocal as the no-signalling principle allows. However, there exist quantum correlations that exhibit maximal nonlocality: they are as nonlocal as any non-signalling correlations and thus have a local content, quantified by the fraction $p_L$ of events admitting a local description, equal to zero. Previous examples of maximal quantum nonlocality between two parties require an infinite number of measurements, and the corresponding Bell violation is not robust against noise. We show how every proof of the Kochen-Specker theorem gives rise to maximally nonlocal quantum correlations that involve a finite number of measurements and are robust against noise. We perform the experimental demonstration of a Bell test originating from the Peres-Mermin Kochen-Specker proof, providing an upper bound on the local content $p_L\\lesssim 0.22$.

  4. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths.

    Science.gov (United States)

    Sääskilahti, K; Oksanen, J; Tulkki, J

    2013-07-01

    Modeling of thermal transport in practical nanostructures requires making tradeoffs between the size of the system and the completeness of the model. We study quantum heat transfer in a self-consistent thermal bath setup consisting of two lead regions connected by a center region. Atoms both in the leads and in the center region are coupled to quantum Langevin heat baths that mimic the damping and dephasing of phonon waves by anharmonic scattering. This approach treats the leads and the center region on the same footing and thereby allows for a simple and physically transparent thermalization of the system, enabling also perfect acoustic matching between the leads and the center region. Increasing the strength of the coupling reduces the mean-free path of phonons and gradually shifts phonon transport from ballistic regime to diffusive regime. In the center region, the bath temperatures are determined self-consistently from the requirement of zero net energy exchange between the local heat bath and each atom. By solving the stochastic equations of motion in frequency space and averaging over noise using the general fluctuation-dissipation relation derived by Dhar and Roy [J. Stat. Phys. 125, 801 (2006)], we derive the formula for thermal current, which contains the Caroli formula for phonon transmission function and reduces to the Landauer-Büttiker formula in the limit of vanishing coupling to local heat baths. We prove that the bath temperatures measure local kinetic energy and can, therefore, be interpreted as true atomic temperatures. In a setup where phonon reflections are eliminated, the Boltzmann transport equation under gray approximation with full phonon dispersion is shown to be equivalent to the self-consistent heat bath model. We also study thermal transport through two-dimensional constrictions in square lattice and graphene and discuss the differences between the exact solution and linear approximations.

  5. Three dimensional heat transport modeling in Vossoroca reservoir

    Science.gov (United States)

    Arcie Polli, Bruna; Yoshioka Bernardo, Julio Werner; Hilgert, Stephan; Bleninger, Tobias

    2017-04-01

    Freshwater reservoirs are used for many purposes as hydropower generation, water supply and irrigation. In Brazil, according to the National Energy Balance of 2013, hydropower energy corresponds to 70.1% of the Brazilian demand. Superficial waters (which include rivers, lakes and reservoirs) are the most used source for drinking water supply - 56% of the municipalities use superficial waters as a source of water. The last two years have shown that the Brazilian water and electricity supply is highly vulnerable and that improved management is urgently needed. The construction of reservoirs affects physical, chemical and biological characteristics of the water body, e.g. stratification, temperature, residence time and turbulence reduction. Some water quality issues related to reservoirs are eutrophication, greenhouse gas emission to the atmosphere and dissolved oxygen depletion in the hypolimnion. The understanding of the physical processes in the water body is fundamental to reservoir management. Lakes and reservoirs may present a seasonal behavior and stratify due to hydrological and meteorological conditions, and especially its vertical distribution may be related to water quality. Stratification can control heat and dissolved substances transport. It has been also reported the importance of horizontal temperature gradients, e.g. inflows and its density and processes of mass transfer from shallow to deeper regions of the reservoir, that also may impact water quality. Three dimensional modeling of the heat transport in lakes and reservoirs is an important tool to the understanding and management of these systems. It is possible to estimate periods of large vertical temperature gradients, inhibiting vertical transport and horizontal gradients, which could be responsible for horizontal transport of heat and substances (e.g. differential cooling or inflows). Vossoroca reservoir was constructed in 1949 by the impoundment of São João River and is located near to

  6. Heat and salt transport throughout the North Pacific Ocean

    Science.gov (United States)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    Absolute geostrophic currents in the North Pacific Ocean are calculated using the P-vector method and gridded Argo profiling data from January 2004 to December 2012. Three-dimensional structures and seasonal variability of meridional heat transport (MHT) and meridional salt transport (MST) are analyzed. The results show that geostrophic and Ekman components are generally opposite in sign, with the southward geostrophic component dominating in the subtropics and the northward Ekman component dominating in the tropics. In combination with the net surface heat flux and the MST through the Bering Strait, the MHT and MST of the western boundary currents (WBCs) are estimated for the first time. The results suggest that the WBCs are of great importance in maintaining the heat and salt balance of the North Pacific. The total interior MHT and MST in the tropics show nearly the same seasonal variability as that of the Ekman components, consistent with the variability of zonal wind stress. The geostrophic MHT in the tropics is mainly concentrated in the upper layers, while MST with large amplitude and annual variation can extend much deeper. This suggests that shallow processes dominate MHT in the North Pacific, while MST can be affected by deep ocean circulation. In the extratropical ocean, both MHT and MST are weak. However, there is relatively large and irregular seasonal variability of geostrophic MST, suggesting the importance of the geostrophic circulation in the MST of that area.

  7. Nonlocal General Relativity

    CERN Document Server

    Mashhoon, B

    2014-01-01

    A brief account of the present status of the recent nonlocal generalization of Einstein's theory of gravitation is presented. The main physical assumptions that underlie this theory are described. We clarify the physical meaning and significance of Weitzenb\\"ock's torsion, and emphasize its intimate relationship with the gravitational field, characterized by the Riemannian curvature of spacetime. In this theory, nonlocality can simulate dark matter; in fact, in the Newtonian regime, we recover the phenomenological Tohline-Kuhn approach to modified gravity. To account for the observational data regarding dark matter, nonlocality is associated with a characteristic length scale of order 1 kpc. The confrontation of nonlocal gravity with observation is briefly discussed.

  8. IMPACT OF THE TRANSPORT ON THE URBAN HEAT ISLAND

    Directory of Open Access Journals (Sweden)

    Haddad Louiza

    2015-09-01

    Full Text Available Although transport has resulted in many beneficial effects on society, but their development in fact have negative impacts on the environment. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. We perform a numerical simulation of the plume generated by the exhaust gases of cars and show that these gases form a screening effect above the urban cite which cause the heat island in the presence of wind flow. The study allows us: i- to understand the different mechanisms of interactions between these phenomenons, ii- to consider appropriate technical solutions to mitigate the effects of the heat island.

  9. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    Science.gov (United States)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  10. A simulation of heat transfer during billet transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)

    2002-07-01

    This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)

  11. Topological Angular Momentum and Radiative Heat Transport in Closed Orbits

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    Here, we study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit - when the field fluctuations are purely quantum mechanical - there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open new inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.

  12. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  13. Transport in nanoscale systems: hydrodynamics, turbulence, and local electron heating

    Science.gov (United States)

    di Ventra, Massimiliano

    2007-03-01

    Transport in nanoscale systems is usually described as an open-boundary scattering problem. This picture, however, says nothing about the dynamical onset of steady states, their microscopic nature, or their dependence on initial conditions [1]. In order to address these issues, I will first describe the dynamical many-particle state via an effective quantum hydrodynamic theory [2]. This approach allows us to predict a series of novel phenomena like turbulence of the electron liquid [2], local electron heating in nanostructures [3], and the effect of electron viscosity on resistance [4]. I will provide both analytical results and numerical examples of first-principles electron dynamics in nanostructures using the above approach. I will also discuss possible experimental tests of our predictions. Work supported in part by NSF and DOE. [1] N. Bushong, N. Sai and M. Di Ventra, ``Approach to steady-state transport in nanoscale systems'' Nano Letters, 5 2569 (2005); M. Di Ventra and T.N. Todorov, ``Transport in nanoscale systems: the microcanonical versus grand-canonical picture,'' J. Phys. Cond. Matt. 16, 8025 (2004). [2] R. D'Agosta and M. Di Ventra, ``Hydrodynamic approach to transport and turbulence in nanoscale conductors,'' cond-mat/05123326; J. Phys. Cond. Matt., in press. [3] R. D'Agosta, N. Sai and M. Di Ventra, ``Local electron heating in nanoscale conductors,'' cond-mat/0605312; Nano Letters, in press. [4] N. Sai, M. Zwolak, G. Vignale and M. Di Ventra, ``Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems,'' Phys. Rev. Lett. 94, 186810 (2005).

  14. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2011-01-01

    We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.

  15. Policies and initiatives for carbon neutrality in nordic heating and transport systems

    DEFF Research Database (Denmark)

    Muller, Jakob Glarbo; Wu, Qiuwei; Ostergaard, Jacob;

    2012-01-01

    to heat pumps in the Nordic region rely on both private economic and national economic incentives. Initiatives toward carbon neutrality in the transport system are mostly concentrated on research, development and demonstration for deployment of a large number of EVs. All Nordic countries have plans......Policies and initiatives promoting carbon neutrality in the Nordic heating and transport systems are presented. The focus within heating systems is the propagation of heat pumps while the focus within transport systems is initiatives regarding electric vehicles (EVs). It is found that conversion...... for the future heating and transport systems with the ambition of realizing carbon neutrality....

  16. Seasonal and Interdecadal Variations of Heat Transport over the Northern Hemisphere

    Institute of Scientific and Technical Information of China (English)

    SUN Jilin; XU Delong; GU Dejun

    2006-01-01

    Using NCEP/NCAR reanalysis data, variations of heat transport in the Northern Hemisphere were studied.It was found that there are interdecadal variations in heat transport from middle latitudes to higher latitudes.The variations of interdecadal heat transport over longitudes around 120°E are out of phase with those over around 90°E and over the Northeastern Pacific.The seasonal variations of heat transport were also discussed.It was found that most heat is transported in the lower layer of the troposphere from middle latitudes to higher latitudes.Over around 120°E and over around 120°W, the seasonal and interannual variations of heat transport across 32.5°N are apparent and in phase.

  17. Nonlocal Anomalous Hall Effect

    Science.gov (United States)

    Zhang, Steven S.-L.; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.

  18. Nonlocal Anomalous Hall Effect.

    Science.gov (United States)

    Zhang, Steven S-L; Vignale, Giovanni

    2016-04-01

    The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.

  19. Nonlocality from Local Contextuality

    Science.gov (United States)

    Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán

    2016-11-01

    We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.

  20. Nonlocality from Local Contextuality.

    Science.gov (United States)

    Liu, Bi-Heng; Hu, Xiao-Min; Chen, Jiang-Shan; Huang, Yun-Feng; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can; Cabello, Adán

    2016-11-25

    We experimentally show that nonlocality can be produced from single-particle contextuality by using two-particle correlations which do not violate any Bell inequality by themselves. This demonstrates that nonlocality can come from an a priori different simpler phenomenon, and connects contextuality and nonlocality, the two critical resources for, respectively, quantum computation and secure communication. From the perspective of quantum information, our experiment constitutes a proof of principle that quantum systems can be used simultaneously for both quantum computation and secure communication.

  1. Optimal wall spacing for heat transport in thermal convection

    Energy Technology Data Exchange (ETDEWEB)

    Shishkina, Olga [Max Planck Institute for Dynamics and Self-Organization, Goettingen (Germany)

    2016-11-01

    The simulation of RB flow for Ra up to 1 x 10{sup 10} is computationally expensive in terms of computing power and hard disk storage. Thus, we gratefully acknowledge the computational resources supported by Leibniz-Rechenzentrum Munich. Compared to Γ=1 situation, a new physical picture of heat transport is identified here at Γ{sub opt} for any explored Ra. Therefore, a detailed comparison between Γ=1 and Γ=Γ{sub opt} is valuable for our further research, for example, their vertical temperature and velocity profiles. Additionally, we plan to compare the fluid with different Pr under geometrical confinement, which are computationally expensive for the situations of Pr<<1 and Pr>>1.

  2. Heat- and mass-transport in aqueous silica nanofluids

    Science.gov (United States)

    Turanov, A. N.; Tolmachev, Yuriy V.

    2009-10-01

    Using the transient hot wire and pulsed field gradient nuclear magnetic resonance methods we determined the thermal conductivity and the solvent self-diffusion coefficient (SDC) in aqueous suspensions of quasi-monodisperse spherical silica nanoparticles. The thermal conductivity was found to increase at higher volume fraction of nanoparticles in accordance with the effective medium theory albeit with a smaller slope. On the other hand, the SDC was found to decrease with nanoparticle volume fraction faster than predicted by the effective medium theory. These deviations can be explained by the presence of an interfacial heat-transfer resistance and water retention by the nanoparticles, respectively. We found no evidence for anomalous enhancement in the transport properties of nanofluids reported earlier by other groups.

  3. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  4. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    Science.gov (United States)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  5. Photothermal heating in metal-embedded microtools for material transport

    Science.gov (United States)

    Villangca, Mark; Palima, Darwin; Bañas, Andrew; Glückstad, Jesper

    2016-03-01

    Material transport is an important mechanism in microfluidics and drug delivery. The methods and solutions found in literature involve passively diffusing structures, microneedles and chemically fueled structures. In this work, we make use of optically actuated microtools with embedded metal layer as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control and convection currents have been demonstrated both experimentally and numerically for static metal thin films or passively floating nanoparticles. Here we show an integration of aforementioned functionalities in an optically fabricated and actuated microtool. As proof of concept, we demonstrate loading and unloading of beads. This can be extended to controlled transport and release of genetic material, bio-molecules, fluorescent dyes. We envisioned these microtools to be an important addition to the portfolio of structure-mediated contemporary biophotonics.

  6. Air, contaminant and heat transport models. Integration and application

    Energy Technology Data Exchange (ETDEWEB)

    Dorer, V.; Weber, A. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Section 175 Building Equipment, CH-8600 Duebendorf (Switzerland)

    1999-07-01

    Comfort evaluations cover air quality, thermal, visual and acoustic comfort. Today, only few computer programs allow for the integrated evaluation of several or all relevant parameters. Heat transport, ventilation as well as lighting in a room are influenced by each other. Therefore they should be integrally modelled. As a part of the IEA-ECBCS Annex 23 'Multizone Air Flow Modelling' (IEA, International Energy Agency; ECBCS, Energy Conservation in Buildings and Community Systems, an IEA research programme), such a coupling has been realised by integrating the air flow and contaminant transport simulation code of COMIS into the building and systems simulation code TRNSYS. This paper gives a short description of the concept used for the coupling. Then, two application examples typical for a building design study situation are presented, the first being a multi-storey school building which was passively cooled at night due to natural stack airflow. In the second example the facade of the same building was retrofitted with a glazed outer facade. Ventilation was provided by naturally driven shaft ventilation through the facade spaces. For such cases as described in the examples, it may be necessary due to the complex interactions, to study many configurations to find optimum control strategies for the openings and the blinds with respect to overheating risk as well as to air quality. For the upper floors, the risk of overheating and low air quality may be difficult to minimize without extending the shaft above roof level. (author)

  7. Making space for nonlocality

    Science.gov (United States)

    Millen, James

    2016-04-01

    George Musser's book Spooky Action at a Distance focuses on one of quantum physics' more challenging concepts, nonlocality, and its multitude of implications, particularly its assault on space itself.

  8. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  9. Theory of self-organized critical transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Y.; Tajima, T.; Horton, W.; LeBrun, M.J.; Kim, J.Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment]|[Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1995-07-01

    A theoretical and computational study of the ion temperature gradient and {eta}{sub i} instabilities in tokamak plasmas has been carried out. In toroidal geometry the modes have a radially extended structure and their eigenfrequencies are constant over many rational surfaces that are coupled through toroidicity. These nonlocal properties of the ITG modes impose strong constraint on the drift mode fluctuations and the amciated transport, showing a self-organized characteristic. As any significant deviation away from marginal stability causes rapid temperature relaxation and intermittent bursts, the modes hover near marginality and exhibit strong kinetic characteristics. As a result, the temperature relaxation is self-semilar and nonlocal, leading to a radially increasing heat diffusivity. The nonlocal transport leads to the Bohm-like diffusion scaling. The heat input regulates the deviation of the temperature gradient away from marginality. The obtained transport scalings and properties are globally consistent with experimental observations of L-mode charges.

  10. The Impact of Oceanic Heat Transport on the Atmospheric Circulation: a Thermodynamic Perspective

    CERN Document Server

    Schröder, Alexander; Lunkeit, Frank

    2014-01-01

    The present study investigates how global thermodynamic properties of the climate system are affected by the changes in the intensity of the imposed oceanic heat transport in an atmospheric general circulation model in aqua-planet configuration. Increasing the poleward oceanic heat transport results in an overall increase in the surface temperature and a decrease in the equator-to-pole surface temperature difference as a result of the ice-albedo feedback. Following the classical ansatz by Stone, the atmospheric heat transport changes in such a way that the total poleward heat transport remains almost unchanged. We also find that the efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport which suggests that the climate system becomes less efficient and turns into a state of reduced entropy production, as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fl...

  11. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values f

  12. Influence of tube and particle diameter on heat transport in packed beds

    NARCIS (Netherlands)

    Borkink, J.G.H.; Borkink, J.G.H.; Westerterp, K.R.

    1992-01-01

    Influence of the tube and particle diameter and shape, as well as their ratio, on the radial heat transport in packed beds has been studied. Heat transport experiments were performed with four different packings in three wall-cooled tubes, which differed in inner diameter only. Experimental values

  13. Heating and ion transport in a Y-junction surface-electrode trap

    CERN Document Server

    Shu, G; Volin, C; Buikema, A; Nichols, C S; Stick, D; Brown, Kenneth R

    2014-01-01

    We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.

  14. Point Lepreau primary heat transport pump wear ring cracking

    Energy Technology Data Exchange (ETDEWEB)

    Licina, G. [Structural Integrity Associates, Inc., San Jose, California (United States); Rankin, B. [Point Lepreau Nuclear Generating Station, Fredericton, New Brunswick (Canada)

    2011-07-01

    The number 3 Primary Heat Transport (PHT) pump from Point Lepreau Nuclear Generating Station (Point Lepreau) was disassembled after more than 30 years of service for inspection during station refurbishment. The disassembly and inspection were performed to provide assurance of continued satisfactory operation during life extension. The inspection revealed cracks in the wear ring, at and near the tack welds (Type 309 stainless steel weld metal) at the cap screws that attach the Type 420 stainless steel wear ring to the body of the pump. Investigative work consisted of on-site PT and replication of the microstructure at the surface of the wear ring, subsequent impressions of two crack faces, and hardness determinations. This paper describes the investigative work and conclusions associated with resolution of the following questions: 1. What is the most likely cause of the cracking? 2. Will the cracks propagate within the base metal of the wear ring? 3. If propagation is possible, what is the risk of cracks intersecting, such that a piece of metal could become dislodged? Question number 3 has clear ramifications with respect to foreign material entering and damaging a nuclear fuel-containing pressure tube. There are also questions associated with extent of condition, specifically, whether other PHT pumps may have similar or worse cracking and whether such cracks will grow. Results will be applied to wear rings in other PHT pumps at Point Lepreau and are likely to be applicable to similar components in other CANDU PHT pumps. (author)

  15. Global anomalous transport of ICRH- and NBI-heated fast ions

    CERN Document Server

    Wilkie, George J; Abel, Ian G; Dorland, William; Fülöp, Tünde

    2016-01-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Furthermore, we move beyond the trace approximatio...

  16. Strong eddy compensation for the Gulf Stream heat transport

    Science.gov (United States)

    Saenko, Oleg A.

    2015-12-01

    Using a high-resolution ocean model forced with high-resolution atmospheric fields, a 5 year mean heat budget of the upper ocean in the Gulf Stream (GS) region is analyzed. The heat brought to the region with the mean flows along the GS path is 2-3 times larger than the heat loss to the atmosphere, with the difference being balanced by a strong cooling effect due to lateral eddy heat fluxes. However, over a broad area off the Grand Banks, the eddies warm the uppermost ocean layers, partly compensating for the loss of heat to the atmosphere. The upward eddy heat flux, which brings heat from the deeper ocean to the upper layers, is 30-80% of the surface heat loss.

  17. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  18. Disentangling Nonlocality and Teleportation

    CERN Document Server

    Hardy, L

    1999-01-01

    Quantum entanglement can be used to demonstrate nonlocality and to teleport a quantum state from one place to another. The fact that entanglement can be used to do both these things has led people to believe that teleportation is a nonlocal effect. In this paper it is shown that teleportation is conceptually independent of nonlocality. This is done by constructing a toy local theory in which cloning is not possible (without a no-cloning theory teleportation makes limited sense) but teleportation is. Teleportation in this local theory is achieved in an analogous way to the way it is done with quantum theory. This work provides some insight into what type of process teleportation is.

  19. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula

    Science.gov (United States)

    Graham, Jennifer A.; Dinniman, Michael S.; Klinck, John M.

    2016-10-01

    The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on-shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf-break and in the deep ocean off-shore. Cross-shelf troughs are key locations of on-shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on-shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf-break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on-shelf transport. Increased eddy activity off-shelf may lead to greater cross-front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf-break jet, and therefore on-shelf heat transport. These results demonstrate the importance of model resolution for understanding cross-shelf transport around Antarctica.

  20. Nonlocal N=1 Supersymmetry

    CERN Document Server

    Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide

    2016-01-01

    We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  1. Global anomalous transport of ICRH- and NBI-heated fast ions

    Science.gov (United States)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  2. A computational approach to calculate the heat of transport of aqueous solutions

    Science.gov (United States)

    Di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando

    2017-01-01

    Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.

  3. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    Science.gov (United States)

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  4. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    CERN Document Server

    del-Castillo-Negrete, D

    2016-01-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across m...

  5. Teaching Quantum Nonlocality

    Science.gov (United States)

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  6. Teaching Quantum Nonlocality

    Science.gov (United States)

    Hobson, Art

    2012-01-01

    Nonlocality arises from the unified "all or nothing" interactions of a spatially extended field quantum such as a photon or an electron. In the double-slit experiment with light, for example, each photon comes through both slits and arrives at the viewing screen as an extended but unified energy bundle or "field quantum." When the photon interacts…

  7. Single photon and nonlocality

    Indian Academy of Sciences (India)

    Aurelien Drezet

    2007-03-01

    In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the reasoning is not correct.

  8. Heat transport in metals irradiated by ultrashort laser pulses

    Science.gov (United States)

    Kanavin, Andrei P.; Afanasiev, Yuri V.; Chichkov, Boris N.; Isakov, Vladimir A.; Smetanin, Igor V.

    2000-02-01

    Different regimes of heat propagation in metals irradiated by subpicosecond laser pulses are studied on the basis of two-temperature diffusion model. New analytical solutions for the heat conduction equation, corresponding to the different temperature dependences of the electron thermal conductivity (formula available n paper), are found. It is shown that in case of a strong electron-lattice nonequilibrium, the heat penetration depth grows linearly with time, lT varies direct as t, in opposite to the ordinary diffusionlike behavior, lT varies direct as t1/2. Moreover, the heat propagation velocity decreases with increasing laser fluence.

  9. A non-equilibrium model for soil heating and moisture transport during extreme surface heating

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2015-03-01

    Full Text Available With increasing use of prescribed fire by land managers and increasing likelihood of wildfires due to climate change comes the need to improve modeling capability of extreme heating of soils during fires. This issue is addressed here by developing a one-dimensional non-equilibrium model of soil evaporation and transport of heat, soil moisture, and water vapor, for use with surface forcing ranging from daily solar cycles to extreme conditions encountered during fires. The model employs a linearized Crank–Nicolson scheme for the conservation equations of energy and mass and its performance is evaluated against dynamic soil temperature and moisture observations obtained during laboratory experiments on soil samples exposed to surface heat fluxes ranging between 10 000 and 50 000 W m−2. The Hertz–Knudsen equation is the basis for constructing the model's non-equilibrium evaporative source term. The model includes a dynamic residual soil moisture as a function of temperature and soil water potential, which allows the model to capture some of the dynamic aspects of the strongly bound soil moisture that seems to require temperatures well beyond 150 °C to fully evaporate. Furthermore, the model emulates the observed increase in soil moisture ahead of the drying front and the hiatus in the soil temperature rise during the strongly evaporative stage of drying. It also captures the observed rapid evaporation of soil moisture that occurs at relatively low temperatures (50–90 °C. Sensitivity analyses indicate that the model's success results primarily from the use of a temperature and moisture potential dependent condensation coefficient in the evaporative source term. The model's solution for water vapor density (and vapor pressure, which can exceed one standard atmosphere, cannot be experimentally verified, but they are supported by results from (earlier and very different models developed for somewhat different purposes and for different porous

  10. General circulation driven by baroclinic forcing due to cloud layer heating: Significance of planetary rotation and polar eddy heat transport

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2016-04-01

    A high significance of planetary rotation and poleward eddy heat fluxes is determined for general circulation driven by baroclinic forcing due to cloud layer heating. In a high-resolution simplified Venus general circulation model, a planetary-scale mixed Rossby-gravity wave with meridional winds across the poles produces strong poleward heat flux and indirect circulation. This strong poleward heat transport induces downward momentum transport of indirect cells in the regions of weak high-latitude jets. It also reduces the meridional temperature gradient and vertical shear of the high-latitude jets in accordance with the thermal wind relation below the cloud layer. In contrast, strong equatorial superrotation and midlatitude jets form in the cloud layer in the absence of polar indirect cells in an experiment involving Titan's rotation. Both the strong midlatitude jet and meridional temperature gradient are maintained in the situation that eddy horizontal heat fluxes are weak. The presence or absence of strong poleward eddy heat flux is one of the important factors determining the slow or fast superrotation state in the cloud layer through the downward angular momentum transport and the thermal wind relation. For fast Earth rotation, a weak global-scale Hadley circulation of the low-density upper atmosphere maintains equatorial superrotation and midlatitude jets above the cloud layer, whereas multiple meridional circulations suppress the zonal wind speed below the cloud layer.

  11. Changes in Tropical Precipitation at the Mid-Holocene: Role of the Oceanic Heat Transport

    Science.gov (United States)

    Liu, X.; Battisti, D. S.; Donohoe, A.

    2015-12-01

    There is ample geological and geochemical evidence that precipitation in the tropics is largely different from today at the mid-Holocene, an era roughly 6,000 years ago when the Northern Hemisphere summer (winter) insolation was stronger (weaker) than today. These insolation differences are caused mainly by the precession of the earth's rotational axis, or called "precessional forcing". Using the mid-Holocene experiments of PMIP3, we studied changes in the zonal mean tropical precipitation, and its associated change in cross-equatorial energy transport. A northward movement of the zonal mean precipitation in the mid-Holocene is seen in 10 out of 13 PMIP3 models, with a correspondingly anomalous southward atmospheric heat transport across the equator. The slope is 3.0º per PW, close to the estimate given by Donohoe et al. (2013). The changes in cross-equatorial atmospheric heat transport are dictated by changes in the hemispheric asymmetry of heating from the surface, which in turn are associated with changes in the cross-equatorial oceanic heat transport: an anomalous northward oceanic heat transport at the equator is seen in all of the PMIP3 models. Analysis on this anomalous oceanic heat transport reveals that changes in the wind-driven gyre in the Pacific Ocean are primarily responsible for the changes in cross-equatorial ocean heat transport. Specifically, stronger easterly anomalies north of the equator in the western Pacific drives an anomalous northward mass transport, and therefore accomplishes an anomalous northward heat transport across the equator by acting on the asymmetric mean-state zonal temperature. The wind anomalies responsible for this anomalous ocean heat transport are seen in every PMIP3 model, as well as an ECHAM4-slab ocean model, indicating that it is atmospherically driven and independent of the changes in ocean heat transport. It also explains the consistency of ocean heat transport change, and eventually the relative consistency of zonal

  12. Directional heat transport through thermal reflection meta-device

    Science.gov (United States)

    Hu, Run; Zhou, Shuling; Shu, Weicheng; Xie, Bin; Ma, Yupu; Luo, Xiaobing

    2016-12-01

    Directional heat transfer may be hard to realize due to the fact that heat transfer is diffusive. In this paper, we try to take one step forward based on the transformation thermodynamics. A special structure and meta-device is proposed to "reflect" the heat flow directionally-just like the mirror to the light beam, in which the heat flow just one-time changes the direction rather than gradually changing the directions in isotropic materials. The benefits of such thermal reflection meta-device are discussed by comparing the corresponding thermal resistance with the same structures of isotropic materials. The proposed meta-device is verified to possess the low thermal resistance and high heat transfer ability with least energy loss, and can be made by nature-existing isotropic materials with specific structures.

  13. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  14. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    OpenAIRE

    López, Rosa; Sánchez, David

    2013-01-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two...

  15. Eddy heat and salt transports in the South China Sea and their seasonal modulations

    Science.gov (United States)

    Chen, Gengxin; Gan, Jianping; Xie, Qiang; Chu, Xiaoqing; Wang, Dongxiao; Hou, Yijun

    2012-05-01

    This study describes characteristics of eddy (turbulent) heat and salt transports, in the basin-scale circulation as well as in the embedded mesoscale eddy found in the South China Sea (SCS). We first showed the features of turbulent heat and salt transports in mesoscale eddies using sea level anomaly (SLA) data, in situ hydrographic data, and 375 Argo profiles. We found that the transports were horizontally variable due to asymmetric distributions of temperature and salinity anomalies and that they were vertically correlated with the thermocline and halocline depths in the eddies. An existing barrier layer caused the halocline and eddy salt transport to be relatively shallow. We then analyzed the transports in the basin-scale circulation using an eddy diffusivity method and the sea surface height data, the Argo profiles, and the climatological hydrographic data. We found that relatively large poleward eddy heat transports occurred to the east of Vietnam (EOV) in summer and to the west of the Luzon Islands (WOL) in winter, while a large equatorward heat transport was located to the west of the Luzon Strait (WLS) in winter. The eddy salt transports were mostly similar to the heat transports but in the equatorward direction due to the fact that the mean salinity in the upper layer in the SCS tended to decrease toward the equator. Using a 21/2-layer reduced-gravity model, we conducted a baroclinic instability study and showed that the baroclinic instability was critical to the seasonal variation of eddy kinetic energy (EKE) and thus the eddy transports. EOV, WLS, and WOL were regions with strong baroclinic instability, and, thus, with intensified eddy transports in the SCS. The combined effects of vertical velocity shear, latitude, and stratification determined the intensity of the baroclinic instability, which intensified the eddy transports EOV during summer and WLS and WOL during winter.

  16. Radial heat transport in packed beds at elevated pressures

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1992-01-01

    Values were measured for the effective radial heat conductivity λeff, r and the heat transfer coefficient at the wall αw in a packed bed. This was done for superficial velocities of 5 – 70 cm s−1 and at pressures from 1 – 10 bar. Values for λeff, r and αw were obtained by simultaneous fitting of

  17. Influence of the ambient temperature during heat pipe manufacturing on its function and heat transport ability

    Directory of Open Access Journals (Sweden)

    Čaja A.

    2014-03-01

    Full Text Available Heat pipe is heat transfer device working at a minimum temperature difference of evaporator and condenser. Operating temperature of the heat pipe determine by properties of the working substance and pressure achieved during production. The contribution is focused on the determining the effect of the initial surrounding temperature where the heat pipe is manufactured and on the obtaining performance characteristics produced heat pipes in dependence of manufacturing temperature. Generally hold, that the boiling point of the working liquid decrease with decreasing ambient pressure. Based on this can be suppose that producing of lower ambient temperature during heat pipe manufacturing, will create the lower pressure, the boiling point of the working fluid will lower too and the heat pipe should be better performance characteristics.

  18. Nonlocal transformation optics

    CERN Document Server

    Castaldi, Giuseppe; Alu', Andrea; Engheta, Nader

    2011-01-01

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects, and provide a physically-incisive and powerful geometrical interpretation in terms of deformation of the equi-frequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  19. Nonlocality of quantum correlations

    CERN Document Server

    Streltsov, A; Roga, W; Bruß, D; Illuminati, F

    2012-01-01

    We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. This type of nonlocality occurs also for states that do not violate a Bell inequality, such as, for instance, Werner states with a low degree of entanglement. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord, thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish rigorously that Werner states are the maximally quantum correlated two-qubit states, and thus are the ones that maximize this novel type of nonlocality.

  20. Entanglement without hidden nonlocality

    Science.gov (United States)

    Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas

    2016-11-01

    We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.

  1. Acausality in Nonlocal Gravity Theory

    CERN Document Server

    Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo

    2016-01-01

    We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.

  2. The Effect of Correlations on the Heat Transport in a Magnetized Plasma

    CERN Document Server

    Ott, Torben; Donko, Zoltan

    2015-01-01

    In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure or/and low temperature, a magnetic field reduces the perpendicular heat transport much less and even {\\it enhances} the parallel transport. These surprising observations are explained by the competition of kinetic, potential and collisional contributions to the heat conductivity. Our results are based on first principle molecular dynamics simulations of a one-component plasma.

  3. Turbulent transport and heating of trace heavy ions in hot, magnetized plasmas

    CERN Document Server

    Barnes, M; Dorland, W

    2012-01-01

    Scaling laws for the transport and heating of trace heavy ions in low-frequency, magnetized plasma turbulence are derived and compared with direct numerical simulations. The predicted dependences of turbulent fluxes and heating on ion charge and mass number are found to agree with numerical results for both stationary and differentially rotating plasmas. Heavy ion momentum transport is found to increase with mass, and heavy ions are found to be preferentially heated, implying a mass-dependent ion temperature for very weakly collisional plasmas and for partially-ionized heavy ions in strongly rotating plasmas.

  4. Operational demonstration of a field of high performance flat plate collectors with isothermal heat transport

    Science.gov (United States)

    Merges, V.; Klippel, E.

    1983-12-01

    A solar plant with 21 sq m of highly efficient flat plate collectors and which requires no electricity is described. Heat transport is provided by saturated steam that condenses in a four cubic meter storage tank. The operation temperature is set by the buffer gas pressure between 100 and 140 C, and an absorption chiller is simulated as a heat consumer. The solar collectors were observed to exhibit high performance. Heat transport and temperature control offered high reliability and the thermal stratification in the tank was satisfactory. The positive result permits the design and construction of larger solar plants following the same technical principles.

  5. Solute or Heat Transport in a Flat Duct

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2008-01-01

    Full Text Available Steady state solute and heat transfer for laminar flow in a flat duct has been widely studied[1-4]. The same problem in a circular tube is called the Graetz Problem[5,6]. The transfer rate of solute and heat from fluids is of importance in a number of processes, such as diffusion of drugs in the blood stream and the uptake of environmental contaminants by animals in aquatic media[7]. In this study the rate of solute or heat transfer from fluids was determined by solving the associated differential equation. Solution by the series approach in the complex plane was used with a series that had a gaussian factor. The eigenfunctions and eigenvalues involved were examined for two different sets of boundary conditions.

  6. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars.

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-14

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere-ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an "eyeball." For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs' habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets.

  7. Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars

    Science.gov (United States)

    Hu, Yongyun; Yang, Jun

    2014-01-01

    The distinctive feature of tidally locked exoplanets is the very uneven heating by stellar radiation between the dayside and nightside. Previous work has focused on the role of atmospheric heat transport in preventing atmospheric collapse on the nightside for terrestrial exoplanets in the habitable zone around M dwarfs. In the present paper, we carry out simulations with a fully coupled atmosphere–ocean general circulation model to investigate the role of ocean heat transport in climate states of tidally locked habitable exoplanets around M dwarfs. Our simulation results demonstrate that ocean heat transport substantially extends the area of open water along the equator, showing a lobster-like spatial pattern of open water, instead of an “eyeball.” For sufficiently high-level greenhouse gases or strong stellar radiation, ocean heat transport can even lead to complete deglaciation of the nightside. Our simulations also suggest that ocean heat transport likely narrows the width of M dwarfs’ habitable zone. This study provides a demonstration of the importance of exooceanography in determining climate states and habitability of exoplanets. PMID:24379386

  8. Thickness Optimisation of Textiles Subjected to Heat and Mass Transport during Ironing

    Directory of Open Access Journals (Sweden)

    Korycki Ryszard

    2016-09-01

    Full Text Available Let us next analyse the coupled problem during ironing of textiles, that is, the heat is transported with mass whereas the mass transport with heat is negligible. It is necessary to define both physical and mathematical models. Introducing two-phase system of mass sorption by fibres, the transport equations are introduced and accompanied by the set of boundary and initial conditions. Optimisation of material thickness during ironing is gradient oriented. The first-order sensitivity of an arbitrary objective functional is analysed and included in optimisation procedure. Numerical example is the thickness optimisation of different textile materials in ironing device.

  9. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    Science.gov (United States)

    López, Rosa; Sánchez, David

    2013-07-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.

  10. Causality, Nonlocality, and Negative Refraction.

    Science.gov (United States)

    Forcella, Davide; Prada, Claire; Carminati, Rémi

    2017-03-31

    The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  11. Nonlocal gravity: Conformally flat spacetimes

    CERN Document Server

    Bini, Donato

    2016-01-01

    The field equations of the recent nonlocal generalization of Einstein's theory of gravitation are presented in a form that is reminiscent of general relativity. The implications of the nonlocal field equations are studied in the case of conformally flat spacetimes. Even in this simple case, the field equations are intractable. Therefore, to gain insight into the nature of these equations, we investigate the structure of nonlocal gravity in two-dimensional spacetimes. While any smooth 2D spacetime is conformally flat and satisfies Einstein's field equations, only a subset containing either a Killing vector or a homothetic Killing vector can satisfy the field equations of nonlocal gravity.

  12. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  13. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  14. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  15. Transport phenomena in capillary-porous structures and heat pipes

    CERN Document Server

    Smirnov, Henry

    2009-01-01

    With emphasis on the processes involved, this text explores the experimental efforts in two-phase thermal control technology research and development. This work evaluates and compares different theoretical approaches, experimental results, and models, such as semi-empirical models for critical boiling heat fluxes.

  16. Photothermal heating in metal-embedded microtools for material transport

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Palima, Darwin; Banas, Andrew Rafael;

    2016-01-01

    as heating element for controlled loading and release. The new microtools take advantage of the photothermal-induced convection current to load and unload cargo. We also discuss some challenges encountered in realizing a self-contained polymerized microtool. Microfluidic mixing, fluid flow control...

  17. Analytical theory of dark nonlocal solitons

    DEFF Research Database (Denmark)

    Kong, Qian; Wang, Qi; Bang, Ole;

    2010-01-01

    We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality.......We investigate properties of dark solitons in nonlocal materials with an arbitrary degree of nonlocality. We employ the variational technique and describe dark solitons, for the first time to our knowledge, in the whole range of degree of nonlocality....

  18. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  19. Resonance measurement of nonlocal spin torque in a three-terminal magnetic device.

    Science.gov (United States)

    Xue, Lin; Wang, Chen; Cui, Yong-Tao; Liu, Luqiao; Swander, A; Sun, J Z; Buhrman, R A; Ralph, D C

    2012-04-06

    A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance. Our measurement agrees well with the prediction of an effective circuit model for spin transport. Based on this model, we suggest strategies for optimizing the strength of nonlocal torque.

  20. Effect of wind forcing on the meridional heat transport in a coupled climate model: equilibrium response

    Science.gov (United States)

    Yang, Haijun; Dai, Haijin

    2015-09-01

    The effect of the ocean surface winds on the meridional heat transports is studied in a coupled model. Shutting down the global surface winds causes significant reductions in both wind-driven and thermohaline ocean circulations, resulting in a remarkable decrease in the poleward oceanic heat transport (OHT). The sea surface temperature responds with significant warming in the equator and cooling off the equator, causing an enhancement and equatorward shift in the Hadley cell. This increases the poleward atmospheric heat transport (AHT), which in turn compensates the decrease in the OHT. This compensation implies a fundamental constraint in changes of ocean-atmosphere energy transports. Several other compensation changes are also identified. For the OHT components, the changes in the Eulerian mean and bolus OHT are compensated with each other in the Southern Ocean, since a stronger wind driven Ekman transport is associated with a stronger meridional density gradient (stronger bolus circulation) and vice versa. For the AHT components, the changes in the dry static energy (DSE) and latent energy transports are compensated within the tropics (30°N/S), because a stronger Hadley cell causes a stronger equatorward convergence of moisture. In the extratropics, the changes in the mean and eddy DSE transports show perfect compensation, as a result of the equatorward shift of the Ferrell Cell and enhancement of atmospheric baroclinicity in mid-high latitudes, particularly over the North Atlantic. This work also shows how the Earth's climate is trying to maintain the balance between two hemispheres: the ocean in the Northern Hemisphere is colder than that in the Southern Hemisphere due to much reduced northward heat transports cross the Equator in the Atlantic, therefore, the atmosphere responds to the ocean with temperature colder in the Southern Hemisphere than in the Northern Hemisphere by transporting more heat northward cross the equator over the Pacific, in association

  1. Nonlinear charge transport in bipolar semiconductors due to electron heating

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Valdovinos, S., E-mail: sergiom@fisica.uaz.edu.mx [Universidad Autónoma de Zacatecas, Unidad Académica de Física, Calzada Solidaridad esq. Paseo, La Bufa s/n, CP 98060, Zacatecas, Zac, México (Mexico); Gurevich, Yu.G. [Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Física, Av. IPN 2508, México D.F., CP 07360, México (Mexico)

    2016-05-27

    It is known that when strong electric field is applied to a semiconductor sample, the current voltage characteristic deviates from the linear response. In this letter, we propose a new point of view of nonlinearity in semiconductors which is associated with the electron temperature dependence on the recombination rate. The heating of the charge carriers breaks the balance between generation and recombination, giving rise to nonequilibrium charge carriers concentration and nonlinearity. - Highlights: • A new mechanism of nonlinearity of current-voltage characteristic (CVC) is proposed. • The hot electron temperature violates the equilibrium between electrons and holes. • This violation gives rise to nonequilibrium concentration of electrons and holes. • This leads to nonlinear CVC (along with the heating nonlinearity).

  2. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves

    Science.gov (United States)

    Baker, David (Inventor)

    1998-01-01

    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  3. Water and heat transport in boreal soils: Implications for soil response to climate change

    Science.gov (United States)

    Fan, Z.; Neff, J.C.; Harden, J.W.; Zhang, T.; Veldhuis, H.; Czimczik, C.I.; Winston, G.C.; O'Donnell, J. A.

    2011-01-01

    Soil water content strongly affects permafrost dynamics by changing the soil thermal properties. However, the movement of liquid water, which plays an important role in the heat transport of temperate soils, has been under-represented in boreal studies. Two different heat transport models with and without convective heat transport were compared to measurements of soil temperatures in four boreal sites with different stand ages and drainage classes. Overall, soil temperatures during the growing season tended to be over-estimated by 2-4??C when movement of liquid water and water vapor was not represented in the model. The role of heat transport in water has broad implications for site responses to warming and suggests reduced vulnerability of permafrost to thaw at drier sites. This result is consistent with field observations of faster thaw in response to warming in wet sites compared to drier sites over the past 30. years in Canadian boreal forests. These results highlight that representation of water flow in heat transport models is important to simulate future soil thermal or permafrost dynamics under a changing climate. ?? 2011 Elsevier B.V.

  4. On the validity of the local diffusive paradigm in turbulent plasma transport

    Science.gov (United States)

    Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, Ph.; Strugarek, A.; Ku, S.; Chang, C. S.

    2010-08-01

    A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a distance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art full- f , flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive, scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure which we call the “ E×B staircase” after its planetary analog.

  5. Analysis for Heat Transfer in a High Current-Passing Carbon Nanosphere Using Nontraditional Thermal Transport Model.

    Science.gov (United States)

    Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y

    2015-11-01

    This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.

  6. Randomness and Non-Locality

    Science.gov (United States)

    Senno, Gabriel; Bendersky, Ariel; Figueira, Santiago

    2016-07-01

    The concepts of randomness and non-locality are intimately intertwined outcomes of randomly chosen measurements over entangled systems exhibiting non-local correlations are, if we preclude instantaneous influence between distant measurement choices and outcomes, random. In this paper, we survey some recent advances in the knowledge of the interplay between these two important notions from a quantum information science perspective.

  7. Observers in Spacetime and Nonlocality

    CERN Document Server

    Mashhoon, B

    2012-01-01

    Characteristics of observers in relativity theory are critically examined. For field measurements in Minkowski spacetime, the Bohr-Rosenfeld principle implies that the connection between actual (i.e., noninertial) and inertial observers must be nonlocal. Nonlocal electrodynamics of non-uniformly rotating observers is discussed and the consequences of this theory for the phenomenon of spin-rotation coupling are briefly explored.

  8. Quadratic solitons as nonlocal solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...

  9. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  10. An operational framework for nonlocality

    CERN Document Server

    Gallego, Rodrigo; Acín, Antonio; Navascués, Miguel

    2011-01-01

    Due to the importance of entanglement for quantum information purposes, a framework has been developed for its characterization and quantification as a resource based on the following operational principle: entanglement among $N$ parties cannot be created by local operations and classical communication, even when $N-1$ parties collaborate. More recently, nonlocality has been identified as another resource, alternative to entanglement and necessary for device-independent quantum information protocols. We introduce an operational framework for nonlocality based on a similar principle: nonlocality among $N$ parties cannot be created by local operations and allowed classical communication even when $N-1$ parties collaborate. We then show that the standard definition of multipartite nonlocality, due to Svetlichny, is inconsistent with this operational approach: according to it, genuine tripartite nonlocality could be created by two collaborating parties. We finally discuss alternative definitions for which consist...

  11. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  12. Throughflow and Gravity Modulation Effects on Heat Transport in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-01-01

    Full Text Available The effect of vertical throughflow and time-periodic gravity field has been investigated on Darcy convection. The amplitude of gravity modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weak nonlinear stability analysis has been performed for the stationary mode of convection. As a consequence heat transport evaluated in terms of the Nusselt number, which is governed by the non-autonomous Ginzburg-Landau equation. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The amplitude and frequency of modulation, Prandtl Darcy number on heat transport have been analyzed and depicted graphically. Further, the study establishes that the heat transport can be controlled effectively by a mechanism that is external to the system. Finally flow patterns are presented in terms of streamlines and isotherms.

  13. Heat Transport by Coherent Rayleigh-B\\'enard Convection

    CERN Document Server

    Waleffe, Fabian; Smith, Leslie M

    2015-01-01

    Steady but generally unstable solutions of the 2D Boussinesq equations are obtained for no-slip boundary conditions and Prandtl number 7. The primary solution that bifurcates from the conduction state at Rayleigh number $Ra \\approx 1708$ has been calculated up to $Ra\\approx 5. 10^6$ and shows heat flux $Nu \\sim 0.143\\, Ra^{0.28}$ with a delicate spiral structure in the temperature field. Another solution that maximizes $Nu$ over the horizontal wavenumber has been calculated up to $Ra=10^9$ and its heat flux scales as $Nu \\sim 0.115\\, Ra^{0.31}$ for $10^7 < Ra \\le 10^9$, quite similar to 3D turbulent data. The latter is a simple yet multi-scale coherent solution whose horizontal wavenumber scales as $0.133 \\, Ra^{0.217}$ in that range. That optimum solution is unstable to larger scale perturbations and in particular to mean shear flows, yet it appears to be relevant as a backbone for turbulent solutions, possibly setting the scale, strength and spacing of elemental plumes.

  14. EFFECTIVENESS ANALYSIS OF CAMPUS HEAT SUPPLY SYSTEM OF DNIPROPETROVSK NATIONAL UNIVERSITY OF RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2014-03-01

    Full Text Available Purpose. Heat consumption for heating and hot water supply of housing and industrial facilities is an essential part of heat energy consumption. Prerequisite for development of energy saving measures in existing heating systems is their preliminary examination. The investigation results of campus heating system of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan are presented in the article. On the basis of the analysis it is proposed to take the energy saving measures and assess their effectiveness. Methodology. Analysis of the consumption structure of thermal energy for heating domestic and hot water supply was fulfilled. The real costs of heat supply during the calendar year and the normative costs were compared. Findings. The recording expenditures data of thermal energy for heating supply of residential buildings and dormitories in 2012 were analyzed. The comparison of actual performance with specific regulations was performed. This comparison revealed problems, whose solution will help the efficient use of thermal energy. Originality. For the first time the impact of climate conditions, features of schemes and designs of heating systems on the effective use of thermal energy were analyzed. It was studied the contribution of each component. Practical value. Based on the analysis of thermal energy consumption it was developed a list of possible energy saving measures that can be implemented in the system of heat and power facilities. It was evaluated the fuel and energy resources saving.

  15. Solar-energy heats a transportation test center--Pueblo, Colorado

    Science.gov (United States)

    1981-01-01

    Petroleum-base, thermal energy transport fluid circulating through 583 square feet of flat-plate solar collectors accumulates majority of energy for space heating and domestic hot-water of large Test Center. Report describes operation, maintenance, and performance of system which is suitable for warehouses and similar buildings. For test period from February 1979 to January 1980, solar-heating fraction was 31 percent, solar hot-water fraction 79 percent.

  16. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    Science.gov (United States)

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  17. Fluctuation theory for transport properties in multicomponent mixtures: thermodiffusion and heat conductivity

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    2004-01-01

    The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...... statistical theory of fluctuations around an equilibrium state. The Onsager matrix of phenomenological coefficients is expressed in terms of the penetration lengths, including the newly introduced penetration length for the energy transfer. As an example, this penetration length is found from the known value...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved....

  18. Heat transport in low-dimensional materials: A review and perspective

    Directory of Open Access Journals (Sweden)

    Zhiping Xu

    2016-05-01

    Full Text Available Heat transport is a key energetic process in materials and devices. The reduced sample size, low dimension of the problem and the rich spectrum of material imperfections introduce fruitful phenomena at nanoscale. In this review, we summarize recent progresses in the understanding of heat transport process in low-dimensional materials, with focus on the roles of defects, disorder, interfaces, and the quantum-mechanical effect. New physics uncovered from computational simulations, experimental studies, and predictable models will be reviewed, followed by a perspective on open challenges.

  19. An Interactive Energy System with Grid, Heating and Transportation Systems

    DEFF Research Database (Denmark)

    Diaz de Cerio Mendaza, Iker

    is required. The models developed in this thesis include different features (thermal, mechanical, chemical…) which are not normally considered in the traditional power system modelling. In this sense, they are intended to serve as a reference for the new researchers starting in the field. Moreover, the grid......: thermostatic loads (electric water heaters and heat pumps), loads for hydrogen generation (alkaline electrolyzers) and load for electric mobility (plug-in and vehicle-to-grid concepts). Many of these are considered domestic loads and they fulfill certain need to the household they belong. Depending on the user...... requirements, these may perform a different power consumption patterns. In this context, the thermal comfort or mobility needs from Danish users are statistically analyzed. The outcome is used to generate random profiles that define the different thermal and mobility requirements from the users of a network...

  20. Turbulent heat transport in two- and three-dimensional temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Samaraweera, Don Sarath Abesiri [Univ. of California, Berkeley, CA (United States)

    1978-03-01

    A fundamental numerical study of turbulent heat and mass transport processes in two- and three-dimensional convective flows is presented. The model of turbulence employed is the type referred to as a second-order closure. In this scheme transport equations for all nonzero components of the Reynolds stress tensor, for the isotropic dissipation rate of turbulent kinetic energy, for all nonzero scalar flux tensor components and for the mean square scalar fluctuations are solved by a finite difference method along with the mean momentum and mean enthalpy (or concentration) equations. The model used for the stresses was developed earlier. Parallel ideas were utilised in obtaining a model for turbulent heat and mass transfer processes. The study has focused especially on the problem of nonaxisymmetric convective heat and mass transport in pipes, which arises when the boundary conditions are not axisymmetric. The few available experimental data on such situations have indicated anisotropy in effective diffusivities. To expand the available data base an experiment was conducted to obtain heat transfer measurements in strong three-dimensional heating conditions. Numerical procedures especially suitable for incorporation of second-order turbulent closure models have been developed. The effect of circumferential conduction in the tube material, which is influential in the asymmetric heating data currently available, was accounted for directly by extending the finite difference calculations into the pipe wall. The principal goal of predicting three-dimensional scalar transfer has been achieved.

  1. Ballistic heat transport in laser generated nano-bubbles

    Science.gov (United States)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  2. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin [Princeton Univ., NJ (United States). Plasma Physics Lab.; Rax, J.M. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1992-09-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  3. Transport in a stochastic magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.; Wu, Yanlin (Princeton Univ., NJ (United States). Plasma Physics Lab.); Rax, J.M. (Association Euratom-CEA, Centre d' Etudes Nucleaires de Cadarache, 13 -Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee)

    1992-01-01

    Collisional heat transport in a stochastic magnetic field configuration is investigated. Well above stochastic threshold, a numerical solution of a Chirikov-Taylor model shows a short-time nonlocal regime, but at large time the Rechester-Rosenbluth effective diffusion is confirmed. Near stochastic threshold, subdiffusive behavior is observed for short mean free paths. The nature of this subdiffusive behavior is understood in terms of the spectrum of islands in the stochastic sea.

  4. The solutions of the strongly nonlocal spatial solitons with several types of nonlocal response functions

    Institute of Scientific and Technical Information of China (English)

    Ouyang Shi-Gen; Guo Qi; Lan Sheng; Wu Li-Jun

    2007-01-01

    The fundamental and second order strongly nonlocal solitons of the nonlocal nonlinear Schr(o)dinger equation for several types of nonlocal responses are calculated by Ritz's variational method.For a specific type of nonlocal response, the solutions of the strongly nonlocal solitons with the same beam width but difierent degrees of nonlocality are identical except for an amplitude factor.For a nonlocal case where the nonlocal response function decays in direct proportion to the ruth power of the distance near the source point,the power and the phase constant of the strongly nonlocal soliton are in inverse proportion to the(m+2)th power of its beam width.

  5. Heat science and transport phenomena in fuel cells; Thermique et phenomenes de transport dans les piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, P.M.; Boillot, M. [Laboratoire des Sciences du Genie Chimique de Nancy, 54 - Vandoeuvre-les-Nancy (France); Bonnet, C.; Didieerjean, S.; Lapicque, F.; Deseure, J.; Lottin, O.; Maillet, D.; Oseen-Senda, J. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, 54 - Vandoeuvre Les Nancy (France); Alexandre, A. [Laboratoire d' Etudes Thermiques, ENSMA, 86 Poitiers (France); Topin, F.; Occelli, R.; Daurelle, J.V. [IUSTI / Polytech' Marseille, Institut universitaire des Systemes Thermiques Industriels Ecole, 13 - Marseille (France); Pauchet, J.; Feidt, M. [CEA Grenoble, Groupement pour la recherche sur les echangeurs thermiques (Greth), 38 (France); Voarino, C. [CEA Centre d' Etudes du Ripault, 37 - Tours (France); Morel, B.; Laurentin, J.; Bultel, Y.; Lefebvre-Joud, F. [CEA Grenoble, LEPMI, 38 (France); Auvity, B.; Lasbet, Y.; Castelain, C.; Peerohossaini, H. [Ecole Centrale de Nantes, Laboratoire de Thermocinetique de Nantes (LTN), 44 - Nantes (France)

    2005-07-01

    In this work are gathered the transparencies of the lectures presented at the conference 'heat science and transport phenomena in fuel cells'. The different lectures have dealt with 1)the gas distribution in the bipolar plates of a fuel cell: experimental studies and computerized simulations 2)two-phase heat distributors in the PEMFC 3)a numerical study of the flow properties of the backing layers on the transfers in a PEMFC 4)modelling of the heat and mass transfers in a PEMFC 5)two-phase cooling of the PEMFC with pentane 6)stationary thermodynamic model of the SOFC in the GECOPAC system 7)modelling of the internal reforming at the anode of the SOFC 8)towards a new thermal design of the PEMFC bipolar plates. (O.M.)

  6. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    Science.gov (United States)

    Bakker, F. L.; Slachter, A.; Adam, J.-P.; van Wees, B. J.

    2010-09-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmonic voltage response nonlocally, the model is experimentally examined. The results indicate that the combination of Peltier and Seebeck effects contributes significantly to the nonlocal baseline resistance. Moreover, we found that the second and third harmonic response signals can be attributed to Joule heating and temperature dependencies of both the Seebeck coefficient and resistivity.

  7. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    Science.gov (United States)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-09-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  8. A conceptual model of oceanic heat transport in the Snowball Earth scenario

    Science.gov (United States)

    Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.

    2016-12-01

    Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.

  9. Optimal measurements for nonlocal correlations

    Science.gov (United States)

    Schwarz, Sacha; Stefanov, André; Wolf, Stefan; Montina, Alberto

    2016-08-01

    A problem in quantum information theory is to find the experimental setup that maximizes the nonlocality of correlations with respect to some suitable measure such as the violation of Bell inequalities. There are however some complications with Bell inequalities. First and foremost it is unfeasible to determine the whole set of Bell inequalities already for a few measurements and thus unfeasible to find the experimental setup maximizing their violation. Second, the Bell violation suffers from an ambiguity stemming from the choice of the normalization of the Bell coefficients. An alternative measure of nonlocality with a direct information-theoretic interpretation is the minimal amount of classical communication required for simulating nonlocal correlations. In the case of many instances simulated in parallel, the minimal communication cost per instance is called nonlocal capacity, and its computation can be reduced to a convex-optimization problem. This quantity can be computed for a higher number of measurements and turns out to be useful for finding the optimal experimental setup. Focusing on the bipartite case, we present a simple method for maximizing the nonlocal capacity over a given configuration space and, in particular, over a set of possible measurements, yielding the corresponding optimal setup. Furthermore, we show that there is a functional relationship between Bell violation and nonlocal capacity. The method is illustrated with numerical tests and compared with the maximization of the violation of CGLMP-type Bell inequalities on the basis of entangled two-qubit as well as two-qutrit states. Remarkably, the anomaly of nonlocality displayed by qutrits turns out to be even stronger if the nonlocal capacity is employed as a measure of nonlocality.

  10. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  11. Coupled Normal Heat and Matter Transport in a Simple Model System

    Energy Technology Data Exchange (ETDEWEB)

    Mejia-Monasterio, C.; Larralde, H.; Leyvraz, F.

    2001-06-11

    We introduce the first simple mechanical system that shows fully realistic transport behavior while still being exactly solvable at the level of equilibrium statistical mechanics. The system is a Lorentz gas with fixed freely rotating circular scatterers which scatter point particles via perfectly rough collisions. Upon imposing either a temperature gradient and/or a chemical potential gradient, a stationary state is attained for which local thermal equilibrium holds. Transport in this system is normal in the sense that the transport coefficients which characterize the flow of heat and matter are finite in the thermodynamic limit. Moreover, the two flows are nontrivially coupled, satisfying Onsager{close_quote}s reciprocity relations.

  12. Anharmonic effects and heat transport in complex systems (Invited)

    Science.gov (United States)

    Wentzcovitch, R. M.

    2013-12-01

    We have recently developed a hybrid strategy combining first principles molecular dynamics (MD) with vibrational normal mode analysis to obtain anharmonic frequency shifts and lifetimes of phonon quasi-particles. This approach is effective irrespective of crystal structure complexity and has been used to investigate anharmonicity in MgSiO3-perpovskite (MgPv) and cubic CaSiO3-perovskite (CaPv). The first is weakly anharmonic but has well identified temperature induced anharmonic Raman frequency shifts, while the second is strongly anharmonic. This method displays fine predictive capability by reproducing subtle measured effects in MgPv and proves to be robust and capable of handling soft phonon anharmonicity in CaPv. This strategy also facilitates calculation of anharmonic phonon dispersions throughout the Brillouin zone. Combination of analytical treatments of anharmonic free energy based on the phonon gas model (PGM) with thoroughly sampled anharmonic dispersions should improve considerably the accuracy of first-principles free energy calculations in crystalline solids at very high temperatures. This method also enables calculations of thermal conductivity, κ, using Boltzman transport equation with lifetimes calculated by MD. This is essential to predict thermodynamics properties and κ by first principles at very high temperatures. Research in collaboration with Tao Sun and Dong-Bo Zhang and supported by NSF award EAR-1019853.

  13. Towards LHC physics with nonlocal Standard Model

    OpenAIRE

    Tirthabir Biswas; Nobuchika Okada

    2015-01-01

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...

  14. Micropaleontological evidence for increased meridional heat transport in the North Atlantic Ocean during the pliocene

    Science.gov (United States)

    Dowsett, H.J.; Cronin, T. M.; Poore, R.Z.; Thompson, R.S.; Whatley, R.C.; Wood, A.M.

    1992-01-01

    The Middle Pliocene (???3 million years ago) has been identified as the last time the Earth was significantly warmer than it was during the Last Interglacial and Holocene. A quantitative micropaleontological paleotemperature transect from equator to high latitudes in the North Atlantic indicates that Middle Pliocene warmth involved increased meridional oceanic heat transport.

  15. Impact of compressibility on heat transport characteristics of large terrestrial planets

    NARCIS (Netherlands)

    Čížková, Hana; van den Berg, Arie; Jacobs, Michel

    2017-01-01

    We present heat transport characteristics for mantle convection in large terrestrial exoplanets (M⩽8M⊕). Our thermal convection model is based on a truncated anelastic liquid approximation (TALA) for compressible fluids and takes into account a selfconsistent thermodynamic description of material

  16. Studies of Electron Transport and Isochoric Heating and Their Applicability to Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Key, M H; Amiranoff, F; Andersen, C; Batani, D; Baton, S D; Cowan, T; Fisch, N; Freeman, R; Gremillet, L; Hall, T; Hatchett, S; Hill, J; King, J; Kodama, R; Koch, J; Koenig, M; Lasinski, B; Langdon, B; MacKinnon, A; Martinolli, E; Norreys, P; Parks, P; Perrelli-Cippo, E; Rabec Le Gloahec, M; Rosenbluth, M; Rousseaux, C; Santon, J J; Scianitti, F; Snavely, R; Tabak, M; Tanaka, K; Town, R; Tsutumi, T; Stephens, R

    2003-10-30

    Experimental measurements of electron transport and isochoric heating in 100 J, 1 ps laser irradiation of solid A1 targets are presented. Modeling with a hybrid PIC code is compared with the data and good agreement is obtained using a heuristic model for the electron injection. The relevance for fast ignition is discussed.

  17. Heat transport in the geostrophic regime of rotating Rayleigh-B{\\'e}nard convection

    CERN Document Server

    Ecke, Robert E

    2013-01-01

    We report experimental measurements of heat transport in rotating Rayleigh-B{\\'e}nard convection in a cylindrical convection cell with aspect ratio $\\Gamma = 1/2$. The fluid was helium gas with Prandtl number Pr = 0.7. The range of control parameters was Rayleigh number $4 \\times 10^9 < {\\rm Ra} < 4 \\times 10^{11}$ and Ekman number $2 \\times 10^{-7} < {\\rm Ek} < 3 \\times 10^{-5}$(corresponding to Taylor number $4 \\times 10^9 < {\\rm Ta} < 1 \\times 10^{14}$ and convective Rossby number $0.07 < {\\rm Ro} < 5$). We determine the crossover from weakly rotating turbulent convection to rotation dominated geostrophic convection through experimental measurements of the normalized heat transport Nu. The heat transport for the rotating state in the geostrophic regime, normalized by the zero-rotation heat transport, is consistent with scaling of $({\\rm RaEk}^{-7/4})^\\beta$ with $\\beta \\approx 1$. A phase diagram is presented that encapsulates measurements on the potential geostrophic turbulence reg...

  18. Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials

    Directory of Open Access Journals (Sweden)

    X. Ding

    2015-05-01

    Full Text Available Thermal conductivity of ferroelastic device materials can be reversibly controlled by strain. The nucleation and growth of twin boundaries reduces thermal conductivity if the heat flow is perpendicular to the twin wall. The twin walls act as phonon barriers whereby the thermal conductivity decreases linearly with the number of such phonon barriers. Ferroelastic materials also show elasto-caloric properties with a high frequency dynamics. The upper frequency limit is determined by heat generation on a time scale, which is some 5 orders of magnitude below the typical bulk phonon times. Some of these nano-structural processes are irreversible under stress release (but remain reversible under temperature cycling, in particular the annihilation of needle domains that are a key indicator for ferroelastic behaviour in multiferroic materials.

  19. Structure of nonlocality of plasma turbulence

    Science.gov (United States)

    Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team

    2013-07-01

    Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.

  20. The role of atmospheric heat transport and regional feedbacks in the Arctic warming at equilibrium

    Science.gov (United States)

    Yoshimori, Masakazu; Abe-Ouchi, Ayako; Laîné, Alexandre

    2017-01-01

    It is well known that the Arctic warms much more than the rest of the world even under spatially quasi-uniform radiative forcing such as that due to an increase in atmospheric CO2 concentration. While the surface albedo feedback is often referred to as the explanation of the enhanced Arctic warming, the importance of atmospheric heat transport from the lower latitudes has also been reported in previous studies. In the current study, an attempt is made to understand how the regional feedbacks in the Arctic are induced by the change in atmospheric heat transport and vice versa. Equilibrium sensitivity experiments that enable us to separate the contributions of the Northern Hemisphere mid-high latitude response to the CO2 increase and the remote influence of surface warming in other regions are carried out. The result shows that the effect of remote forcing is predominant in the Arctic warming. The dry-static energy transport to the Arctic is reduced once the Arctic surface warms in response to the local or remote forcing. The feedback analysis based on the energy budget reveals that the increased moisture transport from lower latitudes, on the other hand, warms the Arctic in winter more effectively not only via latent heat release but also via greenhouse effect of water vapor and clouds. The change in total atmospheric heat transport determined as a result of counteracting dry-static and latent heat components, therefore, is not a reliable measure for the net effect of atmospheric dynamics on the Arctic warming. The current numerical experiments support a recent interpretation based on the regression analysis: the concurrent reduction in the atmospheric poleward heat transport and future Arctic warming predicted in some models does not imply a minor role of the atmospheric dynamics. Despite the similar magnitude of poleward heat transport change, the Arctic warms more than the Southern Ocean even in the equilibrium response without ocean dynamics. It is shown that a

  1. Thermal transport in low dimensions from statistical physics to nanoscale heat transfer

    CERN Document Server

    2016-01-01

    Understanding non-equilibrium properties of classical and quantum many-particle systems is one of the goals of contemporary statistical mechanics. Besides its own interest for the theoretical foundations of irreversible thermodynamics(e.g. of the Fourier's law of heat conduction), this topic is also relevant to develop innovative ideas for nanoscale thermal management with possible future applications to nanotechnologies and effective energetic resources. The first part of the volume (Chapters 1-6) describes the basic models, the phenomenology and the various theoretical approaches to understand heat transport in low-dimensional lattices (1D e 2D). The methods described will include equilibrium and nonequilibrium molecular dynamics simulations, hydrodynamic and kinetic approaches and the solution of stochastic models. The second part (Chapters 7-10) deals with applications to nano and microscale heat transfer, as for instance phononic transport in carbon-based nanomaterials, including the prominent case of na...

  2. Heat transport in the quasi-single-helicity islands of EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Drake, J.

    2009-03-01

    The heat transport inside the magnetic island generated in a quasi-single-helicity regime of a reversed-field pinch device is studied by using a numerical code that simulates the electron temperature and the soft x-ray emissivity. The heat diffusivity χe inside the island is determined by matching the simulated signals with the experimental ones. Inside the island, χe turns out to be from one to two orders of magnitude lower than the diffusivity in the surrounding plasma, where the magnetic field is stochastic. Furthermore, the heat transport properties inside the island are studied in correlation with the plasma current and with the amplitude of the magnetic fluctuations.

  3. On the locality of parallel transport of heat carrying electrons in the SOL

    Energy Technology Data Exchange (ETDEWEB)

    Chankin, A.V., E-mail: Alex.Chankin@ipp.mpg.de; Coster, D.P.

    2015-08-15

    A continuum Vlasov–Fokker–Planck code KIPP is used to assess the degree of locality of parallel transport of heat carrying electrons (HCE) in collisional SOLs. It is shown that for typical SOL collisionalities, the HCE are marginally collisionless which puts into question successful parameterization of kinetic code results of transport parameters such as parallel heat flux and ion–electron thermoforce in the present 2D fluid codes. A kinetic solution for the case of 90% recycling at the target and factor 10T{sub e} drop along the field line is also presented, showing the degree of heat flux ‘limiting’ upstream and ‘enhancement’ downstream, compared to predictions of the Braginskii’s (or Spitzer–Härm’s) formulas. Possible causes of these features are discussed.

  4. [The design of heat dissipation of the field low temperature box for storage and transportation].

    Science.gov (United States)

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  5. Graphene transport properties upon exposure to PMMA processing and heat treatments

    DEFF Research Database (Denmark)

    Gammelgaard, Lene; Caridad, Jose; Cagliani, Alberto

    2014-01-01

    , allowing us to measure the evolution of the electrical transport properties during individual processing steps from the initial as-exfoliated to the PMMA-processed graphene. Heating generally promotes the conformation of graphene to SiO2 and is found to play a major role for the electrical properties......The evolution of graphene's electrical transport properties due to processing with the polymer polymethyl methacrylate (PMMA) and heat are examined in this study. The use of stencil (shadow mask) lithography enables fabrication of graphene devices without the usage of polymers, chemicals or heat...... of graphene while PMMA residues are found to be surprisingly benign. In accordance with this picture, graphene devices with initially high carrier mobility tend to suffer a decrease in carrier mobility, while in contrast an improvement is observed for low carrier mobility devices. We explain this by noting...

  6. Simulation of Volume and Heat Transport along 26.5°N in the Atlantic

    Institute of Scientific and Technical Information of China (English)

    MO Hui-Er; YU Yong-Qiang

    2012-01-01

    The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies.

  7. Water and heat transport in hilly red soil of southern China: Ⅱ. Modeling and simulation

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China.Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model,while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, Ks, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution,which would affect water redistribution.

  8. Phonon and magnon heat transport and drag effects

    Science.gov (United States)

    Heremans, Joseph P.

    2014-03-01

    Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable

  9. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  10. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  11. Solutions of Nonlocal -Laplacian Equations

    Directory of Open Access Journals (Sweden)

    Mustafa Avci

    2013-01-01

    Full Text Available In view of variational approach we discuss a nonlocal problem, that is, a Kirchhoff-type equation involving -Laplace operator. Establishing some suitable conditions, we prove the existence and multiplicity of solutions.

  12. Spontaneous Emission in Nonlocal Materials

    CERN Document Server

    Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V

    2016-01-01

    Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.

  13. Classical and Quantum Nonlocal Supergravity

    CERN Document Server

    Giaccari, Stefano

    2016-01-01

    We derive the N=1 supersymmetric extension for a class of weakly nonlocal four dimensional gravitational theories.The construction is explicitly done in the superspace and the tree-level perturbative unitarity is explicitly proved both in the superfield formalism and in field components. For the minimal nonlocal supergravity the spectrum is the same as in the local theory and in particular it is ghost-free. The supersymmetric extension of the super-renormalizable Starobinsky theory and of two alternative massive nonlocal supergravities are found as straightforward applications of the formalism. Power-counting arguments ensure super-renormalizability with milder requirement for the asymptotic behavior of form factors than in ordinary nonlocal gravity. The most noteworthy result, common to ordinary supergravity, is the absence of quantum corrections to the cosmological constant in any regularization procedure. We cannot exclude the usual one-loop quadratic divergences. However, local vertices in the superfields...

  14. Topics in quantum transport of charge and heat in solid state systems

    Science.gov (United States)

    Choi, Yunjin

    In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk

  15. Study of Nonlocal Optical Potential

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yuan

    2013-01-01

    It is generally known that nuclear optical potentials are theoretically expected to be non-local.The non-locality arises from the exchange of particles between the projectile and target and from coupling tonon-elastic channels.This non-locality was first introduced by Frahn and Lemmer,and developed further by Perey and Buck(PB).The kernel is of the form

  16. Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth

    Science.gov (United States)

    Koenigk, Torben; Brodeau, Laurent

    2014-06-01

    The ocean heat transport into the Arctic and the heat budget of the Barents Sea are analyzed in an ensemble of historical and future climate simulations performed with the global coupled climate model EC-Earth. The zonally integrated northward heat flux in the ocean at 70°N is strongly enhanced and compensates for a reduction of its atmospheric counterpart in the twenty first century. Although an increase in the northward heat transport occurs through all of Fram Strait, Canadian Archipelago, Bering Strait and Barents Sea Opening, it is the latter which dominates the increase in ocean heat transport into the Arctic. Increased temperature of the northward transported Atlantic water masses are the main reason for the enhancement of the ocean heat transport. The natural variability in the heat transport into the Barents Sea is caused to the same extent by variations in temperature and volume transport. Large ocean heat transports lead to reduced ice and higher atmospheric temperature in the Barents Sea area and are related to the positive phase of the North Atlantic Oscillation. The net ocean heat transport into the Barents Sea grows until about year 2050. Thereafter, both heat and volume fluxes out of the Barents Sea through the section between Franz Josef Land and Novaya Zemlya are strongly enhanced and compensate for all further increase in the inflow through the Barents Sea Opening. Most of the heat transported by the ocean into the Barents Sea is passed to the atmosphere and contributes to warming of the atmosphere and Arctic temperature amplification. Latent and sensible heat fluxes are enhanced. Net surface long-wave and solar radiation are enhanced upward and downward, respectively and are almost compensating each other. We find that the changes in the surface heat fluxes are mainly caused by the vanishing sea ice in the twenty first century. The increasing ocean heat transport leads to enhanced bottom ice melt and to an extension of the area with bottom ice

  17. Uncertainty Updating in the Description of Coupled Heat and Moisture Transport in Heterogeneous Materials

    CERN Document Server

    Kucerova, Anna

    2011-01-01

    To assess the durability of structures, heat and moisture transport need to be analyzed. To provide a reliable estimation of heat and moisture distribution in a certain structure, one needs to include all available information about the loading conditions and material parameters. Moreover, the information should be accompanied by a corresponding evaluation of its credibility. Here, the Bayesian inference is applied to combine different sources of information, so as to provide a more accurate estimation of heat and moisture fields [1]. The procedure is demonstrated on the probabilistic description of heterogeneous material where the uncertainties consist of a particular value of individual material characteristic and spatial fluctuations. As for the heat and moisture transfer, it is modelled in coupled setting [2].

  18. Controlling and measuring quantum transport of heat in trapped-ion crystals.

    Science.gov (United States)

    Bermudez, A; Bruderer, M; Plenio, M B

    2013-07-26

    Measuring heat flow through nanoscale devices poses formidable practical difficulties as there is no "ampere meter" for heat. We propose to overcome this problem in a chain of trapped ions, where laser cooling the chain edges to different temperatures induces a heat current of local vibrations (vibrons). We show how to efficiently control and measure this current, including fluctuations, by coupling vibrons to internal ion states. This demonstrates that ion crystals provide an ideal platform for studying quantum transport, e.g., through thermal analogues of quantum wires and quantum dots. Notably, ion crystals may give access to measurements of the elusive bosonic fluctuations in heat currents and the onset of Fourier's law. Our results are strongly supported by numerical simulations for a realistic implementation with specific ions and system parameters.

  19. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  20. Heat of transport study of the superionic conductor Ag/sub 7/I/sub 4/VO/sub 4/

    Energy Technology Data Exchange (ETDEWEB)

    Avasthi, M.N. (Al-Fateh Univ., Tripoli (Lybia). Dept. of Physics)

    1982-06-16

    The heat of transport of the superionic conductor Ag/sub 7/I/sub 4/VO/sub 4/ has been investigated considering the effect of heat treatment of the material and the thermoelectric power as a function of the temperature. It was found that in the case of highly disordered solids like Ag/sub 7/I/sub 4/VO/sub 4/ the ionic heat of transport tends to be equal to its activation energy.

  1. Study of electronic heat transport in plasma through diagnosis based on modulated electron cyclotron heating; Etudes de transport de la chaleur electronique par injection modulee d'ondes a la frequence cyclotronique electronique

    Energy Technology Data Exchange (ETDEWEB)

    Clemencon, A.; Guivarch, C

    2003-07-01

    In order to make nuclear fusion energetically profitable, it is crucial to heat and confine the plasma efficiently. Studying the behavior of the heat diffusion coefficient is a key issue in this matter. The use of modulated electron cyclotron heating as a diagnostic has suggested the existence of a transport barrier under certain plasma conditions. We have determined the solution to the heat transport equation, for several heat diffusion coefficient profiles. By comparing the analytical solutions with experimental data; we are able to study the heat diffusion coefficient profile. Thus, in certain experiments, we can confirm that the heat diffusion coefficient switches from low to high values at the radius where the electron cyclotron heat deposition is made. (authors)

  2. Heat and water transport in a polymer electrolyte fuel cell electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

    2010-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

  3. Gravity Wave and Turbulence Transport of Heat and Na in the Mesopause Region over the Andes

    Science.gov (United States)

    Guo, Yafang; Liu, Alan Z.

    2016-07-01

    The vertical heat and Na fluxes induced by gravity waves and turbulence are derived based on over 600 hours of observations from the Na wind/temperature lidar located at Andes lidar Observatory (ALO), Cerro Pachón, Chile. In the 85-100 km region, the annual mean vertical fluxes by gravity waves show downward heat transport with a maximum of 0.78K m/s at 90 km, and downward Na transport with a maximum of 210 m/s/cm3 at 94km. The maximum cooing rate reaches -24 K/d at 94km. The vertical fluxes have strong seasonal variations, with large differences in magnitudes and altitudes of maximum fluxes between winter and summer. The vertical fluxes due to turbulence eddies are also derived with a novel method that relates turbulence fluctuations of temperature and vertical wind with photon count fluctuations at very high resolution (25 m, 6 s). The results show that the vertical transports are comparable to those by gravity waves and they both play significant roles in the atmospheric thermal structure and constituent distribution. This direct measure of turbulence transport also enables estimate of the eddy diffusivity for heat and constituent in the mesopause region.

  4. Electronic excitation as a mode of heat dissipation in laser-driven cluster plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rajeev, R.; Rishad, K. P. M.; Madhu Trivikram, T.; Krishnamurthy, M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai-5 (India)

    2013-12-15

    Electrons streaming out of laser plasma are known for non-local heat transport and energy deposition by the ionization wave. At 100 eV electron temperature, since the electronic excitation cross section is comparable to that of ionization for Ar and CO{sub 2}, a non-local excitation wave akin to the ionization wave is envisaged where energy deposition in excitations forms a excited cluster sheath beyond the laser focus. Here, we show that nano-cluster systems have the right parameters to form such an exciton sheath and experimentally demonstrate this via charge transfer reactions.

  5. Underlying mechanisms for normal heat transport in one-dimensional anharmonic oscillator systems with a double-well interparticle interaction

    Science.gov (United States)

    Xiong, Daxing

    2016-04-01

    Previous studies have suggested a crossover from superdiffusive to normal heat transport in one-dimensional (1D) anharmonic oscillator systems with a double-well type interatomic interaction like V(ξ )=-{ξ2}/2+{ξ4}/4 , when the system temperature is varied. In order to better understand this unusual manner of thermal transport, here we perform a direct dynamics simulation to examine how the spreading processes of the three physical quantities, i.e. the heat, the total energy and the momentum, would depend on temperature. We find three main points that are worth noting. (i) The crossover from superdiffusive to normal heat transport is well verified from a new perspective of heat spread. (ii) The spreading of the total energy is found to be very distinct from heat diffusion, especially under some temperature regimes, energy is strongly localized, while heat can be superdiffusive. So one should take care to derive a general connection between the heat conduction and energy diffusion. (iii) In a narrow range of temperatures, the spreading of momentum implies clear unusual non-ballistic behaviors; however, such unusual transport of momentum cannot be directly related to the normal transport of heat. An analysis of phonon spectra suggests that one should also take the effects of phonon softening into account. All of these results may provide insights into establishing the connection between the macroscopic heat transport and the underlying dynamics in 1D systems.

  6. Transport phenomena in a sidewall-moving bottom-heated cavity using heatlines

    Indian Academy of Sciences (India)

    NIRMALENDU BISWAS; NIRMAL K MANNA

    2017-02-01

    The understanding of basic feature of energy transport from a heat source is important from the fundamental point of view as well as from various engineering and technological applications. To enrich the knowledge in this area, this paper presents energy transport phenomena from the heated bottom of an air-filled enclosure using heatfunction and heatlines. Both upward motion and downward motion of sidewalls and the alteration of cooling between sidewalls and top wall are considered, which yields four different cases. All the cases are investigated to identify the proper combination of wall motion and thermal condition for better thermal performance, considering different convection regimes. The highly nonlinear nature of flow is solved numerically using an in-house code, taking into account different speeds of wall motion and relative strength of buoyantflow and shear flow. The results reveal that the case with side cooling and downward translation of sidewalls performs maximum heat transfer compared with other cases. Higher speed of wall translation also causes higher heat transfer. Under natural convection regime, heat transfer is significantly high. Furthermore, the order of thermal mixing in a cavity is analysed and it is found that top cooling causes higher thermal mixing. To demonstrate the vortical flow structure in the cavity, streamfunction and streamlines are used. Evolutions of symmetric and asymmetric flow vortices with centre and saddle points and energy recirculation cells are found in the cavity.

  7. Some aspects of ocean heat transport by the shallow, intermediate and deep overturning circulations

    Science.gov (United States)

    Talley, Lynne D.

    The ocean's overturning circulation can be divided into contributions from: (1) shallow overturning in the subtropical gyres to the base of thermocline, (2) overturning into the intermediate depth layer (500 to 2000 meters) in the North Atlantic, North Pacific and area around Drake Passage, and (3) overturning into the deep layer in the North Atlantic (Nordic Seas overflows) and around Antarctica. The associated water mass structures are briefly reviewed including presentation of a global map of proxy mixed layer depth. Based on the estimated temperature difference between the warm source and colder newly-formed intermediate waters, and the formation rate for each water mass, the net heat transport associated with all intermediate water formation is estimated at 1.0-1.2 PetaWatts (1 PW = 1015 W), which is equivalent in size to that for deep water formation, 0.6-0.8 PW. The heat transport due to shallow overturn, calculated as the residual between published direct estimates of heat transport across subtropical latitudes and these heuristic estimates of the intermediate and deep overturning components, is about 0.5 PW northward for the North Pacific and North Atlantic subtropical gyres and 0.0 to 0.2 PW southward for each of the three southern hemisphere subtropical gyres, exclusive of the shallow overturn in the southern hemisphere gyres which is associated with Antarctic Intermediate Water and Southeast Indian Subantarctic Mode Water formation. Direct estimates of meridional heat transport of 1.18 PW (North Atlantic) and 0.63 PW (North Pacific) at 24°N are calculated from Reid's [1994, 1997] geostrophic velocity analyses and are similar to previously published estimates using other methods. The new direct estimates are decomposed into portions associated with shallow, intermediate and deep overturn, confirming the heuristic estimate for the North Pacific, where the shallow gyre overturning heat transport accounts for about 75% of the total and intermediate water

  8. Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers

    Science.gov (United States)

    Koc, A.; Reinhardt, M.; von Reppert, A.; Rössle, M.; Leitenberger, W.; Dumesnil, K.; Gaal, P.; Zamponi, F.; Bargheer, M.

    2017-07-01

    We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.

  9. Advective Heat Transport in an Unconfined Aquifer Induced by the Field Injection of an Open-Loop Groundwater Heat Pump

    Directory of Open Access Journals (Sweden)

    Stefano L. Russo

    2010-01-01

    Full Text Available Problem statement: The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas. The impact on the groundwater temperature in the surrounding area of the re-injection well is directly linked to the aquifer properties. Physical processes affecting heat transport within an aquifer include advection (or convection and hydrodynamic thermodispersion (diffusion and mechanical dispersion. If the groundwater flows, the advective components tend to dominate the heat transfer process within the aquifer and the diffusion can be considered negligible. This study illustrates the experimental results derived from the groundwater monitoring in the surrounding area of an injection well connected to an open-loop GWHP plant which has been installed in the "Politecnico di Torino" (NW Italy for cooling some of the university buildings. Groundwater pumping and injection interfere only with the upper unconfined aquifer. Approach: After the description of the hydrogeological setting the authors examined the data deriving from multiparameter probes installed inside the pumping well (P2, the injection well (P4 and a downgradient piezometer (S2. Data refers to the summer 2009. To control the aquifer thermal stratification some multi-temporal temperature logs have been performed in the S2. Results: After the injection of warm water in P4 the plume arrived after 30 days in the S2. That delay is compatible with the calculated plume migration velocity (1.27 m d-1 and their respective distance (35 m. The natural temperature in the aquifer due to the switching-off of the GWHP plant has been reached after two month. The Electrical Conductivity (EC values tend to vary out of phase with the temperature. The temperature logs in the S2 highlighted a thermal stratification in the aquifer due to a low vertical

  10. Strain Modulation of Electronic and Heat Transport Properties of Bilayer Boronitrene

    Science.gov (United States)

    Yang, Ming; Sun, Fang-Yuan; Wang, Rui-Ning; Zhang, Hang; Tang, Da-Wei

    2017-10-01

    Strain engineering has been proven as an effective approach to modify electronic and thermal properties of materials. Recently, strain effects on two-dimensional materials have become important relevant topics in this field. We performed density functional theory studies on the electronic and heat transport properties of bilayer boronitrene samples under an isotropic strain. We demonstrate that the strain will reduce the band gap width but keep the band gap type robust and direct. The strain will enhance the thermal conductivity of the system because of the increase in specific heat. The thermal conductivity was studied as a function of the phonon mean-free path.

  11. Heat Transport Behaviour in One-Dimensional Lattice Models with Damping

    Institute of Scientific and Technical Information of China (English)

    ZHU Heng-Jiang; ZHANG Yong; ZHAO Hong

    2004-01-01

    @@ We investigate the heat transport behaviours of two typical lattice models, the Fermi-Pasta-Ulam-β model and the φ4 lattice model, in the presence of damping which imitates the effect of the thermal radiation and the thermal diffusion to the surroundings through the sample boundary. It is found that the damping does not affect the thermal conductivity, but can change the heat flux dumped into the lattice chain. We also discuss possible applications under the heuristic guidance of our numerical results. In particular, we suggest a way to measure the thermal conductivity experimentally in the presence of large energy loss arisen from the radiation and the diffusion.

  12. Nonlocal optical response in metallic nanostructures.

    Science.gov (United States)

    Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N

    2015-05-13

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.

  13. Nonlocal optical response in metallic nanostructures

    DEFF Research Database (Denmark)

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn

    2015-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....

  14. The effects of size, configuration and distribution of continents on the efficiency of heat transport

    Science.gov (United States)

    Cooper, C. M.; Moresi, L. N.; Lenardic, A.

    2011-12-01

    The addition of continents to the surface of a planet alters its interior dynamics; understanding this alteration is critical to understanding the thermal evolution of the Earth. Specifically, the increase in temperature induced by continental insulation can be compensated by an increase in the heat loss through the overturn of the oceanic lithosphere, thus contradicting the predicted reduction of global heat loss due to presence of continents (e.g., Lenardic et al, 2005; Cooper et al, 2006; Lenardic et al, 2011). We reconfirm this counterintuitive result with three-dimensional simulations. In addition, we explore variations in the configuration of continents on the surface. Within simulations with equivalent continental coverage, but varying configuration, there is a competition between the lateral size of the blocks and the natural horizontal scale of the convection pattern which influences the stability of the models over time, and the efficiency of heat transport. Smaller continental blocks tend to induce a stable planform with upwellings permanently avoiding the blocks. However, in cases with larger continental blocks, the imposed scale is larger than the preferred scale of the convection pattern and upwellings are unable to avoid the blocks altogether. The dependency on stability and efficiency of heat transport within the Earth on continental coverage and configuration suggests continents can play a significant role in the Earth's heat budget and thermal history. Cooper, C.M., A. Lenardic, and L.-N. Moresi "Effects of continental insulation and the partioning of heat producing elements on the Earth's heat loss." Geophys. Res. Lett., 33 ,10.1029, 2006; Lenardic, A., C.M. Cooper, and L.-N. Moresi "A note on continents and the Earth's Urey ratio", Physics of the Earth and Planetary Interiors, 2011; Lenardic, A., L.-N. Moresi, A.M. Jellinek, and M. Manga "Continental insulation, mantle cooling, and the surface area of oceans and continents." Earth Planet. Sci

  15. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  16. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  17. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chitrphiromsri, Patirop; Kuznetsov, Andrey V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Raleigh, NC 27695-7910 (United States)

    2005-01-01

    In this paper, a model of heat and moisture transport in firefighter protective clothing during a flash fire exposure is presented. The aim of this study is to investigate the effect of coupled heat and moisture transport on the protective performance of the garment. Computational results show the distribution of temperature and moisture content in the fabric during the exposure to the flash fire as well as during the cool-down period. Moreover, the duration of the exposure during which the garment protects the firefighter from getting second and third degree burns from the flash fire exposure is numerically predicted. A complete model for the fire-fabric-air gap-skin system is presented. (orig.)

  18. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

    Science.gov (United States)

    Pearce, Sarah C; Mani, Venkatesh; Boddicker, Rebecca L; Johnson, Jay S; Weber, Thomas E; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Gabler, Nicholas K

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35-50% humidity; n=8) or HS conditions (35°C; 24-43% humidity; n=8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (Pintestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; PIntestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (PIntestinal glucose transport and blood glucose were elevated due to HS (Pintestinal integrity and increase intestinal stress and glucose transport.

  19. Electron heat transport in current carrying and currentless thermonuclear plasmas. Tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.

    1996-01-16

    In the first experiment the plasma current in the RTP tokamak is varied. Here the underlying idea was to check whether at a low plasma current, transport in the tokamak resembles transport in stellarators more than at higher currents. Secondly, experiments have been done to study the relation of the diffusivity {chi} to the temperature and its gradient in both W7-AS and RTP. In this case the underlying idea was to find the explanation for the phenomenon observed in both tokamaks and stellarators that the quality of the confinement degrades when more heating is applied. A possible explanation is that the diffusivity increases with the temperature or its gradient. Whereas in standard tokamak and stellarator experiments the temperature and its gradient are strongly correlated, a special capability of the plasma heating system of W7-AS and RTP can force them to decouple. (orig.).

  20. The role of magnetic islands in modifying long range temporal correlations of density fluctuations and local heat transport

    CERN Document Server

    van Milligen, B Ph; Garcia, L; Bruna, D Lopez; Carreras, B A; Xu, Y; Ochando, M; Hidalgo, C; Reynolds-Barredo, J M; Fraguas, A Lopez

    2016-01-01

    This work explores the relation between magnetic islands, long range temporal correlations and heat transport. A low order rational surface ($\\iota/2\\pi = 3/2$) was purposely scanned outward through an Electron Cyclotron Resonance Heated (ECRH) plasma in the TJ-II stellarator. Density turbulence and the poloidal flow velocity (or radial electric field) were characterized using a two channel Doppler Reflectometer. Simultaneously, the ECRH power was modulated to characterize heat transport, using measurements from a 12 channel Electron Cyclotron Emission diagnostic. A systematic variation of the poloidal velocity was found to be associated with the stationary $\\iota/2\\pi = 3/2$ magnetic island. Inside from the rational surface, the Hurst coefficient, quantifying the nature of long-range correlations, was found to be significantly enhanced. Simultaneously, heat transport was enhanced as well, establishing a clear link between density fluctuations and anomalous heat transport. The variation of the Hurst coefficie...

  1. Turbulence-induced pressure fluctuations in snow and their effect on heat and moisture transport

    Science.gov (United States)

    Huwald, H.; Higgins, C. W.; Drake, S.; Nolin, A. W.; Parlange, M. B.

    2010-12-01

    Accurate measurement of the heat and moisture flux components of the energy budget of a snow pack is difficult, and to date no generally satisfying solutions exist. In particular, little quantitative knowledge exists on heat and water vapor exchange associated to dynamically driven air movement in the snow pack as a consequence of atmospheric turbulence. This so-called wind-pumping constitutes a mechanism for forced release of saturated air form the snow pack and thus determines evaporation or sublimation rates from the snow and consequently affects the turbulent latent heat flux. A unique experiment and measurement system has been developed and deployed in the field to investigate and quantify the influence of atmospheric turbulence on heat and moisture transport across the snow-air interface. To this end, high-frequency measurements of 3-dimensional wind components, air temperature, and water vapor fluctuations above the snow surface were taken simultaneously together with differential air pressure fluctuations at several depths in the snow pack. The analysis addresses changes in frequency, amplitude, and penetration depth of the pressure fluctuations with depth, and the relationship of turbulence intensity to attenuation characteristics of the pressure within the snow pack. Finally, the study aims at understanding how turbulence-induced air pressure dynamics within the snow pack impacts on the heat budget of the snow pack and the turbulent sensible and latent heat flux above the snow surface.

  2. Convective Heat Transfer in the Reusable Solid Rocket Motor of the Space Transportation System

    Science.gov (United States)

    Ahmad, Rashid A.; Cash, Stephen F. (Technical Monitor)

    2002-01-01

    This simulation involved a two-dimensional axisymmetric model of a full motor initial grain of the Reusable Solid Rocket Motor (RSRM) of the Space Transportation System (STS). It was conducted with CFD (computational fluid dynamics) commercial code FLUENT. This analysis was performed to: a) maintain continuity with most related previous analyses, b) serve as a non-vectored baseline for any three-dimensional vectored nozzles, c) provide a relatively simple application and checkout for various CFD solution schemes, grid sensitivity studies, turbulence modeling and heat transfer, and d) calculate nozzle convective heat transfer coefficients. The accuracy of the present results and the selection of the numerical schemes and turbulence models were based on matching the rocket ballistic predictions of mass flow rate, head end pressure, vacuum thrust and specific impulse, and measured chamber pressure drop. Matching these ballistic predictions was found to be good. This study was limited to convective heat transfer and the results compared favorably with existing theory. On the other hand, qualitative comparison with backed-out data of the ratio of the convective heat transfer coefficient to the specific heat at constant pressure was made in a relative manner. This backed-out data was devised to match nozzle erosion that was a result of heat transfer (convective, radiative and conductive), chemical (transpirating), and mechanical (shear and particle impingement forces) effects combined.

  3. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant

  4. Heat Exchanger Design Options and Tritium Transport Study for the VHTR System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2008-09-01

    This report presents the results of a study conducted to consider heat exchanger options and tritium transport in a very high temperature reactor (VHTR) system for the Next Generation Nuclear Plant Project. The heat exchanger options include types, arrangements, channel patterns in printed circuit heat exchangers (PCHE), coolant flow direction, and pipe configuration in shell-and-tube designs. Study considerations include: three types of heat exchanger designs (PCHE, shell-and-tube, and helical coil); single- and two-stage unit arrangements; counter-current and cross flow configurations; and straight pipes and U-tube designs in shell-and-tube type heat exchangers. Thermal designs and simple stress analyses were performed to estimate the heat exchanger options, and the Finite Element Method was applied for more detailed calculations, especially for PCHE designs. Results of the options study show that the PCHE design has the smallest volume and heat transfer area, resulting in the least tritium permeation and greatest cost savings. It is theoretically the most reliable mechanically, leading to a longer lifetime. The two-stage heat exchanger arrangement appears to be safer and more cost effective. The recommended separation temperature between first and second stages in a serial configuration is 800oC, at which the high temperature unit is about one-half the size of the total heat exchanger core volume. Based on simplified stress analyses, the high temperature unit will need to be replaced two or three times during the plant’s lifetime. Stress analysis results recommend the off-set channel pattern configuration for the PCHE because stress reduction was estimated at up to 50% in this configuration, resulting in a longer lifetime. The tritium transport study resulted in the development of a tritium behavior analysis code using the MATLAB Simulink code. In parallel, the THYTAN code, previously performed by Ohashi and Sherman (2007) on the Peach Bottom data, was revived

  5. Hyperbolic waveguide for long-distance transport of near-field heat flux

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe; Guizal, Brahim; Antezza, Mauro; Biehs, Svend-Age

    2016-09-01

    Heat flux exchanged between two hot bodies at subwavelength separation distances can exceed the limit predicted by the blackbody theory. However, this super-Planckian transfer is restricted to these separation distances. Here we demonstrate the possible existence of a super-Planckian transfer at arbitrary large separation distances if the interacting bodies are connected in the near field with weakly dissipating hyperbolic waveguides. This result opens the way to long-distance transport of near-field thermal energy.

  6. Analysis of simulation methodology for calculation of the heat of transport for vacancy thermodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, William C.; Schelling, Patrick K., E-mail: patrick.schelling@ucf.edu [Advanced Material Processing and Analysis Center and Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2014-07-14

    Computation of the heat of transport Q{sub a}{sup *} in monatomic crystalline solids is investigated using the methodology first developed by Gillan [J. Phys. C: Solid State Phys. 11, 4469 (1978)] and further developed by Grout and coworkers [Philos. Mag. Lett. 74, 217 (1996)], referred to as the Grout-Gillan method. In the case of pair potentials, the hopping of a vacancy results in a heat wave that persists for up to 10 ps, consistent with previous studies. This leads to generally positive values for Q{sub a}{sup *} which can be quite large and are strongly dependent on the specific details of the pair potential. By contrast, when the interactions are described using the embedded atom model, there is no evidence of a heat wave, and Q{sub a}{sup *} is found to be negative. This demonstrates that the dynamics of vacancy hopping depends strongly on the details of the empirical potential. However, the results obtained here are in strong disagreement with experiment. Arguments are presented which demonstrate that there is a fundamental error made in the Grout-Gillan method due to the fact that the ensemble of states only includes successful atom hops and hence does not represent an equilibrium ensemble. This places the interpretation of the quantity computed in the Grout-Gillan method as the heat of transport in doubt. It is demonstrated that trajectories which do not yield hopping events are nevertheless relevant to computation of the heat of transport Q{sub a}{sup *}.

  7. Heat transport in polymer thin films for micro/nano-manufacturing

    Science.gov (United States)

    Hung, Ming-Tsung

    The rapid growth in micro/nanotechnology has opened a great opportunity for polymer thin films and polymer nanocomposites. Thermal management or thermal effects in those applications need to be carefully examined. For example, the local heating in electron-beam lithography, emersion lithography, and scanning near field optical lithography may cause the degradation of photoresists and reduce the resolution. The development of many organic electronics, polymer micro-electro-mechanical-systems (MEMS) devices, and polymer nanocomposites may require the knowledge of heat transport in micro/nano-sized polymers. Thermolithography, a novel lithography, uses controlled localized heating to transfer patterns and requires the thermal conductivity data to control. It is of considerable scientific and technological interests for study heat transport in polymer thin films. Unlike bulk polymers that can be measured using commercially available instruments, polymer thin films are difficult to measure. In this manuscript, we develop the measurement techniques suitable for measuring thermal conductivity of polymer thin films and polymer nanocomposites. Using a microfabricated membrane-based device, we study the heat conduction in photoresists at difference process stages. This data is used in our thermolithography study, where we use microheater to study the kinetic of crosslinking reaction of photoresist. The feasibility of thermolithography and potential three dimensional micro/nano-fabrication is presented. The uniqueness of thermolithography is also demonstrated by patterning amorphous fluoropolymers. A modified hot-wire technique is used to measure the thermal conductivity of graphite nanoplatelet (GNP) reinforced nanocomposites, one of the promising candidates for multifunctional materials. Thermal interface resistance in GNP nanocomposites is investigated, which shows a strong effect on energy transport in the nanocomposites and can be diminished through surface treatment.

  8. Nonlocal Measurements via Quantum Erasure.

    Science.gov (United States)

    Brodutch, Aharon; Cohen, Eliahu

    2016-02-19

    Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.

  9. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shestakov, Aleksei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stolken, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vignes, Ryan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  10. Experimental assessment of the influence of bedforms on coupled hyporheic flow and heat transport

    Science.gov (United States)

    Norman, F. A.; Chan, W. S.; Cardenas, M. B.

    2011-12-01

    Hyporheic flow influences both biogeochemical cycling in streambeds as well as streambed ecology. Biogeochemical processes may be temperature dependent, whereas heat transport may also be controlled by hyporheic flow, thereby providing feedback. We separately and experimentally assess the effects of hyporheic flow due to bed topography on thermal dynamics in the sediment using a custom, tilting flume with temperature controls. Diel temperature cycles of 6° C were imposed in the flume and propagation of temperature signals into the sediment was examined for different bed morphologies (plane bed, pool-riffle-pool, and rippled bed), channel flow rates, and sediment grain size. Temperature fields in the sediment were monitored using an array of embedded thermistors, and this data was used to identify zones of upwelling and downwelling within the hyporheic zone. Results suggest that bedforms do induce substantially deeper downwelling upstream and downstream of the bedforms, with upwelling near the crest. This in turn leads to substantial advective heat transport and distinct thermal patterns in the sediment. These results corroborate existing theoretical models of coupled hyporheic exchange and heat transport under bedforms. Hyporheic flow therefore affects thermal patchiness in sediment, which may in turn exert a control on biogeochemical reaction rates, and form thermal refugia for fauna.

  11. Fingerprint of topological Andreev bound states in phase-dependent heat transport

    Science.gov (United States)

    Sothmann, Björn; Hankiewicz, Ewelina M.

    2016-08-01

    We demonstrate that phase-dependent heat currents through superconductor-topological insulator Josephson junctions provide a useful tool to probe the existence of topological Andreev bound states, even for multichannel surface states. We predict that in the tunneling regime topological Andreev bound states lead to a minimum of the thermal conductance for a phase difference ϕ =π , in clear contrast to a maximum of the thermal conductance at ϕ =π that occurs for trivial Andreev bound states in superconductor-normal-metal tunnel junctions. This opens up the possibility that phase-dependent heat transport can distinguish between topologically trivial and nontrivial 4 π modes. Furthermore, we propose a superconducting quantum interference device geometry where phase-dependent heat currents can be measured using available experimental technology.

  12. Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Delfini, L; Lepri, S; Mejia-Monasterio, C; Politi, A [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Livi, R [Dipartimento di Fisica, Universita di Firenze, via G. Sansone 1 I-50019, Sesto Fiorentino (Italy)], E-mail: antonio.politi@isc.cnr.it

    2010-04-09

    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size {radical}N (where N is the chain length) that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.

  13. Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene.

    Science.gov (United States)

    Hegele, P R; Mumford, K G

    2014-09-01

    The effective remediation of chlorinated solvent source zones using in situ thermal treatment requires successful capture of gas that is produced. Replicate electrical resistance heating experiments were performed in a thin bench-scale apparatus, where water was boiled and pooled dense non-aqueous phase liquid (DNAPL) trichloroethene (TCE) and water were co-boiled in unconsolidated silica sand. Quantitative light transmission visualization was used to assess gas production and transport mechanisms. In the water boiling experiments, nucleation, growth and coalescence of the gas phase into connected channels were observed at critical gas saturations of Sgc=0.233±0.017, which allowed for continuous gas transport out of the sand. In experiments containing a colder region above a target heated zone, condensation prevented the formation of steam channels and discrete gas clusters that mobilized into colder regions were trapped soon after discontinuous transport began. In the TCE-water experiments, co-boiling at immiscible fluid interfaces resulted in discontinuous gas transport above the DNAPL pool. Redistribution of DNAPL was also observed above the pool and at the edge of the vapor front that propagated upwards through colder regions. These results suggest that the subsurface should be heated to water boiling temperatures to facilitate gas transport from specific locations of DNAPL to extraction points and reduce the potential for DNAPL redistribution. Decreases in electric current were observed at the onset of gas phase production, which suggests that coupled electrical current and temperature measurements may provide a reliable metric to assess gas phase development.

  14. Turbulent transport regimes and the scrape-off layer heat flux width

    Science.gov (United States)

    Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.

    2015-04-01

    Understanding the responsible mechanisms and resulting scaling of the scrape-off layer (SOL) heat flux width is important for predicting viable operating regimes in future tokamaks and for seeking possible mitigation schemes. In this paper, we present a qualitative and conceptual framework for understanding various regimes of edge/SOL turbulence and the role of turbulent transport as the mechanism for establishing the SOL heat flux width. Relevant considerations include the type and spectral characteristics of underlying instabilities, the location of the gradient drive relative to the SOL, the nonlinear saturation mechanism, and the parallel heat transport regime. We find a heat flux width scaling with major radius R that is generally positive, consistent with the previous findings [Connor et al., Nucl. Fusion 39, 169 (1999)]. The possible relationship of turbulence mechanisms to the neoclassical orbit width or heuristic drift mechanism in core energy confinement regimes known as low (L) mode and high (H) mode is considered, together with implications for the future experiments.

  15. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    Science.gov (United States)

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment.

  16. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    Science.gov (United States)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  17. Heat transport in Rayleigh-Bénard convection and angular momentum transport in Taylor-Couette flow: a comparative study

    Science.gov (United States)

    Brauckmann, Hannes J.; Eckhardt, Bruno; Schumacher, Jörg

    2017-03-01

    Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=107 and Taylor-Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.

  18. Nonlocal optical response in metallic nanostructures

    OpenAIRE

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger

    2014-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...

  19. Nonlocal higher order evolution equations

    KAUST Repository

    Rossi, Julio D.

    2010-06-01

    In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove that the solutions of the nonlocal problem converge to the solution of the higher order problem with the right-hand side given by powers of the Laplacian when the kernel J is rescaled in an appropriate way. Moreover, we prove that solutions to both equations have the same asymptotic decay rate as t goes to infinity. © 2010 Taylor & Francis.

  20. Totality of Subquantum Nonlocal Correlations

    CERN Document Server

    Khrennikov, Andrei

    2011-01-01

    In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...

  1. Aspects of Nonlocality in Quantum Field Theory, Quantum Gravity and Cosmology

    OpenAIRE

    Barvinsky, A. O.

    2014-01-01

    This paper contains a collection of essays on nonlocal phenomena in quantum field theory, gravity and cosmology. Mechanisms of nonlocal contributions to the quantum effective action are discussed within the covariant perturbation expansion in field strengths and spacetime curvatures and the nonperturbative method based on the late time asymptotics of the heat kernel. Euclidean version of the Schwinger-Keldysh technique for quantum expectation values is presented as a special rule of obtaining...

  2. Anderson Localization in Nonlocal Nonlinear Media

    CERN Document Server

    Folli, Viola; 10.1364/OL.37.000332

    2012-01-01

    The effect of focusing and defocusing nonlinearities on Anderson localization in highly nonlocal media is theoretically and numerically investigated. A perturbative approach is developed to solve the nonlocal nonlinear Schroedinger equation in the presence of a random potential, showing that nonlocality stabilizes Anderson states.

  3. Solitons in nonlocal nonlinear media: Exact solutions

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole

    2001-01-01

    We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...

  4. Exact Solutions in Nonlocal Linear Models

    OpenAIRE

    Vernov, S. Yu.

    2008-01-01

    A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.

  5. Nonlocal electron-phonon coupling: Consequences for the nature of polaron states

    Science.gov (United States)

    Stojanović, Vladimir M.; Bobbert, P. A.; Michels, M. A.

    2004-04-01

    We develop a variational approach to an extended Holstein model, comprising both local and nonlocal electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the Helmholtz free energy. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is clearly observed. Furthermore, a salient feature of our results is that the local and nonlocal couplings can compensate each other, leading to a reduction of polaronic effects and a quasi-free character of the excitation. Our findings have implications for organic crystals of π-conjugated molecules, where this electron-phonon coupling mechanism plays an important role.

  6. Nonlocal electron-phonon coupling: influence on the nature of polarons

    Science.gov (United States)

    Stojanovi, V. M.; Bobbert, P. A.; Michels, M. A. J.

    2004-01-01

    We present a variational approach to an extended Holstein model, comprising both local and nonlocal electron-phonon coupling. The approach is based on the minimization of a Bogoliubov bound to the free energy of the coupled electron-phonon system, and is implemented for a one-dimensional nearest-neighbor model, with Einstein phonons. The ambivalent character of nonlocal coupling, which both promotes and hinders transport, is clearly observed. A salient feature of our results is that the local and nonlocal couplings can compensate each other, leading to a supression of polaronic effects.

  7. The Strong Influence of Magmatic Heat Transport on Terrestrial Planetary Evolution

    Science.gov (United States)

    Tackley, P. J.; Nakagawa, T.; Armann, M.

    2012-04-01

    On Io, "heat pipe" volcanism is thought to be the major mode of heat loss from the interior. This mechanism can also, however, be important on larger terrestrial planets, particularly at early times, and this is the topic of this presentation. Firstly, we consider planets with stagnant lids. In models of early Mars, Keller and Tackley [2009] found that magmatism has a dramatic buffering effect on early mantle temperature, causing cases with differing initial temperatures to converge to the same value that is much lower than obtained without magmatism, an effect subsequently termed the "thermostat effect" in the martian evolution models of Ogawa and Yanagisawa [2011]. This effect becomes more important with increasing planet size. In numerical models of Venus [Armann and Tackey, 2008], it was found that heat pipe magmatism is the dominant heat loss mechanism over most of the planet's evolution, if there are no episodic lithospheric overturn events interrupting the stagnant lid mode. Secondly, we consider planets with plate tectonics. On present-day Earth, mid-ocean ridge magmatism contributes around 10% of the total heat transport. Early parameterized models of Davies [1990] predicted that magmatism can be important for Earth's heat loss, but it has largely been ignored by the Earth mantle modelling community, with a few exceptions. Xie and Tackley [2004] found magmatic heat transport to be the most important heat loss mechanism at early times in thermo-chemical convection models representing Earth. Here we present new models of the thermo-chemical and magmatic evolution of Earth-like planets [Nakagawa and Tackley, 2012], also finding that magmatism is an important heat loss mechanism throughout much of the planet's history. In a broader context, the importance of magmatic heat loss for both stagnant lid and plate tectonics planets together with its increasing importance with planet size, leads to the prediction that on super-Earths it will be even more important. 1

  8. Advective heat transport associated with regional Earth degassing in central Apennine (Italy)

    Science.gov (United States)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Chiarabba, C.; Frondini, F.

    2013-07-01

    In this work we show that the main springs of the central Apennine transport a total amount of heat of ˜2.2×109 J s-1. Most of this heat (57%) is the result of geothermal warming while the remaining 43% is due to gravitational potential energy dissipation. This result indicates that a large area of the central Apennines is very hot with heat flux values >300 mW m-2. These values are higher than those measured in the magmatic and famously geothermal provinces of Tuscany and Latium and about 1/3 of the total heat discharged at Yellowstone. This finding is surprising because the central Apennines have been thought to be a relatively cold area. Translated by CO2 rich fluids, this heat anomaly suggests the existence of a thermal source such as a large magmatic intrusion at depth. Recent tomographic images of the area support the presence of such an intrusion visible as a broad negative velocity anomaly in seismic waves. Our results indicate that the thermal regime of tectonically active areas of the Earth, where meteoric waters infiltrate and deeply circulate, should be revised on the basis of mass and energy balances of the groundwater systems.

  9. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming

    Science.gov (United States)

    Ufnar, David F.; Gonzalez, Luis A.; Ludvigson, Greg A.; Brenner, Richard L.; Witzke, B.J.

    2004-01-01

    Quantitative estimates of increased heat transfer by atmospheric H 2O vapor during the Albian greenhouse warming suggest that the intensified hydrologic cycle played a greater role in warming high latitudes than at present and thus represents a viable alternative to oceanic heat transport. Sphaerosiderite ??18O values in paleosols of the North American Cretaceous Western Interior Basin are a proxy for meteoric ??18O values, and mass-balance modeling results suggest that Albian precipitation rates exceeded modern rates at both mid and high latitudes. Comparison of modeled Albian and modern precipitation minus evaporation values suggests amplification of the Albian moisture deficit in the tropics and moisture surplus in the mid to high latitudes. The tropical moisture deficit represents an average heat loss of ???75 W/m2 at 10??N paleolatitude (at present, 21 W/m2). The increased precipitation at higher latitudes implies an average heat gain of ???83 W/m2 at 45??N (at present, 23 W/m2) and of 19 W/m2 at 75??N (at present, 4 W/m2). These estimates of increased poleward heat transfer by H2O vapor during the Albian may help to explain the reduced equator-to-pole temperature gradients. ?? 2004 Geological Society of America.

  10. Heat Transfer Characteristics of Hydrate Slurries Transported by Visco-Elastic Fluid in a Cavity

    Science.gov (United States)

    Nakamura, Ryoichi; Yamada, Sayaka; Suzuki, Hiroshi; Komoda, Yoshiyuki; Usui, Hiromoto

    A two dimentional numerical study has been performed to investigate on heat transfer characteristics of a hydrate slurry transported by a visco-elastic fluid flowing between parallel plates with a one-sided cavity. In this study, the cavity length was changed in three steps, while the rib height and rib length were kept constant. Heat flux on the solid wall was set at 20,000W•m-2. The concentration of hydrate particles at inlet was set at 5wt%. From the results, it is found that hydrate particles dispersed with Newtonian fluid (water) flows over the cavity without penetration. On the other hand, hydrate particles dispersed with visco-elastic fluid are observed effectively to penetrate into the cavity and sweep the bottom of cavity by Barus effect. This causes effective heat transfer from the bottom wall of the cavity. Heat transfer difference was observed that the cavity length was changed. Consequently, there exists the optimum geometry for the heat transfer enhancement in a cavity by using Barus effect.

  11. Nonlocally Centralized Simultaneous Sparse Coding

    Institute of Scientific and Technical Information of China (English)

    雷阳; 宋占杰

    2016-01-01

    The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.

  12. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  13. Water and heat transport in hilly red soil of southern China: I. Experiment and analysis

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Zhi-zhen; HAN Xiao-fei

    2005-01-01

    Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depends on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great annual and diurnal air temperature differences result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields' conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 ℃ temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively.Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent,when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.

  14. Estimating the health benefits from natural gas use in transport and heating in Santiago, Chile.

    Science.gov (United States)

    Mena-Carrasco, Marcelo; Oliva, Estefania; Saide, Pablo; Spak, Scott N; de la Maza, Cristóbal; Osses, Mauricio; Tolvett, Sebastián; Campbell, J Elliott; Tsao, Tsao Es Chi-Chung; Molina, Luisa T

    2012-07-01

    Chilean law requires the assessment of air pollution control strategies for their costs and benefits. Here we employ an online weather and chemical transport model, WRF-Chem, and a gridded population density map, LANDSCAN, to estimate changes in fine particle pollution exposure, health benefits, and economic valuation for two emission reduction strategies based on increasing the use of compressed natural gas (CNG) in Santiago, Chile. The first scenario, switching to a CNG public transportation system, would reduce urban PM2.5 emissions by 229 t/year. The second scenario would reduce wood burning emissions by 671 t/year, with unique hourly emission reductions distributed from daily heating demand. The CNG bus scenario reduces annual PM2.5 by 0.33 μg/m³ and up to 2 μg/m³ during winter months, while the residential heating scenario reduces annual PM2.5 by 2.07 μg/m³, with peaks exceeding 8 μg/m³ during strong air pollution episodes in winter months. These ambient pollution reductions lead to 36 avoided premature mortalities for the CNG bus scenario, and 229 for the CNG heating scenario. Both policies are shown to be cost-effective ways of reducing air pollution, as they target high-emitting area pollution sources and reduce concentrations over densely populated urban areas as well as less dense areas outside the city limits. Unlike the concentration rollback methods commonly used in public policy analyses, which assume homogeneous reductions across a whole city (including homogeneous population densities), and without accounting for the seasonality of certain emissions, this approach accounts for both seasonality and diurnal emission profiles for both the transportation and residential heating sectors.

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    Science.gov (United States)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  17. An Assessment of Transport Property Estimation Methods for Ammonia–Water Mixtures and Their Influence on Heat Exchanger Size

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Modi, Anish; Jensen, Jonas Kjær

    2015-01-01

    are considered: a flue-gas-based heat recovery boiler for a combined cycle power plant and a hot-oil-based boiler for a solar thermal power plant. The different transport property methods resulted in larger differences at high pressures and temperatures, and a possible discontinuous first derivative, when using...... the interpolative methods in contrast to the corresponding state methods. Nevertheless, all possible mixture transport property combinations used herein resulted in a heat exchanger size within 4.3 % difference for the flue-gas heat recovery boiler, and within 12.3 % difference for the oil-based boiler.......Transport properties of fluids are indispensable for heat exchanger design. The methods for estimating the transport properties of ammonia–water mixtures are not well established in the literature. The few existent methods are developed from none or limited, sometimes inconsistent experimental...

  18. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  19. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  20. NON-LINEAR TRANSIENT HEAT CONDUCTION ANALYSIS OF INSULATION WALL OF TANK FOR TRANSPORTATION OF LIQUID ALUMINUM

    OpenAIRE

    Miroslav M Živković; Aleksandar V Nikolić; Radovan B Slavković; Fatima T Živić

    2010-01-01

    This paper deals with transient nonlinear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, during transport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element (FE) analysis, starting from the differential equation of energy balance, taking into account the initial and boundary condi...

  1. Study on a non-powered heat transporting system; Mudoryoku netsu hanso system ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Y. [Kanto Gakuin University, Yokohama (Japan)

    1997-11-25

    This paper proposes a non-powered heat transportation (HT) system. The system is composed of an evaporator, condenser, receiver, switching chamber (SC) and 3 check valves which are connected with each other by vapor and liquid tubes. Condensed liquid supercooled in the condenser exists in the receiver forming a saturated condition at a concerned temperature, and condensed liquid is lifted up from the condenser to the receiver by pressure difference between the evaporator and receiver. Generally evaporation pressure is higher by pressure difference between liquid levels in the condenser and receiver. The lifted up amount of condensed liquid increases with evaporation pressure, resulting in an increase in heating surface area of the condenser and amount of condensed liquid. A proper evaporator pressure is thus retained by reduction of evaporation pressure. SC is connected with the receiver and evaporator, and switches high- and low-pressure valves by motion of an inner float to transport heat from the evaporator to condenser. Reverse HT is possible as normal latent HT by installing a bypass. Some problems are also described. 2 refs., 8 figs.

  2. Diffusive-to-ballistic transition of the modulated heat transport in a rarefied air chamber

    Directory of Open Access Journals (Sweden)

    C. L. Gomez-Heredia

    2017-01-01

    Full Text Available Modulated heat transfer in air subject to pressures from 760 Torr to 10-4 Torr is experimentally studied by means of a thermal-wave resonant cavity placed in a vacuum chamber. This is done through the analysis of the amplitude and phase delay of the photothermal signal as a function of the cavity length and pressure through of the Knudsen’s number. The viscous, transitional, and free molecular regimes of heat transport are observed for pressures P>1.5 Torr, 25 mTorrheat transport.

  3. Diffusive Heat Transport in Budyko's Energy Balance Climate Model with a Dynamic Ice Line

    CERN Document Server

    Walsh, James

    2016-01-01

    M. Budyko and W. Sellers independently introduced seminal energy balance climate models in 1969, each with a goal of investigating the role played by positive ice albedo feedback in climate dynamics. In this paper we replace the relaxation to the mean horizontal heat transport mechanism used in the models of Budyko and Sellers with diffusive heat transport. We couple the resulting surface temperature equation with an equation for movement of the edge of the ice sheet (called the ice line), recently introduced by E. Widiasih. We apply the spectral method to the temperature-ice line system and consider finite approximations. We prove there exists a stable equilibrium solution with a small ice cap, and an unstable equilibrium solution with a large ice cap, for a range of parameter values. If the diffusive transport is too efficient, however, the small ice cap disappears and an ice free Earth becomes a limiting state. In addition, we analyze a variant of the coupled diffusion equations appropriate as a model for ...

  4. Heat Transport in the Precursor of Carbon and Metallic Wire Arrays

    Science.gov (United States)

    Hare, Jack; Lebedev, Sergey; Bennett, Matthew; Bland, Simon; Burdiak, Guy; Suttle, Lee; Suzuki-Vidal, Francisco; Swadling, George; Velikovich, Alexander

    2014-10-01

    The complex interplay between the transport of heat and magnetic fields in high- β, magnetised plasmas is crucial to the feasibility of Magnetised Liner Inertial Fusion (MagLIF). We consider using the precursor plasma in a cylindrical wire array to reach the relevant dimensionless parameters for the initial state of the MagLIF plasma. The precursor is a hot, dense, stable plasma formed on the axis by the collision of material ablated from the wires. Simple models show that an axial magnetic field of ~ 5 T could magnetise the precursor (ωeτe ~ 10) at high-beta (β ~ 10). In this regime, the Nernst term may dominate the transport of the magnetic field, affecting the heat transport. The experiments are conducted on MAGPIE (1.4 MA, 250 ns rise time). Metallic wire arrays are standard, but to reduce radiative losses and the electron-ion thermalisation time, we will also consider carbon in the form of 0.3 mm diameter graphite rods. The axial magnetic field can either be provided by external coils or by the drive current. We study the evolution of the plasma density and temperature using laser interferometry and Schlieren imaging, an optical streak camera and Thomson scattering. The magnetic field can be studied using fibre-based polarimetry.

  5. Study of fast electron transport and ionization in isochorically heated solid foil

    Science.gov (United States)

    Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Yabuuchi, Toshinori; Zastrau, Ulf; Foerster, Eckhart; Beg, Farhat; McLean, Harry; Chen, Hui; Park, J.-B.; Patel, Prav; Link, Anthony; Ping, Yuan

    2016-10-01

    Interaction of a high-power, short-pulse laser with a solid target generates a significant number of relativistic MeV electrons, subsequently heating the target isochorically in the transport process. Fast electron driven ionization of a solid titanium foil was studied by measuring Ti K-alpha x-rays and performing 2-D particle-in-cell simulations. The experiment was performed using the 50 TW Leopard short-pulse laser at UNR's Nevada Terawatt Facility. The 15 J, 0.35 ps laser was tightly focused on to a various sized, 2- μm thick Ti foil within a 8 μm spot to achieve the peak intensity of 2×1019 W/cm2. The transport of the fast electrons produced 4.51 keV Ti K-alpha x-rays. The yields and 2-D monochromatic images were recorded with a Bragg crystal spectrometer and a spherically bent crystal imager. The ionization degree of the heated foil was determined to be 15 from the ionized K-alpha lines and the missing emission in the images. 2-D PIC simulations using a PICLS code with a radiation transport module were performed to calculate the K-alpha profiles and spectra. Details of the experiment and comparison will be presented.

  6. Nonlocal Response in Plasmonic Nanostructures

    DEFF Research Database (Denmark)

    Wubs, Martijn; Mortensen, N. Asger

    2016-01-01

    After a brief overview of nanoplasmonics experiments that defy explanation with classical electrodynamics, we introduce nonlocal response as a main reason for non-classical effects. This concept is first introduced phenomenologically, and afterwards based on the semi-classical hydrodynamic Drude ...

  7. Quantum nonlocality does not exist.

    Science.gov (United States)

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  8. A nonlocal discretization of fields

    CERN Document Server

    Campos, R G; Pimentel, L O; Campos, Rafael G.; Tututi, Eduardo S.

    2001-01-01

    A nonlocal method to obtain discrete classical fields is presented. This technique relies on well-behaved matrix representations of the derivatives constructed on a non--equispaced lattice. The drawbacks of lattice theory like the fermion doubling or the breaking of chiral symmetry for the massless case, are absent in this method.

  9. Learning Non-Local Dependencies

    Science.gov (United States)

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  10. Learning Non-Local Dependencies

    Science.gov (United States)

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  11. Extreme nonlocality with one photon

    Energy Technology Data Exchange (ETDEWEB)

    Heaney, Libby; Vedral, Vlatko [Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom); Cabello, Adan [Departamento de Fisica Aplicada II, Universidad de Sevilla, E-41012 Sevilla (Spain); Santos, Marcelo Franca, E-mail: l.heaney1@physics.ox.ac.uk, E-mail: adan@us.es [Departamento de Fisica, Universidade Federal de Minas Gerais, Belo Horizonte, Caixa Postal 702, 30123-970, MG (Brazil)

    2011-05-15

    Quantum nonlocality is typically assigned to systems of two or more well-separated particles, but nonlocality can also exist in systems consisting of just a single particle when one considers the subsystems to be distant spatial field modes. Single particle nonlocality has been confirmed experimentally via a bipartite Bell inequality. In this paper, we introduce an N-party Hardy-like proof of the impossibility of local elements of reality and a Bell inequality for local realistic theories in the case of a single particle superposed symmetrically over N spatial field modes (i.e. N qubit W state). We show that, in the limit of large N, the Hardy-like proof effectively becomes an all-versus-nothing (or Greenberger-Horne-Zeilinger (GHZ)-like) proof, and the quantum-classical gap of the Bell inequality tends to be the same as that in a three-particle GHZ experiment. We describe how to test the nonlocality in realistic systems.

  12. Heat transport in Rayleigh-Benard convection and angular momentum transport in Taylor-Couette flow: a comparative study

    CERN Document Server

    Brauckmann, Hannes; Schumacher, Joerg

    2016-01-01

    Rayleigh-Benard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Benard convection in air at Rayleigh number Ra=1e7 and Taylor-Couette flow at shear Reynolds number Re_S=2e4 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angula...

  13. Applicability of heat and gas trans-port models in biocover design based on a case study from Denmark

    DEFF Research Database (Denmark)

    Nielsen, A. A. F.; Binning, Philip John; Kjeldsen, Peter

    2015-01-01

    . Both models used the heat equation for heat transfer, and the numerical model used advection-diffusion model with dual Monod kinetics for gas transport. The results were validated with data from a Danish landfi The models correlated well with the observed data: the coefficient of determination (R2...

  14. Collapse arrest and soliton stabilization in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Bang, Ole; Krolikowski, Wieslaw; Wyller, John

    2002-01-01

    We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...

  15. Modeling of limiter heat loads and impurity transport in Wendelstein 7-X startup plasmas

    Science.gov (United States)

    Effenberg, Florian; Feng, Y.; Frerichs, H.; Schmitz, O.; Hoelbe, H.; Koenig, R.; Krychowiak, M.; Pedersen, T. S.; Bozhenkov, S.; Reiter, D.

    2015-11-01

    The quasi-isodynamic stellarator Wendelstein 7-X starts plasma operation in a limiter configuration. The field consists of closed magnetic flux surfaces avoiding magnetic islands in the plasma boundary. Because of the small size of the limiters and the absence of wall-protecting elements in this phase, limiter heat loads and impurity generation due to plasma surface interaction become a concern. These issues are studied with the 3D fluid plasma edge and kinetic neutral transport code EMC3-Eirene. It is shown that the 3D SOL consists of three separate helical magnetic flux bundles of different field line connection lengths. A density scan at input power of 4MW reveals a strong modulation of the plasma paramters with the connection length. The limiter peak heat fluxes drop from 14 MWm-2 down to 10 MWm-2 with raising the density from 1 ×1018m-3 to 1.9 ×1019m-3, accompanied by an increase of the heat flux channel widths λq. Radiative power losses can help to avoid thermal overloads of the limiters at the upper margin of the heating power. The power removal feasibility of the intrinsic carbon and other extrinsic light impurities via active gas injection is discussed as a preparation of this method for island divertor operation. Work supported in part by start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and by the U.S. Department of Energy under grant DE-SC0013911.

  16. Nanoscale phase engineering of thermal transport with a Josephson heat modulator

    Science.gov (United States)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    2016-03-01

    Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect, which manifests itself both in charge and energy transport. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid-state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Here, we show the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  17. Scaling of high-field transport and localized heating in graphene transistors.

    Science.gov (United States)

    Bae, Myung-Ho; Islam, Sharnali; Dorgan, Vincent E; Pop, Eric

    2011-10-25

    We use infrared thermal imaging and electrothermal simulations to find that localized Joule heating in graphene field-effect transistors on SiO(2) is primarily governed by device electrostatics. Hot spots become more localized (i.e., sharper) as the underlying oxide thickness is reduced, such that the average and peak device temperatures scale differently, with significant long-term reliability implications. The average temperature is proportional to oxide thickness, but the peak temperature is minimized at an oxide thickness of ∼90 nm due to competing electrostatic and thermal effects. We also find that careful comparison of high-field transport models with thermal imaging can be used to shed light on velocity saturation effects. The results shed light on optimizing heat dissipation and reliability of graphene devices and interconnects.

  18. Heat Transport Simulation for Atmospheric-Pressure High-Density Microgap Plasma

    Science.gov (United States)

    Kono, Akihiro; Shibata, Tomoyuki; Aramaki, Mitsutoshi

    2006-02-01

    Atmospheric-pressure cw high-density plasma can be produced in a microgap between two knife-edge electrodes by microwave excitation. A possible application of such a plasma is as an excimer light source and for this purpose the gas temperature in the plasma is a particularly important parameter. In this paper we report a fluid dynamic simulation of heat transport in the microgap plasma and compare the results with previously studied experimental gas temperature characteristics (e.g., dependence on the microwave power and the forced gas flow rate). The simulation explains reasonably well the experimental results when the effect of local gas density change on the gas heating process is taken into consideration. Discussion is given that the existence of thermally driven convection in the microgap plasma indicated in a preliminary report is incorrect.

  19. The role of Ekman flow and planetary waves in the oceanic cross-equatorial heat transport

    Science.gov (United States)

    Schopf, P. S.

    1980-01-01

    A numerical model is used to mechanistically simulate the oceans' seasonal cross-equatorial heat transport. The basic process of Ekman pumping and drift is able to account for a large amount of the cross-equatorial flux. Increased easterly wind stress in the winter hemisphere causes Ekman surface drift poleward, while decreased easterly stress allows a reduction in the poleward drift in the summer hemisphere. The addition of planetary and gravity waves to this model does not alter the net cross-equatorial flow, although the planetary waves are clearly seen. On comparison with Oort and Vonder Haar (1976), this adiabatic advective redistribution of heat is seen to be plausible up to 10-20 deg N, beyond which other dynamics and thermodynamics are indicated.

  20. Bjerknes Compensation in Meridional Heat Transport under Freshwater Forcing and the Role of Climate Feedback

    Science.gov (United States)

    Wen, Qin

    2017-04-01

    Using a coupled Earth climate model, freshwater experiments are performed to study the Bjerknes compensation (BJC) between meridional atmosphere heat transport (AHT) and meridional ocean heat transport (OHT). Freshwater hosing in the North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) and thus reduces the northward OHT in the Atlantic significantly, leading to a cooling (warming) in surface layer in the Northern (Southern) Hemisphere. This results in an enhanced Hadley Cell and northward AHT. Meanwhile, the OHT in the Indo-Pacific is increased in response to the Hadley Cell change, partially offsetting the reduced OHT in the Atlantic. Two compensations occur here: compensation between the AHT and the Atlantic OHT, and that between the Indo-Pacific OHT and the Atlantic OHT. The AHT change compensates the OHT change very well in the extratropics, while the former overcompensates the latter in the tropics due to the Indo-Pacific change. The BJC can be understood from the viewpoint of large-scale circulation change. However, the intrinsic mechanism of BJC is related to the climate feedback of Earth system. Our coupled model experiments confirm that the occurrence of BJC is an intrinsic requirement of local energy balance, and local climate feedback determines the extent of BJC, consistent with previous theoretical results. Even during the transient period of climate change in the model, the BJC is well established when the ocean heat storage is slowly varying and its change is weaker than the net heat flux changes at the ocean surface and the top of the atmosphere. The BJC can be deduced from the local climate feedback. Under the freshwater forcing, the overcompensation in the tropics (undercompensation in the extratropics) is mainly caused by the positive longwave feedback related to cloud (negative longwave feedback related to surface temperature change). Different dominant feedbacks determine different BJC scenarios in different regions

  1. Understanding the Atmospheric Response to Ocean Heat Transport: a Model Inter-Comparison

    Science.gov (United States)

    Rose, B.

    2012-12-01

    The oceans' contribution to poleward heat transport (1 to 2 PW) is dwarfed by the atmosphere, and yet ocean heat transport (OHT) exerts a powerful climatic influence by exciting various atmospheric feedbacks. OHT drives polar-amplified greenhouse warming through a dynamical redistribution of tropospheric water vapor, and helps set the strength and position of the ITCZ. These complex responses explicitly couple tropical and extra-tropical processes, and depend on interactions between large-scale dynamics and moist physics. Considerable insights have been drawn from recent idealized experiments with aquaplanet GCMs coupled to slab oceans with prescribed OHT convergence (q-flux). However sensitivity to uncertain model parameterizations pose a barrier to deeper understanding. I will introduce a new multi-institution collaboration called the Q-flux / Aquaplanet Model Inter-comparison Project (QAquMIP), designed to test the robustness of the climatic impact of OHT and its relationship to traditional climate sensitivity. A standardized set of GCM experiments, repeated across a broad range of models, are forced by a few simple analytical q-fluxes. Experimental controls include the meridional scale of poleward OHT, strength of inter-hemispheric OHT, and zonally asymmetric equatorial heating. I will compare robust spatial patterns of temperature and precipitation changes associated with OHT forcing to those driven by CO2, and discuss the underlying spatial pattern of atmospheric feedbacks. A recurring theme is the key role of moist convection in communicating sea surface heating signals throughout the atmosphere, with consequences for clouds, water vapor, radiation, and hydrology. QAquMIP will better constrain the possible role of the oceans in past warm climates, provide a standard framework for testing new parameterizations, and advance our fundamental understanding of the moist processes contributing to present-day climate sensitivity.

  2. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    Science.gov (United States)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  3. Determination of Heat Transport Mechanism in Aqueous Nanofluids Using Regime Diagram

    Institute of Scientific and Technical Information of China (English)

    M.CHANDRASEKAR; S.SURESH

    2009-01-01

    We provide an approximate method to determine the dominant heat transport mechanism responsible for the anomalous enhancement of thermal conductivity in aqueous nanofluids.Due to a large degree of randomness and scatter observed in the published experimental data,limits to nanofluid thermal conductivity are fixed analytically by taking into account the contribution of particle Brownian motion and clustering,and a regime diagram is developed.Experimental data from a range of independent published sources is used for validation of the developed regime diagram.

  4. Saturation of poleward atmospheric heat transport in warm climates and the low-gradient paradox.

    Science.gov (United States)

    Caballero, R.; Langen, P.

    2004-12-01

    The equable climates of the deep past featured higher atmospheric greenhouse gas concentrations, greater global-mean surface temperatures and much weaker equator-to-pole temperature contrasts than today. Climate models readily reproduce the higher mean temperatures, given sufficient increases in greenhouse gases, but they have proved incapable of matching the low meridional gradients indicated by proxy data. A crucial step in resolving this 'low-gradient paradox' is uderstanding why climate models fail to reproduce the correct feedback between global mean temperature and its meridional gradient. Though models do achieve some reduction in temperature gradients, mostly through snow and sea-ice albedo feedback, the remaining discrepancy must be accounted for by either more exotic forms of radiative forcing feedback, which are not represented in current models, or by more efficient oceanic and/or atmospheric poleward heat transports, which the models for some reason do not capture. This latter feature is especially puzzling for the atmosphere, since there are plausible reasons to expect atmospheric energy transport to be be considerably more efficient in a warmer climate. We explore this issue by systematically studying the response of atmospheric heat transpor in a GCM to a very broad range of global mean temperatures and meridional gradients. We find that heat transport increases with global mean temperature when the latter is less than about 15C; above this value, heat transport saturates, becoming insensitive to surface temperature. This behavior has a dynamical origin traceble to changes in the structure of the atmosphere's general circulation. Mean tropospheric static stability increases with surface temperature, reducing baroclinicity and suppressing storm-track eddy activity. Furthermore, as temperature increases the storm-tracks as a whole migrate poleward over cooler waters, and thus do not experience the full global-mean surface temperature increase. These

  5. Practical examples of how knowledge management is addressed in Point Lepreau heat transport ageing management programs

    Energy Technology Data Exchange (ETDEWEB)

    Slade, J. [NB Power Nuclear, Lepreau, New Brunswick (Canada)], E-mail: JSlade@NBPower.com; Gendron, T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Greenlaw, G. [NB Power Nuclear, Lepreau, New Brunswick (Canada)

    2009-07-01

    In the mid-1990s, New Brunswick Power Nuclear implemented a Management System Process Model at the Point Lepreau Generating Station that provides the basic elements of a knowledge management program. As noted by the IAEA, the challenge facing the nuclear industry now is to make improvements in knowledge management in areas that are more difficult to implement. Two of these areas are: increasing the value of existing knowledge, and converting tacit knowledge to explicit knowledge (knowledge acquisition). This paper describes some practical examples of knowledge management improvements in the Point Lepreau heat transport system ageing management program. (author)

  6. Multiresonance of energy transport and absence of heat pump in a force-driven lattice.

    Science.gov (United States)

    Zhang, Song; Ren, Jie; Li, Baowen

    2011-09-01

    Energy transport control in low dimensional nanoscale systems has attracted much attention in recent years. In this paper, we investigate the energy transport properties of the Frenkel-Kontorova lattice subject to a periodic driving force, in particular, the resonance behavior of the energy current by varying the external driving frequency. It is discovered that, in certain parameter ranges, multiple resonance peaks, instead of a single resonance, emerge. By comparing the nonlinear lattice model with a harmonic chain, we unravel the underlying physical mechanism for such a resonance phenomenon. Other parameter dependencies of the resonance behavior are examined as well. Finally, we demonstrate that heat pumping is actually absent in this force-driven model.

  7. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter

    2017-01-01

    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  8. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C. [Lawrence Livermore National Lab., CA (United States); Jacques, S.L. [Texas Univ., Houston, TX (United States). M.D. Anderson Cancer Center

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  9. Nonlocal thermoelectric effects and nonlocal Onsager relations in a three-terminal proximity-coupled superconductor-ferromagnet device

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [SEPnet and Hubbard Theory Consortium, Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2013-07-01

    We study thermal and charge transport in a three-terminal setup consisting of a superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin-filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three terminal quantum coherent ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and coherent electron transfer processes.

  10. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.

  11. Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas

    Science.gov (United States)

    Hong, Joohwan; Henderson, S. S.; Kim, Kimin; Seon, C. R.; Song, Inwoo; Lee, H. Y.; Jang, Juhyeok; Park, Jae Sun; Lee, S. G.; Lee, J. H.; Lee, Seung Hun; Hong, Suk-Ho; Choe, Wonho

    2017-03-01

    Experiments with a small amount of Ar gas injection as a trace impurity were conducted in the Korea Superconducting Tokamak Advanced Research (KSTAR) H-mode plasma ({{B}\\text{T}}   =  2.8 T, {{I}\\text{P}}   =  0.6 MA, and {{P}\\text{NBI}}   =  4.0 MW). 170 GHz electron cyclotron resonance heating (ECH) at 600 and 800 kW was focused along the mid-plane with a fixed major radial position of R   =  1.66 m. The emissivity of the Ar16+ (3.949 {\\mathring{\\text{A}}} ) and Ar15+ (353.860 {\\mathring{\\text{A}}} ) spectral lines were measured by x-ray imaging crystal spectroscopy (XICS) and a vacuum UV (VUV) spectrometer, respectively. ECH reduces the peak Ar15+ emission and increases the Ar16+ emission, an effect largest with 800 kW. The ADAS-SANCO impurity transport code was used to evaluate the Ar transport coefficients. It was found that the inward convective velocity found in the plasma core without ECH was decreased with ECH, while diffusion remained approximately constant resulting in a less-peaked Ar density profile. Theoretical results from the NEO code suggest that neoclassical transport is not responsible for the change in transport, while the microstability analysis using GKW predicts a dominant ITG mode during both ECH and non-ECH plasmas.

  12. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation

    Science.gov (United States)

    Adenekan, A. E.; Patzek, T. W.; Pruess, K.

    1993-11-01

    A numerical compositional simulator (Multiphase Multicomponent Nonisothermal Organics Transport Simulator (M2NOTS)) has been developed for modeling transient, three-dimensional, nonisothermal, and multiphase transport of multicomponent organic contaminants in the subsurface. The governing equations include (1) advection of all three phases in response to pressure, capillary, and gravity forces; (2) interphase mass transfer that allows every component to partition into each phase present; (3) diffusion; and (4) transport of sensible and latent heat energy. Two other features distinguish M2NOTS from other simulators reported in the groundwater literature: (1) the simulator allows for any number of chemical components and every component is allowed to partition into all fluid phases present, and (2) each phase is allowed to completely disappear from, or appear in, any region of the domain during a simulation. These features are required to model realistic field problems involving transport of mixtures of nonaqueous phase liquid contaminants, and to quantify performance of existing and emerging remediation methods such as vacuum extraction and steam injection.

  13. A Weakly Non Linear Stability Analysis of Heat Transport in Anisotropic Porous Cavity Under Time PeriodicTemperature Modulation

    Directory of Open Access Journals (Sweden)

    Amit kumar Mishra

    2015-01-01

    Full Text Available In this paper, we have analyzed the effect of time periodic temperature modulation on convective stability in anisotropic porous cavity. The cavity is heated from below and cooled from above. A weakly non-linear stability analysis is done to find Nusselt number governing the heat transport. The infinitely small disturbances are expanded in terms of power series of amplitude of modulation. Analytically the nonautonomous Ginzburg- landau amplitude equation is obtained for the stationary mode of convection. The effects of various parameters like Vadasz number, mechanical and thermal anisotropic parameters, amplitude of oscillations, frequency of modulation and aspect ratio of the cavity on heat transport is studied and plotted graphically. It is observed that the heat transport can also be controlled by suitably adjusting the external and internal parameters of the system.

  14. Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemens, M.; Li, Q.; Yang, R.; Nelson, K.; Anderson, E.; Murnane, M.; Kapteyn, H.

    2009-03-02

    Understanding heat transport on nanoscale dimensions is important for fundamental advances in nanoscience, as well as for practical applications such as thermal management in nano-electronics, thermoelectric devices, photovoltaics, nanomanufacturing, as well as nanoparticle thermal therapy. Here we report the first time-resolved measurements of heat transport across nanostructured interfaces. We observe the transition from a diffusive to a ballistic thermal transport regime, with a corresponding increase in the interface resistivity for line widths smaller than the phonon mean free path in the substrate. Resistivities more than three times higher than the bulk value are measured for the smallest line widths of 65 nm. Our findings are relevant to the modeling and design of heat transport in nanoscale engineered systems, including nanoelectronics, photovoltaics and thermoelectric devices.

  15. Investigation of inter-ELM ion heat transport in the H-mode pedestal of ASDEX Upgrade plasmas

    Science.gov (United States)

    Viezzer, E.; Fable, E.; Cavedon, M.; Angioni, C.; Dux, R.; Laggner, F. M.; Bernert, M.; Burckhart, A.; McDermott, R. M.; Pütterich, T.; Ryter, F.; Willensdorfer, M.; Wolfrum, E.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The ion heat transport in the pedestal of H-mode plasmas is investigated in various H-mode discharges with different pedestal ion collisionalities. Interpretive modelling suggests that in all analyzed discharges the ion heat diffusivity coefficient, {χ\\text{i}} , in the pedestal is close to the neoclassical prediction within the experimental uncertainties. The impact of changing the deposition location of the electron cyclotron resonance heating on the ion heat transport has been studied. The effect on the background profiles is small. The pre-ELM (edge localized modes) edge profiles as well as the behaviour of the electron temperature and density, ion temperature and impurity toroidal rotation during the ELM cycle are very similar in discharges with on- and off-axis ECRH heating. No significant deviation of {χ\\text{i}} from neoclassics is observed when changing the ECRH deposition location to the plasma edge.

  16. Principle of Cross Coupling Between Vertical Heat Turbulent Transport and Vertical Velocity and Determination of Cross Coupling Coefficient

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It has been proved that there exists a cross coupling between vertical heat turbulent transport and vertical velocity by using linear thermodynamics. This result asserts that the vertical component of heat turbulent transport flux is composed of both the transport of the vertical potential temperature gralient and the coupling transport of the vertical velocity. In this paper, the coupling effect of vertical velocity on vertical heat turbulent transportation is validated by using observed data from the atmospheric boundary layer to determine cross coupling coefficients, and a series of significant properties of turbulent transportation are opened out. These properties indicate that the cross coupling coefficient is a logarithm function of the dimensionless vertical velocity and dimensionless height, and is not only related to the friction velocity u*,but also to the coupling roughness height zwo and the coupling temperature Two of the vertical velocity.In addition, the function relations suggest that only when the vertical velocity magnitude conforms to the limitation |W/u* | ≠ 1, and is above the level zwo, then the vertical velocity leads to the cross coupling effect on the vertical heat turbulent transport flux. The cross coupling theory and experimental results provide a challenge to the traditional turbulent K closure theory and the Monin-Obukhov similarity theory.

  17. Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection

    CERN Document Server

    Grooms, Ian

    2014-01-01

    The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.

  18. On the relative influence of heat and water transport on planetary dynamics

    Science.gov (United States)

    Crowley, John W.; Gérault, Mélanie; O'Connell, Richard J.

    2011-10-01

    The dynamics of a planet and its evolution are controlled to a large extent by its viscosity. In this study, we demonstrate that the dependence of mantle viscosity on temperature and water concentration introduces strong dynamic feedbacks. We derive a dimensionless parameter to quantitatively evaluate the relative strength of those feedbacks, and show that water and heat transport are equally important in controlling present-day dynamics for the Earth. A simple parameterized evolution model illustrates the strong feedbacks and behavior of the system and agrees well with our analytic results. The analysis identifies characteristic times for changes of viscosity, temperature, and water concentration and demonstrates, for time scales greater than a few hundred million years, that the system should either be degassing while warming or regassing while cooling. This yields a characteristic evolution in which, after an initial period of rapid adjustment, the mantle warms while degassing, and subsequently cools rapidly while regassing. As the planet continues to cool, the entire surface ocean may eventually return to the mantle. Our results suggest that a simple relationship may exist between the rate of change of water concentration and the rate of change of temperature in the mantle. This connection is extended by deriving an explicit equation for the Urey ratio that depends on both heat and water transport.

  19. Evolution of heat transport pathways in the Indonesian Archipelago during last deglaciation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Indonesian Archipelago provides important heat transport pathways of the Western Pacific Warm Pool between the northern Indian Ocean and western equatorial Pacific Ocean, that exert important impacts on global climate change. This study investigated AMS 14C, ?18O, planktonic foraminifer assemblages and sedimentation rates in three piston cores collected in the Indonesian Archipelago. The results indicate that changes in the Indonesian Archipelago heat transport pathways were phase characteristic and in steps during the last deglaciation. In the deglaciation Termination IA, at about 12.5 kaBP, sea level rose rapidly in a short time period, and Makassar and Lombok straits widened suddenly for warm and fresh water from the Pacific to pour into the Java Sea and eastern Indian Ocean. During the Termination IB, about 9.5 kaBP, sea level rose rapidly again, and the South China Sea (SCS) started to connect with the Java Sea. With monsoon actions, a large amount of fresh water from the SCS shelf area flew through the Indonesian Archipelago.

  20. Different spatial discretization methods of fault systems on heat transport processes in hard rock aquifers

    Science.gov (United States)

    Kruppa, Lisa; König, Christoph M.; Becker, Martin; Seidel, Torsten

    2016-04-01

    Most hard rock aquifers, which are important for geothermal use, contain fractures of different type and scale. These fault systems are of major significance for heat flow in the groundwater. The hydrogeological characterization of fault systems must therefore be part of any site investigation in hard rock aquifers and hydraulically important fault systems need to be appropriately represented in associated numerical models. This contribution discusses different spatial discretization methods of fault systems in three-dimensional groundwater models and their impact on the simulated groundwater flow field as well as density and viscosity dependent heat transport. The analysis includes a comparison of the convergence behavior and numerical stability of the different discretization methods. To ensure defendable results, the utilized numerical model SPRING was first verified against data from the Hydrocoin Level 1 Case 2 project. After verification, the software was used to evaluate the impact of different discretization strategies on steady-state and transient groundwater flow and transport model results. The results show a significant influence of the spatial discretization strategy on predicted flow rates and subsequent mass fluxes as well as energy balances.

  1. Uncertainty estimation in one-dimensional heat transport model for heterogeneous porous medium.

    Science.gov (United States)

    Chang, Ching-Min; Yeh, Hund-Der

    2014-01-01

    In many practical applications, the rates for ground water recharge and discharge are determined based on the analytical solution developed by Bredehoeft and Papadopulos (1965) to the one-dimensional steady-state heat transport equation. Groundwater flow processes are affected by the heterogeneity of subsurface systems; yet, the details of which cannot be anticipated precisely. There exists a great deal of uncertainty (variability) associated with the application of Bredehoeft and Papadopulos' solution (1965) to the field-scale heat transport problems. However, the quantification of uncertainty involved in such application has so far not been addressed, which is the objective of this wok. In addition, the influence of the statistical properties of log hydraulic conductivity field on the variability in temperature field in a heterogeneous aquifer is also investigated. The results of the analysis demonstrate that the variability (or uncertainty) in the temperature field increases with the correlation scale of the log hydraulic conductivity covariance function and the variability of temperature field also depends positively on the position.

  2. Giant suppression of phononic heat transport in a quantum magnet BiCu2PO6

    Science.gov (United States)

    Jeon, Byung-Gu; Koteswararao, B.; Park, C. B.; Shu, G. J.; Riggs, S. C.; Moon, E. G.; Chung, S. B.; Chou, F. C.; Kim, Kee Hoon

    2016-11-01

    Thermal transport of quantum magnets has elucidated the nature of low energy elementary excitations and complex interplay between those excited states via strong scattering of thermal carriers. BiCu2PO6 is a unique frustrated spin-ladder compound exhibiting highly anisotropic spin excitations that contain both itinerant and localized dispersion characters along the b- and a-axes respectively. Here, we investigate thermal conductivity κ of BiCu2PO6 under high magnetic fields (H) of up to 30 tesla. A dip-feature in κ, located at ~15 K at zero-H along all crystallographic directions, moves gradually toward lower temperature (T) with increasing H, thus resulting in giant suppression by a factor of ~30 near the critical magnetic field of Hc ≅ 23.5 tesla. The giant H- and T-dependent suppression of κ can be explained by the combined result of resonant scattering of phononic heat carriers with magnetic energy levels and increased phonon scattering due to enhanced spin fluctuation at Hc, unequivocally revealing the existence of strong spin-phonon coupling. Moreover, we find an experimental indication that the remaining magnetic heat transport along the b-axis becomes almost gapless at the magnetic quantum critical point realized at Hc.

  3. Corrosion of carbon steel feeders during dilute chemical decontamination of primary heat transport system of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, H.; Madasamy, P.; Sathyaseelan, V.S.; Krishnamohan, T.V.; Velmurugan, S.; Narasimhan, S.V. [Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamilnadu (India)

    2012-01-15

    Carbon steel feeders in the primary heat transport system of pressurized heavy water reactors (PHWRs) show significant wall thinning due to flow accelerated corrosion (FAC). This is of great concern, as the wear rate in certain locations exceeds the corrosion allowance by design. This necessitates periodic measurement of wall thickness and in some cases even mid course enmasse replacement of feeders. While analyzing the data on wall thicknesses and in arriving at the wall thinning rate during operation of the reactor, sufficient care has to be taken to account for the wall thinning occurring during full system chemical decontamination campaign which is carried out occasionally to reduce dose rates during reactor shut down. Chemical decontamination of primary heat transport system is carried out using a mixture of organic acids at a total concentration of about 0.1 g/L and at 85 C. The results of experiments carried out under simulated conditions for estimating the wall thinning occurring in carbon steel feeder elbow during dilute chemical decontamination are described in this work. The corrosion rates are quantified. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Characteristics of the pulmonary transport functions for heat and dye in pulmonary edema and orthostasis.

    Science.gov (United States)

    Böck, J C; Hoeft, A; Korb, H; Hellige, G

    1989-04-01

    The aim of this study was to investigate whether changes in the distribution of pulmonary blood flow and disturbances of the pulmonary microcirculation can be detected by use of inflow-outflow indicator-dilution measurements. In 18 anesthetized (N2O-piritramide) mongrel dogs 221 thermal-indocyanine green dye indicator dilution kinetics were recorded in the pulmonary artery and aorta after central venous indicator injection. The lagged normal density function was used as a model for the pulmonary transport functions for heat and dye. The parameters of the lagged normal density function were computed by a non-linear least squares procedure by iterative convolution. After baseline measurements, in nine dogs, pulmonary edema was induced by central venous application of oleic acid. In nine other dogs, measurements were performed before and after postural changes. Our data show that both the microvascular injury caused by oleic acid edema and the perfusion heterogeneity caused by orthostasis can be detected by the indicator dilution technique since the both relative dispersion and skewness of the transport functions for heat and dye were significantly increased after these interventions.

  5. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens ( Gallus gallus domesticus)

    Science.gov (United States)

    Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang

    2015-02-01

    In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher ( P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na+-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting the effects of heat

  6. Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus).

    Science.gov (United States)

    Sun, Xiaolei; Zhang, Haichao; Sheikhahmadi, Ardashir; Wang, Yufeng; Jiao, Hongchao; Lin, Hai; Song, Zhigang

    2015-02-01

    In broiler chickens, heat stress disrupts nutrient digestion and absorption. However, the underlying molecular mechanism is not clearly understood. Hence, to investigate the effects of high ambient temperatures on the expression levels of nutrient transporters in the jejunum of broiler chickens, seventy-two 35-day-old male broiler chickens with similar body weights were randomly allocated into two groups: control (24 ± 1 °C) and heat-stressed (32 ± 1 °C). The chickens in the heat-stressed group were exposed to 10 h of heat daily from 08:00 to 18:00 and then raised at 24 ± 1 °C. The rectal temperature and feed intake of the chickens were recorded daily. After 7 days, nine chickens per group were sacrificed by exsanguination, and the jejunum was collected. The results show that heat exposure significantly decreased the feed intake and increased the rectal temperature of the broiler chickens. The plasma concentrations of uric acid and triglyceride significantly increased and decreased, respectively, in the heat-stressed group. No significant differences in the levels of plasma glucose, total amino acids, and very low-density lipoprotein were observed between the heat-stressed and control groups. However, the plasma concentration of glucose tended to be higher (P = 0.09) in the heat-stressed group than in the control group. Heat exposure did not significantly affect the mRNA levels of Na(+)-dependent glucose transporter 1 and amino acid transporters y + LAT1, CAT1, r-BAT, and PePT-1. However, the expression levels of GLUT-2, FABP1, and CD36 were significantly decreased by heat exposure. The results of this study provide new insights into the mechanisms by which heat stress affects nutrient absorption in broiler chickens. Our findings suggest that periodic heat exposure might alter the jejunal glucose and lipid transport rather than amino acid transport. However, intestinal epithelial damage and cell loss should be considered when interpreting

  7. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  8. Investigations of fluid flow and heat transport related to the strength of the San Andreas fault

    Science.gov (United States)

    Fulton, Patrick M.

    2008-10-01

    The shear strength of faults is an important factor in earthquake hazard assessment, and in understanding the earthquake process and the forces that drive tectonic deformation. However, on the basis of both geomechanical and thermal observations, many plate boundary faults, including the San Andreas Fault (SAF) in California, have been interpreted to slip at shear stresses considerably less than predicted by laboratory-derived friction laws and for hydrostatic fluid pressures. An understanding of whether plate-boundary faults truly are "weak" and the potential causes for such weakness are thus key unknowns in the physics of faulting. In the first section of this thesis, I evaluate whether thermal and hydrologic effects might disturb heat flow data which are used to interpret the strength of the SAF. Using numerical models of coupled fluid flow and heat transport, and by comparing model results with observational constraints, I show that redistribution of heat by groundwater flow is an unlikely explanation for the lack of a near fault increase in heat flow that would be associated with frictional heat generation on a strong fault (i.e. one that supports large shear stresses). I also show that the effects of topographic and subsurface refraction may account for previously unexplained spatial scatter in heat flow data around the fault, but even with these effects the data are most consistent with little or no frictional heat generation. In the second section of this thesis, I evaluate hypotheses invoking regional sources of fluid resulting from metamorphic dehydration reactions within the crust or upper mantle as mechanisms that generate large fluid overpressures within the fault zone required to explain the apparent weakness of the SAF. I calculate reasonable fluid source terms for both crustal and mantle dehydration following the creation of the SAF. I show that crustal dehydration sources are too small and short-lived to generate large overpressures, but it is

  9. Causality for nonlocal phenomena

    CERN Document Server

    Eckstein, Michał

    2015-01-01

    Drawing from the theory of optimal transport we propose a rigorous notion of a causal relation for Borel probability measures on a given spacetime. To prepare the ground, we explore the borderland between causality, topology and measure theory. We provide various characterisations of the proposed causal relation, which turn out to be equivalent if the underlying spacetime has a sufficiently robust causal structure. We also present the notion of the 'Lorentz-Wasserstein distance' and study its basic properties. Finally, we discuss how various results on causality in quantum theory, aggregated around Hegerfeldt's theorem, fit into our framework.

  10. Effects of molecular structure on microscopic heat transport in chain polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Hiroki, E-mail: matsubara@microheat.ifs.tohoku.ac.jp; Kikugawa, Gota; Ohara, Taku [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Bessho, Takeshi; Yamashita, Seiji [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2015-04-28

    In this paper, we discuss the molecular mechanism of the heat conduction in a liquid, based on nonequilibrium molecular dynamics simulations of a systematic series of linear- and branched alkane liquids, as a continuation of our previous study on linear alkane [T. Ohara et al., J. Chem. Phys. 135, 034507 (2011)]. The thermal conductivities for these alkanes in a saturated liquid state at the same reduced temperature (0.7T{sub c}) obtained from the simulations are compared in relation to the structural difference of the liquids. In order to connect the thermal energy transport characteristics with molecular structures, we introduce the new concept of the interatomic path of heat transfer (atomistic heat path, AHP), which is defined for each type of inter- and intramolecular interaction. It is found that the efficiency of intermolecular AHP is sensitive to the structure of the first neighbor shell, whereas that of intramolecular AHP is similar for different alkane species. The dependence of thermal conductivity on different lengths of the main and side chain can be understood from the natures of these inter- and intramolecular AHPs.

  11. Pool boiler heat transport system for a 25 kWe advanced Stirling conversion system

    Science.gov (United States)

    Anderson, W. G.; Rosenfeld, J. H.; Saaski, E. L.; Noble, J.; Tower, L.

    1990-01-01

    Experiments to determine alkali metal/enhanced surface combinations that have stable boiling at the temperatures and heat fluxes that occur in the Stirling engine are reported. Two enhanced surfaces and two alkali metal working fluids were evaluated. The enhanced surfaces were an EDM hole covered surface and a sintered-powder-metal porous layer surface. The working fluids tested were potassium and eutectic sodium-potasium alloy (NaK), both with and without undissolved noncondensible gas. Noncondensible gas (He and Xe) was added to the system to provide gas in the nucleation sites, preventing quenching of the sites. The experiments demonstrated the potential of an alkali metal pool boiler heat transport system for use in a solar-powered Stirling engine. The most favorable fluid/surface combination tested was NaK boiling on a -100 +140 mesh 304L stainless steel sintered porous layer with no undissolved noncondensible gas. This combination provided stable, high-performance boiling at the operating temperature of 700 C. Heat fluxes into the system ranged from 10 to 50 W/sq cm. The transition from free convection to nucleate boiling occurred at temperatures near 540 C. Based on these experiments, a pool boiler was designed for a full-scale 25-kWe Stirling system.

  12. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  13. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    Science.gov (United States)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  14. Non-Local Euclidean Medians.

    Science.gov (United States)

    Chaudhury, Kunal N; Singer, Amit

    2012-11-01

    In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.

  15. Extreme nonlocality with one photon

    CERN Document Server

    Heaney, Libby; Santos, Marcelo F; Vedral, Vlatko

    2009-01-01

    The bizarre concept of nonlocality appears in quantum mechanics because the properties of two or more particles may be assigned globally and are not always pinned to each particle individually. Experiments using two, three, or more of these entangled particles have strongly rejected a local realist interpretation of nature. Nonlocality is also argued to be an intrinsic property of a quantum field, implying that just one excitation, a photon for instance, could also by itself violate local realism. Here we show that one photon superposed symmetrically over many distant sites (which in quantum information terms is a W-state) can give a stunning all-versus-nothing demolition of local realism in an identical manner to the GHZ class of states. The elegance of this result is that it is due solely to the wave-particle duality of light and matter. We present experimental implementations capable of testing our predictions.

  16. Percolation transitions with nonlocal constraint.

    Science.gov (United States)

    Shim, Pyoung-Seop; Lee, Hyun Keun; Noh, Jae Dong

    2012-09-01

    We investigate percolation transitions in a nonlocal network model numerically. In this model, each node has an exclusive partner and a link is forbidden between two nodes whose r-neighbors share any exclusive pair. The r-neighbor of a node x is defined as a set of at most N(r) neighbors of x, where N is the total number of nodes. The parameter r controls the strength of a nonlocal effect. The system is found to undergo a percolation transition belonging to the mean-field universality class for r1/2, the system undergoes a peculiar phase transition from a nonpercolating phase to a quasicritical phase where the largest cluster size G scales as G~N(α) with α=0.74(1). In the marginal case with r=1/2, the model displays a percolation transition that does not belong to the mean-field universality class.

  17. Rogue waves in nonlocal media

    CERN Document Server

    Horikis, Theodoros P

    2016-01-01

    The generation of rogue waves is investigated via a nonlocal nonlinear Schrodinger (NLS) equation. In this system, modulation instability is suppressed and is usually expected that rogue wave formation would also be limited. On the contrary, a parameter regime is identified where the instability is suppressed but nevertheless the number and amplitude of the rogue events increase, as compared to the standard NLS (which is a limit of the nonlocal system). Furthermore, the nature of these waves is investigated; while no analytical solutions are known to model these events, numerically it is shown that they differ significantly from either the rational (Peregrine) or soliton solution of the limiting NLS equation. As such, these findings may also help in rogue wave realization experimentally in these media.

  18. Nonlocal Quantum Effects in Cosmology

    CERN Document Server

    Dumin, Yurii V

    2014-01-01

    Since it is commonly believed that the observed large-scale structure of the Universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: Do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early Universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly-nonequilibrium phase transitions of Higgs fields in the early Universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls) expected du...

  19. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    Science.gov (United States)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  20. Nonlocal reflection by photonic barriers

    OpenAIRE

    Vetter, R. -M.; A. Haibel; Nimtz, G.

    2001-01-01

    The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.

  1. Gravity and non-locality

    CERN Document Server

    Diaz, Pablo; Walton, Mark

    2016-01-01

    With the aim of investigating the relation between gravity and non-locality at the classical level, we study a bilocal scalar field model. Bilocality introduces new (internal) degrees of freedom that can potentially reproduce gravity. We show that the equations of motion of the massless branch of the free bilocal model match those of linearized gravity. We also discuss higher orders of perturbation theory, where there is self-interaction in both gravity and the bilocal field sectors.

  2. Effect of heat stress on amino acid digestibility and transporters in meat-type chickens.

    Science.gov (United States)

    Habashy, W S; Milfort, M C; Adomako, K; Attia, Y A; Rekaya, R; Aggrey, S E

    2017-03-02

    The present study was conducted to investigate the effect of heat stress (HS) on performance, digestibility, and molecular transporters of amino acids in broilers. Cobb 500 chicks were raised from hatch till 13 d in floor pens. At d 14, 48 birds were randomly and equally divided between a control group (25°C) and a HS treatment group (35°C). Birds in both treatment classes were individually caged and fed ad libitum on a diet containing 18.7% CP and 3,560 Kcal ME/Kg. Five birds per treatment at one and 12 d post treatment were euthanized and the Pectoralis major (P. major) and ileum were sampled for gene expression analysis. At d 33, ileal contents were collected and used for digestibility analysis. Broilers under HS had reduced growth and feed intake compared to controls. Although the apparent ileal digestibility (AID) was consistently higher for all amino acids in the HS group, it was not significant except for hydroxylysine. The amino acid consumption and retention were significantly lower in the HS group when compared to the control group. Meanwhile, the retention of amino acids per BWG was higher in the HS group when compared to the control group except for hydroxylysine and ornithine. The dynamics of amino acid transporters in the P. major and ileum was influenced by HS. In P. major and ileum tissues at d one, transporters SNAT1, SNAT2, SNAT7, TAT1, and b0,+AT, were down-regulated in the HS group. Meanwhile, LAT4 and B0AT were down-regulated only in the P. major in the treatment group. The amino acid transporters B0AT and SNAT7 at d 12 post HS were down-regulated in the P. major and ileum, but SNAT2 was down-regulated only in the ileum and TAT1 was down-regulated only in the P. major compared with the control group. These changes in amino acid transporters may explain the reduced growth in meat type chickens under heat stress.

  3. Dynamic crack growth in a nonlocal progressively cavitating solid

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo

    1998-01-01

    Dynamic crack growth is analyzed numerically using a nonlocal constitutive formulation for a porous ductile material. The delocalization relates to the void growth and coalescence mechanism and is incorporated in terms of an integral condition on the rate of increase of the void volume fraction....... The material is modeled as elastic-viscoplastic with the thermal softening due to adiabatic heating accounted for. Finite element computations are carried our for edge cracked specimens subject to tensile impact loading. Two values of the material characteristic length and two finite-element discretizations...... to increase and the crack speed to decrease with increasing values of the material characteristic length. The crack growth predictions using the nonlocal constitutive model exhibit less mesh sensitivity than the corresponding ones based on the local constitutive relation. However, for the largest value...

  4. Modulational instability in nonlocal nonlinear Kerr media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens

    2001-01-01

    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...

  5. Towards LHC physics with nonlocal Standard Model

    Directory of Open Access Journals (Sweden)

    Tirthabir Biswas

    2015-09-01

    Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  6. Detrimental nonlocality in luminescence measurements

    Science.gov (United States)

    Pluska, Mariusz; Czerwinski, Andrzej

    2017-08-01

    Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  7. Non-local massive gravity

    CERN Document Server

    Modesto, Leonardo

    2013-01-01

    We present a general covariant action for massive gravity merging together a class of "non-polynomial" and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently proposed by Jaccard, Maggiore and Mitsou (arXiv:1305.3034 [hep-th]). Our diffeomorphism invariant action gives rise to the equations of motion appearing in non-local massive massive gravity plus quadratic curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski background. We also show that, as long as the graviton mass $m$ is much smaller the today's Hubble parameter $H_0$, a late-time cosmic acceleration can be realized without a dark energy component due to the growth of a scalar degree of freedom. In the presence of the cosmological constant $\\Lambda$, the dominance of the non-local mass term leads to a kind of "degravitation" for $\\Lambda$ at the late cos...

  8. Nonlocal response of hyperbolic metasurfaces.

    Science.gov (United States)

    Correas-Serrano, D; Gomez-Diaz, J S; Tymchenko, M; Alù, A

    2015-11-16

    We analyze and model the nonlocal response of ultrathin hyperbolic metasurfaces (HMTSs) by applying an effective medium approach. We show that the intrinsic spatial dispersion in the materials employed to realize the metasurfaces imposes a wavenumber cutoff on the hyperbolic isofrequency contour, inversely proportional to the Fermi velocity, and we compare it with the cutoff arising from the structure granularity. In the particular case of HTMSs implemented by an array of graphene nanostrips, we find that graphene nonlocality can become the dominant mechanism that closes the hyperbolic contour - imposing a wavenumber cutoff at around 300k(0) - in realistic configurations with periodicity Lnonlocal response is mainly relevant in hyperbolic metasurfaces and metamaterials with periodicity below a few nm, being very weak in practical scenarios. In addition, we investigate how spatial dispersion affects the spontaneous emission rate of emitters located close to HMTSs. Our results establish an upper bound set by nonlocality to the maximum field confinement and light-matter interactions achievable in practical HMTSs, and may find application in the practical development of hyperlenses, sensors and on-chip networks.

  9. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    Science.gov (United States)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  10. 3-D Numerical Modeling of Heat Transport Phenomena in Soil under Climatic Conditions of Southern Thailand

    Directory of Open Access Journals (Sweden)

    Jompob WAEWSAK

    2014-12-01

    Full Text Available This paper presents a 3-D numerical modeling of heat transport phenomena in soil due to a change of sensible and latent heat, under the ambient conditions of southern Thailand. The vertical soil temperature profile within 3 m was predicted based on energy balance and 3 modes of heat transfer mechanisms, i.e., conduction, convection, and radiation. Mathematical models for estimation of solar radiation intensity, ambient and sky temperatures, relative humidity, and surface wind velocity were used as model inputs. 3-D numerical implicit finite difference schemes, i.e., forward time, and forward, center, and backward spaces were used for discretizing the set of governing, initial, and boundary condition equations. The set of pseudo-linear equations were then solved using the single step Gauss-Seidel iteration method. Computer code was developed by using MATLAB computer software. The soil physical effects; density, thermal conductivity, emissivity, absorptivity, and latent heat on amplitude of soil temperature variation were investigated. Numerical results were validated in comparison to the experimental results. It was found that 3-D numerical modeling could predict the soil temperature to almost the same degree as results that were obtained by experimentation, especially at a depth of 1 m. The root mean square error at ground surface and at depths of 0.5, 1, 1.5, 2, 2.5 and 3 m were 0.169, 0.153, 0.097, 0.116, 0.120, 0.115, and 0.098, respectively. Furthermore, it was found that variation of soil temperature occurred within 0.75 m only.

  11. Advective heat transport in the upper carbonate aquifer beneath Winnipeg, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, G.A.G.; Woodbury, A.D. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Civil Engineering

    2003-07-01

    Air conditioning and industrial cooling in Winnipeg, Manitoba requires large volumes of groundwater, with the bulk of this water pumped from the Upper Carbonate Aquifer. Pumping takes place at the erosional surface of several dipping Paleozoic carbonate units beneath the city. To prevent excessive drawdown, wastewater from these processes is reinjected into the aquifer. Heat loading from the surface, combined with this practice, leads to the creation of areas of elevated temperature within the Upper Carbonate Aquifer. An industrial area located in eastern Winnipeg is the site of the largest of these anomalies, where the aquifer's permeability is enhanced by the presence of conduits and discrete fractures. The use of numerical modeling showed that the greatest temperature anomalies occur where there are very high permeabilities, especially in the form of conduits and discrete fractures. Groundwater velocities are increased by these factors, and could result in the creation of plumes of heated water. Plumes of heated water are less likely to occur where the aquifer is thicker and conduits are absent, due to advective heat transport becoming focused between the injection well and the production well in lower permeability situations. These areas also correspond to the areas of decreased transmissivity in several parts of the Upper Carbonate Aquifer, and may not be capable of producing the required volumes of groundwater for thermal applications. Taking into account these permeability features in planning and design of non-consumptive groundwater systems in the Upper Carbonate Aquifer helps to minimize both drawdown and changes in aquifer temperature. 8 refs., 2 figs.

  12. An Implicit Method for Solving Fuzzy Partial Differential Equation with Nonlocal Boundary Conditions

    Directory of Open Access Journals (Sweden)

    B. Orouji

    2015-06-01

    Full Text Available In this paper we introduce a numerical solution for the fuzzy heat equation with nonlocal boundary conditions. The main purpose is finding a difference scheme for the one dimensional heat equation with nonlocal boundary conditions. In these types of problems, an integral equation is appeared in the boundary conditions. We first express the necessary materials and definitions, and then consider our difference scheme and next the integrals in the boundary equations are approximated by the composite trapezoid rule. In the final part, we present an example for checking the numerical results. In this example we obtain the Hausdorff distance between exact solution and approximate solution.

  13. Making nonlocal reality compatible with relativity

    OpenAIRE

    Nikolic, H.

    2010-01-01

    It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.

  14. Nonlocal Gravity in the Solar System

    CERN Document Server

    Chicone, C

    2015-01-01

    The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

  15. Nonlocal gravity in the solar system

    Science.gov (United States)

    Chicone, C.; Mashhoon, B.

    2016-04-01

    The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.

  16. Origin of Dynamical Quantum Non-locality

    Science.gov (United States)

    Pachon, Cesar E.; Pachon, Leonardo A.

    2014-03-01

    Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.

  17. Perturbative loop corrections and nonlocal gravity

    CERN Document Server

    Maggiore, Michele

    2016-01-01

    Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.

  18. Local and Nonlocal Regularization to Image Interpolation

    Directory of Open Access Journals (Sweden)

    Yi Zhan

    2014-01-01

    Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.

  19. Causality, Non-Locality and Negative Refraction

    CERN Document Server

    Forcella, Davide; Carminati, Rémi

    2016-01-01

    The importance of spatial non-locality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes non-locality in its full generality. The theory shows that both dissipation and spatial non-locality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial non-locality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.

  20. The Dependence of Atmospheric Circulation and Heat Transport on the Planetary Rotation Rate

    Science.gov (United States)

    Basu, S.; Richardson, M. I.; Wilson, R. J.

    2002-12-01

    Simplified models of planetary climate require a parameterization for the equator-to-pole transport of heat and its dependence on factors, including the planetary rotation rate. Various such parameterizations exist, including ones based on the theory of baroclinic eddy mixing, and on principles of global entropy generation. However, such parameterizations are difficult to test given the limited available observational opportunities. In this study, we use a numerical model to examine heat flux dependencies, as part of a wider study of circulation regime sensitivity to rotation rates and other parameters. This study makes use of a simplified version of the Geophysical Fluid Dynamics Laboratory (GFDL) "Skyhi" General Circulation Model (GCM). All terrestrial hydrological processes have been stripped from the model, which in the form used here, is adapted from the Martian version of Skyhi. The atmosphere has the gas properties of CO2, except that it has been made uncondensible. No aerosols or surface ices are allowed. The model surface is flat, and of uniform albedo and thermal inertia. For the simulations presented in this study, the diurnal, seasonal, and eccentricity cycles have been disabled ({ i.e.} the surface and atmosphere receives constant, daily- and seasonally-averaged incident solar radiation). Radiative heating is treated with a band model for CO2 gas in the thermal and near-infrared bands. The use of a complex model to examine simplified theory of heat transport requires some justification since it is not necessarily clear that these models (GCM's) provide an accurate emulation of the real atmosphere (of any given planet). In this study, we have intentionally removed those aspects of GCM's that are of greatest concern. Especially for terrestrial GCM's, the hydrologic cycle is a major source of uncertainty due to radiative feedbacks, and cloud coupling to small-scale, convective mixing. For other planets, aerosols are important as radiatively and dynamical

  1. Influence of Aerosol Heating on the Stratospheric Transport of the Mt. Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.

    2011-01-01

    On June 15th, 1991 the eruption of Mt. Pinatubo (15.1 deg. N, 120.3 Deg. E) in the Philippines injected about 20 Tg of sulfur dioxide in the stratosphere, which was transformed into sulfuric acid aerosol. The large perturbation of the background aerosol caused an increase in temperature in the lower stratosphere of 2-3 K. Even though stratospheric winds climatological]y tend to hinder the air mixing between the two hemispheres, observations have shown that a large part of the SO2 emitted by Mt. Pinatubo have been transported from the Northern to the Southern Hemisphere. We simulate the eruption of Mt. Pinatubo with the Goddard Earth Observing System (GEOS) version 5 global climate model, coupled to the aerosol module GOCART and the stratospheric chemistry module StratChem, to investigate the influence of the eruption of Mt. Pinatubo on the stratospheric transport pattern. We perform two ensembles of simulations: the first ensemble consists of runs without coupling between aerosol and radiation. In these simulations the plume of aerosols is treated as a passive tracer and the atmosphere is unperturbed. In the second ensemble of simulations aerosols and radiation are coupled. We show that the set of runs with interactive aerosol produces a larger cross-equatorial transport of the Pinatubo cloud. In our simulations the local heating perturbation caused by the sudden injection of volcanic aerosol changes the pattern of the stratospheric winds causing more intrusion of air from the Northern into the Southern Hemisphere. Furthermore, we perform simulations changing the injection height of the cloud, and study the transport of the plume resulting from the different scenarios. Comparisons of model results with SAGE II and AVHRR satellite observations will be shown.

  2. Retarded versus time-nonlocal quantum kinetic equations

    Energy Technology Data Exchange (ETDEWEB)

    Morawetz, K. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Spicka, V.; Lipavsky, P. [Institute of Physics, Academy of Sciences, Praha (Czech Republic)

    2000-07-01

    The finite duration of the collisions in Fermionic systems as expressed by the retardation time in the non-Markovian Levinson equation is discussed in the quasiclassical limit. The separate individual contributions included in the memory effect resulting in (i) off-shell tails of the Wigner distribution, (ii) renormalization of scattering rates and (iii) of the single-particle energy, (iv) collision delay and (v) related non-local corrections to the scattering integral. In this way we transform the Levison equation into the Landau-Silin equation extended by the non-local corrections known from the theory of dense gases. The derived kinetic equation unifies the Landau theory of quasiparticle transport with the classical kinetic theory of dense gases. The space-time symmetry is discussed versus particle-hole symmetry and a solution is proposed which transforms these two exclusive pictures into each other. (authors)

  3. Heat transport in the high-pressure ice mantle of large icy moons

    Science.gov (United States)

    Choblet, G.; Tobie, G.; Sotin, C.; Kalousová, K.; Grasset, O.

    2017-03-01

    While the existence of a buried ocean sandwiched between surface ice and high-pressure (HP) polymorphs of ice emerges as the most plausible structure for the hundreds-of-kilometers thick hydrospheres within large icy moons of the Solar System (Ganymede, Callisto, Titan), little is known about the thermal structure of the deep HP ice mantle and its dynamics, possibly involving melt production and extraction. This has major implications for the thermal history of these objects as well as on the habitability of their ocean as the HP ice mantle is presumed to limit chemical transport from the rock component to the ocean. Here, we describe 3D spherical simulations of subsolidus thermal convection tailored to the specific structure of the HP ice mantle of large icy moons. Melt production is monitored and melt transport is simplified by assuming instantaneous extraction to the ocean above. The two controlling parameters for these models are the rheology of ice VI and the heat flux from the rock core. Reasonable end-members are considered for both parameters as disagreement remains on the former (especially the pressure effect on viscosity) and as the latter is expected to vary significantly during the moon's history. We show that the heat power produced by radioactive decay within the rock core is mainly transported through the HP ice mantle by melt extraction to the ocean, with most of the melt produced directly above the rock/water interface. While the average temperature in the bulk of the HP ice mantle is always relatively cool when compared to the value at the interface with the rock core (∼ 5 K above the value at the surface of the HP ice mantle), maximum temperatures at all depths are close to the melting point, often leading to the interconnection of a melt path via hot convective plume conduits throughout the HP ice mantle. Overall, we predict long periods of time during these moons' history where water generated in contact with the rock core is transported to

  4. Study of the electron heat transport in Tore-Supra tokamak; Etude du transport de la chaleur electronique dans le Tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Harauchamps, E

    2004-07-01

    This work presents analytical solutions to the electron heat transport equation involving a damping term and a convection term in a cylindrical geometry. These solutions, processed by Matlab, allow the determination of the evolution of the radial profile of electron temperature in tokamaks during heating. The modulated injection of waves around the electron cyclotron frequency is an efficient tool to study heat transport experimentally in tokamaks. The comparison of these analytical solutions with experimental results from Tore-Supra during 2 discharges (30550 and 31165) shows the presence of a sudden change for the diffusion and damping coefficients. The hypothesis of the presence of a pinch spread all along the plasma might explain the shape of the experimental temperature profiles. These analytical solutions could be used to determine the time evolution of plasma density as well or of any parameter whose evolution is governed by a diffusion-convection equation. (A.C.)

  5. Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE

    Science.gov (United States)

    Effenberg, F.; Feng, Y.; Schmitz, O.; Frerichs, H.; Bozhenkov, S. A.; Hölbe, H.; König, R.; Krychowiak, M.; Pedersen, T. Sunn; Reiter, D.; Stephey, L.; W7-X Team

    2017-03-01

    The results of a first systematic assessment of plasma edge transport processes for the limiter startup configuration at Wendelstein 7-X are presented. This includes an investigation of transport from intrinsic and externally injected impurities and their impact on the power balance and limiter heat fluxes. The fully 3D coupled plasma fluid and kinetic neutral transport Monte Carlo code EMC3-EIRENE is used. The analysis of the magnetic topology shows that the poloidally and toroidally localized limiters cause a 3D helical scrape-off layer (SOL) consisting of magnetic flux tubes of three different connection lengths L C. The transport in the helical SOL is governed by L C as topological scale length for the parallel plasma loss channel to the limiters. A clear modulation of the plasma pressure with L C is seen. The helical flux tube topology results in counter streaming sonic plasma flows. The heterogeneous SOL plasma structure yields an uneven limiter heat load distribution with localized peaking. Assuming spatially constant anomalous transport coefficients, increasing plasma density yields a reduction of the maximum peak heat loads from 12 MWm-2 to 7.5 MWm-2 and a broadening of the deposited heat fluxes. The impact of impurities on the limiter heat loads is studied by assuming intrinsic carbon impurities eroded from the limiter surfaces with a gross chemical sputtering yield of 2 % . The resulting radiative losses account for less than 10% of the input power in the power balance with marginal impact on the limiter heat loads. It is shown that a significant mitigation of peak heat loads, 40-50%, can be achieved with controlled impurity seeding with nitrogen and neon, which is a method of particular interest for the later island divertor phase.

  6. Non-local flow effects on bedform dynamics

    Science.gov (United States)

    Perron, J. Taylor; Kao, Justin; Myrow, Paul

    2013-04-01

    Bedform patterns are sensitive recorders of feedbacks among bed topography, fluid flow, and sediment transport. Some of the most important feedbacks are local. For example, evolution models based on simple flow parameterizations that only incorporate local bed height can reproduce some of the essential features of bedform evolution, including bedform growth and migration. However, non-local effects can also be critically important. For example, field and laboratory measurements have shown that the spacing of most sand ripples generated by wave-driven oscillatory flows is linearly proportional to the amplitude of the flow oscillation, implying that fluid stress and sediment transport at a given location depend on upstream features that perturb the flow. A model that fully captures the coupling of flow and bedform evolution must include such effects, but it is not clear how detailed the description of the flow must be to reproduce the most important aspects of bedform evolution. To account for the most significant non-local flow effects without resorting to a coupled hydrodynamic model, we propose an approximation in which the bed shear stress is expressed as a convolution of the bed topography with a kernel that includes both local effects, such as acceleration over bumps, and non-local effects, such as flow separation and re-attachment. Two-dimensional flow simulations demonstrate that a single, generic kernel gives a good approximation of shear stress over a wide range of bed profiles under oscillatory and some combined flows. Incorporating this approximation into a simple bedform evolution model, we show that non-local effects are required to reproduce the characteristic transient patterns that emerge as wave ripples respond to changes in the flow, which we have documented with time-lapse imagery of laboratory wave tank experiments. We then show how this result informs interpretations of two-dimensional wave ripple patterns preserved in the geologic record.

  7. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  8. Output feedback control of heat transport mechanisms in parabolic distributed solar collectors

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-05

    This paper presents an output feedback control for distributed parabolic solar collectors. The controller aims at forcing the outlet temperature to track a desired reference in order to manage the produced heat despite the external disturbances. The proposed control strategy is derived using the distributed physical model of the system to avoid the loss of information due to model approximation schemes. The system dynamics are driven to follow reference dynamics defined by a transport equation with a constant velocity, which allows to control the transient behavior and the response time of the closed loop. The designed controller depends only on the accessible measured variables which makes it easy for real time implementation and useful for industrial plants. Simulation results show the efficiency of the reference tracking closed loop under different working conditions.

  9. Lattice Boltzmann technique for heat transport phenomena coupled with melting process

    Science.gov (United States)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy

    2016-04-01

    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  10. Transport of radial heat flux and second sound in fusion plasmas

    Science.gov (United States)

    Gürcan, Ö. D.; Diamond, P. H.; Garbet, X.; Berionni, V.; Dif-Pradalier, G.; Hennequin, P.; Morel, P.; Kosuga, Y.; Vermare, L.

    2013-02-01

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  11. Transport of radial heat flux and second sound in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CMTFO and CASS, UCSD, California 92093 (United States); Garbet, X.; Dif-Pradalier, G. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Kosuga, Y. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of)

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  12. Lattice Boltzmann technique for heat transport phenomena coupled with melting process

    Science.gov (United States)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy

    2017-01-01

    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  13. Convective heat transport in stratified atmospheres at low and high Mach number

    CERN Document Server

    Anders, Evan H

    2016-01-01

    Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.

  14. Material transport in laser-heated diamond anvil cell melting experiments

    Science.gov (United States)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  15. Estimation of eddy heat transport in the global ocean from Argo data

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhiwei; ZHONG Yisen; TIAN Jiwei; YANG Qingxuan; ZHAO Wei

    2014-01-01

    The Argo data are used to calculate eddy (turbulence) heat transport (EHT) in the global ocean and analyze its horizontal distribution and vertical structure. We calculate the EHT by averaging all the v′, T′ profiles within each 2◦× 2◦ bin. The velocity and temperature anomalies are obtained by removing their clima-tological values from the Argo“instantaneous”values respectively. Through the Student’s t-test and an error evaluation, we obtained a total of 87% Argo bins with significant depth-integrated EHTs (D-EHTs). The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents (WBC) and Antarctic Circumpolar Current (ACC). The zonally-integrated D-EHT (ZI-EHT) of the global o-cean reaches 0.12 PW in the northern WBC band and-0.38 PW in the ACC band respectively. The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean. The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport, which may play an important role in regulating the climate. The analysis of vertical structures of the EHT along the 35◦N and 45◦S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current (ARC) region. It also shows that the strong EHT could reach 600 m in the WBC re-gions and 1 000 m in the ARC region, with the maximum mainly located between 100 and 400 m depth. The results would provide useful information for improving the parameterization scheme in models.

  16. A Comprehensive Flow, Heat and Mass Transport Uncertainty Quantification in Discrete Fracture Network Systems

    Science.gov (United States)

    Ezzedine, S. M.

    2010-12-01

    Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.

  17. Heat and hazardous contaminant transports in ventilated high-rise industrial halls

    Institute of Scientific and Technical Information of China (English)

    王沨枫; 刘志强; Christoph van Treeck; 王汉青; 唐文武; 寇广孝

    2015-01-01

    Performances and efficiencies of displacement ventilation (DV) and partial ventilation (PV) for industrial halls of different configurations as well as the heat and mass transports within the industrial halls were numerically investigated. Three levels of Rayleigh number(5.8´1010, 1.0´1012 and 2.1´1012) and two values of source contaminant flux (5 mg/s and 50 mg/s) were considered. The inlet Reynolds numbers were 2´104, 5´104, 1.5´105 and 4.5´105 for DV and 5´105, 1´106, 2´106 and 4´106 for PV, respectively. From the results, it is concluded that the above parameters have very complex impacts on the conjugated heat and mass transports. From points of view of acceptable indoor air quality and ventilation efficiency, PV atRe=1´106with side-located sources and 65% of the supply air extracted through floor level outlets is the best choice whenRa=5.8´1010. However, DVs atRe=5´104andRe=1.5´105 with center-located sources and floor-mounted air suppliers are the best choices forRa=1.0´1012 andRa=2.1´1012, respectively. When source contaminant flux reaches 50 mg/s, local extraction as a supplement of general ventilation is recommended. The results can be a first approximation to 3D numerical investigation and preliminary ventilation system design guidelines for high-rise industrial halls.

  18. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    Science.gov (United States)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat

  19. Onsager heat of transport of carbon dioxide at the surface of aqueous ammonia: The remarkable effect of carbamate formation

    Science.gov (United States)

    Packwood, Daniel M.; Phillips, Leon F.

    2010-11-01

    The Onsager heat of transport Q∗ has been measured for CO 2 at the surface of aqueous ammonia. The heat of transport incorporates the enthalpy of reaction of gaseous CO 2 with ammonia, adsorbed on the liquid surface, to form adsorbed ammonium carbamate, with the result that -Q∗ has the unusually large value of 180 kJ mol -1. Measurement of Q∗ for transfer of a reactive species through a surfactant monolayer is proposed as a new method of studying reactions at liquid and quasi-liquid surfaces.

  20. Heat and particle transport in a one-dimensional hard-point gas model with on-site potential

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-05-01

    Full Text Available Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit ZT increases slowly with the system length L and is proportional to the height of the potential barriers H in high H regime. These findings may serve as a guide for future theoretical and experimental studies.

  1. Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity

    CERN Document Server

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.

  2. Thermal relaxation and heat transport in spin ice Dy{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Klemke, Bastian; Meissner, M.; Tennant, D.A. [Helmholtz-Zentrum Berlin (Germany); Technische Universitaet Berlin (Germany); Strehlow, P. [Technische Universitaet Berlin (Germany); Physikalisch Technische Bundesanstalt, Institut Berlin (Germany); Kiefer, K. [Helmholtz-Zentrum Berlin (Germany); Grigera, S.A. [School of Physics and Astronomy, St. Andrews (United Kingdom); Instituto de Fisica de Liquidos y Sistemas Biologicos, CONICET, UNLP, La Plata (Argentina)

    2011-07-01

    The thermal properties of single crystalline Dy{sub 2}Ti{sub 2}O{sub 7} have been studied at temperature below 30 K and magnetic fields applied along [110] direction up to 1.5 T. Based on a thermodynamic field theory (TFT) various heat relaxation and thermal transport measurements were analysed. So we were able to present not only the heat capacity of Dy{sub 2}Ti{sub 2}O{sub 7}, but also for the first time the different contributions of the magnetic excitations and their corresponding relaxation times in the spin ice phase. In addition, the thermal conductivity and the shortest relaxation time were determined by thermodynamic analysis of steady state heat transport measurements. Finally, we were able to reproduce the temperature profiles recorded in heat pulse experiments on the basis of TFT using the previously determined heat capacity and thermal conductivity data without additional parameters. Thus, TFT has been proved to be thermodynamically consistent in describing three thermal transport experiments on different time scales. The observed temperature and field dependencies of heat capacity contributions and relaxation times indicate the magnetic excitations in the spin ice Dy{sub 2}Ti{sub 2}O{sub 7} as thermally activated monopole-antimonopole defects.

  3. Electric field and radial transport during ICRF heating in the edge plasma of JET

    Energy Technology Data Exchange (ETDEWEB)

    Tagle, J.A.; Brinkschulte, H.; Bures, M.; De Kock, L. (Commission of the European Communities, Abingdon (UK). JET Joint Undertaking); Laux, M. (Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik (United Kingdom)); Clement, S. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain)); Erents, S.K. (UKAEA Culham Lab., Abingdon (United Kingdom))

    1990-04-01

    The plasma boundary in front of and outside the JET ICRF antenna Faraday screen has been studied using Langmuir probes. Plasma densities of n{sub e} {approx equal}10{sup 15}-10{sup 16} m{sup -3} and electron temperatures Tc {approx equal} 20-80 eV have been measured at the Faraday screen. Both n{sub e} and T{sub e} scale almost linearly with total input power (P{sub RF} up to 12 MW). DC electric fields up to 20 V/cm, with a large poloidal component perpendicular to the magnetic field lines were generated during ICRF heating. The total electric field intensity depends on the minority gas (H or {sup 3}He) and is also linearly dependent on the applied RF power. Spatially resolved measurements of the plasma space potential up to 50-100 V at the limiter flux surface were measured. The relevance of these fields to the transport in the scrape off layer (SOL), to the local particle balance at the boundary and to the impurity production during RF heating is discussed. (orig.).

  4. Thermal conductivity and heat transport properties of nitrogen-doped graphene.

    Science.gov (United States)

    Goharshadi, Elaheh K; Mahdizadeh, Sayyed Jalil

    2015-11-01

    In the present study, the thermal conductivity (TC) and heat transport properties of nitrogen doped graphene (N-graphene) were investigated as a function of temperature (107-400K) and N-doped concentration (0.0-7.0%) using equilibrium molecular dynamics simulation based on Green-Kubo method. According to the results, a drastic decline in TC of graphene observed at very low N-doped concentration (0.5 and 1.0%). Substitution of just 1.0% of carbon atoms with nitrogens causes a 77.2, 65.4, 59.2, and 53.7% reduction in TC at 107, 200, 300, and 400K, respectively. The values of TC of N-graphene at different temperatures approach to each other as N-doped concentration increases. The results also indicate that TC of N-graphene is much less sensitive to temperature compared with pristine graphene and the sensitivity decreases as N-doped concentration increases. The phonon-phonon scattering relaxation times and the phonon mean free path of phonons were also calculated. The contribution of high frequency optical phonons for pristine graphene and N-graphene with 7.0% N-doped concentration is 0-2% and 4-8%, respectively. These findings imply that it is potentially feasible to control heat transfer on the nanoscale when designing N-graphene based thermal devices.

  5. Heat and moisture transport in durian fiber based lightweight construction materials

    Energy Technology Data Exchange (ETDEWEB)

    Charoenvai, S.; Khedari, J.; Hirunlabh, J.; Asasutjarit, C. [King Mongkut' s Univ. of Technology, Building Scientific Research Center, Thonburi, Bangkok (Thailand); Zeghmati, B. [Perpignan Univ., Centre d' Etudes Fondamentales, Groupe de Mecanique, Acoustique et Instrumentation, Perpignan, 66 (France); Quenard, D.; Pratintong, N. [Centre Scientifique et Technique du Batiment (CSTB), Grenoble (France)

    2005-04-01

    This paper presents result on heat and moisture transport in durian (Durio zibethinus) fiber based lightweight construction materials composed of cement, sand and waste fiber from durian peel and the performance of the material was simulated with the surface treatment by using a computational tool. The commercial research software (WUFI 2D) was used to calculate heat and moisture transfer through a durian fiber based lightweight construction material. The materials were exposed to a climate condition similar to the one in Bangkok and the hygrothermal characteristics of the materials were investigated. The investigation reveals that the weekly mean water content on the surface of material was quite low. The effect of moisture on the apparent thermal performance of the composite was found to be higher as water absorbed in the pore structure contributed to higher thermal conductivity than the air it replaced. However, the mean value of thermal conductivity in material is still rather low as the mean value of water content in material is low. Coating the surface reduced the flow of moisture to or from the structure considerably. The results of simulation confirmed that the manufactured composite satisfied the requirement of construction materials. It is then reasonable to conclude that the use of such materials in the design and construction of passive solar buildings is promising. Laboratory investigation is undergoing to validate the simulated performance. (Author)

  6. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  7. A numerical study on the flow and heat transfer characteristics in a noncontact glass transportation unit

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ik Tae; Park, Chan Woo [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Kwang Sun [Korea University of Technology and Education, Chonan (Korea, Republic of)

    2009-12-15

    Vertical sputtering systems are key equipment in the manufacture of liquid crystal display (LCD) panels. During the sputtering process for LCD panels, a glass plate is transported between chambers for various processes, such as deposition of chemicals on the surface. The minimization of surface scratches and damage to the glass, the rate of consumption of gas, and the stability of the floating glass-plate are key considerations in the design of a gas pad. To develop new, non-contact systems of transportation for large, thin glass plates, various shapes of the nozzle of a gas pad unit were considered in this study. In the proposed nozzle design, negative pressure was used to suppress undesirable fluctuations of the glass plate. After the nozzle's shape was varied through numerical simulations in two dimensions, we determined the optimal shape, after which three-dimensional analyses were carried out to verify the results from the two-dimensional analyses. The rate of heat transfer from the glass plate, as a result of the gas jet, was also investigated. The average Nusselt number at the glass surface varied from 22.7 to 26.6 depending on the turbulence model, while the value from the correlation for the jet array was 23.5. It was found that the well-established correlation equation of the Nusselt number for the circular jet array can be applied to the cooling of the glass plates

  8. MHD Mixed Convection Heat Transfer in a Vertical Channel with Temperature-Dependent Transport Properties

    Directory of Open Access Journals (Sweden)

    Prasad Kerehalli

    2015-01-01

    Full Text Available An analysis is carried out to study the effects of temperature-dependent transport properties on the fully developed free and forced MHD convection flow in a vertical channel. In this model, viscous and Ohmic dissipation terms are also included. The governing nonlinear equations (in non-dimensional form are solved numerically by a second order finite difference scheme. A parametric study is performed in order to illustrate the interactive influences of the model parameters; namely, the magnetic parameter, the variable viscosity parameter, the mixed convection parameter, the variable thermal conductivity parameter, the Brinkmann number and the Eckert number. The velocity field, the temperature field, the skin friction and the Nusselt number are evaluated for several sets of values of these parameters. For some special cases, the obtained numerical results are compared with the available results in the literature: Good agreement is found. Of all the parameters, the variable thermo-physical transport property has the strongest effect on the drag, heat transfer characteristics, the stream-wise velocity, and the temperature field.

  9. Self-localized states for electron transfer in nonlocal continuum deformable media

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Ake, Luis A., E-mail: cisneros@esfm.ipn.mx

    2016-08-19

    We consider the problem of electron transport in a deformable continuum medium subjected to an external harmonic substrate potential. We then consider the quasi-stationary state of the full problem to find a Gross–Pitaevskii type equation with a nonlocal external potential, which is solved by variational and numerical means (considered as the exact solution) to find the parameter conditions for the existence of self-localized solutions. The variational approach predicts a threshold on the on-site or nonlocality parameter where localized solutions cease to exist from the Non-Linear Schrödinger soliton limit. A numerical continuation of stationary state solutions in the corresponding discrete system is used to confirm the prediction of the turning value in the on-site term. We finally study the full stationary state and make use of an approximation, proposed by Briedis et al. [17], for the nonlocal term, corresponding to strong nonlocalities, to find analytic expressions for self-localized states in terms of the series solutions of a nonlinear modified Bessel equation. - Highlights: • Nonlocality overcomes nonlinearity at a threshold value to cease the existence of coherent solutions. • Variational and series expansion solutions predict the formation of coherent structures in nonlocal deformable media. • Full numerical solutions confirm the persistence of localized solutions.

  10. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    Science.gov (United States)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  11. Quantitative estimates of past changes in ITCZ position and cross-equatorial atmospheric heat transport

    Science.gov (United States)

    McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.

    2012-12-01

    The mean position and seasonal migration of the Intertropical Convergence Zone (ITCZ) govern the intensity, spatial distribution and seasonality of precipitation throughout the tropics as well as the magnitude and direction of interhemispheric atmospheric heat transport (AHT). As a result of these links to global tropical precipitation and hemispheric heat budgets, paleoclimate studies have commonly sought to use reconstructions of local precipitation and surface winds to identify past shifts in the ITCZ's mean position or seasonal extent. Records indicate close ties between ITCZ position and interhemispheric surface temperature gradients in past climates, with the ITCZ shifting toward the warmer hemisphere. This shift would increase AHT into the cooler hemisphere to at least partially compensate for cooling there. Despite widespread qualitative evidence consistent with ITCZ shifts, few proxy records offer quantitative estimates of the distance of these shifts or of the associated changes in AHT. Here we present a strategy for placing quantitative limits on past changes in mean annual ITCZ position and interhemispheric AHT based on explorations of the modern seasonal cycle and models of present and past climates. We use reconstructions of tropical sea surface temperature gradients to place bounds on globally averaged ITCZ position and interhemispheric AHT during the Last Glacial Maximum, Heinrich Stadial 1, and the Mid-Holocene (6 ka). Though limited by the small number of SST records available, our results suggest that past shifts in the global mean ITCZ were small, typically less than 1 degree of latitude. Past changes in interhemispheric AHT may have been substantial, with anomalies approximately equal to the magnitude of modern interhemispheric AHT. Using constraints on the invariance of the total (ocean+atmosphere) heat transport we suggest possible bounds on fluctuations of the OHT and AMOC during Heinrich Stadial 1. We also explore ITCZ shifts in models and

  12. Nonlocality of a single particle

    OpenAIRE

    Dunningham, Jacob; Vedral, Vlatko

    2007-01-01

    There has been a great deal of debate surrounding the issue of whether it is possible for a single photon to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but each has been met with significant opposition. The objections hinge largely on the fact that these schemes use unobservable initial states and so, it is claimed, they do not represent experiments that could actually be performed. Here we show how it is possible to overcome these objec...

  13. Non-Local Means Denoising

    Directory of Open Access Journals (Sweden)

    Antoni Buades

    2011-09-01

    Full Text Available We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one wants to denoise. The paper presents two implementations of the method and displays some results.

  14. Heat-Pipe Development for Advanced Energy Transport Concepts Final Report Covering the Period January 1999 through September 2001

    Energy Technology Data Exchange (ETDEWEB)

    R.S.Reid; J.F.Sena; A.L.Martinez

    2002-10-01

    This report summarizes work in the Heat-pipe Technology Development for the Advanced Energy Transport Concepts program for the period January 1999 through September 2001. A gas-loaded molybdenum-sodium heat pipe was built to demonstrate the active pressure-control principle applied to a refractory metal heat pipe. Other work during the period included the development of processing procedures for and fabrication and testing of three types of sodium heat pipes using Haynes 230, MA 754, and MA 956 wall materials to assess the compatibility of these materials with sodium. Also during this period, tests were executed to measure the response of a sodium heat pipe to the penetration of water.

  15. Monotone method for nonlinear nonlocal hyperbolic problems

    Directory of Open Access Journals (Sweden)

    Azmy S. Ackleh

    2003-02-01

    Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.

  16. Nonlocality as Evidence for a Multiverse Cosmology

    CERN Document Server

    Tipler, Frank J

    2010-01-01

    I show that observations of quantum nonlocality can be interpreted as purely local phenomena, provided one assumes that the cosmos is a multiverse. Conversely, the observation of quantum nonlocality can be interpreted as observation evidence for a multiverse cosmology, just as observation of the setting of the Sun can be interpreted as evidence for the Earth's rotation.

  17. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...

  18. A New Model of Nonlocal Modified Gravity

    CERN Document Server

    Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran

    2014-01-01

    We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$

  19. Attraction of nonlocal dark optical solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, Dragomir; Krolikowski, Wieslaw

    2004-01-01

    We study the formation and interaction of spatial dark optical solitons in materials with a nonlocal nonlinear response. We show that unlike in local materials, where dark solitons typically repel, the nonlocal nonlinearity leads to a long-range attraction and formation of stable bound states...... of dark solitons. (C) 2004 Optical Society of America...

  20. On instabilities in tensorial nonlocal gravity

    CERN Document Server

    Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R

    2016-01-01

    We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.

  1. Multipole vector solitons in nonlocal nonlinear media.

    Science.gov (United States)

    Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A; Mihalache, Dumitru

    2006-05-15

    We show that multipole solitons can be made stable via vectorial coupling in bulk nonlocal nonlinear media. Such vector solitons are composed of mutually incoherent nodeless and multipole components jointly inducing a nonlinear refractive index profile. We found that stabilization of the otherwise highly unstable multipoles occurs below certain maximum energy flow. Such a threshold is determined by the nonlocality degree.

  2. Creation of Entanglement with Nonlocal Operations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; CAO Wan-Cang; LONG Gui-Lu

    2005-01-01

    We discuss how to create more entanglement with nonlocal operations acting on two-particle states. For a given nonlocal operation, we find that some input states cannot produce entanglement and some produce the maximal entanglement, and find that any initial entangled states can produce more entanglement than initial product states.

  3. Spectral Dimension from Causal Set Nonlocal Dynamics

    CERN Document Server

    Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo

    2015-01-01

    We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  4. Increasing transports of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    Science.gov (United States)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-06-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intensive of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21 century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport series has made it difficult to identify trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv =106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW =1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall trend over the two decades of observation was 9 ± 8% for volume transport and 18 ± 9% for heat transport (95% confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the Atlantic inflow

  5. Increasing transports of volume, heat, and salt towards the Arctic in the Faroe Current 1993–2013

    Directory of Open Access Journals (Sweden)

    B. Hansen

    2015-06-01

    Full Text Available The flow of warm and saline water from the Atlantic Ocean, across the Greenland–Scotland Ridge, into the Nordic Seas – the Atlantic inflow – is split into three separate branches. The most intensive of these branches is the inflow between Iceland and the Faroe Islands (Faroes, which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC, which is projected to weaken during the 21 century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport series has made it difficult to identify trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv =106 m3 s−1 with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW =1012 W. Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall trend over the two decades of observation was 9 ± 8% for volume transport and 18 ± 9% for heat transport (95% confidence intervals. During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93 more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  6. Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2016-04-01

    We present new Nusselt-number (Nu) measurements for slowly rotating turbulent thermal convection in cylindrical samples with aspect ratio Γ =1.00 and provide a comprehensive correlation of all available data for that Γ . In the experiment compressed gasses (nitrogen and sulfur hexafluride) as well as the fluorocarbon C6F14 (3M Fluorinert FC72) and isopropanol were used as the convecting fluids. The data span the Prandtl-number (Pr) range 0.74 heat transport Nur(1 /Ro ) ≡Nu (1 /Ro ) /Nu (0 ) as a function of the dimensionless inverse Rossby number 1 /Ro at constant Ra is reported. For Pr ≈0.74 and the smallest Ra =3.6 ×108 the maximum enhancement Nur ,max-1 due to rotation is about 0.02. With increasing Ra, Nur ,max-1 decreased further, and for Ra ≳2 ×109 heat-transport enhancement was no longer observed. For larger Pr the dependence of Nur on 1/Ro is qualitatively similar for all Pr. As noted before, there is a very small increase of Nur for small 1/Ro, followed by a decrease by a percent or so, before, at a critical value 1 /Roc , a sharp transition to enhancement by Ekman pumping takes place. While the data revealed no dependence of 1 /Roc on Ra, 1 /Roc decreased with increasing Pr. This dependence could be described by a power law with an exponent α ≃-0.41 . Power-law dependencies on Pr and Ra could be used to describe the slope SRo+=∂ Nur/∂ (1 /Ro ) just above 1 /Roc . The Pr and Ra exponents were β1=-0.16 ±0.08 and β2=-0.04 ±0.06 , respectively. Further increase of 1/Ro led to further increase of Nur until it reached a maximum value Nur ,max. Beyond the maximum, the Taylor-Proudman (TP) effect, which is expected to lead to reduced vertical fluid transport in the bulk region, lowered Nur. Nur ,max was largest for the largest Pr. For Pr =28.9 , for example, we measured an increase of the heat transport by up to 40% (Nur-1 =0.40 ) for the smallest Ra =2.2

  7. Perturbative transport experiments: to what extent do they really probe microscopic transport?

    CERN Document Server

    Sattin, F; Auriemma, F; Urso, G; Terranova, D

    2014-01-01

    Experiments featuring fast heat propagation, or so called "non-local" transport, were a puzzle for almost two decades. However recently it was shown, and it is recalled here, that a collective ideal MHD response of the plasma provides a quantitative agreement with these experiments, whereas transport plays just a secondary role. Then this work reviews the algebraic approach to transport data inversion that provides a formally exact solution, as well as a quantitative assessment of error bars, limited to periodic signals. Conversely, standard transport reconstructions are shown to sometimes fail to match the exact solution. The adoption of automated global search algorithms based upon Genetic Algorithms is bound to greatly increase the probability of finding optimal solutions. Finally, the standard methods of reconstruction infer the diffusivity D and pinch V by matching experimental data against those simulated by transport codes. These methods do not warrant the validity neither of the underlying models of t...

  8. Nonlocal and quasi-local field theories

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...

  9. Nonlocal Galileons and self-acceleration

    Science.gov (United States)

    Gabadadze, Gregory; Yu, Siqing

    2017-05-01

    A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as ;nonlocal Galileons.; We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  10. Nonlocal Galileons and self-acceleration

    Directory of Open Access Journals (Sweden)

    Gregory Gabadadze

    2017-05-01

    Full Text Available A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as “nonlocal Galileons.” We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.

  11. Virial Theorem in Nonlocal Newtonian Gravity

    Directory of Open Access Journals (Sweden)

    Bahram Mashhoon

    2016-05-01

    Full Text Available Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy’s baryonic diameter D 0 —namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time—is predicted to be larger than the effective dark matter fraction f D M times a universal length that is the basic nonlocality length scale λ 0 ≈ 3 ± 2 kpc.

  12. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...

  13. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  14. Virial Theorem in Nonlocal Newtonian Gravity

    CERN Document Server

    Mashhoon, B

    2015-01-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  15. Virial Theorem in Nonlocal Newtonian Gravity

    Science.gov (United States)

    Mashhoon, Bahram

    2016-05-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein's theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for "isolated" astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in virial equilibrium, the galaxy's baryonic diameter---namely, the diameter of the smallest sphere that completely surrounds the baryonic system at the present time---is predicted to be larger than the effective dark matter fraction times a universal length that is the basic nonlocality length scale of about 3 kpc.

  16. Sensitivity of roughness length for heat transport (zoh) on evapotranspiration derived from SEBAL

    Science.gov (United States)

    Paul, G.; Gowda, P. H.; Prasad, V.; Howell, T. A.; Aiken, R. M.

    2012-12-01

    Thermal infrared remote sensing has greatly contributed to the development and improvement of remote sensing based evapotranspiration (RS-ET) mapping algorithms. The radiometric temperature derived from the thermal sensors were inherently different than the aerodynamic temperature required for solving the bulk formulation of sensible heat (H) based on the Monin-Obukhov similarity (MOS); this posed a critical problem. The TSM (Two Source Model), SEBS (Surface Energy Balance System) and SEBAL (Surface Energy Balance Algorithm) forms the three most widely applied RS-ET algorithm's differing in their conceptualization and parameterization of the soil-canopy-air heat exchange mechanism addressing the issue arising from aerodynamic-radiometric temperature differences. The scalar roughness length zoh, representing heat transport and described by the dimensionless parameter kB-1, was used as a correction factor to accommodate the discrepancy between radiometric and aerodynamic temperatures. In this study we looked into the sensitivity of zoh on the ET estimates using the SEBAL approach. ET estimates from four approaches namely, (i) zoh derived from constant kB-1 of 2.3, (ii) zoh=0.1, (iii) zoh=0.01, and (iv) zoh from kB-1 parameterization, were compared. SEBAL was executed for 10 high resolution airborne images acquired during BEAREX07-08 (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) field campaign and validated against large precision weighing lysimeters installed on two irrigated and two dryland fields. Statistical tests revealed no significant differences between the first three approaches, however, the fourth approach of kB-1 parameterization produced significantly different results. Model performance evaluation for all the components of the energy balance was conducted. Percent root mean square error (%RMSE) for instantaneous ET estimates from the four approaches were 33.7, 26.9, 27.7 and 23.2 respectively. Evaluation of the SEBAL

  17. Nonlocal Quantum Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Yurii V. Dumin

    2014-01-01

    Full Text Available Since it is commonly believed that the observed large-scale structure of the universe is an imprint of quantum fluctuations existing at the very early stage of its evolution, it is reasonable to pose the question: do the effects of quantum nonlocality, which are well established now by the laboratory studies, manifest themselves also in the early universe? We try to answer this question by utilizing the results of a few experiments, namely, with the superconducting multi-Josephson-junction loops and the ultracold gases in periodic potentials. Employing a close analogy between the above-mentioned setups and the simplest one-dimensional Friedmann-Robertson-Walker cosmological model, we show that the specific nonlocal correlations revealed in the laboratory studies might be of considerable importance also in treating the strongly nonequilibrium phase transitions of Higgs fields in the early universe. Particularly, they should substantially reduce the number of topological defects (e.g., domain walls expected due to independent establishment of the new phases in the remote spatial regions. This gives us a hint on resolving a long-standing problem of the excessive concentration of topological defects, inconsistent with observational constraints. The same effect may be also relevant to the recent problem of the anomalous behavior of cosmic microwave background fluctuations at large angular scales.

  18. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.

    Science.gov (United States)

    Steubing, Bernhard; Zah, Rainer; Ludwig, Christian

    2012-01-03

    The optimal use of forest energy wood, industrial wood residues, waste wood, agricultural residues, animal manure, biowaste, and sewage sludge in 2010 and 2030 was assessed for Europe. An energy system model was developed comprising 13 principal fossil technologies for the production of heat, electricity, and transport and 173 bioenergy conversion routes. The net environmental benefits of substituting fossil energy with bioenergy were calculated for all approximately 1500 combinations based on life cycle assessment (LCA) results. An optimization model determines the best use of biomass for different environmental indicators within the quantified EU-27 context of biomass availability and fossil energy utilization. Key factors determining the optimal use of biomass are the conversion efficiencies of bioenergy technologies and the kind and quantity of fossil energy technologies that can be substituted. Provided that heat can be used efficiently, optimizations for different environmental indicators almost always indicate that woody biomass is best used for combined heat and power generation, if coal, oil, or fuel oil based technologies can be substituted. The benefits of its conversion to SNG or ethanol are significantly lower. For non-woody biomass electricity generation, transportation, and heating yield almost comparable benefits as long as high conversion efficiencies and optimal substitutions are assured. The shares of fossil heat, electricity, and transportation that could be replaced with bioenergy are also provided.

  19. Interplay of Peltier and Seebeck Effects in Nanoscale Nonlocal Spin Valves

    NARCIS (Netherlands)

    Bakker, F. L.; Slachter, A.; Adam, J-P; van Wees, B. J.

    2010-01-01

    We have experimentally studied the role of thermoelectric effects in nanoscale nonlocal spin valve devices. A finite element thermoelectric model is developed to calculate the generated Seebeck voltages due to Peltier and Joule heating in the devices. By measuring the first, second, and third harmon

  20. Heat transport variation due to change of North Pacific subtropical gyre interior flow during 1993-2012

    Science.gov (United States)

    Nagano, Akira; Kizu, Shoichi; Hanawa, Kimio; Roemmich, Dean

    2016-12-01

    Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30∘ N, 145∘ E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993-2012. The volume transport-weighted temperature ( T I) is strongly dependent on the season. The anomaly of T I from the mean seasonal variation, whose standard deviation is 0.14∘C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0-25.5 σ 𝜃 . The anomaly of T I was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of T I had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in T I affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.