Nonlocal heat transfer in nanostructures
International Nuclear Information System (INIS)
Kanavin, A.P.; Uryupin, S.A.
2008-01-01
Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted
Non-local model analysis of heat pulse propagation
International Nuclear Information System (INIS)
Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi
1998-01-01
A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)
Local and Nonlocal Parallel Heat Transport in General Magnetic Fields
International Nuclear Information System (INIS)
Castillo-Negrete, D. del; Chacon, L.
2011-01-01
A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.
Stable solutions of nonlocal electron heat transport equations
International Nuclear Information System (INIS)
Prasad, M.K.; Kershaw, D.S.
1991-01-01
Electron heat transport equations with a nonlocal heat flux are in general ill-posed and intrinsically unstable, as proved by the present authors [Phys. Fluids B 1, 2430 (1989)]. A straightforward numerical solution of these equations will therefore lead to absurd results. It is shown here that by imposing a minimal set of constraints on the problem it is possible to arrive at a globally stable, consistent, and energy conserving numerical solution
A non-local model analysis of heat pulse propagation
International Nuclear Information System (INIS)
Iwasaki, T.; Itoh, S.I.; Yagi, M.; Stroth, U.
1998-01-01
The anomalous transport in high temperature plasma has been studied for a long time, from the beginning of the fusion research. Since the electron channel in stellarators and tokamaks is clearly anomalous, it is of fundamental importance to investigate the electron heat diffusivity coefficient, χ e and to understand the physical mechanism. Recently, the experimental data for the transient transport of the heat pulse propagation in fusion plasma has been accumulated. An observation was reported on W7-AS which the heat flux changes faster than the change of the temperature profile, responding to the switching on off of the central heating power. The observation on the transient response has simulated the transport modeling, e.g., the critical marginality which implies the existence of a finite threshold in ∇T for the excitation of the turbulence, or the model in which the thermal conductivity is assumed to depend on the heating power. Extensive study is made by use of these models, and the critical marginally model seems to be insufficient to explain various transient transport. The rapid change of the plasma state and its hysteresis nature were successfully modeled by a heating-power-dependent model. The foundation of this model, however, is left for future work. The development of the transport modeling remains to be an urgent problem. In this paper, we investigate the role of the non-locality of the plasma transport in the study of the heat pulse propagation. For this purpose, a model equation is proposed, in which the non-local effect is taken into account in the heat flux. The properties of this model are investigated by performing a transport simulation. The organization of this paper is as follows: In Sec. II, the model equation is proposed and the properties of the model are explained. Using the model equation, the switching on off experiment is simulated in Sec. III. Summary and discussion are given in Sec. IV. (author)
How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We present a model for nonlocal diffusion with Neumann boundary conditions in a bounded smooth domain prescribing the flux through the boundary. We study the limit of this family of nonlocal diffusion operators when a rescaling parameter related to the kernel of the nonlocal operator goes to zero. We prove that the solutions of this family of problems converge to a solution of the heat equation with Neumann boundary conditions.
Nonlocal rheological properties of granular flows near a jamming limit.
Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric
2008-09-01
We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.
A practical nonlocal model for heat transport in magnetized laser plasmas
International Nuclear Information System (INIS)
Nicolaie, Ph.D.; Feugeas, J.-L.A.; Schurtz, G.P.
2006-01-01
A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaie, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case
A practical nonlocal model for heat transport in magnetized laser plasmas
Nicolaï, Ph. D.; Feugeas, J.-L. A.; Schurtz, G. P.
2006-03-01
A model of nonlocal transport for multidimensional radiation magnetohydrodynamics codes is presented. In laser produced plasmas, it is now believed that the heat transport can be strongly modified by the nonlocal nature of the electron conduction. Other mechanisms, such as self-generated magnetic fields, may also affect the heat transport. The model described in this work, based on simplified Fokker-Planck equations aims at extending the model of G. Schurtz, Ph. Nicolaï, and M. Busquet [Phys. Plasmas 7, 4238 (2000)] to magnetized plasmas. A complete system of nonlocal equations is derived from kinetic equations with self-consistent electric and magnetic fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevant physics. The model is applied to two laser configurations that demonstrate the main features of the model and point out the nonlocal Righi-Leduc effect in a multidimensional case.
Relaxation-type nonlocal inertial-number rheology for dry granular flows
Lee, Keng-lin; Yang, Fu-ling
2017-12-01
We propose a constitutive model to describe the nonlocality, hysteresis, and several flow features of dry granular materials. Taking the well-known inertial number I as a measure of sheared-induced local fluidization, we derive a relaxation model for I according to the evolution of microstructure during avalanche and dissipation processes. The model yields a nonmonotonic flow law for a homogeneous flow, accounting for hysteretic solid-fluid transition and intermittency in quasistatic flows. For an inhomogeneous flow, the model predicts a generalized Bagnold shear stress revealing the interplay of two microscopic nonlocal mechanisms: collisions among correlated structures and the diffusion of fluidization within the structures. In describing a uniform flow down an incline, the model reproduces the hysteretic starting and stopping heights and the Pouliquen flow rule for mean velocity. Moreover, a dimensionless parameter reflecting the nonlocal effect on the flow is discovered, which controls the transition between Bagnold and creeping flow dynamics.
Impact of nonlocal electron heat transport on the high temperature plasmas of LHD
International Nuclear Information System (INIS)
Tamura, N.; Inagaki, S.; Tokuzawa, T.
2006-10-01
Edge cooling experiments with a tracer-encapsulated solid pellet in the Large Helical Device (LHD) show a significant rise of core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport is dominated. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay of the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase in collisionality in the core plasma and the decrease in electron temperature gradient scale length in the outer region of the plasma. (author)
Impact of nonlocal electron heat transport on the high temperature plasmas of LHD
International Nuclear Information System (INIS)
Tamura, N.; Inagaki, S.; Tanaka, K.; Michael, C.; Tokuzawa, T.; Shimozuma, T.; Kubo, S.; Sakamoto, R.; Ida, K.; Itoh, K.; Kalinina, D.; Sudo, S.; Nagayama, Y.; Kawahata, K.; Komori, A.
2007-01-01
Edge cooling experiments with a tracer-encapsulated solid pellet in the large helical device (LHD) show a significant rise in core electron temperature (the maximum rise is around 1 keV) as well as in many tokamaks. This experimental result indicates the possible presence of the nonlocality of electron heat transport in plasmas where turbulence as a cause of anomalous transport dominates. The nonlocal electron temperature rise in the LHD takes place in almost the same parametric domain (e.g. in a low density) as in the tokamaks. Meanwhile, the experimental results of LHD show some new aspects of nonlocal electron temperature rise, for example the delay in the nonlocal rise of core electron temperature relative to the pellet penetration time increases with the increase both in the collisionality in the core plasma and the electron temperature gradient scale length in the outer region of the plasma
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
Espinosa P, G.; Salinas M, L.; Vazquez R, A.
2015-09-01
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Nonlocal electron heat relaxation in a plasma shock at arbitrary ionization number
International Nuclear Information System (INIS)
Ramirez, J.; Sanmartin, J.R.; Fernandez-Feria, R.
1993-01-01
A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. Nonlocal effects are only important in the foot of the electronic preheating region, where the electron temperature gradient is the steepest. The results are quantified as a function of a characteristic Knudsen number of that region. This work also generalizes to arbitrary values of Z previous results on plasma shock wave structure
Characteristics of nonlocally-coupled transition of the heat transport in LHD
International Nuclear Information System (INIS)
Tamura, N.; Ida, K.; Tanaka, K.; Tokuzawa, T.; Itoh, K.; Shimozuma, T.; Kubo, S.; Tsuchiya, H.; Nagayama, Y.; Kawahata, K.; Sudo, S.; Yamada, H.; Inagaki, S.
2010-01-01
A comparison of characteristics between a nonlocal transport phenomenon and an electron internal transport barrier (ITB) in the Large Helical Device is performed with a transient transport analysis and from the viewpoint of a dynamic behavior of transport state. The electron ITB is characterized by a jump of electron temperature gradient. In contrast, the transient transport analysis indicates the nonlocal transport phenomenon is characterized by a jump of electron heat flux. And seen from the viewpoint of the dynamic behavior of transport state, the physical mechanism of the appearance of the nonlocal transport phenomenon is found to be qualitatively different from that of the formation of the electron ITB. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.
Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng
2017-06-05
In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.
Nonlocal multi-scale traffic flow models: analysis beyond vector spaces
Directory of Open Access Journals (Sweden)
Peter E. Kloeden
2016-08-01
Full Text Available Abstract Realistic models of traffic flow are nonlinear and involve nonlocal effects in balance laws. Flow characteristics of different types of vehicles, such as cars and trucks, need to be described differently. Two alternatives are used here, $$L^p$$ L p -valued Lebesgue measurable density functions and signed Radon measures. The resulting solution spaces are metric spaces that do not have a linear structure, so the usual convenient methods of functional analysis are no longer applicable. Instead ideas from mutational analysis will be used, in particular the method of Euler compactness will be applied to establish the well-posedness of the nonlocal balance laws. This involves the concatenation of solutions of piecewise linear systems on successive time subintervals obtained by freezing the nonlinear nonlocal coefficients to their values at the start of each subinterval. Various compactness criteria lead to a convergent subsequence. Careful estimates of the linear systems are needed to implement this program.
Dunn, James C.; Hardee, Harry C.; Striker, Richard P.
1985-01-01
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.
A Non-local Model for Transient Moisture Flow in Unsaturated Soils Based on the Peridynamic Theory
Jabakhanji, R.; Mohtar, R. H.
2012-12-01
A non-local, gradient free, formulation of the porous media flow problem in unsaturated soils was derived. It parallels the peridynamic theory, a non-local reformulation of solid mechanics presented by Silling. In the proposed model, the evolution of the state of a material point is driven by pairwise interactions with other points across finite distances. Flow and changes in moisture are the result of these interactions. Instead of featuring local gradients, the proposed model expresses the flow as a functional integral of the hydraulic potential field. The absence of spatial gradients, undefined at or on discontinuities, makes the model a good candidate for flow simulations in fractured soils. It also lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, slope stability and integrity of clay barriers. A description of the concept and an outline of the derivation and numerical implementation are presented. Simulation results of infiltration and drainage for 1D, single and two-layers soil columns, for three different soil types are also presented. The same simulations are repeated using HYDRUS-1D, a computer model using the classic local flow equation. We show that the proposed non-local formulation successfully reproduces the results from HYDRUS-1D. S.A. Silling, "Reformulation of Elasticity Theory for Discontinuities and Long-range Forces," Journal of the Mechanics and Physics of Solids 48, no. 1 (January 2000): 175-209. J. Simunek, M. Sejna, and M.T. Van Genuchten, "The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media," University of California, Riverside, Research Reports 240 (2005).
International Nuclear Information System (INIS)
Chen Yunmei
1994-01-01
In this paper we study the heat flow of harmonic maps between two compact Riemannian manifolds. The global existence of the regular solution and the weak solution, as well as the blow up of the weak solution are discussed. (author). 14 refs
Valenzuela, Javier
2001-01-01
A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.
Hoidn, Oliver; Seidler, Gerald T.
2018-01-01
The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.
Magnetic heat pump flow director
Howard, Frank S. (Inventor)
1995-01-01
A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.
Heat exchanger with oscillating flow
Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)
1993-01-01
Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.
Kuvyrkin, G. N.; Savelyeva, I. Y.; Kuvshynnikova, D. A.
2018-04-01
Creation of new materials based on nanotechnology is an important direction of modern materials science development. Materials obtained using nanotechnology can possess unique physical-mechanical and thermophysical properties, allowing their effective use in structures exposed to high-intensity thermomechanical effects. An important step in creation and use of new materials is the construction of mathematical models to describe the behavior of these materials in a wide range of changes under external effects. The model of heat conduction of structural-sensitive materials is considered with regard to the medium nonlocality effects. The relations of the mathematical model include an integral term describing the spatial nonlocality of the medium. A difference scheme, which makes it possible to obtain a numerical solution of the problem of nonstationary heat conduction with regard to the influence of the medium nonlocality on space, has been developed. The influence of the model parameters on the temperature distributions is analyzed.
Non-local model analysis of heat pulse propagation and simulation of experiments in W7-AS
International Nuclear Information System (INIS)
Iwasaki, Takuya; Itoh, Sanae-I.; Yagi, Masatoshi; Itoh, Kimitaka; Stroth, U.
1999-01-01
A new model equation which includes the non-local effect in the hear flux is introduced to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [U. Stroth et al.: Plasma Phys. Control. Fusion 38 (1996) 1087] and the power modulation experiments [L. Giannone et al.: Nucl. Fusion 32 (1992) 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to estimate the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)
Magnetic Heat Pump Containing Flow Diverters
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
Self-similar variables and the problem of nonlocal electron heat conductivity
International Nuclear Information System (INIS)
Krasheninnikov, S.I.; Bakunin, O.G.
1993-10-01
Self-similar solutions of the collisional electron kinetic equation are obtained for the plasmas with one (1D) and three (3D) dimensional plasma parameter inhomogeneities and arbitrary Z eff . For the plasma parameter profiles characterized by the ratio of the mean free path of thermal electrons with respect to electron-electron collisions, γ T , to the scale length of electron temperature variation, L, one obtains a criterion for determining the effect that tail particles with motion of the non-diffusive type have on the electron heat conductivity. For these conditions it is shown that the use of a open-quotes symmetrizedclose quotes kinetic equation for the investigation of the strong nonlocal effect of suprathermal electrons on the electron heat conductivity is only possible at sufficiently high Z eff (Z eff ≥ (L/γ T ) 1/2 ). In the case of 3D inhomogeneous plasma (spherical symmetry), the effect of the tail electrons on the heat transport is less pronounced since they are spread across the radius r
Robust non-local effects of ocean heat uptake on radiative feedback and subtropical cloud cover
Rose, B. E. J.
2016-02-01
moisture. Our results suggest that cloud feedback under transient climate change is partly modulated by ocean heat uptake through robust but non-local atmospheric processes, and has implications on a timescales ranging from inter-annual to multi-centennial.
Langseth, M. G.
1977-01-01
The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.
International Nuclear Information System (INIS)
Cull, J.P.
1981-01-01
Secular and long-term periodic changes in surface temperature cause perturbations to the geothermal gradient which may be significant to depths of at least 1000 m, and major corrections are required to determine absolute values of heat flow from the Earth's interior. However, detailed climatic models remain contentious and estimates of error in geothermal gradients differ widely. Consequently, regions of anomalous heat flow which could contain geothermal resources may be more easily resolved by measuring relative values at a standard depth (e.g. 100 m) so that all data are subject to similar corrections. (orig./ME)
Matson, D. L.; Ransford, G. A.; Johnson, T. V.
1981-01-01
The existing ground-based measurements of Io's thermal emission at infrared wavelengths of 8.4, 10.6, and 21 microns have been reexamined. Present in these data is the signature of hot spots, presumably similar to the hot spots seen by the IRIS experiment on Voyager. It is possible to extract from these data the total amount of power radiated. Since the hot spots are believed to be a result of deep-seated activity in Io and since the remainder of Io's surface is an extraordinarily poor thermal conductor, the power radiated by the hot spots is essentially the total heat flow. The analysis yields a heat flow of 2 + or - 1 W/sq m. This value is tremendously large in comparison to the average heat flow of the earth (0.06 W/sq m) and the moon (0.02 W/sq m), but is characteristic of active geothermal areas on the earth. A heat flow this large requires that the interior of Io be at least partially molten on a global scale.
A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.
Energy Technology Data Exchange (ETDEWEB)
Vogler, Tracy; Lammi, Christopher James
2014-10-01
A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
Interpretation of lunar heat flow data
International Nuclear Information System (INIS)
Conel, J.E.; Morton, J.B.
1975-01-01
Lunar heat flow observations at the Apollo 15 and 17 sites can be interpreted to imply bulk U concentrations for the Moon of 5 to 8 times those of normal chondrites and 2 to 4 times terrestrial values inferred from the Earth's heat flow and the assumption of thermal steady state between surface heat flow and heat production. A simple model of nearsurface structure that takes into account the large difference in (highly insulating) regolith thickness between mare and highland provinces is considered. This model predicts atypically high local values of heat flow near the margins of mare regions--possibly a factor of 10 or so higher than the global average. A test of the proposed model using multifrequency microwave techniques appears possible wherein heat flow traverse measurements are made across mare-highland contacts. The theoretical considerations discussed here urge caution in attributing global significance to point heat-flow measurements on the Moon
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
Koplow, Jeffrey P.
2016-02-16
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.
International Nuclear Information System (INIS)
Epperlein, E.M.
1992-01-01
Preliminary 1-D studies of nonlocal heat transport in spherical plasmas based on the Fokker-Planck code SPARK indicate significant levels of electron preheat and radial heat flux across a spherical heat sink surface kept at fixed temperature. However, the diffusive approximation to the Fokker-Planck equation is shown to be particularly sensitive to the nature of the inner surface boundary condition chosen. A suggested remedy is the inclusion of a target capsule in future simulations studies with SPARK
Visualisation of heat transfer in laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients at non-adiabatic walls. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the
Auxiliary Heat Exchanger Flow Distribution Test
International Nuclear Information System (INIS)
Kaufman, J.S.; Bressler, M.M.
1983-01-01
The Auxiliary Heat Exchanger Flow Distribution Test was the first part of a test program to develop a water-cooled (tube-side), compact heat exchanger for removing heat from the circulating gas in a high-temperature gas-cooled reactor (HTGR). Measurements of velocity and pressure were made with various shell side inlet and outlet configurations. A flow configuration was developed which provides acceptable velocity distribution throughout the heat exchanger without adding excessive pressure drop
Lunar Heat Flow Probe, Phase I
National Aeronautics and Space Administration — To accurately determine endogenic heat flow, both thermal gradient and thermal conductivity measurements are needed. The thermal gradient measurement can be achieved...
Stokes flow heat transfer in an annular, rotating heat exchanger
International Nuclear Information System (INIS)
Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.
2011-01-01
The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.
International Nuclear Information System (INIS)
Espinosa-Paredes, Gilberto
2010-01-01
The aim of this paper is to propose a framework to obtain a new formulation for multiphase flow conservation equations without length-scale restrictions, based on the non-local form of the averaged volume conservation equations. The simplification of the local averaging volume of the conservation equations to obtain practical equations is subject to the following length-scale restrictions: d << l << L, where d is the characteristic length of the dispersed phases, l is the characteristic length of the averaging volume, and L is the characteristic length of the physical system. If the foregoing inequality does not hold, or if the scale of the problem of interest is of the order of l, the averaging technique and therefore, the macroscopic theories of multiphase flow should be modified in order to include appropriate considerations and terms in the corresponding equations. In these cases the local form of the averaged volume conservation equations are not appropriate to describe the multiphase system. As an example of the conservation equations without length-scale restrictions, the natural circulation boiling water reactor was consider to study the non-local effects on the thermal-hydraulic core performance during steady-state and transient behaviors, and the results were compared with the classic local averaging volume conservation equations.
Heat flow map of the Bohemian massif
Energy Technology Data Exchange (ETDEWEB)
Cermak, V [Geophys. Inst., CS Acad. of Sci.
1977-01-01
Forty seven heat flow values for the Bohemian massif were used to determine the heat flow pattern of the area. By including data from neighboring countries it was possible to draw an isothermal map outlining the geothermal activity. As a result, it is possible to closely correlate the heat flow and the tectonic structure. It is obvious that the areas of high geothermal activity correspond to zones of crustal weakness associated with two major faults bordering the rigid central section of the massif. The highest heat flow values coincide with the axis of the sedimentary basin. The development of these heat flow patterns should assist in the recognition of probable areas of geothermal resources and several promising sites are readily discernible.
Directory of Open Access Journals (Sweden)
David A. Grandy
2007-08-01
Full Text Available Nonlocality is a puzzling issue in modern physics. I propose that, aside from the experimental determination of nonlocality, the concept of atomistic lightmdash;discrete, self-bounded photonsmdash;breaks down toward something like nonlocality when subjected to philosophical scrutiny. Louis de Broglie made a similar argument regarding the material atom: the concept of the classical atom, when interrogated, collapses upon itself to offer a glimpse of wave-particle duality. Light atoms or photons, I argue, similarly collapse toward the contradictory possibility of nonlocality.
On non-local energy transfer via zonal flow in the Dimits shift
International Nuclear Information System (INIS)
St-Onge, Denis A.
2017-01-01
The two-dimensional Terry–Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth–Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an E×B nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.
On non-local energy transfer via zonal flow in the Dimits shift
St-Onge, Denis A.
2017-10-01
The two-dimensional Terry-Horton equation is shown to exhibit the Dimits shift when suitably modified to capture both the nonlinear enhancement of zonal/drift-wave interactions and the existence of residual Rosenbluth-Hinton states. This phenomenon persists through numerous simplifications of the equation, including a quasilinear approximation as well as a four-mode truncation. It is shown that the use of an appropriate adiabatic electron response, for which the electrons are not affected by the flux-averaged potential, results in an nonlinearity that can efficiently transfer energy non-locally to length scales of the order of the sound radius. The size of the shift for the nonlinear system is heuristically calculated and found to be in excellent agreement with numerical solutions. The existence of the Dimits shift for this system is then understood as an ability of the unstable primary modes to efficiently couple to stable modes at smaller scales, and the shift ends when these stable modes eventually destabilize as the density gradient is increased. This non-local mechanism of energy transfer is argued to be generically important even for more physically complete systems.
Lunar ash flow with heat transfer.
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Conjugate Heat Transfer Study in Hypersonic Flows
Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar
2018-04-01
Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.
Heat flow and heat generation in greenstone belts
Drury, M. J.
1986-01-01
Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.
Heat flow anomalies and their interpretation
Chapman, David S.; Rybach, Ladislaus
1985-12-01
More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10 n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10 (n - 1) km in the respective representations. The largest scale of 10 4 km encompasses heat flow on a global scale. Global heat loss is 4 × 10 13 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 10 3 km. Shields, with similar dimensions, exhibit negative anomalies. The scale of 10 3 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 10 2 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere. Beginning with map dimensions of 10 2 km thermal anomalies of scale 10 1 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental
Burnout heat flux in natural flow boiling
International Nuclear Information System (INIS)
Helal, M.M.; Darwish, M.A.; Mahmoud, S.I.
1978-01-01
Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 5 0 C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm 2 . A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout
Coupled equations for transient water flow, heat flow, and ...
Indian Academy of Sciences (India)
interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of ... systems involving the flow of water, heat, and deformation. Such systems are ..... Defined thus, αI is independent of boundary con- ditions in an ... perature change with free deformation at constant total stress ...
Turbulent intermittent structure in non-homogeneous non-local flows
Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.
2010-05-01
Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are
Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.
2017-11-01
The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.
Stirling Engine With Radial Flow Heat Exchangers
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
Two-phase flow heat transfer in nuclear reactor systems
International Nuclear Information System (INIS)
Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.
2013-01-01
Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena
Turbulent Heat Transfer in Curved Pipe Flow
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
Program Computes Flows Of Fluids And Heat
Cullimore, Brent; Ring, Steven; Welch, Mark
1993-01-01
SINDA'85/FLUINT incorporates lumped-parameter-network and one-dimensional-flow mathematical models. System enables analysis of mutual influences of thermal and flow phenomena. Offers two finite-difference numerical solution techniques: forward-difference explicit approximation and Crank-Nicholson approximation. Enables simulation of nonuniform heating and facilitates mathematical modeling of thin-walled heat exchangers. Ability to model nonequilibrium behavior within two-phase volumes included. Recent changes in program improve modeling of real evaporator pumps and other capillary-assist evaporators. Written in FORTRAN 77.
Thermodynamic efficiency of information and heat flow
International Nuclear Information System (INIS)
Allahverdyan, Armen E; Janzing, Dominik; Mahler, Guenter
2009-01-01
A basic task of information processing is information transfer (flow). Here we study a pair of Brownian particles each coupled to a thermal bath at temperatures T 1 and T 2 . The information flow in such a system is defined via the time-shifted mutual information. The information flow nullifies at equilibrium, and its efficiency is defined as the ratio of the flow to the total entropy production in the system. For a stationary state the information flows from higher to lower temperatures, and its efficiency is bounded from above by (max[T 1 ,T 2 ])/(|T 1 −T 2 |). This upper bound is imposed by the second law and it quantifies the thermodynamic cost for information flow in the present class of systems. It can be reached in the adiabatic situation, where the particles have widely different characteristic times. The efficiency of heat flow—defined as the heat flow over the total amount of dissipated heat—is limited from above by the same factor. There is a complementarity between heat and information flow: the set-up which is most efficient for the former is the least efficient for the latter and vice versa. The above bound for the efficiency can be (transiently) overcome in certain non-stationary situations, but the efficiency is still limited from above. We study yet another measure of information processing (transfer entropy) proposed in the literature. Though this measure does not require any thermodynamic cost, the information flow and transfer entropy are shown to be intimately related for stationary states
Free convection film flows and heat transfer
Shang, Deyi
2010-01-01
Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.
Editorial to "Heat flow: recent advances"
Czech Academy of Sciences Publication Activity Database
Čermák, Vladimír; Huang, S.; Ravat, D.; Verdoya, M.
2018-01-01
Roč. 107, č. 1 (2018), s. 1-3 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : geothermics * climate change * terrestrial heat flow Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 2.283, year: 2016
Numberical Solution to Transient Heat Flow Problems
Kobiske, Ronald A.; Hock, Jeffrey L.
1973-01-01
Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)
Non-local rheology of stony debris flow propagating over a cohesionless sediment bed
Lanzoni, Stefano; Gregoretti, Carlo
2016-04-01
Velocity profiles of gravel-water mixtures observed in flume experiments often exhibit a double-slope behavior, with a lower narrower region where the velocity increases slowly, and an upper wider region often exhibiting a nearly linear behavior. Even though the flow can be classified within the grain-inertia regime, the overall profile seems to not conform to the power law (with exponent 1.5) distribution obtained by integrating along the normal to the flow the dispersive stresses envisaged by Bagnold (1954) in his pioneer work. Note that this formulation neglects the contribution to the velocity profile of the quasi-static (frictional) stresses that tend to dominate close to an erodible sediment bottom. The present work investigates the possibility to find out a uniformly valid distribution of shear stress from the bottom to the flow surface. To this aim we follow a heuristic coherence length approach (GDR-MIDI, 2004) similar to the mixing length procedure commonly used to study the atmospheric boundary layer over canopy (see, e.g., Harmann and Finnegan, 2007). A database built on 64 systematic debris flow experiments is used to disclose the general features of velocity profiles that establish within the body of almost steady water-sediment flows and the dependence of transport sediment volumetric concentration on the relevant parameters. The almost steady water-sediment flows considered in the study were generated by releasing a prescribed water discharge on a saturated layer of sediment (specifically, 3 mm gravel, 6 mm gravel, and 3 mm glass spheres) initially placed in a 10 m long and 0.2 m wide laboratory flume. The analysis clearly indicates that stony debris flow conditions characterized the experiments. The mixing length does not result constant, as required by a Bagnold-like profile, but varies gradually, from zero at the flow surface, to a finite value near the erodible bottom. We discuss this structure in terms of shear stress distribution along the
Heat transfer to accelerating gas flows
International Nuclear Information System (INIS)
Kennedy, T.D.A.
1978-01-01
The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)
Two-dimensional heat flow apparatus
McDougall, Patrick; Ayars, Eric
2014-06-01
We have created an apparatus to quantitatively measure two-dimensional heat flow in a metal plate using a grid of temperature sensors read by a microcontroller. Real-time temperature data are collected from the microcontroller by a computer for comparison with a computational model of the heat equation. The microcontroller-based sensor array allows previously unavailable levels of precision at very low cost, and the combination of measurement and modeling makes for an excellent apparatus for the advanced undergraduate laboratory course.
Dynamics of the cross flow heat exchanger for heating purposes
Energy Technology Data Exchange (ETDEWEB)
Mueller, K [Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Mess- und Regelungstechnik mit Maschinenlaboratorium
1980-09-01
A series of publications is available on the dynamic behaviour of heat exchangers (or heat transmitters, respectively), the subject of which is to deal with direct methods or with refined starting models for this general theme. The bridging between both these manners of advance remained as a problem. The author tried in his own investigation to solve the problem, and indeed by the selection of the correct starting model. He succeeded in this way, in that he removed conceptually a finned pipe from an arbitrary place of a heat exchanger and, furthermore, cut out from this particular pipe an arbitrary section. This section now does not stand alone for itself because the processes, which occur upstream of this section at the air-side and the water-side, are the input quantities of the section, which changes them due to its static and dynamic behaviour and emits them again as output quantities. The author, therefore, treats at first the dynamic behaviour of the section, which is represented in a signal flow diagram and which is used to derive approximate solutions from it. Furthermore, the author discusses the evident derivation of the total behaviour of heat exchangers.
Energy Technology Data Exchange (ETDEWEB)
Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Islamic Republic of Iran (Iran, Islamic Republic of); Roudbari, M.A. [Faculty of Mechanical Engineering, University of Kashan, Kashan, Islamic Republic of Iran. (Iran, Islamic Republic of)
2014-11-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics.
International Nuclear Information System (INIS)
Ghorbanpour Arani, A.; Roudbari, M.A.
2014-01-01
This paper investigates the electro-thermal nonlocal wave propagation of fluid-conveying single-walled Boron Nitride nanotubes (SWBNNTs) using nonlocal piezoelasticity with surface stress, initial stress and Knudsen-dependent flow velocity effect. SWBNNT is embedded in a vicsoelastic medium which is simulated as visco-Pasternak foundation. Using Euler–Bernoulli beam (EBB) model, Hamilton's principle and nonlocal piezoelasticity theory, the higher order governing equation is derived. A detailed parametric study is conducted, focusing on the combined effects of the electric parameters, viscoelastic medium, initial stress, surface stress, Knudsen number (Kn) and small scale on the wave propagation behaviour of the fluid-conveying SWBNNT. The results show that for smaller values of wave number the dispersion relation for different fluid viscosities seems to be similar. At the higher values of wave numbers, increase in the wave frequency values is remarkable due to increase in fluid viscosity. The electric field as a smart controller, surface effect, initial stress, temperature change and slip velocity effect have significant role on the wave frequency. The results of this work is hoped to be of use in design and manufacturing of smart MEMS/NEMS in advanced medical applications such as drug delivery systems with great applications in biomechanics
Heat flow and geothermal processes in Iceland
Flóvenz, Ólafur G.; Saemundsson, Kristján
1993-09-01
Heat flow values, derived from temperature measurements in shallow boreholes in Iceland, vary substantially across the country. The near-surface temperature gradients range from almost 0 to 500°C/km. The thermal conductivity of water-saturated rocks varies from 1.6 to 2.0 W/m°C. The temperature gradient in Iceland is mainly dependent on four factors: (1) the regional heat flow through the crust, (2) hydrothermal activity, (3) the permeability of the rock, and (4) residual heat in extinct volcanic centers. As Iceland is mainly made of basaltic material the radiogenic heat production is almost negligible. The thermal conductivity is, on the other hand, mainly influenced by the porosity of the rock; it increases as the porosity decreases. Iceland is made of sequences of flood basalts that formed within the volcanic rift zone—a continuation of the axis of the Mid-Atlantic ridge—and subsequently drifted sideways. Fresh basaltic lava is usually highly porous (30%) and fractured, and heat is mainly transported by convection. Therefore, a very low or even no temperature gradient is observed at shallow levels within the volcanic rift zone. As the basalt becomes buried the pores close due to lithostatic pressure and formation of secondary minerals. Below 500-1000 m depth in an uneroded lava pile, the heat is mainly transported by conduction. In the lowlands and valleys of Iceland outside the volcanic rift zone, 1000-1500 m of the original lava pile has been eroded, leaving thermal conduction as the most important heat transport mechanism. The regional temperature gradient has been measured in drillholes in dense and poorly permeable rocks away from the geothermal fields. The results show that the temperature gradient varies from 50 to 150°C/km. The highest values are found close to the volcanic rift zone and the gradient decreases with distance from the spreading axis. This result is mainly based on numerous shallow boreholes (60-500 m) but in some cases the results
Lunar Global Heat Flow: Predictions and Constraints
Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.
2017-12-01
The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.
On the interplay between neoclassical tearing modes and nonlocal transport in toroidal plasmas
Ji, X. Q.; Xu, Y.; Hidalgo, C.; Diamond, P. H.; Liu, Yi; Pan, O.; Shi, Z. B.; Yu, D. L.
2016-09-01
This Letter presents the first observation on the interplay between nonlocal transport and neoclassical tearing modes (NTMs) during transient nonlocal heat transport events in the HL-2A tokamak. The nonlocality is triggered by edge cooling and large-scale, inward propagating avalanches. These lead to a locally enhanced pressure gradient at the q = 3/2 (or 2/1) rational surface and hence the onset of the NTM in relatively low β plasmas (βN < 1). The NTM, in return, regulates the nonlocal transport by truncation of avalanches by local sheared toroidal flows which develop near the magnetic island. These findings have direct implications for understanding the dynamic interaction between turbulence and large-scale mode structures in fusion plasmas.
Heat transfer in two-phase flow of helium
International Nuclear Information System (INIS)
Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.
1986-01-01
The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data
Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux
International Nuclear Information System (INIS)
Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka
2012-01-01
Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.
Thaw flow control for liquid heat transport systems
Kirpich, Aaron S.
1989-01-01
In a liquid metal heat transport system including a source of thaw heat for use in a space reactor power system, the thaw flow throttle or control comprises a fluid passage having forward and reverse flow sections and a partition having a plurality of bleed holes therein to enable fluid flow between the forward and reverse sections. The flow throttle is positioned in the system relatively far from the source of thaw heat.
Heat transfer and fluid flow in minichannels and microchannels
Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R
2014-01-01
Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan
Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow
International Nuclear Information System (INIS)
Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.
2001-01-01
The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)
An experimental investigation of turbulent flow heat transfer through ...
African Journals Online (AJOL)
An experimental investigation has been carried out to study the turbulent flow heat transfer and to determine the pressure drop characteristics of air, flowing through a tube with insert. An insert of special geometry is used inside the tube. The test section is electrically heated, and air is allowed to flow as the working fluid ...
Analysis of slip flow heat transfer between two unsymmetrically
Indian Academy of Sciences (India)
This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...
Visualisation of heat transfer in unsteady laminar flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2011-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature fields and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by
Analysis of the transient compressible vapor flow in heat pipes
Jang, J. H.; Faghri, A.; Chang, W. S.
1989-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.
Analysis of the transient compressible vapor flow in heat pipe
International Nuclear Information System (INIS)
Jang, J.H.; Faghri, A.; Chang, W.S.
1989-07-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures
Analysis of the transient compressible vapor flow in heat pipe
Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon
1989-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.
Heat flow in the north-central Colorado Plateau
International Nuclear Information System (INIS)
Bodell, J.M.; Chapman, D.S.
1982-01-01
We report new heat flow measurements at 25 evenly distributed sites in the north-central Colorado Plateau. Heat flow values computed for these new sites and one previously published site range from 43 to 116 mW m -2 but fall into the following district subsets related to physiographic and tectonic elements within the Plateau: (1) heat flow of 51 mW m -2 (12 sites; s.d. 6) in the San Rafael Swell and Green River Desert which constitute the core of the Colorado Plateau at this latitude, (2) heat flows of 69 mW m -2 (5 sites; s.d. 10) in successive parallel north-south bands approaching the Wasatch Plateau to the west but still 80 km east of the Basin and Range physiographic boundary, (3) heat flow of 64 mW m -2 (5 sites; s.d. 2) along the Salt Anticline trend which strikes northwest in the region of Moab, Utah. Heat flow results for the entire Colorado Plateau have been reexamined in view of our new results, and the overall pattern supports the concept of a low heat flow 'thermal interior' for the plateau surrounded by a periphery some 100 km wide having substantially higher heat flow. Average heat flow in the thermal interior is about 60 mW m -2 compared to 80--90 mW m -2 in the periphery. This regional heat flow pattern supports a model of tertiary lithospheric thinning under the Colorado Plateau whereby the plateau is still in transient thermal response and a 15--20 m.y. lag between uplift and corresponding surface heat flow anomaly is to be expected. The position of the heat flow transition between our interior and peripheral regions in the northwest plateau is roughly consistent with lateral warming and weakening of the Colorado Plateau lithosphere initiated at the Basin and Range boundary some 20 m.y. ago
Heat transfer characteristics of alkali metals flowing across tube banks
International Nuclear Information System (INIS)
Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.
2004-01-01
For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)
An analytical model for annular flow boiling heat transfer in microchannel heat sinks
International Nuclear Information System (INIS)
Megahed, A.; Hassan, I.
2009-01-01
An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)
Simulation of boiling flow in evaporator of separate type heat pipe with low heat flux
International Nuclear Information System (INIS)
Kuang, Y.W.; Wang, Wen; Zhuan, Rui; Yi, C.C.
2015-01-01
Highlights: • A boiling flow model in a separate type heat pipe with 65 mm diameter tube. • Nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux. • The two-phase heat transfer coefficient is less sensitive to the total mass flux. - Abstract: The separate type heat pipe heat exchanger is considered to be a potential selection for developing passive cooling spent fuel pool – for the passive pressurized water reactor. This paper simulates the boiling flow behavior in the evaporator of separate type heat pipe, consisting of a bundle of tubes of inner diameter 65 mm. It displays two-phase characteristic in the evaporation section of the heat pipe working in low heat flux. In this study, the two-phase flow model in the evaporation section of the separate type heat pipe is presented. The volume of fluid (VOF) model is used to consider the interaction between the ammonia gas and liquid. The flow patterns and flow behaviors are studied and the agitated bubbly flow, churn bubbly flow are obtained, the slug bubble is likely to break into churn slug or churn froth flow. In addition, study on the heat transfer coefficients indicates that the nucleate boiling is the dominant mechanism in large pipes at low mass and heat flux, with the heat transfer coefficient being less sensitive to the total mass flux
Experimental study on flow pattern and heat transfer of inverted annular flow
International Nuclear Information System (INIS)
Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji
1990-01-01
Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)
Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating
International Nuclear Information System (INIS)
Cheng Xue-Tao; Liang Xin-Gang
2013-01-01
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. (general)
Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion
International Nuclear Information System (INIS)
Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu
2016-01-01
Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating
Preparation and Interpretation of Heat Flow Map of Turkey
International Nuclear Information System (INIS)
Ozturk, S.; Karli, R.; Destur, M.
2007-01-01
There exist a lot of data indicating our country takes place on an impotrant Kown heat flow anomaly. The preparation of a detailed 'Heat Flow Map' as a result of rational studies and depending upon this the determination of the distribution of heat in litosphere, except from the scientific benefits; shall enlighten subjects such as oil basen analysis, prospection of hydrothermal ores and earthquakes and further shall increase the feasibility of planning geothermal energy research.In between years 1995- 2005; as a part of project of the Geophysical Department of MTA with the purpose of preperation of Heat Flow Maps of Turkey, the heat flow measurments had been carried on at the convenient cold water wells. Using the Thermic and Gamma-Ray measurments and calculated conductivity coefficients of the representative rock samples of formation, heat flow map had been prepared. A distance of 10-30 km had been kept carefully betwen the wells of interest a total of 80204 m Thermic and Gamma-Ray logs and 420 rock samples from 695 wells, had been used in the study. Then according to the Lambert Projection, using the Surfer 8.02 and Grapher4 programmes The Heat Flow Maps of Turkey of scale 1:1000000 had been obtained.Some regional researches indicate that Turkey takes place in a part of Europe of high heat flux. Unfortunately there exist no detailed heat flow map of our country up to now. This shows the importance of present project
Critical heat flux in flow boiling in microchannels
Saha, Sujoy Kumar
2015-01-01
This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.
Heat transfer in flow past a continuously moving porous flat plate with heat flux
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sarma, Y.V.B.
The analysis of the heat transfer in flow past a continuously moving semi-infinite plate in the presence of suction/ injection with heat flux has been presented. Similarity solutions have been derived and the resulting equations are integrated...
A Prototype Flux-Plate Heat-Flow Sensor for Venus Surface Heat-Flow Determinations
Morgan, Paul; Reyes, Celso; Smrekar, Suzanne E.
2005-01-01
Venus is the most Earth-like planet in the Solar System in terms of size, and the densities of the two planets are almost identical when selfcompression of the two planets is taken into account. Venus is the closest planet to Earth, and the simplest interpretation of their similar densities is that their bulk compositions are almost identical. Models of the thermal evolution of Venus predict interior temperatures very similar to those indicated for the regions of Earth subject to solid-state convection, but even global analyses of the coarse Pioneer Venus elevation data suggest Venus does not lose heat by the same primary heat loss mechanism as Earth, i.e., seafloor spreading. The comparative paucity of impact craters on Venus has been interpreted as evidence for relatively recent resurfacing of the planet associated with widespread volcanic and tectonic activity. The difference in the gross tectonic styles of Venus and Earth, and the origins of some of the enigmatic volcano-tectonic features on Venus, such as the coronae, appear to be intrinsically related to Venus heat loss mechanism(s). An important parameter in understanding Venus geological evolution, therefore, is its present surface heat flow. Before the complications of survival in the hostile Venus surface environment were tackled, a prototype fluxplate heat-flow sensor was built and tested for use under synthetic stable terrestrial surface conditions. The design parameters for this prototype were that it should operate on a conforming (sand) surface, with a small, self-contained power and recording system, capable of operating without servicing for at least several days. The precision and accuracy of the system should be < 5 mW/sq m. Additional information is included in the original extended abstract.
Applications of thermoelectric modules on heat flow detection.
Leephakpreeda, Thananchai
2012-03-01
This paper presents quantitative analysis and practical scenarios of implementation of the thermoelectric module for heat flow detection. Mathematical models of the thermoelectric effects are derived to describe the heat flow from/to the detected media. It is observed that the amount of the heat flow through the thermoelectric module proportionally induces the conduction heat owing to the temperature difference between the hot side and the cold side of the thermoelectric module. In turn, the Seebeck effect takes place in the thermoelectric module where the temperature difference is converted to the electric voltage. Hence, the heat flow from/to the detected media can be observed from both the amount and the polarity of the voltage across the thermoelectric module. Two experiments are demonstrated for viability of the proposed technique by the measurements of the heat flux through the building wall and thermal radiation from the outdoor environment during daytime. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger
DEFF Research Database (Denmark)
Knudsen, Søren; Morrison, GL; Behnia, M
2005-01-01
initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C......The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...
Low-Flow Film Boiling Heat Transfer on Vertical Surfaces
DEFF Research Database (Denmark)
Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.
1976-01-01
The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....
Visualisation of heat transfer in 3D unsteady flows
Speetjens, M.F.M.; Steenhoven, van A.A.
2010-01-01
Heat transfer in fluid flows traditionally is examined in terms oftemperature field and heat-transfer coefficients at non-adiabaticwalls. However, heat transfer may alternatively be considered asthe transport of thermal energy by the total convective-conductiveheat flux in a way analogous to the
Analytical modeling for heat transfer in sheared flows of nanofluids
Ferrari, C.; Kaoui, B.; L'vov, V.S.; Procaccia, I.; Rudenko, O.; Thije Boonkkamp, ten J.H.M.; Toschi, F.
2012-01-01
We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles.
Flow dynamics of volume-heated boiling pools
International Nuclear Information System (INIS)
Ginsberg, T.; Jones, O.C.; Chen, J.C.
1979-01-01
Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems
Heat transfer measurements of the 1983 kilauea lava flow.
Hardee, H C
1983-10-07
Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.
Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger
International Nuclear Information System (INIS)
Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan
2012-01-01
In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)
Flowing and heat transfer characteristics of turbulent flow in typical rod bundles at rolling motion
International Nuclear Information System (INIS)
Yan Binghuo; Yu Lei; Gu Hanyang
2011-01-01
The influence mechanism of rolling motion on the flowing and heat transfer characteristics of turbulent flow in typical four rod bundles was investigated with Fluent code. The flowing and heat transfer characteristics of turbulent flow in rod bundles can be affected by rolling motion. But the flowing similarity of turbulent flow in adiabatic and non-adiabatic can not be affected. If the rolling period is small, the radial additional force can make the parameter profiles, the turbulent flowing and heat transfer change greatly. At rolling motion, as the pitch to diameter ratio decreases, especially if it is less than 1.1, the flowing and heat transfer of turbulent flow at rolling motion change significantly. The variation of pitch to diameter ratio can change the profiles of secondary flow and turbulent kinetic energy in cross-section greatly. (authors)
Heat transfer and pressure drop in flow boiling in microchannels
Saha, Sujoy Kumar
2016-01-01
This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.
Exhaust bypass flow control for exhaust heat recovery
Reynolds, Michael G.
2015-09-22
An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.
Cryogenic Heat Exchanger with Turbulent Flows
Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard
2012-01-01
An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…
Thermal performance modeling of cross-flow heat exchangers
Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria
2014-01-01
This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges
Heat Source Models in Simulation of Heat Flow in Friction Stir Welding
DEFF Research Database (Denmark)
Schmidt, Henrik Nikolaj Blich; Hattel, Jesper
2004-01-01
The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...
Heat source models in simulation of heat flow in friction stir welding
DEFF Research Database (Denmark)
Schmidt, Henrik Nikolaj Blich; Hattel, Jesper
2004-01-01
The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms....... The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...
Heating patterns during cancer heat therapy as a function of blood flow
International Nuclear Information System (INIS)
Mendecki, J.; Friedenthal, E.; Botstein, C.; Sterzer, F.; Paglione, R.W.
1984-01-01
Heating patterns as a function of regional blood flow were evaluated in healthy tissues with different vascular characteristics as well as in a variety of tumors submitted to microwave and RF-induced hyperthermia. Generally, faster heating and slower cooling was demonstrated for tumors. Definite correlation was found between the power needed to heat given tissue volume to a specific temperature and the ability of this tissue to dissipate heat via vascular flow. The measurements show that during the early phase of heating of tumors temperature rises slowly up to about 40 0 C. indicating good heat exchanges but that at this level rapid increase of temperature occurs for relatively small increments of power input. It is suggested that blood flow in malignant tissue remains competent and responsive to low grade heating, but that at higher temperature levels, in contrast to normal tissue, tumor blood flow rapidly decreases indicating compromised vascular system. Implication for treatment protocols are discussed
Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe
International Nuclear Information System (INIS)
Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol
2015-01-01
Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of
Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink
International Nuclear Information System (INIS)
Manning, Paul; Persoons, Tim; Murray, Darina
2014-01-01
Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.
International Nuclear Information System (INIS)
Vitorello, I.
1978-01-01
Heat flow and heat production results are reported from nineteen widely spaced sites in eastern and central parts of Brazil. Three sites in the stable Sao Francisco Craton comprising rocks with Transamazonic ages (2600 to 1800 Ma) or older present an average heat flow of 41.8 +- 4.6 (standard error of the mean=sem) mW m -2 , typical of shield areas; eight sites located in the Late Precambrian Braziliane metamorphic belt have an average heat flow of 54.7 +- 3.8 (sem) mW m -2 ; and four sites in the Parana basin, locus of a Late Jurassic-Early Cretaceous basaltic volcanicity, have a mean heat flow of 70.1 +- 5.9 (sem) mW m -2 . Heat flow results from the Late Cretaceous-Early Tertiary alkalic intrusion of Pocos de Caldas have yielded a site mean of 55.3 mW m -2 . These results indicate a systematic decrease of heat flow with increasing age of the last tectonothermal event. As an explanation for this pattern, a model comprising three main heat flow components is advanced: radiogenic heat from the crust (40%), with the decrease of this contribution with time being achieved by erosional removal of radioactive material; a residual heat from a transient thermal perturbation associated with tectogenesis; and a uniform heat flow of about 28 mW m -2 from deeper sources. The Coastal Brazilian Shield is characterized by ordinary surface and reduced heat flow, but its heat production appears to be less concentrated near the surface, and distributed over a greater depth. Because of the variation in plate thickness, relative movements between the South American plate and the underlying mantle material are possibly constrained to depths exceeding 400 km
Flow and heat transfer in a curved channel
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Heat transfer and flow characteristics on a gas turbine shroud.
Obata, M; Kumada, M; Ijichi, N
2001-05-01
The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.
Heat flow during sawtooth collapse in tokamak plasmas
International Nuclear Information System (INIS)
Hanada, Kazuaki
1994-01-01
Heat flow during sawtooth collapse was studied on the WT-3 tokamak by using temporal evolution of soft X-ray intensity profile in the poloidal cross section in a lower hybrid current driven plasma as well as an electron cyclotron heated plasma. Two phase in sawtooth collapses were observed. In the first phases, the hottest spot that is the peak of the soft X-ray distribution approaches the inversion surface and heat flows out through a narrow gate on the inversion surface. In the second phase, the hottest spot stays on the inversion surface, and heat flows out through the whole inversion surface. This suggests that magnetic reconnection as predicted by Kadomtsev's model occurs in the first phase, but in the second phase, a different mechanism dominates heat flow. (author)
Temperature-gated thermal rectifier for active heat flow control.
Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang
2014-08-13
Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.
International Nuclear Information System (INIS)
Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.
2001-01-01
An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)
Multiple flow patterns and heat transfer in confined jet impingement
International Nuclear Information System (INIS)
Li Xianchang; Gaddis, J. Leo; Wang Ting
2005-01-01
The flow field of a 2-D laminar confined impinging slot jet is investigated. Numerical results indicate that there exist two different solutions in some range of geometric and flow parameters. The two steady flow patterns are obtained under identical boundary conditions but only with different initial flow fields. Two different exit boundary conditions are investigated with two commercial software packages to eliminate artificial or computational effects. The different flow patterns are observed to significantly affect the heat transfer. A flow visualization experiment is carried out to verify the computational results and both flow patterns are observed. The bifurcation mechanism is interpreted and discussed
A simplified method of calculating heat flow through a two-phase heat exchanger
Energy Technology Data Exchange (ETDEWEB)
Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, Newtownabbey, Co Antrim, BT37 0QB Northern Ireland (United Kingdom)]. E-mail: yg.yohanis@ulster.ac.uk; Popel, O.S. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation); Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation)
2005-10-01
A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment.
A simplified method of calculating heat flow through a two-phase heat exchanger
International Nuclear Information System (INIS)
Yohanis, Y.G.; Popel, O.S.; Frid, S.E.
2005-01-01
A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment
Heat transfer critical conditions in two-plase flow
International Nuclear Information System (INIS)
Assis, M.C.V. de.
1980-02-01
The critical heat flux for forced-convection flow of water inside an uniformly heated circular channel is analysed, taking into account several flow patterns usually met in this type of investigation. Comments about nomenclature, experimental methods and influence of operational parameters used in the description of this phenomenon are made. The experimental results from 187 tests of critical heat flux at low pressure are presented. One empirical correlation between the critical heat flux and the independent parameters, was developed. Some correlations developed in other laboratories in the same range of parameters are mentioned and compared with present one. (Author) [pt
Heat and mass transfer and hydrodynamics in swirling flows (review)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Flow-excursion-induced dryout at low-heat-flux
International Nuclear Information System (INIS)
Khatib-Rahbar, M.; Cazzoli, E.G.
1983-01-01
Flow-excursion-induced dryout at low-heat-flux natural-convection boiling, typical of liquid-metal fast-breeder reactors, is addressed. Steady-state calculations indicate that low-quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow-regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high-heat-flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 17 figures
Predicting critical heat flux in slug flow regime of uniformly heated ...
African Journals Online (AJOL)
Numerical computation code (PWR-DNBP) has been developed to predict Critical Heat Flux (CHF) of forced convective flow of water in a vertical heated channel. The code was based on the liquid sub-layer model, with the assumption that CHF occurred when the liquid film thickness between the heated surface and vapour ...
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Flow film boiling heat transfer in water and Freon-113
International Nuclear Information System (INIS)
Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira
2002-01-01
Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)
Heat transfer in a counterflow heat exchanger at low flow rates
International Nuclear Information System (INIS)
Hashimoto, A.; Hattori, N.; Naruke, K.
1995-01-01
A study was made of heat transfer in a double-tube heat exchanger at low flow rates of water. The temperatures of fluid and tube walls in the axial direction of tube were measured precisely at flow rate ratios of annulus to inner tube (or flow rate ratios of inner tube to annulus W i /W a , Re i approx. = 80 - 4000), W a /W i =0.1 - 1.1. In parallel with experiment, numerical calculation for forced-convection heat transfer was also carried out for laminar flows in the same tube configuration as experiment. Average over-all coefficients of heat transfer, obtained by experiments, indicate the same characteristics as numerical calculation in the examined range of flow rate ratio. Their experimental values, however, are somewhat larger than those of calculation at small values of flow rate ratio. (author)
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
Analysis on flow characteristic of nuclear heating reactor
International Nuclear Information System (INIS)
Jiang Shengyao; Wu Xinxin
1997-06-01
The experiment was carried out on the test loop HRTL-5, which simulates the geometry and system design of a 5 MW Nuclear heating reactor. The analysis was based on a one-dimensional two-phase flow drift model with conservation equations for mass, steam mass, energy and momentum. Clausius-Clapeyron equation was used for the calculation of flashing front in the riser. A set of ordinary equation, which describes the behavior of two-phase flow in the natural circulation system, was derived through integration of the above conservation equations in subcooled boiling region, bulk boiling region in the heated section and in the riser. The method of time-domain was used for the calculation. Both static and dynamic results are presented. System pressure, inlet subcooling and heat flux are varied as input parameters. The results show that, firstly, subcooled boiling in the heated section and void flashing in the riser have significant influence on the distribution of the void fraction, mass flow rate and stability of the system, especially at lower pressure, secondly, in a wide range of two-phase flow conditions, only subcooled boiling occurs in the heated section. For the designed two-phase regime operation of the 5 MW nuclear heating reactor, the temperature at the core exit has not reaches its saturation value. Thirdly, the mechanism of two-phase flow oscillation, namely, 'zero-pressure-drop', is described. In the wide range of inlet subcooling (0 K<ΔT<28 K) there exists three regions for system flow condition, namely, (1) stable two-phase flow, (2) bulk and subcooled boiling unstable flow, (3) subcooled boiling and single phase stable flow. The response of mass flow rate, after a small disturbance in the heat flux, is showed in the above inlet subcooling range, and based on it the instability map of the system is given through experiment and calculation. (3 refs., 9 figs.)
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya
2003-01-01
The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)
Frictional strength and heat flow of southern San Andreas Fault
Zhu, P. P.
2016-01-01
Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault
Heat flow in a He II filled fin
International Nuclear Information System (INIS)
Warren, R.P.
1984-01-01
This chapter demonstrates the influence of diameter, length, Kapitza conductance and temperature on the heat carrying capacity of an externally cooled, circular He II filled channel with zero net mass flow and of negligible wall thermal resistance. Topics considered include the internal convection mechanism and the heat transfer model (boundary conditions, solution procedure). The large apparent thermal conductivity of He-II is explained by the two fluid model as an internal convection in which there is a counter flow of the normal and superfluids with no net mass flow. A separate bath is considered in which an He-IIp (pressurized superfluid helium) filled fin is immersed which extends from the heated reservoir. A single heat sink can serve multiple heat sources
Critical heat flux and exit film flow rate in a flow boiling system
International Nuclear Information System (INIS)
Ueda, Tatsuhiro; Isayama, Yasushi
1981-01-01
The critical heat flux in a flowing boiling system is an important problem in the evaporating tubes with high thermal load such as nuclear reactors and boilers, and gives the practical design limit. When the heat flux in uniformly heated evaporating tubes is gradually raised, the tube exit quality increases, and soon, the critical heat flux condition arises, and the wall temperature near tube exit rises rapidly. In the region of low exit quality, the critical heat flux condition is caused by the transition from nucleating boiling, and in the region of high exit quality, it is caused by dry-out. But the demarcation of both regions is not clear. In this study, for the purpose of obtaining the knowledge concerning the critical heat flux condition in a flowing boiling system, the relation between the critical heat flux and exit liquid film flow rate was examined. For the experiment, a uniformly heated vertical tube supplying R 113 liquid was used, and the measurement in the range of higher heating flux and mass velocity than the experiment by Ueda and Kin was carried out. The experimental setup and experimental method, the critical heat flux and exit quality, the liquid film flow rate at heating zone exit, and the relation between the critical heat flux and the liquid film flow rate at exit are described. (Kako, I.)
Critical heat flux and flow pattern for water flow in annular geometry
International Nuclear Information System (INIS)
Park, Jae Wook; Baek, Won Pil; Chang, Soon Heung
1996-01-01
An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow
Nonlocal neoclassical transport in tokamak and spherical torus experiments
International Nuclear Information System (INIS)
Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.
2006-01-01
Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge
The effects of radiogenic heat on groundwater flow
International Nuclear Information System (INIS)
Beddoes, R.J.; Tammemagi, H.Y.
1986-03-01
The effects of radiogenic heat released by a nuclear waste repository on the groundwater flow in the neighbouring rock mass is reviewed. The report presents an overview of the hydrogeologic properties of crystalline rocks in the Canadian Shield and also describes the mathematical theory of groundwater flow and heat transfer in both porous media and fractured rock. Numerical methods for the solution of the governing equations are described. A number of case histories are described where analyses of flow systems have been performed both with and without radiogenic heat sources. A number of relevant topics are reviewed such as the role of the porous medium model, boundary conditions and, most importantly, the role of complex coupled processes where the effects of heat and water flow are intertwined with geochemical and mechanical processes. The implications to radioactive waste disposal are discussed
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1996-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators
Energy Technology Data Exchange (ETDEWEB)
Yanagihara, J I; Rodriques, R Jr [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering
1997-12-31
Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)
Boundary fluxes for nonlocal diffusion
Cortazar, Carmen; Elgueta, Manuel; Rossi, Julio D.; Wolanski, Noemi
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
Convection flows driven by laser heating of a liquid layer
Rivière , David; Selva , Bertrand; Chraibi , Hamza; Delabre , Ulysse; Delville , Jean-Pierre
2016-01-01
International audience; When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at diffe...
Micro-channel convective boiling heat transfer with flow instabilities
International Nuclear Information System (INIS)
Consolini, L.; Thome, J.R.
2009-01-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
Micro-channel convective boiling heat transfer with flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch
2009-07-01
Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)
New terrestrial heat flow measurements on the Nazca Plate
Energy Technology Data Exchange (ETDEWEB)
Anderson, R N [Columbia Univ., Palisades, NY; Langseth, M G; Vacquier, V; Francheteau, J
1976-03-01
Sixty-seven new heat flow measurements on the Nazca Plate are reported, and the thermal regimes of three specific areas on the plate are examined. The Nazca Ridge is an aseismic ridge which may have been generated as an ''island trail'' from the Easter Island ''hot spot'' and/or may be a fossil transform fault. The Nazca Ridge has lower heat flow than the surrounding sea floor implying that the ridge might have low ''effective'' thermal conductivity causing heat to preferentially flow or refract to surrounding ocean crust which has higher conductivity, or, the low heat flow values may be caused by hydrothermal circulation on the ridge. The Carnegie Plateau is an elevated region south of the Carnegie Ridge on the northeastern Nazca Plate with high heat flow and shallow topography consistent with an age of less than 20 m.y. B.P. The central Nazca Plate is an area of highly variable heat flow which is possibly related to thin sediment and to rough regional topography.
Thermosolutal MHD flow and radiative heat transfer with viscous ...
African Journals Online (AJOL)
This paper investigates double diffusive convection MHD flow past a vertical porous plate in a chemically active fluid with radiative heat transfer in the presence of viscous work and heat source. The resulting nonlinear dimensionless equations are solved by asymptotic analysis technique giving approximate analytic ...
Miniaturized heat flux sensor for high enthalpy plasma flow characterization
International Nuclear Information System (INIS)
Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre
2013-01-01
An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....
Local heat transfer coefficient for turbulent flow in rod bundles
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1983-03-01
The correlation of the local heat transfer coefficients in heated triangular array of rod bundles, in terms of the flow hydrodynamic parameters is presented. The analysis is made first for fluid with Prandtl numbers varying from moderated to high (Pr>0.2), and then extended to fluids with low Prandtl numbers (0.004 [pt
Saturated flow boiling heat transfer in water-heated vertical annulus
International Nuclear Information System (INIS)
Sun Licheng; Yan Changqi; Sun Zhonning
2005-01-01
This paper describes the saturated flow boiling heat transfer characteristics of water at 1 atm and low velocities in water-heated vertical annuli with equivalent diameters of 10 mm and 6 mm. Test section is consisted of two concentric circular tubes outer of which is made of quartz, so the whole test courses can be visualized. There are three main flow patterns of bubble flow, churn flow and churn-annular flow in the annuli, most important of which is churn flow. Flooding is the mechanism of churn flow and churn can enhance the heat transport between steam and water; Among the three factors of mass flux, inlet subcooling and annulus width, the last one has great effect on heat transport, moderately decreasing the annulus width can enhance the heat transfer; Combined annular flow model with theory of flooding and turbulent Prandtl Number, the numerical value of heat flux is given, the shape of test boiling curve and that of calculated by model is very alike, but there is large discrepancy between test data and calculated results, the most possible reason is that some parameters given by fluid flooding model are based on experimental data of common circular tubes, but not of annuli. Doing more research on flooding in annulus, particularly narrow annulus, is necessary for calculating the saturated boiling in annulus. (authors)
Heat transfer in vapour-liquid flow of carbon dioxide
International Nuclear Information System (INIS)
Yagov, V.V.
2009-01-01
During the last decade a number of studies of boiling heat transfer in carbon dioxide notably increase. As a field of CO 2 practical using corresponds to high reduced pressures, and a majority of available experimental data on CO 2 flow boiling even in submillimetric channels relate to turbulent liquid flow regimes, a possibility arises to develop sufficiently general method for HTC predicting. Under the above conditions nucleate boiling occurs up to rather high flow quality, even in annular flow regime due to extremely small size of an equilibrium vapour bubble. This conclusion is in agreement with the available experimental data. The predicting equation for nucleate boiling heat transfer developed by the present author in 1988 is valid for any nonmetallic liquid. A contribution of forced convection in heat transfer is calculated according to the Petukhov et al. equation with correction factor, which accounted for an effect of velocity increase due to evaporation. This effect can be essential at relatively small heat fluxes and rather high mass flow rates. The Reynolds analogy and homogeneous model are used in order to account for the convective heat transfer augmentation in two-phase flow. Due to low ratio of liquid and vapour densities at high reduced pressures the homogeneous approximation of two-phase flow seems to be warranted. A total heat transfer coefficient is calculated as an interpolated value of boiling and convective HTCs. The experimental data on CO 2 flow boiling related to regimes before heated wall dryout incipience are in rather good agreement with the calculations. (author)
Flow visualization in heat-generating porous media
International Nuclear Information System (INIS)
Lee, D.O.; Nilson, R.H.
1977-11-01
The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models
SCEPTIC, Pressure Drop, Flow Rate, Heat Transfer, Temperature in Reactor Heat Exchanger
International Nuclear Information System (INIS)
Kattchee, N.; Reynolds, W.C.
1975-01-01
1 - Nature of physical problem solved: SCEPTIC is a program for calculating pressure drop, flow rates, heat transfer rates, and temperature in heat exchangers such as fuel elements of typical gas or liquid cooled nuclear reactors. The effects of turbulent and heat interchange between flow passages are considered. 2 - Method of solution: The computation procedure amounts to a nodal of lumped parameter type of calculation. The axial mesh size is automatically selected to assure that a prescribed accuracy of results is obtained. 3 - Restrictions on the complexity of the problem: Maximum number of subchannels is 25, maximum number of heated surfaces is 46
Heat flow characteristics of Xiangshan uranium mine
International Nuclear Information System (INIS)
Huang Guoming
1996-01-01
By studying Xiangshan uranium mine on the heat generation of radioactive element, the author expounds its geothermal character and evaluates the influence on geothermal flux, geothermal gradient and geothermal field. The results show that the geothermal structure is changed due to the enrichment of radioactive elements, but the geothermal field is slightly influenced
Heat Transfer Enhancement in Separated and Vortex Flows
Energy Technology Data Exchange (ETDEWEB)
Richard J. Goldstein
2004-05-27
This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.
Studies of heat transport to forced-flow He II
International Nuclear Information System (INIS)
Dresner, L.; Kashani, A.; Van Sciver, S.W.
1985-01-01
Analytical and experimental studies of heat transport to forced-flow He II are reported. The work is pertinent to the transfer of He II in space. An analytical model has been developed that establishes a condition for two-phase flow to occur in the transfer line. This condition sets an allowable limit to the heat leak into the transfer line. Experimental measurements of pressure drop and flow meter performances indicate that turbulent He II can be analyzed in terms of classical pressure drop correlations
Numerical prediction of flow, heat transfer, turbulence and combustion
Spalding, D Brian; Pollard, Andrew; Singhal, Ashok K
1983-01-01
Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Selected Works of Professor D. Brian Spalding focuses on the many contributions of Professor Spalding on thermodynamics. This compilation of his works is done to honor the professor on the occasion of his 60th birthday. Relatively, the works contained in this book are selected to highlight the genius of Professor Spalding in this field of interest. The book presents various research on combustion, heat transfer, turbulence, and flows. His thinking on separated flows paved the way for the multi-dimensional modeling of turbu
Investigation of the tube side flow distribution in heat exchangers
International Nuclear Information System (INIS)
AbuRomia, M.M.; Pyare, R.
1977-01-01
The tube side flow distribution in heat exchangers is being investigated through the solution of the governing equations of fluid mechanics with distributed resistances that simulate the presence of the tubes. The modeling scheme used in the analysis and the numerical methods of solving the governing equations are described. The analysis is applied to the CRBRP-Intermediate Heat Exchanger (IHX), where its tube side plenum is simulated by several models that approximate its spherical boundary. The flow field within the plenum and the distribution of the total flow rate among the tubes are determined by the analysis
Lunar heat flow: Regional prospective of the Apollo landing sites
Siegler, M. A.; Smrekar, S. E.
2014-01-01
reexamine the Apollo Heat Flow Experiment in light of new orbital data. Using three-dimensional thermal conduction models, we examine effects of crustal thickness, density, and radiogenic abundance on measured heat flow values at the Apollo 15 and 17 sites. These models show the importance of regional context on heat flux measurements. We find that measured heat flux can be greatly altered by deep subsurface radiogenic content and crustal density. However, total crustal thickness and the presence of a near-surface radiogenic-rich ejecta provide less leverage, representing only minor (<1.5 mW m-2) perturbations on surface heat flux. Using models of the crust implied by Gravity Recovery and Interior Laboratory results, we found that a roughly 9-13 mW m-2 mantle heat flux best approximate the observed heat flux. This equates to a total mantle heat production of 2.8-4.1 × 1011 W. These heat flow values could imply that the lunar interior is slightly less radiogenic than the Earth's mantle, perhaps implying that a considerable fraction of terrestrial mantle material was incorporated at the time of formation. These results may also imply that heat flux at the crust-mantle boundary beneath the Procellarum potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) is anomalously elevated compared to the rest of the Moon. These results also suggest that a limited KREEP-rich layer exists beneath the PKT crust. If a subcrustal KREEP-rich layer extends below the Apollo 17 landing site, required mantle heat flux can drop to roughly 7 mW m-2, underlining the need for future heat flux measurements outside of the radiogenic-rich PKT region.
Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing
International Nuclear Information System (INIS)
AbuRomia, M.M.; Chu, A.W.; Cho, S.M.
1976-01-01
Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted
Analytical modeling for heat transfer in sheared flows of nanofluids.
Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico
2012-07-01
We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.
Transient heat transfer for forced convection flow of helium gas
International Nuclear Information System (INIS)
Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu
1999-01-01
Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)
Instability of flow of liquid film over a heated surface
International Nuclear Information System (INIS)
Sha, W.T.
1994-01-01
Fundamental concepts and basic equations of a flowing thin liquid film cooling a heated surfaced by its vaporization and the effect of dry patches were treated. Stable film flow prior to the appearance of dry patches on the heated surface is maintained by a balance of various forces due to surface tension, shear stress, heat and mass transfer, and gravity. Film splitting at a critical film thickness produces dry patches due to perturbation by waves on a perfect surface, and often by surface imperfection and uneven heating. This work is primarily motivated by the design of next-generation nuclear reactors, which employ many novel passive heat-removal systems via natural circulation. These systems are design to prevent damage to the reactor core and containment without action by the reactor operators during or after a design basis accident such as a loss of coolant accident (LOCA) or a main steam-line break (MSLB) accident
A novel compact heat exchanger using gap flow mechanism.
Liang, J S; Zhang, Y; Wang, D Z; Luo, T P; Ren, T Q
2015-02-01
A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.
Flow and heat transfer regimes during quenching of hot surfaces
International Nuclear Information System (INIS)
Barnea, Y.; Elias, E.
1993-05-01
Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs
Convective heat transfer in supercritical flows of CO_2 in tubes with and without flow obstacles
International Nuclear Information System (INIS)
Eter, Ahmad; Groeneveld, Dé; Tavoularis, Stavros
2017-01-01
Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO_2-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m"2 s, and a heat flux range from 1 to 175 kW/m"2. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.
Liquid metal heat transfer in heat exchangers under low flow rate conditions
International Nuclear Information System (INIS)
Mochizuki, Hiroyasu
2015-01-01
The present paper describes the liquid metal heat transfer in heat exchangers under low flow rate conditions. Measured data from some experiments indicate that heat transfer coefficients of liquid metals at very low Péclet number are much lower than what are predicted by the well-known empirical relations. The cause of this phenomenon was not fully understood for many years. In the present study, one countercurrent-type heat exchanger is analyzed using three, separated countercurrent heat exchanger models: one is a heat exchanger model in the tube bank region, while the upper and lower plena are modeled as two heat exchangers with a single heat transfer tube. In all three heat exchangers, the same empirical correlation is used in the heat transfer calculation on the tube and the shell sides. The Nusselt number, as a function of the Péclet number, calculated from measured temperature and flow rate data in a 50 MW experimental facility was correctly reproduced by the calculation result, when the calculated result is processed in the same way as the experiment. Finally, it is clarified that the deviation is a superficial phenomenon which is caused by the heat transfer in the plena of the heat exchanger. (author)
Flow boiling heat transfer at low liquid Reynolds number
International Nuclear Information System (INIS)
Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima
2005-01-01
Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)
Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples
Ranalli, G.; Rybach, L.
2005-10-01
Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m - 2 , in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal areas show various signs of subsurface fluid movement, depending on position in the active system. The heat transfer regime is dominated by heat advection (mainly free convection). The onset of free convection depends on various factors, such as permeability, temperature gradient and fluid properties. The features of heat transfer are different for single or two-phase flow. Characteristic heat flow and heat transfer features in active geothermal systems are demonstrated by examples from Iceland, Italy, New Zealand and the USA. Two main factors affect the rheology of the lithosphere in active geothermal areas: steep temperature gradients and high pore fluid pressures. Combined with lithology and structure, these factors result in a rheological zonation with important consequences both for geodynamic processes and for the exploitation of geothermal energy. As a consequence of anomalously high temperature, the mechanical lithosphere is thin and its total strength can be reduced by almost one order of magnitude with respect to the average strength of continental lithosphere of comparable age and thickness. The top of the brittle/ductile transition is located within the upper crust at depths less than 10 km, acts as the root zone of listric normal faults in extensional environments and, at least in some cases, is visible on seismic reflection lines. These structural and rheological features are well illustrated in the Larderello geothermal field in Tuscany.
International Nuclear Information System (INIS)
Krasnikov, N.V.
1987-01-01
Nonlocal gauge theories including gravity are considered. It is shown that the introduction of the additional nonlocal interaction makes γ 5 -anomalous theories meaningful. The introduction of such interaction leads to macrocausal unitary theory, which describes the interaction of massive vector fields with fermion fields. It is shown that nonlocal gauge theories with nonlocal scale Λ nl ≤(1-10) TeV can solve the gauge hierarchy problem. An example of nonlinear grand unified gauge model in which topologically nontrivial finite energy monopole solutions are absent is found
Chaotic advection and heat transfer enhancement in Stokes flows
International Nuclear Information System (INIS)
Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.
2003-01-01
The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry
Ashwal, L. D.; Morgan, P.; Kelley, S. A.; Percival, J. A.
1987-01-01
Concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100-km transect of the Superior Province of the Canadian Shield have been obtained. The relatively large variation in heat production found among the silicic plutonic rocks is shown to correlate with modal abundances of accessory minerals, and these variations are interpreted as premetamorphic. The present data suggest fundamental differences in crustal radioactivity distributions between granitic and more mafic terrains, and indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth.
Brine flow in heated geologic salt.
Energy Technology Data Exchange (ETDEWEB)
Kuhlman, Kristopher L.; Malama, Bwalya
2013-03-01
This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.
Transient convective heat transfer to laminar flow from a flat plate with constant heat capacity
International Nuclear Information System (INIS)
Hanawa, Juichi
1980-01-01
Most basic transient heat transfer problem is the transient response characteristics of forced convection heat transfer in the flow along a flat plate or in a tube. In case of the laminar flow along a flat plate, the profile method using steady temperature distribution has been mostly adopted, but its propriety has not been clarified yet. About the unsteady heat transfer in the laminar flow along a flat plate, the analysis or experiment evaluating the heat capacity of the flat plate exactly was never carried out. The purpose of this study is to determine by numerical calculation the unsteady characteristics of the boundary layer in laminar flow and to confirm them by experiment concerning the unsteady heat transfer when a flat plate with a certain heat capacity is placed in parallel in uniform flow and given a certain quantity of heat generation suddenly. The basic equation and the solution are given, and the method of numerical calculation and the result are explained. The experimental setup and method, and the experimental results are shown. Both results were in good agreement, and the response of wall temperature, the response of Nusselt number and the change of temperature distribution in course of time were able to be determined by applying Laplace transformation and numerical Laplace inverse transformation to the equation. (Kako, I.)
Multilevel Flow Modeling of Domestic Heating Systems
DEFF Research Database (Denmark)
Hu, Junjie; Lind, Morten; You, Shi
2012-01-01
the operation on fault analysis and control. A significant improvement of the MFM methodology has been recently proposed, where the “role” concept was introduced to enable the representation of structural entities and the conveyance of important information for building up knowledge bases, with the purpose...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...
DEFF Research Database (Denmark)
Alberdi Pagola, Maria; Poulsen, Søren Erbs; Loveridge, Fleur
2018-01-01
This paper investigates the applicability of currently available analytical, empirical and numerical heat flow models for interpreting thermal response tests (TRT) of quadratic cross section precast pile heat exchangers. A 3D finite element model (FEM) is utilised for interpreting five TRTs by in...
Xue, Zhang-Na; Yu, Ya-Jun; Tian, Xiao-Geng
2017-07-01
Based upon the coupled thermoelasticity and Green and Lindsay theory, the new governing equations of two-temperature thermoelastic theory with thermal nonlocal parameter is formulated. To more realistically model thermal loading of a half-space surface, a linear temperature ramping function is adopted. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Specific attention is paid to study the effect of thermal nonlocal parameter, ramping time, and two-temperature parameter on the distributions of temperature, displacement and stress distribution.
Transient heat transfer to laminar flow from a flat plate with heat capacity
International Nuclear Information System (INIS)
Hanawa, Juichi
1975-01-01
As the most basic problem in transient heat transfer, a plate with heat capacity was studied, which is placed in uniform laminar flow in parallel with it, is initially at the same temperature as that of the fluid, and then abruptly is given a specific heating value. The equation of transient heat transfer in this case was solved by numerical calculation. The following matters were revealed. (1) The equation was able to be solved by the application of Laplace transformation and numerical inverse transformation. (2) Wall temperature when the heat capacity of a plate was zero initially agreed well with heat conduction solution. With increase of the heat capacity, the delay in wall temperature rise was increased. (3) Heat transfer rate in case of the heat capacity of zero initially agreed well with the heat-conduction solution. With increase of the heat capacity, the Nusselt number increased. (4) Temperature distribution in case of the heat capacity of zero initially agreed well with the heat-conduction solution. (Mori, K.)
Quantum Nonlocality and Reality
Bell, Mary; Gao, Shan
2016-09-01
Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective
Computation of turbulent flow and heat transfer in subassemblies
International Nuclear Information System (INIS)
Slagter, W.
1979-01-01
This research is carried out in order to provide information on the thermohydraulic behaviour of fast reactor subassemblies. The research work involves the development of versatile computation methods and the evaluation of combined theoretical and experimental work on fluid flow and heat transfer in fuel rod bundles. The computation method described here rests on the application of the distributed parameter approach. The conditions considered cover steady, turbulent flow and heat transfer of incompressible fluids in bundles of bare rods. Throughout 1978 main efforts were given to the development of the VITESSE program and to the validation of the hydrodynamic part of the code. In its present version the VITESSE program is applicable to predict the fully developed turbulent flow and heat transfer in the subchannels of a bundle with bare rods. In this paper the main features of the code are described as well as the present status of development
International Nuclear Information System (INIS)
Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio
1998-01-01
Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Flow analysis of an innovative compact heat exchanger channel geometry
International Nuclear Information System (INIS)
Vitillo, F.; Cachon, L.; Reulet, F.; Millan, P.
2016-01-01
Highlights: • An innovative compact heat transfer technology is proposed. • Experimental measurements are shown to validate the CFD model. • CFD simulations show various flow mechanisms. • Flow analysis is performed to study physical phenomena enhancing heat transfer. - Abstract: In the framework of CEA R&D program to develop an industrial prototype of sodium-cooled fast reactor named ASTRID, the present work aims to propose an innovative compact heat exchanger technology to provide solid technological basis for the utilization of a Brayton gas-power conversion system, in order to avoid the energetic sodium–water interaction if a traditional Rankine cycle was used. The aim of the present work is to propose an innovative compact heat exchanger channel geometry to potentially enhance heat transfer in such components. Hence, before studying the innovative channel performance, a solid experimental and numerical database is necessary to perform a preliminary thermal–hydraulic analysis. To do that, two experimental test sections are used: a Laser Doppler Velocimetry (LDV) test section and a Particle Image Velocimetry (PIV) test section. The acquired experimental database is used to validate the Anisotropic Shear Stress Transport (ASST) turbulence model. Results show a good agreement between LDV, PIV and ASST data for the pure aerodynamic flow. Once validated the numerical model, the innovative channel flow analysis is performed. Principal and secondary flow has been analyzed, showing a high swirling flow in the bend region and demonstrating that mixing actually occurs in the mixing zone. This work has to be considered as a step forward the preposition of a reliable high-performance component for application to ASTRID reactor as well as to any other industrial power plant dealing needing compact heat exchangers.
Heat transfer and fluid flow in regular rod arrays with opposing flow
International Nuclear Information System (INIS)
Yang, J.W.
1979-01-01
The heat transfer and fluid flow problem of opposing flow in the fully developed laminar region has been solved analytically for regular rod arrays. The problem is governed by two parameters: the pitch-to-diameter ratio and the Grashof-to-Reynolds number ratio. The critical Gr/Re ratios for flow separation caused by the upward buoyancy force on the downward flow were evaluated for a large range of P/D ratios of the triangular array. Numerical results reveal that both the heat transfer and pressure loss are reduced by the buoyancy force. Applications to nuclear reactors are discussed
Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers
Directory of Open Access Journals (Sweden)
Hanuszkiewicz-Drapała Małgorzata
2016-03-01
Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Heat transfer enhancement in cross-flow heat exchanger using vortex generator
International Nuclear Information System (INIS)
Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.
2003-01-01
Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator
Heat transfer in intermediate heat exchanger under low flow rate conditions
International Nuclear Information System (INIS)
Mochizuki, H.
2008-01-01
The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)
Computational simulation of heat transfer in laser melted material flow
International Nuclear Information System (INIS)
Shankar, V.; Gnanamuthu, D.
1986-01-01
A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated
Prediction of strongly-heated internal gas flows
International Nuclear Information System (INIS)
McEligot, D.M.; Shehata, A.M.; Kunugi, Tomoaki
1997-01-01
The purposes of the present article are to remind practitioners why the usual textbook approaches may not be appropriate for treating gas flows heated from the surface with large heat fluxes and to review the successes of some recent applications of turbulence models to this case. Simulations from various turbulence models have been assessed by comparison to the measurements of internal mean velocity and temperature distributions by Shehata for turbulent, laminarizing and intermediate flows with significant gas property variation. Of about fifteen models considered, five were judged to provide adequate predictions
Preliminary heat flow map of Europe. Explanatory text
Energy Technology Data Exchange (ETDEWEB)
Cermak, V.; Hurtig, E.
1977-08-08
A preliminary heat flow map of Europe was prepared, based on data contained in 401 references. The map was prepared on a scale of 1:5,000,000 and shows broad-scale geological structure (e.g., platforms, shields, foredeeps) and specialized rock suites (ophiolites, volcanites). Primary faults and thrust faults are indicated, and contours showing the depth of crystalline basement are given. Heat flow is plotted using 10.0 mW/m/sup 2/ isotherms. The accompanying explanatory text describes data acquisition and techniques of correction, and discusses some implications of the results.
Heat transfer of liquid-metal magnetohydrodynamic flow with internal heat generation
International Nuclear Information System (INIS)
Kumamaru, Hiroshige; Kurita, Kazuhisa; Kodama, Satoshi
2000-01-01
Numerical calculations on heat transfer of a magnetohydrodynamic (MHD) flow with internal heat generation in a rectangular channel have been performed for the cases of very-large Hartmann numbers, finite wall conductivities and small aspect ratio (i.e. small length ratios of the channel side perpendicular to the applied magnetic field and the side parallel to the field), simulating typical conditions for a fusion-reactor blanket. The Nusselt numbers of the MHD flow in rectangular channels with aspect ratios of 1/10 to 1/40 for Hartmann numbers of ∼5 x 10 5 become ∼10 times higher than those for the corresponding flow under no magnetic field. The Nusselt number becomes higher as the internal heat generation rate increases as far as the heat generation rates in a fusion reactor blanket are considered. (author)
Thermal heat-balance mode flow-to-frequency converter
Pawlowski, Eligiusz
2016-11-01
This paper presents new type of thermal flow converter with the pulse frequency output. The integrating properties of the temperature sensor have been used, which allowed for realization of pulse frequency modulator with thermal feedback loop, stabilizing temperature of sensor placed in the flowing medium. The system assures balancing of heat amount supplied in impulses to the sensor and heat given up by the sensor in a continuous way to the flowing medium. Therefore the frequency of output impulses is proportional to the heat transfer coefficient from sensor to environment. According to the King's law, the frequency of those impulses is a function of medium flow velocity around the sensor. The special feature of presented solution is total integration of thermal sensor with the measurement signal conditioning system. Sensor and conditioning system are not the separate elements of the measurement circuit, but constitute a whole in form of thermal heat-balance mode flow-to-frequency converter. The advantage of such system is easiness of converting the frequency signal to the digital form, without using any additional analogue-to-digital converters. The frequency signal from the converter may be directly connected to the microprocessor input, which with use of standard built-in counters may convert the frequency into numerical value of high precision. Moreover, the frequency signal has higher resistance to interference than the voltage signal and may be transmitted to remote locations without the information loss.
Models for fluid flows with heat transfer in mixed convection
International Nuclear Information System (INIS)
Mompean Munhoz da Cruz, G.
1989-06-01
Second order models were studied in order to predict turbulent flows with heat transfer. The equations used correspond to the characteristic scale of turbulent flows. The order of magnitude of the terms of the equation is analyzed by using Reynolds and Peclet numbers. The two-equation model (K-ε) is applied in the hydrodynamic study. Two models are developed for the heat transfer analysis: the Prt + teta 2 and the complete model. In the first model, the turbulent thermal diffusivity is calculated by using the Prandtl number for turbulent flow and an equation for the variance of the temperature fluctuation. The second model consists of three equations concerning: the turbulent heat flow, the variance of the temperature fluctuation and its dissipation ratio. The equations were validated by four experiments, which were characterized by the analysis of: the air flow after passing through a grid of constant average temperature and with temperature gradient, an axysymmetric air jet submitted to high and low heating temperature, the mixing (cold-hot) of two coaxial jets of sodium at high Peclet number. The complete model is shown to be the most suitable for the investigations presented [fr
Coupled heat and groundwater flow in porous rock
International Nuclear Information System (INIS)
Rae, J.; Robinson, P.C.; Wickens, L.M.
1983-01-01
There are a number of technical areas where coupled heat and flow problems occur for water in porous rock. The area of most interest to the authors has been the possible disposal underground of high-level radioactive waste. High-level waste can emit enough heat to drive significant flows by buoyancy effects and groundwater flow is expected to be the chief transport process for solute leached from such a repository. The possible disposal of radioactive waste under the seabed raises many similar questions and needs similar techniques to find answers. Other areas where related questions arise are the storage and retrieval of hot water in underground reservoirs, the attempts to extract useful geothermal energy by pumping water into fracture systems in hot rock and in certain thermal techniques for persuading oil to flow in tight reservoirs. The authors address questions in a rather general way and give examples which lie more in the area of waste disposal
Analysis of natural convection heat transfer and flows in internally heated stratified liquid pools
International Nuclear Information System (INIS)
Gubaidullin, A.A. Jr.; Dinh, T.N.; Sehgal, B.R.
1999-01-01
In this paper, natural convection flows and heat transfer in a liquid pool, with two superposed immiscible fluid layers, are analyzed. The objective of the study is to examine the effect of interfacial hydrodynamics and to develop a method which enables energy splitting to be evaluated in a stratified liquid pool. The thermal convection, with and without an internal heat source, in a rectangular cavity with different pairs of fluids was numerically simulated by a CFD code FLOW-3D. It was found that the code performs very well for prediction of heat transfer coefficients for different conditions. The hydrodynamic coupling between immiscible layers was found to have minor, if any, impact on the natural convection heat transfer for the conditions examined. Calculated results were used to develop, and validate, a new correlation for energy splitting and for heat transfer in stratified liquid pools
Directory of Open Access Journals (Sweden)
Yasuhisa Shinmoto
2017-11-01
Full Text Available The use of immiscible liquids for cooling of surfaces with high heat generation density is proposed based on the experimental verification of its superior cooling characteristics in fundamental systems of pool boiling and flow boiling in a tube. For the purpose of practical applications, however, heat transfer characteristics due to flow boiling in narrow rectangular channels with different small gap sizes need to be investigated. The immiscible liquids employed here are FC72 and water, and the gap size is varied as 2, 1, and 0.5 mm between parallel rectangular plates of 30 mm × 175 mm, where one plate is heated. To evaluate the effect of gap size, the heat transfer characteristics are compared at the same inlet velocity. The generation of large flattened bubbles in a narrow gap results in two opposite trends of the heat transfer enhancement due to thin liquid film evaporation and of the deterioration due to the extension of dry patch in the liquid film. The situation is the same as that observed for pure liquids. The latter negative effect is emphasized for extremely small gap sizes if the flow rate ratio of more-volatile liquid to the total is not reduced. The addition of small flow rate of less-volatile liquid can increase the critical heat flux (CHF of pure more-volatile liquid, while the surface temperature increases at the same time and assume the values between those for more-volatile and less-volatile liquids. By the selection of small flow rate ratio of more-volatile liquid, the surface temperature of pure less-volatile liquid can be decreased without reducing high CHF inherent in the less-volatile liquid employed. The trend of heat transfer characteristics for flow boiling of immiscible mixtures in narrow channels is more sensitive to the composition compared to the flow boiling in a round tube.
Flow instability and critical heat flux in a ribbed annulus
International Nuclear Information System (INIS)
Yang, B.W.; Dougherty, T.; Fighetti, C.; Kokolis, S.; Reddy, G.D.; McAssey, E.V. Jr.; Coutts, A.
1993-01-01
An experimental program has been conducted to determine the onset of flow instability point in a heated annulus which is divided into four sub channels by non-conducting ribs. The onset of flow instability is identified by the minimum point in the pressure drop-velocity curve. Comparison with a ribless annulus show that the presence of ribs increases the minimum point velocity. In addition, data are presented which show that under certain conditions premature CHF can be induced by the ribs
Gas flow environmental and heat transfer nonrotating 3D program
Geil, T.; Steinhoff, J.
1983-01-01
A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.
Nonlocality in Bohmian mechanics
Ghafar, Zati Amalina binti Mohd Abdul; Radiman, Shahidan bin; Siong, Ch'ng Han
2018-04-01
The Einstein-Podolsky-Rosen (EPR) paradox demonstrates that entangled particles can interact in such a way that it is possible to measure both their position and momentum instantaneously. The position or momentum of one particle can be determined by measuring another identical particle that exists in another space. This instantaneous action is actually called nonlocality. The nonlocality has been proved by Bell's theorem that states that all quantum theories must be nonlocal. The Bell's theorem gives a strong support to the hidden variable theory, i.e. Bohmian mechanics. Using nonlocality, we present that the velocity field of one particle can be obtained by measuring the velocity of other particles. The trajectory of these particles is perhaps surrealistic trajectory due to the nonlocality.
Nonlocal teleparallel cosmology.
Bahamonde, Sebastian; Capozziello, Salvatore; Faizal, Mir; Nunes, Rafael C
2017-01-01
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + [Formula: see text] observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction.
Nonlocal teleparallel cosmology
Energy Technology Data Exchange (ETDEWEB)
Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy); Faizal, Mir [University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)
2017-09-15
Even though it is not possible to differentiate general relativity from teleparallel gravity using classical experiments, it could be possible to discriminate between them by quantum gravitational effects. These effects have motivated the introduction of nonlocal deformations of general relativity, and similar effects are also expected to occur in teleparallel gravity. Here, we study nonlocal deformations of teleparallel gravity along with its cosmological solutions. We observe that nonlocal teleparallel gravity (like nonlocal general relativity) is consistent with the present cosmological data obtained by SNe Ia + BAO + CC + H{sub 0} observations. Along this track, future experiments probing nonlocal effects could be used to test whether general relativity or teleparallel gravity gives the most consistent picture of gravitational interaction. (orig.)
Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger
DEFF Research Database (Denmark)
Friis, Alan; Szabo, Peter; Karlson, Torben
2002-01-01
A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...
Heat flow at the Platanares, Honduras, geothermal site
Meert, Joseph G.; Smith, Douglas L.
1991-03-01
Three boreholes, PLTG-1, PLTG-2 and PLTG-3, were drilled in the Platanares, Honduras geothermal system to evaluate the geothermal energy potential of the site. The maximum reservoir temperature was previously estimated at 225-240°C using various types of chemical and isotopic geothermometry. Geothermal gradients of 139-239°C/km, calculated from two segments of the temperature-depth profile for borehole PLTG-2, were used to project a minimum depth to the geothermal reservoir of 1.2-1.7 km. Borehole PLTG-1 exhibited an erratic temperature distribution attributed to fluid movement through a series of isolated horizontal and subhorizontal fractures. The maximum measured temperature in borehole PLTG-1 was 150.4°C, and in PLTG-2 the maximum measured temperature was 104.3°C. PLTG-3 was drilled after this study and the maximum recorded temperature of 165°C is similar to the temperature encountered in PLTG-1. Heat flow values of 392 mWm -2 and 266 mWm -2 represent the first directly-measured heat flow values for Honduras and northen Central America. Radioactive heat generation, based on gamma-ray analyses of uranium, thorium and potassium in five core samples, is less than 2.0 μWm -3 and does not appear to be a major source of the high heat flow. Several authors have proposed a variety of extensional tectonic environments for western Honduras and these heat flow values, along with published estimates of heat flow, are supportive of this type of tectonic regime.
Flow and Convective Heat Transfer of Cylinder Misaligned from Aerodynamic Axis of Cyclone Flow
Directory of Open Access Journals (Sweden)
I. L. Leukhin
2008-01-01
Full Text Available The paper provides and analyzes results of experimental investigations on physical specific features of hydrodynamics and convective heat transfer of a cyclone flow with a group of round cylinders located symmetrically relative to its aerodynamic axis, calculative equations for average and local heat transfer factors at characteristic sections of cylinder surface.
Local heat transfer where heated rods touch in axially flowing water
International Nuclear Information System (INIS)
Kast, S.J.
1983-05-01
An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube
Heat flow in Indian Gondwana basins and heat production of their basement rocks
Energy Technology Data Exchange (ETDEWEB)
Rao, G.V.; Rao, R.U.M.
1983-01-01
Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m exp(2). The value from the Sonhat basin (107 mW/m exp(2)) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned. (5 figs., 14 refs., 4 tables).
Heat flow in Indian Gondwana basins and heat production of their basement rocks
Rao, G. V.; Rao, R. U. M.
1983-01-01
Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins. Heat-flow values from all of the Damodar valley basins are within the narrow range of 69-79 mW/m 2. The value from the Sonhat basin (107 mW/m 2) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned.
International Nuclear Information System (INIS)
Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao
2006-01-01
This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated
Flow induced vibration in shell and tube heat exchangers
International Nuclear Information System (INIS)
Soper, B.M.H.
1981-01-01
Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed
Gravity influence on heat transfer rate in flow boiling
Baltis, C.H.M.; Celata, G.P.; Cumo, M.; Saraceno, L.; Zummo, G.
2012-01-01
The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the
Characterizing the Heat Flow from Between Enceladus' Tiger Stripes
Howett, C.; Spencer, J. R.; Verbiscer, A.
2017-12-01
Enceladus' heat flow provides a fundamental constraint on its tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. Determining the total amount of emission is proving difficult, as different techniques produce differing constraints. For example, an initial estimate of this value, 5.8±1.3 GW, was made by Spencer et al. (2006) using Cassini Composite Infrared Spectrometer (CIRS) 600 to 1100 cm-1 observations, which was refined using 10 to 600 cm-1 CIRS observations to 15.8±3.1 GW by Howett et al. (2011). However, recent reanalysis of high-spatial resolution 10 to 1100 cm-1 CIRS observations of Enceladus' active south polar region conducted by Spencer and Howett gives a heat flow of 4.64±0.23 GW. Whilst all of these heat flow estimates are much larger than those expected in a steady state, 1.1 GW (Meyer and Wisdom, 2007), their obvious discrepancy is a puzzle. In this work we seek to help understand these discrepancies by determining how much endogenic heat flow is coming from the funiscular terrain between Enceladus active tiger stripes.
Occurrence of critical heat flux during blowdown with flow reversal
International Nuclear Information System (INIS)
Leung, J.C.M.
1976-04-01
A small-scale experiment using Freon-11 at 130 0 F and 65 psia in a well-instrumented transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 2 ft length. Inlet and exit void fractions were measured by a capacitance technique. Flow regime transition was observed with high speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F and 60 psig was found to greatly affect the steady-state subcooled boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the thermodynamic nonequilibrium conditions required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown. Critical heat flux did not occur immediately during the flow decay in an approximately 60 msec reversal period. The first or early CHF which occurred at about 400 msec was independent of the blowdown volume and did not propagate upward. An annular flow pattern appeared at the onset of this CHF which occurred only at the lower 8 in. of the heated zone
On the Curvature and Heat Flow on Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Ohta Shin-ichi
2014-01-01
Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
Direct numerical simulation of particulate flow with heat transfer
Tavassoli Estahbanati, H; Kriebitzsch, S.H.L.; Hoef, van der M.A.; Peters, E.A.J.F.; Kuipers, J.A.M.
2013-01-01
The Immersed Boundary (IB) method proposed by Uhlmann for Direct Numerical Simulation (DNS) of fluid flow through dense fluid-particle systems is extended to systems with interphase heat transport. A fixed Eulerian grid is employed to solve the momentum and energy equations by traditional
Time-Dependent Natural Convection Couette Flow of Heat ...
African Journals Online (AJOL)
Time-Dependent Natural Convection Couette Flow of Heat Generating/Absorbing Fluid between Vertical Parallel Plates Filled With Porous Material. ... The numerical simulation conducted for some saturated liquids reveled that at t ≥ Pr the steady and unsteady state velocities (as well as the temperature of the fluid) ...
EFFECTS OF HEAT-FLOW AND HYDROTHERMAL FLUIDS FROM ...
African Journals Online (AJOL)
Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar ...
Geothermal heat exchanger with coaxial flow of fluids
Directory of Open Access Journals (Sweden)
Pejić Dragan M.
2005-01-01
Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.
Critical heat flux and flow pattern for water flow in annular geometry
International Nuclear Information System (INIS)
Park, J.-W.; Baek, W.-P.; Chang, S.H.
1997-01-01
An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for the upward flow. In addition to the experiment, selected CHF correlations for annuli are assessed based on 1156 experimental data from various sources. The Doerffer et al. (1994); Barnett (1966); Jannsen and Kervinen (1963); Levitan and Lantsman (1977) correlations show reasonable predictions for wide parameter ranges, among which the Doerffer et al. (1994) correlation shows the widest parameter ranges and a possibility of further improvement. However, there is no correlation predicting the low-pressure, low-flow CHF satisfactorily. (orig.)
Study on boiling heat transfer of subcooled flow under oscillatory flow condition
International Nuclear Information System (INIS)
Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo
2004-01-01
The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)
A review of the heat flow data of NE Morocco
Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine
2016-04-01
The Atlas chain is characterised by a SW-NE trending volcanic belt roughly extending from the Atlantic to the Mediterranean Sea and showing activity that spans in age mainly from Middle Miocene to Quaternary (14.6-0.3 Ma). The geochemical features of volcanism are mostly intraplate and alkaline with the exception of the northeastern termination of the belt where calc-alkaline series crop out. Lithospheric thermal and density models so far proposed, constrained by heat flow, gravity anomalies, geoid, and topography data, show that the Atlas chain is not supported isostatically by a thickened crust and a thin, hot and low-density lithosphere explains the high topography. One of the possible explanations for lithospheric mantle thinning, possibly in relation with the observed alkaline volcanism, is thermal erosion produced by either small-scale convection or activation of a small mantle plume, forming part of a hot and deep mantle reservoir system extending from the Canary Islands. This paper focuses on the several geothermal data available in the northeastern sector of the volcanic belt. The occurrence of an extensive, often artesian, carbonatic reservoir hosting moderately hot groundwater might boost the temperature gradient in the overlying impermeable cover, and consequently mask the deep thermal regime. We therefore revised the available dataset and investigated the contribution of advection. Temperature data available from water and oil wells were reprocessed and analysed in combination with thermal conductivity measurements on a wide set of lithotypes. Data were filtered according to rigid selection criteria, and, in the deeper boreholes, the heat flow was inferred by taking into account the porosity variation with depth and the temperature effect on the matrix and pore-filling fluid conductivity. Moreover, the possible effect of advection was evaluated with simple analytical models which envisage the carbonatic layers as confined aquifers heated by the
Nonlocal hidden variables and nonlocal gauge theories
International Nuclear Information System (INIS)
Boiteux, M.
1984-01-01
A possible unification of classical fundamental interactions together with quantum interactions is proposed, based on an extension of the concept of local gauge invariance to a nonlocal gauge invariance. As an example this new concept is developed for the particular case of the electromagnetic field. (Auth.)
Surface roughness effects on heat transfer in Couette flow
International Nuclear Information System (INIS)
Elia, G.G.
1981-01-01
A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)
Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube
International Nuclear Information System (INIS)
Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance
1997-03-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)
Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow
International Nuclear Information System (INIS)
Boscary, J.
1995-10-01
The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs
Analysis of fluid flow and heat transfer in a double pipe heat exchanger with porous structures
International Nuclear Information System (INIS)
Targui, N.; Kahalerras, H.
2008-01-01
A numerical study of flow and heat transfer characteristics is made in a double pipe heat exchanger with porous structures inserted in the annular gap in two configurations: on the inner cylinder (A) and on both the cylinders in a staggered fashion (B). The flow field in the porous regions is modelled by the Darcy-Brinkman-Forchheimer model and the finite volume method is used to solve the governing equations. The effects of several parameters such as Darcy number, porous structures thickness and spacing and thermal conductivity ratio are considered in order to look for the most appropriate properties of the porous structures that allow optimal heat transfer enhancement. It is found that the highest heat transfer rates are obtained when the porous structures are attached in configuration B especially at small spacing and high thicknesses
Heat conduction boundary layers of condensed clumps in cooling flows
International Nuclear Information System (INIS)
Boehringer, H.; Fabian, A.C.
1989-01-01
The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations. (author)
Assessment of interfacial heat transfer models under subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Ribeiro, Guilherme B.; Braz Filho, Francisco A., E-mail: gbribeiro@ieav.cta.br, E-mail: fbraz@ieav.cta.br [Instituto de Estudos Avançados (DCTA/IEAv), São José dos Campos, SP (Brazil). Div. de Energia Nuclear
2017-07-01
The present study concerns a detailed analysis of subcooled flow boiling characteristics under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. An uniform heat flux of 570 kW/m2 and saturation pressure of 4.5 MPa were applied to the channel wall, whereas water mass flux of 900 kg/m2s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of CFD technique for the estimation of wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Different sub-models of interfacial heat transfer coefficient were applied and compared, allowing a better prediction of void fraction along the heated channel. (author)
An Engineering Aerodynamic Heating Method for Hypersonic Flow
Riley, Christopher J.; DeJarnette, Fred R.
1992-01-01
A capability to calculate surface heating rates has been incorporated in an approximate three-dimensional inviscid technique. Surface streamlines are calculated from the inviscid solution, and the axisymmetric analog is then used along with a set of approximate convective-heating equations to compute the surface heat transfer. The method is applied to blunted axisymmetric and three-dimensional ellipsoidal cones at angle of attack for the laminar flow of a perfect gas. The method is also applicable to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes (NS) and viscous shock-layer (VSL) equations. The new technique represents a significant improvement over current engineering aerothermal methods with only a modest increase in computational effort.
Heat transfer in laminar flow for a finned double - tube
International Nuclear Information System (INIS)
Colle, S.
1977-01-01
An analitical study of the steady-state heat transfer in laminar flow in finned double-tube heat exchangers is presented. The fins are plane, straight and continous, equally spaced and are fixed over the external surface of the inner tube. A constant peripheral temperature distribution is assumed to apply over the inner tube surface and each fin, and a constant peripheral heat flux is assumed to apply over the outer tube surface, while the overall heat flux is suposed to be uniform in the longitudinal direction of the duct. The prediction of the thermal performance of the finned double-tube is made by means of the relationship between the Nusselt number, the boundary conditions and the geometric characteristcs of the duct. (author) [pt
Analysis of flow induced vibration in heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Beek, A.W. van [Institute for Mechanical Constructions TNO, Delft (Netherlands)
1977-12-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
Analysis of flow induced vibration in heat exchangers
International Nuclear Information System (INIS)
Beek, A.W. van
1977-01-01
A description will be given of three different types of heat exchangers developed by the Dutch Nuclear Industry Group ''Neratoom'' in cooperation with TNO for the sodium-cooled fast breeder reactor SNR-300 at Kalkar. Moreover, the research related with flow induced vibrations carried out by TNO (Organization for Applied Scientific Research) will be presented. The flow induced forces on the tubes of the straight-tube steam generators were measured at the inlet and outlet section where partial crossflow occurs. With the measured flow induced forces the response of a tube was calculated as a function of the tube-to-supportbush clearances taking into account the non-linear damping effects from the sodium. The theoretical results showed that for this particular design no tube impact damage is to be expected which was confirmed later by a full scale experiment. Special attention will be devoted to the steam generator with helical-coil tube-bundles, where the sodium flows in a counter cross-flow over the tube-bundle. Extensive measurements of the power spectra of the flow induced forces were carried out since no information could be found in the literature. The vibration analysis will be presented and vibration modes of the entire bundle will be compared with experimentally obtained results. Finally a description of the vibration tests to be carried out on the intermediate heat exchanger (IHX) will be presented. (author)
On dryout heat flux and pressure drop of a submerged inductively heated bed flow from below
International Nuclear Information System (INIS)
Tsai, F.F.; Catton, I.
1983-01-01
An experimental investigation of dryout heat flux in a saturated porous medal with forced flow from below has been conducted using methanol as a coolant. The mass flux varied from 0 to 0.557 kg/m 2 sec. Particle sizes were 590-790 μm, 1.6 mm, 3.2 mm, and 4.8 mm. The dryout heat flux increases as the mass flux increases, and asymptotically goes to the total evaporation energy of the inlet flow. The pressure drop across the bed changed very rapidly near the dryout point due to the formation of dry zone
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Anomalous heat flow belt along the continental margin of Brazil
Hamza, Valiya M.; Vieira, Fabio P.; Silva, Raquel T. A.
2018-01-01
A comprehensive analysis of thermal gradient and heat flow data was carried out for sedimentary basins situated in the continental margin of Brazil (CMB). The results point to the existence of a narrow belt within CMB, where temperature gradients are higher than 30 °C/km and the heat flow is in excess of 70 mW/m2. This anomalous geothermal belt is confined between zones of relatively low to normal heat flow in the adjacent continental and oceanic regions. The width of the belt is somewhat variable, but most of it falls within the range of 100-300 km. The spatial extent is relatively large in the southern (in the basins of Pelotas, Santos and Campos) and northern (in the basins of Potiguar and Ceará) parts, when compared with those in the central parts (in the basins of South Bahia, Sergipe and Alagoas). The characteristics of heat flow anomalies appear to be compatible with those produced by thermal sources at depths in the lower crust. Hence, magma emplacement at the transition zone between lower crust and upper mantle is considered the likely mechanism producing such anomalies. Seismicity within the belt is relatively weak, with focal depths less than 10 km for most of the events. Such observations imply that "tectonic bonding" between continental and oceanic segments, at the transition zone of CMB, is relatively weak. Hence, it is proposed that passive margins like CMB be considered as constituting a type of plate boundary that is aseismic at sub-crustal levels, but allows for escape of significant amounts of earth's internal heat at shallow depths.
Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed
International Nuclear Information System (INIS)
Honda, Ryosuke; Umekawa, Hisashi; Ozawa, Mamoru
2009-01-01
Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.
Heat transfer and flow characteristics around a finned-tube bank heat exchanger in fluidized bed
Energy Technology Data Exchange (ETDEWEB)
Honda, Ryosuke [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Umekawa, Hisashi [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)], E-mail: umekawa@kansai-uac.jp; Ozawa, Mamoru [Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)
2009-06-21
Principal heat transfer mechanisms in a fluidized bed have been classified into three categories, i.e. solid convection, gas convection and radiation. Among these mechanisms, the solid convection is a dominant mechanism in the bubbling fluidized bed. This solid convection is substantially caused by the bubble movement, thus the visualization of the void fraction distribution becomes a very useful method to understand the characteristics of the fluidized-bed heat exchanger. In this study, the heat transfer coefficient and the void fraction around the heat transfer tube with annuler fin were measured. For the quantitative measurement of the void fraction, neutron radiography and image processing technique were employed. Owing to the existence of the annuler fin, the restriction of the particle movements was put. This restriction suppressed the disturbance caused by tubes, and the influence of the tube arrangement on the flow and heat transfer characteristics could be clearly expressed.
A high performance cocurrent-flow heat pipe for heat recovery applications
Saaski, E. W.; Hartl, J. C.
1980-01-01
By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.
Enhancing heat transfer in microchannel heat sinks using converging flow passages
International Nuclear Information System (INIS)
Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah
2015-01-01
Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel
Directory of Open Access Journals (Sweden)
Mikielewicz Dariusz
2014-09-01
Full Text Available In the paper a method developed earlier by authors is applied to calculations of pressure drop and heat transfer coefficient for flow boiling and also flow condensation for some recent data collected from literature for such fluids as R404a, R600a, R290, R32,R134a, R1234yf and other. The modification of interface shear stresses between flow boiling and flow condensation in annular flow structure are considered through incorporation of the so called blowing parameter. The shear stress between vapor phase and liquid phase is generally a function of nonisothermal effects. The mechanism of modification of shear stresses at the vapor-liquid interface has been presented in detail. In case of annular flow it contributes to thickening and thinning of the liquid film, which corresponds to condensation and boiling respectively. There is also a different influence of heat flux on the modification of shear stress in the bubbly flow structure, where it affects bubble nucleation. In that case the effect of applied heat flux is considered. As a result a modified form of the two-phase flow multiplier is obtained, in which the nonadiabatic effect is clearly pronounced.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Multipartite nonlocality distillation
International Nuclear Information System (INIS)
Hsu, Li-Yi; Wu, Keng-Shuo
2010-01-01
The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.
Heat Flow, Regional Geophysics and Lithosphere Structure In The Czech Republic
Safanda, J.; Cermak, V.; Kresl, M.; Dedecek, P.
Paper summarises and critically revises heat flow data that have been collected in the Czech Republic to date. The regional heat flow density map was prepared in view of all existing heat flow data completed with the similar in the surrounding countries and taking into consideration also temperature measurements in deep boreholes. Crustal temperature profiles were calculated by using the available geological information, results of deep seismic sounding and the laboratory data on radiogenic heat produc- tion and thermal conductivity. Special attention was paid to numerous temperature logs in two sedimentary basins, namely in the Cheb and Ostrava-Karvina coal basins, for which detailed heat flow patterns were proposed. Relationships between heat flow distribution and the crustal/lithosphere evolution, between heat flow and the heat pro- duction of the crustal rocks, heat flow and crustal thickness and the steady-state vs. transient heat transport are discussed.
Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces
Directory of Open Access Journals (Sweden)
Onur YEMENİCİ
2013-04-01
Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights
Heat transfer and fluid flow in nuclear systems
Fenech, Henri
1982-01-01
Heat Transfer and Fluid in Flow Nuclear Systems discusses topics that bridge the gap between the fundamental principles and the designed practices. The book is comprised of six chapters that cover analysis of the predicting thermal-hydraulics performance of large nuclear reactors and associated heat-exchangers or steam generators of various nuclear systems. Chapter 1 tackles the general considerations on thermal design and performance requirements of nuclear reactor cores. The second chapter deals with pressurized subcooled light water systems, and the third chapter covers boiling water reacto
Steady parallel flow in an evaporating fluid heated from sidewalls
International Nuclear Information System (INIS)
Das, Kausik S.
2009-01-01
Evaporation is ubiquitous in nature, but very few attempts have been made in the past to couple the effects of evaporation with fluid flow behavior. In this theoretical paper we have discussed the effects of evaporation on the dynamics of steady state thermocapillary convection in a two-dimensional rectangular container. The liquid is heated by differentially heated sidewalls and mass loss from the interface due to evaporation is compensated by the liquid entering into the container through a lower inlet, thus keeping the thickness of the liquid layer constant. We show that for an evaporating liquid one can obtain a plane parallel base state profile which depends on the evaporative mass flux.
Heat and mass transfer in porous cavity: Assisting flow
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.
International Nuclear Information System (INIS)
Peyghambarzadeh, S.M.; Sarafraz, M.M.; Vaeli, N.; Ameri, E.; Vatani, A.; Jamialahmadi, M.
2013-01-01
Highlights: ► The cooling performance of water and n-heptane is compared during subcooled flow boiling. ► Although n-heptane leaves the heat exchanger warmer it has a lower heat transfer coefficient. ► Flow rate, heat flux and degree of subcooling have direct effect on heat transfer coefficient. ► The predictions of some correlations are evaluated against experimental data. - Abstract: In this research, subcooled flow boiling heat transfer coefficients of pure n-heptane and distilled water at different operating conditions have been experimentally measured and compared. The heat exchanger consisted of vertical annulus which is heated from the inner cylindrical heater with variable heat flux (less than 140 kW/m 2 ). Heat flux is varied so that two different flow regimes from single phase forced convection to nucleate boiling condition are created. Meanwhile, liquid flow rate is changed in the range of 2.5 × 10 −5 –5.8 × 10 −5 m 3 /s to create laminar up to transition flow regimes. Three subcooling levels including 10, 20 and 30 °C are also considered. Experimental results demonstrated that subcooled flow boiling heat transfer coefficient increases when higher heat flux, higher liquid flow rate and greater subcooling level are applied. Furthermore, influence of the operating conditions on the bubbles generation on the heat transfer surface is also discussed. It is also shown that water is better cooling fluid in comparison with n-heptane
Two-phase flow and heat transfer under low gravity
Frost, W.
1981-01-01
Spacelab experiment to investigate two-phase flow patterns under gravity uses a water-air mixture experiment. Air and water are circulated through the system. The quality or the mixture or air-water is controlled. Photographs of the test section are made and at the same time pressure drop across the test section is measured. The data establishes a flow regime map under reduced gravity conditions with corresponding pressure drop correlations. The test section is also equipped with an electrical resistance heater in order to allow a flow boiling experiment to be carried out using Freon II. High-speed photographs of the test section are used to determine flow patterns. The temperature gradient and pressure drop along the duct can be measured. Thus, quality change can be measured, and heat transfer calculated.
Blood flow in curved pipe with radiative heat transfer
International Nuclear Information System (INIS)
Ogulu, A.; Bestman, A.R.
1992-03-01
Blood flow in a curved pipe such as the aorta is modelled in this study. The aorta is modelled as a curved pipe of slowly varying cross-section. Asymptotic series expansions about a small parameter δ, which is a measure of the curvature ratio is employed to obtain the velocity and temperature distributions. The study simulates the effect of radio-frequency heating, for instance during physiotherapy, on the flow of blood in the cardiovascular system assuming an external constant pressure gradient; and our results agree very well with results obtained by Pedley. (author). 9 refs, 2 figs
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
Energy Technology Data Exchange (ETDEWEB)
Limin, Zheng [Shanghai Nuclear Engineering Research and Design Inst., SH (China); Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms{sup -1} and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D{sub hy}=0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm{sup -2}s{sup -1} (water flow velocity, 5-15 ms{sup -1}); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within {+-}18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within {+-}16%. (author)
Critical heat flux of forced flow boiling in a narrow one-side heated rectangular flow channel
International Nuclear Information System (INIS)
Zheng Limin; Iguchi, Tadashi; Kureta, Masatoshi; Akimoto, Hajime.
1997-08-01
The present work deals with the critical heat flux (CHF) under subcooled flow boiling in a narrow one-side uniformly heated rectangular flow channel. The range of interest of parameters such as pressure, flow velocity and subcooling is around 0.1 MPa, 5-15 ms -1 and 50degC, respectively. The rectangular flow channel used is 50 mm long, 12 mm in width and 0.2 to 3 mm in height. Test conditions were selected by combination of the following parameters: Gap=0.2-3.0 mm (D hy =0.3934-4.8 mm); flow length, 50.0 mm; water mass flux, 4.94-14.82 Mgm -2 s -1 (water flow velocity, 5-15 ms -1 ); exit pressure, 0.1 MPa; inlet temperature, 50degC, inlet coolant subcooling, 50degC. Over 40 CHF stable data points were obtained. CHF increased with the gap and flow velocity in a non-linear fashion. HTC increased with flow velocity and decreasing gap. Based on the experimental results, an empirical correlation was developed, indicating the dependence of CHF on the gap and flow velocity. All of data points predicted within ±18% error band for the present experimental data. On the other hand, another similitude-based correlation was also developed, indicating the dependence of Boiling number (Bo) on Reynolds number (Re) and the variable of Gap/La, where La is a characteristic length known as Laplace capillary constant. For the limited present experimental data, all of data points were predicted within ±16%. (author)
International Nuclear Information System (INIS)
Abou-Ziyan, Hosny Z.
2004-01-01
This paper presents the results of an experimental investigation of heat transfer from the heated bottom side of tee cross-section ducts to an internally flowing fluid. The idea of this work is derived from the cooling of critical areas in the cylinder heads of internal combustion engines. Fully developed single phase forced convection and subcooled flow boiling heat transfer data are reported. Six T-ducts of different width and height aspect ratios are tested with distilled water at velocities of 1, 2 and 3 m/s for bulk temperatures of 60 and 80 deg. C, while the heat flux was varied from about 80 to 700 kW/m 2 . The achieved data cover Reynolds numbers in the range of 5.22 x 10 4 to 2.36 x 10 5 , Prandtl numbers in the range from 2.2 to 3.0, duct width aspect ratio between 2.19 and 3.13 and duct height aspect ratio from 0.69 to 2.0. The results revealed that the increase in either the width or height aspect ratio of the T-ducts enhances the convection heat transfer coefficients and the boiling heat fluxes considerably. The following comparisons are provided for coolant velocity of 2 m/s, bulk temperature of 60 deg. C, wall superheat of 20 K and wall to bulk temperature difference of 20 K. As the width aspect ratio increases by 43%, the convection heat transfer coefficient and the boiling heat flux increase by 27% and 39%, respectively. An increase in the height aspect ratio by 290% enhances the convection heat transfer coefficient and the boiling heat fluxes by 82% and 103%, respectively. When the coolant velocity changes from 1 to 2 m/s, the heat transfer coefficient increases by 60% and the boiling heat flux rises by 62-98% for the various tested ducts. The convection heat transfer coefficient increases by 12% and the boiling heat flux decreases by 31% as the bulk fluid temperature rises from 60 to 80 deg. C. A correlation was developed for Nusselt number as a function of Reynolds number, Prandtl number, viscosity ratio and some aspect ratios of the T-duct
International Nuclear Information System (INIS)
Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo
2017-01-01
Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and
Fluid flow with heat transfer in a fix-bed
International Nuclear Information System (INIS)
Gasparetto, C.A.
1982-01-01
Tests with two different fluids, water and air, flowing in a bed with irregular particles of silica were done. The bed was confined inside a tube, which was heated by an external jacket. The bed is characterized by permeability and porosity. The tests showed a wall effect face to the relation between the tube diameter and the medium dimension of the particles. The results are presented as a relation between Nusselt number / Peclet number. (E.G.) [pt
Heat Flow In Cylindrical Bodies During Laser Surface Transformation Hardening
Sandven, Ole A.
1980-01-01
A mathematical model for the transient heat flow in cylindrical specimens is presented. The model predicts the temperature distribution in the vicinity of a moving ring-shaped laser spot around the periphery of the outer surface of a cylinder, or the inner surface of a hollow cylinder. It can be used to predict the depth of case in laser surface transformation hardening. The validity of the model is tested against experimental results obtained on SAE 4140 steel.
Nonstationary heat flow in the piston of the turbocharged engine
Directory of Open Access Journals (Sweden)
Piotr GUSTOF
2010-01-01
Full Text Available In this study the numeric computations of nonstationary heat flow in form of temperature distribution on characteristic surfaces of the piston of the turbocharged engine at the beginning phase its work was presented. The computations were performed for fragmentary load engine by means of the two-zone combustion model, the boundary conditions of III kind and the finite elements method (FEM by using of COSMOS/M program.
Heat and Groundwater Flow in the San Gabriel Mountains, California
Newman, A. A.; Becker, M.; Laton, W. R., Jr.
2017-12-01
Groundwater flow paths in mountainous terrain often vary widely in both time and space. Such systems remain difficult to characterize due to fracture-dominated flow paths, high topographic relief, and sparse hydrologic data. We develop a hydrogeologic conceptual model of the Western San Gabriel Mountains in Southern California based on geophysical, thermal, and hydraulic head data. Boreholes are located along the San Gabriel Fault Zone (SGFZ) and cover a wide range of elevations to capture the heterogeneity of the hydrogeologic system. Long term (2016-2017) monitoring of temperature and hydraulic head was carried out in four shallow (300-600m depth) boreholes within the study area using fiber-optic distributed temperature sensing (DTS). Borehole temperature profiles were used to assess the regional groundwater flow system and local flows in fractures intersecting the borehole. DTS temperature profiles were compared with available borehole geophysical logs and head measurements collected with grouted vibrating wire pressure transducers (VWPT). Spatial and temporal variations in borehole temperature profiles suggest that advective heat transfer due to fluid flow affected the subsurface thermal regime. Thermal evidence of groundwater recharge and/or discharge and flow through discrete fractures was found in all four boreholes. Analysis of temporal changes to the flow system in response to seasonal and drilling-induced hydraulic forcing was useful in reducing ambiguities in noisy datasets and estimating interborehole relationships. Acoustic televiewer logs indicate fractures were primarily concentrated in densely fractured intervals, and only a minor decrease of fracture density was observed with depth. Anomalously high hydraulic gradients across the SGFZ suggest that the feature is a potential barrier to lateral flow. However, transient thermal anomalies consistent with groundwater flow within the SGFZ indicate this feature may be a potential conduit to vertical flow
Density based topology optimization of turbulent flow heat transfer systems
DEFF Research Database (Denmark)
Dilgen, Sümer Bartug; Dilgen, Cetin Batur; Fuhrman, David R.
2018-01-01
The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective and the con...... in the optimization process, while also demonstrating extension of the methodology to include coupling of heat transfer with turbulent flows.......The focus of this article is on topology optimization of heat sinks with turbulent forced convection. The goal is to demonstrate the extendibility, and the scalability of a previously developed fluid solver to coupled multi-physics and large 3D problems. The gradients of the objective...
SIMSOL, Multiphase Fluid and Heat Flow in Porous Media
International Nuclear Information System (INIS)
Doughty, C.
2001-01-01
1 - Description of program or function: SIMSOL calculates transient fluid and heat flow for a uniform geologic medium containing water (in both liquid and vapor phases) and air, surrounding a constant- strength linear heat source. 2 - Method of solution: SIMSOL simplifies the partial differential governing equations involving time and a radial spatial coordinate to ordinary differential equations via a similarity transformation. The resulting coupled ordinary differential equations form a two- point boundary problem which is numerically integrated using an iterative Newton-Raphson scheme. 3 - Restrictions on the complexity of the problem: SIMSOL is limited to problems with highly idealized geometry: radial symmetry, uniform material properties and initial conditions, infinite radial extent, constant-strength heat source
Prediction of critical heat flux in vertical pipe flow
International Nuclear Information System (INIS)
Levy, S.; Healzer, J.M.; Abdollahian, D.
1981-01-01
A previously developed semi-empirical model for adiabatic two-phase annular flow ix extended to predict the critical heat flux (CHF) in a vertical pipe. The model exhibits a sharply declining curve of CHF versus steam quality (X) at low X, and is relatively independent of the heat flux distribution. In this region, vaporization of the liquid film controls. At high X, net deposition upon the liquid film becomes important and CHF versus X flattens considerably. In this zone, CHF is dependent upon the heat flux distribution. Model predictions are compared to test data and an empirical correlation. The agreement is generally good if one employs previously reported mass transfer coefficients. (orig.)
Restoration of the Apollo Heat Flow Experiments Metadata
Nagihara, S.; Stephens, M. K.; Taylor, P. T.; Williams, D. R.; Hills, H. K.; Nakamura, Y.
2015-01-01
Geothermal heat flow probes were deployed on the Apollo 15 and 17 missions as part of the Apollo Lunar Surface Experiments Package (ALSEP). At each landing site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The holes were 1- and 1.5-m deep at the Apollo 15 site and 2.5-m deep at the Apollo 17 sites. The probes monitored surface temperature and subsurface temperatures at different depths. At the Apollo 15 site, the monitoring continued from July 1971 to January 1977. At the Apollo 17 site, it did from December 1972 to September 1977. Based on the observations made through December 1974, Marcus Langseth, the principal investigator of the heat flow experiments (HFE), determined the thermal conductivity of the lunar regolith by mathematically modeling how the seasonal temperature fluctuation propagated down through the regolith. He also determined the temperature unaffected by diurnal and seasonal thermal waves of the regolith at different depths, which yielded the geothermal gradient. By multiplying the thermal gradient and the thermal conductivity, Langseth obtained the endogenic heat flow of the Moon as 21 mW/m(exp 2) at Site 15 and 16 mW/m(exp 2) at Site 17.
Heat and mass transfer from the mantle: heat flow and He-isotope constraints
Directory of Open Access Journals (Sweden)
B. G. Polyak
2005-06-01
Full Text Available Terrestrial heat flow density, q, is inversely correlated with the age, t, of tectono-magmatic activity in the Earth's crust (Polyak and Smirnov, 1966; etc.. «Heat flow-age dependence» indicates unknown temporal heat sources in the interior considered a priori as the mantle-derived diapirs. The validity of this hypothesis is demonstrated by studying the helium isotope ratio, 3He/4He = R, in subsurface fluids. This study discovered the positive correlation between the regionally averaged (background estimations of R- and q-values (Polyak et al., 1979a. Such a correlation manifests itself in both pan-regional scales (Norhtern Eurasia and separate regions, e.g., Japan (Sano et al., 1982, Eger Graben (Polyak et al., 1985 Eastern China rifts (Du, 1992, Southern Italy (Italiano et al., 2000, and elsewhere. The R-q relation indicates a coupled heat and mass transfer from the mantle into the crust. From considerations of heat-mass budget this transfer can be provided by the flux consisting of silicate matter rather than He or other volatiles. This conclusion is confirmed by the correlation between 3He/ 4He and 87Sr/86Sr ratios in the products of the volcanic and hydrothermal activity in Italy (Polyak et al., 1979b; Parello et al., 2000 and other places. Migration of any substance through geotemperature field transports thermal energy accumulated within this substance, i.e. represents heat and mass transfer. Therefore, only the coupled analysis of both material and energy aspects of this transfer makes it possible to characterise the process adequately and to decipher an origin of terrestrial heat flow observed in upper parts of the earth crust. An attempt of such kind is made in this paper.
Development of low flow critical heat flux correlation for HANARO
International Nuclear Information System (INIS)
Park, Cheol; Chae, Hee Taek; Hang, Gee Yang.
1997-07-01
A low flow CHF correlation was developed for the safe operation of HANARO during the natural circulation cooling and the assessment of safety during the low flow condition of accident. The analytical model was applied to estimate the heat flux and the temperature distributions along the periphery of the fin at CHF conditions, and the predicted wall temperature at the sheath between the fins by the model agreed well with the measured one. The parametric trends of the CHF data for the finned geometry agreed with the general understanding from the previous studies for the unfinned annulus or tube geometries. It is revealed that the fin does not affect the CHF for low flow condition, although it increase the critical power due to larger heat transfer area. As the existing CHF correlation is proposed to predict the CHF for both finned and unfinned geometries at low flow and low pressure conditions. The developed correlation predicts the experimental CHF data with RMS errors of 13.7 %. (author). 19 refs., 3 tabs., 23 figs
Development of low flow critical heat flux correlation for HANARO
Energy Technology Data Exchange (ETDEWEB)
Park, Cheol; Chae, Hee Taek; Hang, Gee Yang
1997-07-01
A low flow CHF correlation was developed for the safe operation of HANARO during the natural circulation cooling and the assessment of safety during the low flow condition of accident. The analytical model was applied to estimate the heat flux and the temperature distributions along the periphery of the fin at CHF conditions, and the predicted wall temperature at the sheath between the fins by the model agreed well with the measured one. The parametric trends of the CHF data for the finned geometry agreed with the general understanding from the previous studies for the unfinned annulus or tube geometries. It is revealed that the fin does not affect the CHF for low flow condition, although it increase the critical power due to larger heat transfer area. As the existing CHF correlation is proposed to predict the CHF for both finned and unfinned geometries at low flow and low pressure conditions. The developed correlation predicts the experimental CHF data with RMS errors of 13.7 %. (author). 19 refs., 3 tabs., 23 figs.
Modelling of flow and heat transfer in PV cooling channels
Energy Technology Data Exchange (ETDEWEB)
Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering
2005-07-01
Under sunny conditions, the temperature of photovoltaic (PV) modules can be 20 to 30 degrees C above the ambient air temperature. This affects the performance of PV modules, particularly in regions with hot climates. For silicon solar cells, the maximum power decreases between 0.4 and 0.5 per cent for every degree C of temperature increase above a reference value. In an effort to address this issue, this experimental and numerical study examined an active PV panel evaporative cooling scheme that is typically used in hot arid climates. The cooling system circulated cool air behind the PV modules, extracting heat and lowering solar cell temperature. A fluid dynamic and thermal model of the combined system was developed using the EES program in order to study the configuration of the cooling channel and the characteristics of the cooling flow. Heat transfer and flow characteristics in the cooling channel were then calculated along with pressure drop and fan power associated with the air-circulation. The net power output was also calculated. The objective was to design a cost efficient cooling system and to optimize its flow and pressure drop in order to maximize power output. The study demonstrated how the performance of the PV panel is influenced by the geometry of the cooling channel, the inlet air temperature and the air flow rate. 2 refs.
Falling film flow, heat transfer and breakdown on horizontal tubes
International Nuclear Information System (INIS)
Rogers, J.T.
1980-11-01
Knowledge of falling film flow and heat transfer characteristics on horizontal tubes is required in the assessment of certain CANDU reactor accident sequences for those CANDU reactors which use moderator dump as one of the shut-down mechanisms. In these reactors, subsequent cooling of the calandria tubes is provided by falling films produced by sprays. This report describes studies of falling film flow and heat transfer characteristics on horizontal tubes. Analyses using integral methods are given for laminar and turbulent flow, ignoring and accounting for momentum effects in the film. Preliminary experiments on film flow stability on horizontal tubes are described and various mechanisms of film breakdown are examined. The work described in this report shows that in LOCA with indefinitely delayed ECI in the NPD or Douglas Point (at 70 percent power) reactors, the falling films on the calandria tubes will not be disrupted by any of the mechanisms considered, provided that the pressure tubes do not sag onto the calandria tubes. However, should the pressure tubes sag onto the calandria tubes, film disruption will probably occur
Natural convection heat transfer between vertical channel with flow resistance at the lower end
International Nuclear Information System (INIS)
Iwamoto, S.; Nishimura, S.; Ishihara, I.
2003-01-01
For natural convection in the geometrically complicated channel, the convection flow is suppressed by flow resistance due to such channel itself and the lopsided flow may take place. This could result in serious influences on the heat transfer in the channel. In order to investigate fundamentally the natural convection flow and heat transfer in such the channel, the vertical channel in which wall was heated with uniform heat flux and the flow resistance was given by small clearance between the lower end of channel and a wide horizontal floor. Flow pattern was observed by illuminating smoke filled in the channel and heat transfer rate was measured. (author)
Interfacial heat transfer in countercurrent flows of steam and water
International Nuclear Information System (INIS)
Megahed, M.M.
1987-04-01
A study was conducted to examine the departure from equilibrium conditions with respect to direct contact condensation. A simple analytical model, which used an equilibrium factor, K, was derived. The model was structured to represent the physical dimensions of a nuclear reactor downcomer annulus, water subcooling, wall temperature, and water flow rate. In a two step process the model was first used to isolate the average interfacial heat transfer coefficient from vertical countercurrent steam/water data of Cook et al., with the aid of a Stanton number correlation. In the second step the model was assessed by regeneration of measured steam flow rates in the experiments by Cook et al., and an additional experiment of Kim. This report documents the analytical model, the derived Stanton number correlation, and the comparison of the calculated and measured steam flow rates by which the accuracy of the model was assessed
Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions
International Nuclear Information System (INIS)
Le Corre, Jean-Marie; Yao, Shi-Chune; Amon, Cristina H.
2010-01-01
A literature review of critical heat flux (CHF) experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available experimental information. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. Even though the selected concept has not received much attention (in term or theoretical developments and applications) as compared to other more popular DNB models, its basis have often been cited by experimental investigators and is considered by the authors as the 'most-likely' mechanism based on the literature review and analysis performed in this work. The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow and has been numerically implemented and validated in bubbly flow and coupled with one- and three-dimensional (CFD) two-phase flow codes, in a companion paper. [Le Corre, J.M., Yao, S.C., Amon, C.H., in this issue. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one and three-dimensional computer codes. Nucl. Eng. Des.].
Directory of Open Access Journals (Sweden)
Sabanskis A.
2016-04-01
Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.
Flow and heat transfer behaviour of nanofluids in microchannels
Directory of Open Access Journals (Sweden)
James Bowers
2018-04-01
Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity
Heat transfer and flow in solar energy and bioenergy systems
Xu, Ben
The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae
Energy Technology Data Exchange (ETDEWEB)
Li, Zhigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Huai, Xiulan; Tao, Yujia; Chen, Huanzhuo [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)
2007-12-15
Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with D{sub h} of 0.333 mm at Re of 101-1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower f{sub app}, but higher convective heat transfer coefficient h{sub z} and Nu{sub z}. Compared with the average property method, the variable property method has higher f{sub app}Re{sub ave} and lower h{sub z} at the beginning, but lower f{sub app}Re{sub ave} and higher h{sub z} at the later section of the channel. The calculated Nu{sub ave} agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work. (author)
A generalized nonlocal vector calculus
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Modeling of a District Heating System and Optimal Heat-Power Flow
Directory of Open Access Journals (Sweden)
Wentao Yang
2018-04-01
Full Text Available With ever-growing interconnections of various kinds of energy sources, the coupling between a power distribution system (PDS and a district heating system (DHS has been progressively intensified. Thus, it is becoming more and more important to take the PDS and the DHS as a whole in energy flow analysis. Given this background, a steady state model of DHS is first presented with hydraulic and thermal sub-models included. Structurally, the presented DHS model is composed of three major parts, i.e., the straight pipe, four kinds of local pipes, and the radiator. The impacts of pipeline parameters and the environment temperature on heat losses and pressure losses are then examined. The term “heat-power flow” is next defined, and the optimal heat-power flow (OHPF model formulated as a quadratic planning problem, in which the objective is to minimize energy losses, including the heat losses and active power losses, and both the operational constraints of PDS and DHS are respected. The developed OHPF model is solved by the well-established IPOPT (Interior Point OPTimizer commercial solver, which is based on the YALMIP/MATLAB toolbox. Finally, two sample systems are served for demonstrating the characteristics of the proposed models.
Quantum Nonlocality and Beyond: Limits from Nonlocal Computation
Linden, Noah; Popescu, Sandu; Short, Anthony J.; Winter, Andreas
2007-11-01
We address the problem of “nonlocal computation,” in which separated parties must compute a function without any individual learning anything about the inputs. Surprisingly, entanglement provides no benefit over local classical strategies for such tasks, yet stronger nonlocal correlations allow perfect success. This provides intriguing insights into the limits of quantum information processing, the nature of quantum nonlocality, and the differences between quantum and stronger-than-quantum nonlocal correlations.
Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes
Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.
The onset of flow instability for a downward flow of a non-boiling heated liquid
International Nuclear Information System (INIS)
Babelli, Ibrahim; Ishii, Mamoru
1999-01-01
A procedure for predicting the onset of flow instability (OFI) in downward flows at low-pressure and low-flow conditions without boiling is presented in this paper. It is generally accepted that the onset of significant void in subcooled boiling precedes, and is a precondition to, the occurrence of static flow instability. A detailed analysis of the pressure drop components for a downward flow in a heated channel reveals the possibility of unstable transition from single-phase flow to high-quality two-phase flow, i.e., flow excursion. Low flow rate and high subcooling are the two important conditions for the occurrence of this type of instability. The unstable transition occurs when the resistance to the downward flow caused by local (orifice), frictional, and thermal expansion pressure drops equalizes the driving force of the gravitational pressure drop. The inclusion of the thermal expansion pressure drop is essential to account for this type of transition. Experimental data are yet to be produced to verify the prediction of the present analysis. (author)
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Entropy generation of nanofluid flow in a microchannel heat sink
Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram
2018-06-01
Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.
Fluid flow and heat transfer modeling for castings
International Nuclear Information System (INIS)
Domanus, H.M.; Liu, Y.Y.; Sha, W.T.
1986-01-01
Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs
Flow visualization study of inverted annular flow of post dryout heat transfer region
International Nuclear Information System (INIS)
Ishii, M.; De Jarlais, G.
1985-01-01
The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used
Turbulence modeling and surface heat transfer in a stagnation flow region
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
Directory of Open Access Journals (Sweden)
Imad Khan
Full Text Available Current work highlights the computational aspects of MHD Carreau nanofluid flow over an inclined stretching cylinder with convective boundary conditions and Joule heating. The mathematical modeling of physical problem yields nonlinear set of partial differential equations. A suitable scaling group of variables is employed on modeled equations to convert them into non-dimensional form. The integration scheme Runge-Kutta-Fehlberg on the behalf of shooting technique is utilized to solve attained set of equations. The interesting aspects of physical problem (linear momentum, energy and nanoparticles concentration are elaborated under the different parametric conditions through graphical and tabular manners. Additionally, the quantities (local skin friction coefficient, local Nusselt number and local Sherwood number which are responsible to dig out the physical phenomena in the vicinity of stretched surface are computed and delineated by varying controlling flow parameters. Keywords: MHD, Carreau nanofluid, Inclined stretching cylinder, Joule heating, Shooting technique
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
Analytical methods for heat transfer and fluid flow problems
Weigand, Bernhard
2015-01-01
This book describes useful analytical methods by applying them to real-world problems rather than solving the usual over-simplified classroom problems. The book demonstrates the applicability of analytical methods even for complex problems and guides the reader to a more intuitive understanding of approaches and solutions. Although the solution of Partial Differential Equations by numerical methods is the standard practice in industries, analytical methods are still important for the critical assessment of results derived from advanced computer simulations and the improvement of the underlying numerical techniques. Literature devoted to analytical methods, however, often focuses on theoretical and mathematical aspects and is therefore useless to most engineers. Analytical Methods for Heat Transfer and Fluid Flow Problems addresses engineers and engineering students. The second edition has been updated, the chapters on non-linear problems and on axial heat conduction problems were extended. And worked out exam...
Large eddy simulations of turbulent flows with heat transfer
International Nuclear Information System (INIS)
Chatelain, Alexandre
2004-01-01
LES of turbulent flows with heat transfer was used within the framework of conjugate heat transfer problems. The objective of this work lies not only in identifying the various elements likely to impair temperature fluctuations estimations at the fluid/solid interface but also to introduce adequate wall modeling. The choice of a proper convection scheme for the transport of passive scalars led to the adoption of a high order upwind scheme with slope limiter. The use of classical wall models having shown some weaknesses as for the estimation of parietal temperature fluctuations, two new approaches are proposed and tested. The first one relies on a complete resolution of the Navier-Stokes equations on a refined grid close to the wall making it possible to rebuild the temperature fluctuations near the wall. The second one relies on the simultaneous and one dimensional resolution of a turbulent boundary layer equation and a variance transport equation near the wall. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Kimura, Tetsuji [Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University,Lancaster LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands); Noumi, Toshifumi [Institute for Advanced Study, Hong Kong University of Science and Technology,Clear Water Bay (Hong Kong); Department of Physics, Kobe University,Kobe 657-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan)
2016-10-05
We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Heat transfer to MHD oscillatory dusty fluid flow in a channel filled ...
Indian Academy of Sciences (India)
The flow of fluids through porous media has become ... convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub- ... Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in.
Energy Technology Data Exchange (ETDEWEB)
El-Sebaii, A.A. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt)]. E-mail: aasebaii@yahoo.com; Aboul-Enein, S. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt); Ramadan, M.R.I. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt); Khallaf, A.M. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt)
2006-05-15
The thermal performance of a shallow solar pond (SSP) under an open cycle continuous flow heating mode for heat extraction has been investigated. A serpentine heat exchanger (HE), either welded to the absorber plate or immersed in the pond water, has been used for extracting the heat. Suitable computer programs have been developed based on analytical solutions of the energy balance equations for the various elements of the SSP in the presence of the HE. Numerical calculations have been performed to study the effect of different operational and configurational parameters on the pond performance. In order to improve the pond performance, optimization of the various dimensions of the pond with the HE has been performed. The effects of the design parameters of the HE's tube, i.e. length L{sub he}, diameter D and mass flow rate m-bar {sub f} of the fluid flowing through the HE, on the pond performance have been investigated. The outlet temperature of the HE's fluid T{sub fo} is found to increase with increase of the HE length L{sub he}, and it decreases with increase of the mass flow rate of the HE's fluid m-bar {sub f} up to typical values for these parameters. Typical values for L{sub he} and m-bar {sub f} are found to be 4m and 0.004kg/s beyond which the change in T{sub fo} becomes insignificant. Experiments have been performed for the pond under different operational conditions with a HE welded to the absorber plate. To validate the proposed mathematical models, comparisons between experimental and theoretical results have been performed. Good agreement has been achieved.
Energy Technology Data Exchange (ETDEWEB)
Park, Chun Dong; Lee, Dong Hyun; Park, Byung-Sik; Choi, Jaejoon [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)
2017-02-15
In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST k-ω turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, S{sub f}, 0.3.
Magnetohydrodynamic flow and heat transfer around a heated cylinder of arbitrary conductivity
Tassone, A.; Nobili, M.; Caruso, G.
2017-11-01
The interaction of the liquid metal with the plasma confinement magnetic field constitutes a challenge for the design of fusion reactor blankets, due to the arise of MHD effects: increased pressure drops, heat transfer suppression, etc. To overcome these issues, a dielectric fluid can be employed as coolant for the breeding zone. A typical configuration involves pipes transverse to the liquid metal flow direction. This numerical study is conducted to assess the influence of pipe conductivity on the MHD flow and heat transfer. The CFD code ANSYS CFX was employed for this purpose. The fluid is assumed to be bounded by rectangular walls with non-uniform thickness and subject to a skewed magnetic field with the main component aligned with the cylinder axis. The simulations were restricted to Re = (20; 40) and M = (10; 50). Three different scenarios for the obstacle were considered: perfectly insulating, finite conductivity and perfectly conducting. The electrical conductivity was found to affect the channel pressure penalty due to the obstacle insertion only for M = 10 and just for the two limiting cases. A general increment of the heat transfer with M was found due to the tendency of the magnetic field to equalize the flow rate between the sub-channels individuated by the pipe. The best results were obtained with the insulating pipe, due to the reduced electromagnetic drag. The generation of counter-rotating vortices close to the lateral duct walls was observed for M = 50 and perfectly conducting pipe as a result of the modified currents distribution.
Summary of flow and heat transfer in RPV under PTS
International Nuclear Information System (INIS)
Lu Donghua; Wang Haijun; Chen Tingkuan; Luo Yushan
2003-01-01
PTS under loss of coolant accident (LOCA) has great effect on the safety of RPV. Many research works focusing on flow and heat transfer in RPV under PTS have been done in developed countries for many years, and a lot of results have been got both on experiment and numerical simulation. The safety of nuclear power plant is enhanced greatly by these research works. With the developing of nuclear power technology in China, RPV integration under PTS has been studied. The author summarizes research works at home and abroad in recent years. The problems existed in present work and research direction in the future are discussed
Heat Transfer and Fluid Flow in Naturally Ventilated Greenhouses
Directory of Open Access Journals (Sweden)
M. Elashmawy
2017-08-01
Full Text Available In this paper, heat transfer and fluid flow in naturally ventilated greenhouses are studied numerically for tow configuration according to the number and positions of the opening. The equations governing the phenomenon are developed using the stream function-vorticity formalism and solved using the finite volume method. The aim of the study is to investigate how buoyancy forces inﬂuence airﬂow and temperature patterns inside the greenhouse. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is ﬁxed at Pr=0.71. Results are reported in terms of stream function, isotherms and average Nusselt number. It is found that the flow structure is sensitive to the value of Rayleigh number and the number of openings. Also, that using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross-airflow inside the greenhouse.
Numerical simulation of magnetohydrodynamic (MHD) flow with internal heat generation
International Nuclear Information System (INIS)
Bokade, Vipin; Bhandarkar, U.V.; Bodi, Kowsik
2016-01-01
A strong magnetic field is used to confine the plasma in a fusion reactor. This magnetic field also affects the flow of Lead-Lithium (breeder/coolant) in the breeding blanket. So it is important to study MHD flow of Lead-Lithium (Pb-Li). Open-source toolbox, OpenFOAM, is used to study single phase behaviour of Pb-Li. As the induced magnetic field is very small, Ni et al. electric potential algorithm is employed in OpenFOAM and validated with analytical results. This solver can also solve the temperature field with heat source term. Simulations are carried out in 2D straight channel for various values of Hartmann Number ranging from 100 to 5000 and velocity profile, temperature, current density and pressure drop are studied. (author)
Turbulent flow heat transfer in ET-RR-1
International Nuclear Information System (INIS)
Khattab, M.; Mina, A.R.
1990-01-01
In nuclear reactors the effect of heat transfer coefficient, which depends on the constant C. Is primordial in calculating the clad surface temperatures. To determine the constant C of ET-RR-1 fuel bundles based on in-pile measurements different well known and recommended values of C are verified. A computer program is written to calculate steady thermal core characteristics at different operating conditions. The total flow rate is distributed considering same pressure drop across the core irrespective of bundle location. The total reactor power is readily distributed as Bessel function. The flow and power per bundle are equally distributed among the fuel rods irrespective of their positions inside the bundle. It is found that the constant C equals 0.047 gives acceptable compatibility between measurements and calculations. The maximum clad surface temperature is shifted from the core center
Couette flow regimes with heat transfer in rarefied gas
Energy Technology Data Exchange (ETDEWEB)
Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)
2013-06-15
Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.
Flow regimes and heat transfer in vertical narrow annuli
International Nuclear Information System (INIS)
Ulke, A.; Goldberg, I.
1993-01-01
In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ''isolated'' bubbles, ''coalesced'' bubbles and liquid deficient regions have been defined
CFD Study of Deteriorated Turbulent Heat Transfer in Upward Flow
International Nuclear Information System (INIS)
Nietiadi, Yohanes Setiawan; Lee, Jeong Ik; Addad, Yacine
2014-01-01
DTHT regime can be induced by two effects: buoyancy and acceleration. Apart from these two deteriorating effects, another unique behavior of fluid in the DTHT regime is that the convective heat transfer rate will continue to deteriorate until it reaches certain point. The downstream of this point, is known as the recovery region, where the convective heat transfer rate returns back to the high values by recovering turbulence. We called this phenomena as re-turbulization.. The map of the DTHT regime can be seen from fig. 2, where the x-axis is the buoyancy parameter and y-axis is the acceleration parameter which is the agreed governing non-dimensional numbers among the researchers to illustrate the phenomena. The Buoyancy parameter is defind in Eq. (1) and the acceleration parameter is defined in Eq. (2), respectively. The threshold value for both effects to move from the forced turbulent heat transfer to the DTHT regime are found to be Bo* ≥ 2x10 -6 and Kv ≥ 2.5x10 -6 in the previous works. Bo * =Gr q /Re 3 '. 425 Pr 0 '. 8 (1). K v =4q + /Re (2). Many experiments and simulation have been done to investigate this phenomenon and the boundary of the regime. However, very limited number of experiment was conducted in the regime where buoyancy effect and acceleration effect are in the same order of magnitude and high enough to cause DTHT (mixed DTHT). Some important experimental researches that have been done in the gas DTHT regime is Lee et al. who investigated the heat transfer of gas flow in the range of buoyancy parameter from 3x10 -9 to 10 -5 and acceleration parameter span from 6x10 -8 to 5x10 -6 and presented the behavior of Nusselt number ratio from the experiment as fig. 3 and fig. 4. This paper will discuss a Computational Fluid Dynamics analysis on DTHT by assuming hypothetical boundary conditions especially on the mixed DTHT regime. It has been found that a gas cooled fast reactor has a tendency to operate in the Deteriorated Turbulent Heat
The effect of buoyancy on flow and heat transfer in curved pipes
Mochizuki, Munekazu; Ishigaki, Hiroshi; 望月 宗和; 石垣 博
1994-01-01
Fully developed laminar flow in a heated horizontal curved pipe is studied numerically. The thermal boundary conditions at the wall are uniform wall heat flux axially and uniform wall temperature peripherally. Flow and heat transfer are governed by Dean number, Prandtl number and buoyancy number. Detailed prediction of the friction factor, average heat transfer rate, velocity profile, temperature profile and secondary-flow streamlines are given.
Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition
Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.
1995-01-01
We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.
William T. Simpson
2004-01-01
Equations for a two-dimensional finite difference heat flow analysis were developed and applied to ponderosa pine and Douglas-fir square timbers to calculate the time required to heat the center of the squares to target temperature. The squares were solid piled, which made their surfaces inaccessible to the heating air, and thus surface temperatures failed to attain...
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Study on Gas-liquid Falling Film Flow in Internal Heat Integrated Distillation Column
Liu, Chong
2017-10-01
Gas-liquid internally heat integrated distillation column falling film flow with nonlinear characteristics, study on gas liquid falling film flow regulation control law, can reduce emissions of the distillation column, and it can improve the quality of products. According to the distribution of gas-liquid mass balance internally heat integrated distillation column independent region, distribution model of heat transfer coefficient of building internal heat integrated distillation tower is obtained liquid distillation falling film flow in the saturated vapour pressure of liquid water balance, using heat transfer equation and energy equation to balance the relationship between the circulating iterative gas-liquid falling film flow area, flow parameter information, at a given temperature, pressure conditions, gas-liquid flow falling film theory makes the optimal parameters to achieve the best fitting value with the measured values. The results show that the geometric gas-liquid internally heat integrated distillation column falling film flow heat exchange area and import column thermostat, the average temperature has significant. The positive correlation between the heat exchanger tube entrance due to temperature difference between inside and outside, the heat flux is larger, with the increase of internal heat integrated distillation column temperature, the slope decreases its temperature rise, which accurately describes the internal gas-liquid heat integrated distillation tower falling film flow regularity, take appropriate measures to promote the enhancement of heat transfer. It can enhance the overall efficiency of the heat exchanger.
Estimation of respiratory heat flows in prediction of heat strain among Taiwanese steel workers.
Chen, Wang-Yi; Juang, Yow-Jer; Hsieh, Jung-Yu; Tsai, Perng-Jy; Chen, Chen-Peng
2017-01-01
International Organization for Standardization 7933 standard provides evaluation of required sweat rate (RSR) and predicted heat strain (PHS). This study examined and validated the approximations in these models estimating respiratory heat flows (RHFs) via convection (C res ) and evaporation (E res ) for application to Taiwanese foundry workers. The influence of change in RHF approximation to the validity of heat strain prediction in these models was also evaluated. The metabolic energy consumption and physiological quantities of these workers performing at different workloads under elevated wet-bulb globe temperature (30.3 ± 2.5 °C) were measured on-site and used in the calculation of RHFs and indices of heat strain. As the results show, the RSR model overestimated the C res for Taiwanese workers by approximately 3 % and underestimated the E res by 8 %. The C res approximation in the PHS model closely predicted the convective RHF, while the E res approximation over-predicted by 11 %. Linear regressions provided better fit in C res approximation (R 2 = 0.96) than in E res approximation (R 2 ≤ 0.85) in both models. The predicted C res deviated increasingly from the observed value when the WBGT reached 35 °C. The deviations of RHFs observed for the workers from those predicted using the RSR or PHS models did not significantly alter the heat loss via the skin, as the RHFs were in general of a level less than 5 % of the metabolic heat consumption. Validation of these approximations considering thermo-physiological responses of local workers is necessary for application in scenarios of significant heat exposure.
Evidence and concepts for nonlocal transport
International Nuclear Information System (INIS)
Callen, J.D.; Kissick, M.W.
1997-08-01
Up until a few years ago, most transient transport studies observed primarily diffusive plasma transport responses to fast, localized perturbations. Recently, a number of experiments have, in addition, observed nonlocal electron heat responses. Most remarkably, in cold pulse experiments the abrupt edge cooling via radiative processes can induce both a diffusive cooling response moving in from the edge, and simultaneously a rising electron temperature in the central core of tokamak plasmas--an opposite response even before the diffusive cooling from the edge reaches the center. These and other nonlocal electron heat transport conundrums from recent experiments are reviewed. Also, models and physical processes being advanced to explain these puzzling phenomena are discussed. The importance of resolving this transport enigma is emphasized
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-01-01
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-12-31
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Occurrence of critical heat flux during blowdown with flow reversal
International Nuclear Information System (INIS)
Leung, J.C.M.
1977-01-01
A small-scale experiment using Freon-11 at 130 0 F (54.4 0 C) and 65 psia (0.45 MPa) in a well-instrumented, transparent annular test section was used to study the occurrence of critical heat flux (CHF) during blowdown with flow reversal. The inner stainless steel tube of the annulus was uniformly heated over its 61-cm length. Inlet and exit void fractions were measured by a capacitance technique. Flow-regime transition was observed with high-speed photography. A 1-hr contact time between Freon-11 and nitrogen at 130 0 F (54.4 0 C) and 60 psig (0.517 MPa) was found to greatly affect the steady-state subcooled-boiling initial conditions. Delay in bubble growth was observed in adiabatic blowdown runs. This was caused by the conditions of thermodynamic nonequilibrium required for the unstable bubble growth. For the diabatic runs, equilibrium was more closely approached in the test section during the early phase of blowdown
International Nuclear Information System (INIS)
Colombant, Denis; Manheimer, Wallace
2010-01-01
Flux limitation and preheat are important processes in electron transport occurring in laser produced plasmas. The proper calculation of both of these has been a subject receiving much attention over the entire lifetime of the laser fusion project. Where nonlocal transport (instead of simple single flux limit) has been modeled, it has always been with what we denote the equivalent diffusion solution, namely treating the transport as only a diffusion process. We introduce here a new approach called the nonlocal source solution and show it is numerically viable for laser produced plasmas. It turns out that the equivalent diffusion solution generally underestimates preheat. Furthermore, the advance of the temperature front, and especially the preheat, can be held up by artificial 'thermal barriers'. The nonlocal source method of solution, on the other hand more accurately describes preheat and can stably calculate the solution for the temperature even if the heat flux is up the gradient.
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate
Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
Laskowski, René; Bart, Hans-Jörg
2015-09-01
An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Compact, Modular Lunar Heat Flow Probes
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2014-01-01
Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.
Boundary fluxes for non-local diffusion
Cortazar, C.; Elgueta, M.; Rossi, J. D.; Wolanski, N.
2006-01-01
We study a nonlocal diffusion operator in a bounded smooth domain prescribing the flux through the boundary. This problem may be seen as a generalization of the usual Neumann problem for the heat equation. First, we prove existence, uniqueness and a comparison principle. Next, we study the behavior of solutions for some prescribed boundary data including blowing up ones. Finally, we look at a nonlinear flux boundary condition.
International Nuclear Information System (INIS)
Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh
2015-01-01
This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger
International Nuclear Information System (INIS)
Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir
2012-01-01
Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Flow vibrations and dynamic instability of heat exchanger tube bundles
International Nuclear Information System (INIS)
Granger, S.; Langre, E. de
1995-01-01
This paper presents a review of external-flow-induced vibration of heat exchanger tube bundles. Attention is focused on a dynamic instability, known as ''fluidelastic instability'', which can develop when flow is transverse to the tube axis. The main physical models proposed in the literature are successively reviewed in a critical way. As a consequence, some concepts are clarified, some a priori plausible misinterpretations are rejected and finally, certain basic mechanisms, induced by the flow-structure interaction and responsible for the ultimate onset of fluidelastic instability, are elucidated. Design tools and methods for predictive analysis of industrial cases are then presented. The usual design tool is the ''stability map'', i.e. an empirical correlation which must be interpreted in a conservative way. Of course, when using this approach, the designer must also consider reasonable safety margins. In the area of predictive analysis, the ''unsteady semi-analytical models'' seem to be a promising and efficient methodology. A modern implementation of these ideas mix an original experimental approach for taking fluid dynamic forces into account, together with non-classical numerical methods of mechanical vibration. (authors). 20 refs., 9 figs
Unstable fluid flow in a water-cooled heating channel
International Nuclear Information System (INIS)
Delayre, R.; Saunier, J.P.
1961-01-01
Experimental investigations of the instable behavior of a pressurized water flow in forced convection in a heating channel, with subcooled or bulk boiling have been carried. Tests were conducted at 1140, 850 and 570 psi. The test section was 35 in. high, surmounted by a 25.4 in. riser, these sections were by-passed by a pipe where the flow was between 1 and 4 times the flow in the test section. The water velocity (in the test section) was between 1.6 and 6.6 ft/s. Under certain conditions oscillations with a period of several seconds and perfectly stable have been observed. A mathematical model has been defined and a good agreement obtained for the main characteristics of the oscillations. It seems that the dimensions of the riser have a determining effect: the inception of bulk boiling gives an important variation of the driving head which can generate oscillations due to the non-zero delay for the system to reach its equilibrium. (author) [fr
Flow visualization study of inverted annular flow of post dryout heat transfer region
International Nuclear Information System (INIS)
Ishii, M.; De Jarlais, G.
1985-01-01
The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used
Energy Technology Data Exchange (ETDEWEB)
Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)
2000-05-01
An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)
International Nuclear Information System (INIS)
Berezin, A.N.; Grabezhnaya, V.A.; Mikheev, A.S.; Parfenov, A.S.
2014-01-01
The results of the work to determine the heat transfer coefficient in crossflow by lead of pipes are presented. The study was conducted at supercritical pressure in the water circuit. There was a significant inequality in the distribution of the heat flow in different rows of the bundle of heat exchange tubes of corridor location at crossflow their lead. The experimentally determined heat transfer coefficients from the lead differ substantially from those generally accepted recommendations for the calculation of heat transfer at cross flow of rod bundle by liquid metal. The experimental results are close to those obtained earlier on the model with cross flow of heat exchanger tubes bundle by lead alloy with bismuth [ru
The heat-transfer performance of gas—solid trickle flow over a regularly stacked packing
Verver, A.B.; van Swaaij, Willibrordus Petrus Maria
1986-01-01
The heat-transfer behaviour of a countercurrent gas—solid trickle flow contactor is studied, using coarse sand particles as the solids phase. Experimental data on the overall heat-transfer rate constant between the gas flow and the solid particle flow were obtained in a 0.15 m square cross-section
Void fraction distribution in a heated rod bundle under flow stagnation conditions
Energy Technology Data Exchange (ETDEWEB)
Herrero, V.A.; Guido-Lavalle, G.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)
1995-09-01
An experimental study was performed to determine the axial void fraction distribution along a heated rod bundle under flow stagnation conditions. The development of the flow pattern was investigated for different heat flow rates. It was found that in general the void fraction is overestimated by the Zuber & Findlay model while the Chexal-Lellouche correlation produces a better prediction.
Directory of Open Access Journals (Sweden)
Butrymowicz Dariusz
2016-09-01
Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.
Flow visualization study of inverted annular flow of post dryout heat transfer region
International Nuclear Information System (INIS)
Ishii, M.; De Jarlais, G.
1987-01-01
The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)
Flow visualization study of post-critical heat flux in inverted flow
International Nuclear Information System (INIS)
Babelli, I.; Revankar, S.T.; Ishii, M.
1994-01-01
A visual study of film boiling was carried out to determine the flow regime transition in the post-CHF region for a transient bottom reflooding of a hot transparent test section. The effect of test liquid subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The respective ranges for liquid velocity and subcooling were 1.8-26.8 cm/s, and 20-45 C, respectively. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments in agreement with a steady state, two-phase core injection study carried on recently by one of the authors. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CHF location and hence on the flow regime encountered in the pre-CHF region. (orig.)
A way to visualise heat transfer in 3D unsteady flows
Speetjens, M.F.M.
2009-01-01
Heat transfer in fluid flows traditionally is examined in terms of temperature field and heat-transfer coefficients. However, heat transfer may alternatively be considered as the transport of thermal energy by the total convective-conductive heat flux in a way analogous to the transport of fluid by
Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes
Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi
Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.
Experimental study of supercritical water flow and heat transfer in vertical tube
International Nuclear Information System (INIS)
Li Hongbo; Yang Jue; Lu Donghua; Gu Hanyang; Zhao Meng
2012-01-01
The experiment of flow and heat transfer of supercritical water has been performed on the supercritical water multipurpose test loop co-constructed by China Guangdong Nuclear Power Group and Shanghai Jiao Tong University with a 7.6 mm vertical tube. Heat transfer experimental data is obtained. The results of experimental research of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: (1) Heat transfer enhancement occurs when the bulk temperature reaches pseudo-critical point with low mass flow velocity; (2) The heat transfer co- efficient and Nusselt number are decreased with the increasing of heat flux; (3) The wall temperature is decreased, but the heat transfer coefficient and Nusselt number are increased with the increasing of mass flow velocity; (4) The wall temperature is increased, but the heat transfer coefficient and Nusselt number are decreased with the increasing of sys- tem pressure. (authors)
International Nuclear Information System (INIS)
Efimov, G.V.
1976-01-01
The basic ideas for creating the theory of nonlocal interactions of a scalar one-component field are presented. Lagrangian describing a non-interacting field is the ordinary one so that non-interacting particles are described by standard methods of the Fock space. Form factors introduced have been chosen from a class of analytic functionals and quantized. Conditions of microcausality have been considered in detail. The convergence of all integrals corresponding to the arbitrary Feynman diagrams in spinor electrodynamics is guaranteed in the frame of the rules formulated. It is noted in conclusion that the spinor electrodynamics with nonlocal interaction contains no ultraviolet divergencies and satisfies all the requirements of the quantum field theory; in this sense it is mathematically more consistent than its local version
Nonlocal transformation optics.
Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader
2012-02-10
We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.
International Nuclear Information System (INIS)
Partovi, M.H.
1982-01-01
From a generalization of the covariant derivative, nonlocal gauge theories are developed. These theories enjoy local gauge invariance and associated Ward identities, a corresponding locally conserved current, and a locally conserved energy-momentum tensor, with the Ward identities implying the masslessness of the gauge field as in local theories. Their ultraviolet behavior allows the presence as well as the absence of the Adler-Bell-Jackiw anomaly, the latter in analogy with lattice theories
Simultaneous integrated optimal energy flow of electricity, gas, and heat
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza
2015-01-01
Highlights: • Integration of electrical, natural gas, and district heating networks is studied. • Part-load performances of units are considered in modeling. • A modified teaching–learning based optimization is used to solve the problem. • Results show the advantages of the integrated optimization approach. - Abstract: In this paper, an integrated approach to optimize electrical, natural gas, and district heating networks simultaneously is studied. Several interdependencies between these infrastructures are considered in details including a nonlinear part-load performance for boilers and CHPs besides the valve-point effect for generators. A novel approach based on selecting an appropriate set of state-variables for the problem is proposed that eliminates the addition of any new variable to convert irregular equations into a regular set while the optimization problem is still solvable. As a large optimization problem, the optimal solution cannot be achieved by conventional mathematical techniques. Hence, it is better to use evolutionary algorithms instead. In this paper, the well-known modified teaching–learning based optimization algorithm is utilized to solve the multi-period optimal power flow problem of multi-carrier energy networks. The proposed scheme is implemented and applied to a typical multi-carrier energy network. Results are compared with some other conventional heuristic algorithms and the applicability and superiority of the proposed methodology is verified
Heat transfer and fluid flow in nuclear systems
International Nuclear Information System (INIS)
Fenech, H.
1981-01-01
The present publication is an attempt to provide a bridge between fundamental principles and current design practice. It is intended to serve the need of: engineers, scientists and graduate students active in thermal and hydraulics problems and to those interested to keep abreast of the field. The text is addressed to readers with previous knowledge in heat transfer and fluid flow equvalent to a one year university graduate course in that field. Because of the high degree of specialization covered in the six chapters of the book, individual authors of international reputation and active in their respective area of specialization were selected to contribute their knowledge. Each of the six chapters or sub-chapters are self-contained. They are followed by problem sets to enable the reader to check his level of comprehension of the material presented. The nuclear systems covered in separate chapters include: the pressurized and boiling water reactors (PWR, BWR), the helium cooled high temperature reactors (HTGR and HTR), the breeders helium cooled (GCFR) and sodium cooled (LMFBR). In addition the heat-exchangers and steam generators commonly associated with the above systems are covered in Chapter 6
International Nuclear Information System (INIS)
Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang
2012-01-01
Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.
Energy Technology Data Exchange (ETDEWEB)
Eter, Ahmad, E-mail: eng.eter@yahoo.com; Groeneveld, Dé, E-mail: degroeneveld@gmail.com; Tavoularis, Stavros, E-mail: stavros.tavoularis@uottawa.ca
2017-03-15
Highlights: • Measurements of supercritical heat transfer in tubes equipped with obstacles were obtained and compared with results in base tubes. • In general, flow obstacles improve supercritical heat transfer, but under certain conditions have a negative effect on it. • New correlations describing obstacle-enhanced supercritical heat transfer in the liquid-like and gas-like regimes are fitted to the data. - Abstract: Heat transfer measurements to CO{sub 2}-cooled tubes with and without flow obstacles at supercritical pressures were obtained at the University of Ottawa’s supercritical pressure test facility. The effects of obstacle geometry (obstacle pitch, obstacle shape, flow blockage) on the wall temperature and heat transfer coefficient were investigated. Tests were performed for vertical upward flow in a directly heated 8 mm ID tube for a pressure range from 7.69 to 8.36 MPa, a mass flux range from 200 to 1184 kg/m{sup 2} s, and a heat flux range from 1 to 175 kW/m{sup 2}. The results are presented graphically in plots of wall temperature and heat transfer coefficient vs. bulk specific enthalpy of the fluid. The effects of flow parameters and flow obstacle geometry on supercritical heat transfer for both normal and deteriorated heat transfer are discussed. A comparison of the measurements with leading prediction methods for supercritical heat transfer in bare tubes and for spacer effects is also presented. The optimum increase in heat transfer coefficient was found to be for blunt obstacles, having a large flow blockage, and a short obstacle pitch.
International Nuclear Information System (INIS)
Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.
2001-01-01
An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)
Flow and Heat Transfer in Cooling Microchannels with Phase-Change
Energy Technology Data Exchange (ETDEWEB)
Peles, Y P; Yarin, L P; Hetsroni, G [Technion, Israel Institute of Technology, Haifa (Israel) Faculty of Engineering
1998-05-19
The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed.
Flow and Heat Transfer in Cooling Microchannels with Phase-Change
International Nuclear Information System (INIS)
Peles, Y.P.; Yarin, L.P.; Hetsroni, G.
1998-01-01
The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed
Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend
Patro, Pandaba; Rout, Ani; Barik, Ashok
2018-06-01
Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.
Analysis of Turbulence Models in a Cross Flow Pin Fin Micro-Heat Exchanger
National Research Council Canada - National Science Library
Lind, Eric
2002-01-01
... of their physical significance to the complex flow environment of a pin fin, cross flow, micro-heat exchanger. Applications of this research include cooling of turbine blades and of closely spaced electronics.
Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao
2016-09-01
Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The
Aero-Heating of Shallow Cavities in Hypersonic Freestream Flow
Everhart, Joel L.; Berger, Karen T.; Merski, N. R., Jr.; Woods, William A.; Hollingsworth, Kevin E.; Hyatt, Andrew; Prabhu, Ramadas K.
2010-01-01
The purpose of these experiments and analysis was to augment the heating database and tools used for assessment of impact-induced shallow-cavity damage to the thermal protection system of the Space Shuttle Orbiter. The effect of length and depth on the local heating disturbance of rectangular cavities tested at hypersonic freestream conditions has been globally assessed using the two-color phosphor thermography method. These rapid-response experiments were conducted in the Langley 31-Inch Mach 10 Tunnel and were initiated immediately prior to the launch of STS-114, the initial flight in the Space Shuttle Return-To-Flight Program, and continued during the first week of the mission. Previously-designed and numerically-characterized blunted-nose baseline flat plates were used as the test surfaces. Three-dimensional computational predictions of the entire model geometry were used as a check on the design process and the two-dimensional flow assumptions used for the data analysis. The experimental boundary layer state conditions were inferred using the measured heating distributions on a no-cavity test article. Two test plates were developed, each containing 4 equally-spaced spanwise-distributed cavities. The first test plate contained cavities with a constant length-to-depth ratio of 8 with design point depth-to-boundary-layer-thickness ratios of 0.1, 0.2, 0.35, and 0.5. The second test plate contained cavities with a constant design point depth-to-boundary-layer-thickness ratio of 0.35 with length-to-depth ratios of 8, 12, 16, and 20. Cavity design parameters and the test condition matrix were established using the computational predictions. Preliminary results indicate that the floor-averaged Bump Factor (local heating rate nondimensionalized by upstream reference) at the tested conditions is approximately 0.3 with a standard deviation of 0.04 for laminar-in/laminar-out conditions when the cavity length-to-boundary-layer thickness is between 2.5 and 10 and for
Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer
International Nuclear Information System (INIS)
Manteufel, R.D.; Powell, M.W.
1994-01-01
A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer
Directory of Open Access Journals (Sweden)
I. G. Zorina
2016-01-01
Full Text Available To use the renewable power sources such as solar, wind, biogas, and others is complicated because of their sporadic supply. Thus and so, energy accumulation makes the user independent on the operating mode of the power source.Some of the heat accumulation methods can be realized with accumulators using phase transitions and based on the heat storage materials that change their state of aggregation during storage and rejection of thermal energy. In comparison with the gravel or liquid heat accumulators these devices are compact and provide high density of stored energy. To intensify heat exchange in such devices, are used highly heat-conductive metallic inсlusions of different shape, capsular laying or heat storage materials placed in the form of inserts, extended heat exchange surfaces, etc.Heat transfer of accumulator using phase transitions is calculated through solving a nonlinear Stefan problem. For calculation, are, usually, used various sufficiently time-consuming methods.The paper presents a heat transfer calculation when changing the aggregation state of substance. Its recommendation is to use the analytical dependences that allow calculation of heat exchange characteristics with charging phase transition accumulators of a capsular type in which a heat storage material is in cross-inserts.It is assumed that heat transfer in the coolant flow is one-dimensional, thermal and physical properties of heat storage material and coolant are constant, and heat transfer in the accumulator using phase transitions is quasi-stationary.
Study on drop pressure and flow distribution of double-tube heat exchanger
International Nuclear Information System (INIS)
Liu Junqiang; Chen Minghui; Hu Yumin; Li Rizhu; Kong Dechun; Zhang Weijie
2007-01-01
The parallel connection channel pressure drop characters of the double-tube bundle heat exchange were experimentally investigated in this paper in order to find out how the flow of the heat exchanger is distributed and then to optimize the structure of heat exchanger according to the flow distribution. A double-tube bundle heat exchanger was built according to the similarity criteria. The experiment system was also built to test the optimization of the heat exchanger. The experiment results reveal that the calculating model is reliable and decreasing pipe space to optimize the heat exchanger is reasonable. (authors)
Multipartite fully nonlocal quantum states
International Nuclear Information System (INIS)
Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio
2010-01-01
We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.
Analytical Simulation of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime
Directory of Open Access Journals (Sweden)
Mohammad Abbasi
2014-01-01
Full Text Available Nanofluids have evoked immense interest from researchers all around the globe due to their numerous potential benefits and applications in important fields such as cooling electronic parts, cooling car engines and nuclear reactors. An analytical study of fluid flow of in-tube stratified regime of two-phase nanofluid has been carried out for CuO, Al2O2, TiO3, and Au as applied nanoparticles in water as the base liquid. Liquid film thickness, convective heat transfer coefficient, and dryout length have been calculated. Among the considered nano particles, Al2O3 and TiO2 because of providing more amounts of heat transfer along with longer lengths of dryout found as the most appropriate nanoparticles to achieve cooling objectives.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Heat transfer to a particle exposed to a rarefield ionized-gas flow
International Nuclear Information System (INIS)
Chen, X.; He, P.
1986-01-01
Analytical results are presented concerning the heat transfer to a spherical particle exposed to a high temperature, ionized- gas flow for the extreme case of free-molecule flow regime. It has been shown that the presence of relative velocity between the particle and the ionized gas reduces the floating potential on the particle, enhances the heat flux and causes appreciably non-uniform distribution of the local heat flux. Pronounced difference is found between metallic and non-metallic particles in the floating potential and the local heat flux distributions, in particular for the case with high gas-flow temperature. Relative contribution of atoms to the total heat flux is dominant for the case of low gas-flow temperature, while the heat flux is mainly caused by ions and electrons for the case of high gas-flow temperature
Plate heat exchanger - inertia flywheel performance in loss of flow transient
International Nuclear Information System (INIS)
Abou-El-Maaty, Talal; Abd-El-Hady, Amr
2009-01-01
One of the most versatile types of heat exchangers used is the plate heat exchanger. It has principal advantages over other heat exchangers in that plates can be added and/or removed easily in order to change the area available for heat transfer and therefore its overall performance. The cooling systems of Egypt's second research reactor (ETRR 2) use this type of heat exchanger for cooling purposes in its primary core cooling and pool cooling systems. In addition to the change in the number of heat exchanger cooling channels, the effect of changing the amount of mass flow rate on the heat exchanger performance is an important issues in this study. The inertia flywheel mounted on the primary core cooling system pump with the plate heat exchanger plays an important role in the case of loss of flow transients. The PARET code is used to simulate the effect of loss of flow transients on the reactor core. Hence, the core outlet temperature with the pump-flywheel flow coast down is fed into the plate heat exchanger model developed to estimate the total energy transferred to the cooling tower, the primary side heat exchanger temperature variation, the transmitted heat exchanger power, and the heat exchanger effectiveness. In addition, the pressure drop in both, the primary side and secondary side of the plate heat exchanger is calculated in all simulated transients because their values have limits beyond which the heat exchanger is useless. (orig.)
International Nuclear Information System (INIS)
Hussein, H.M.S.
2007-01-01
In this work, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was investigated theoretically and experimentally under the meteorological conditions of Cairo, Egypt. The author's earlier simulation program of wickless heat pipes flat plate solar water heaters was modified to be valid for the present type of wickless heat pipes solar collector by including the solution of the dimensionless governing equations of the present analysis. For verifying the modified simulation program, a wickless heat pipes flat plate solar collector with a cross flow heat exchanger was designed, constructed, and tested at different meteorological conditions and operating parameters. These parameters include different cooling water mass flow rates and different inlet cooling water temperatures. The comparison between the experimental results and their corresponding simulated ones showed considerable agreement. Under different climatic conditions, the experimental and theoretical results showed that the optimal mass flow rate is very close to the ASHRAE standard mass flow rate for testing conventional flat plate solar collectors. Also, the experimental and theoretical results indicated that the number of wickless heat pipes has a significant effect on the collector efficiency
Dry-out heat fluxes of falling film and low-mass flux upward-flow in heated tubes
International Nuclear Information System (INIS)
Koizumi, Yasuo; Ueda, Tatsuhiro; Matsuo, Teruyuki; Miyota, Yukio
1998-01-01
Dry-out heat fluxes were investigated experimentally for a film flow falling down on the inner surface of vertical heated-tubes and for a low mass flux forced-upward flow in the tubes using R 113. This work followed the study on those for a two-phase natural circulation system. For the falling film boiling, flow state observation tests were also performed, where dry-patches appearing and disappearing repeatedly were observed near the exit end of the heated section at the dry-out heat flux conditions. Relation between the dry-out heat flux and the liquid film flow rate is analyzed. The dry-out heat fluxes of the low mass flux upflow are expressed well by the correlation proposed in the previous work. The relation for the falling film boiling shows a similar trend to that for the upflow boiling, however, the dry-out heat fluxes of the falling film are much lower, approximately one third, than those of the upward flow. (author)
A study on the flow induced vibration in two phase flow under heating and non-heating conditions
International Nuclear Information System (INIS)
Kim, Dae Hun
2007-02-01
Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and
International Nuclear Information System (INIS)
French, R.T.
1975-08-01
Selected experimental data pertinent to piping heat transfer, transient fluid flow regimes, and steam generator heat transfer obtained during the Semiscale Mod-1 isothermal blowdown test series (Test Series 1) are analyzed. The tests in this first test series were designed to provide counterparts to the LOFT nonnuclear experiments. The data from the Semiscale Mod-1 intact and broken loop piping are evaluated to determine the surface heat flux and average heat transfer coefficients effective during the blowdown transient and compared with well known heat transfer correlations used in the RELAP4 computer program. Flow regimes in horizontal pipe sections are calculated and compared with data obtained from horizontal and vertical densitometers and with an existing steady state flow map. Effects of steam generator heat transfer are evaluated quantitatively and qualitatively. The Semiscale Mod-1 data and the analysis presented in this report are valuable for evaluating the adequacy and improving the predictive capability of analytical models developed to predict system response to piping heat transfer, piping flow regimes, and steam generator heat transfer during a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). 16 references. (auth)
Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling
Institute of Scientific and Technical Information of China (English)
无
1993-01-01
In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.
The flow distribution in the parallel tubes of the cavity receiver under variable heat flux
International Nuclear Information System (INIS)
Hao, Yun; Wang, Yueshe; Hu, Tian
2016-01-01
Highlights: • An experimental loop is built to find the flow distribution in the parallel tubes. • With the concentration of heat flux, two-phase flow makes distribution more uneven. • The total flow rate is chosen appropriately for a wider heat flux distribution. • A suitable system pressure is essential for the optimization of flow distribution. - Abstract: As an optical component of tower solar thermal power station, the heliostat mirror reflects sunlight to one point of the heated surface in the solar cavity receiver, called as one-point focusing system. The radiation heat flux concentrated in the cavity receiver is always non-uniform temporally and spatially, which may lead to extremely local over-heat on the receiver evaporation panels. In this paper, an electrical heated evaporating experimental loop, including five parallel vertical tubes, is set up to evaluate the hydrodynamic characteristics of evaporation panels in a solar cavity receiver under various non-uniform heat flux. The influence of the heat flux concentration ratio, total flow rate, and system pressure on the flow distribution of parallel tubes is discussed. It is found that the flow distribution becomes significantly worse with the increase of heat flux and concentration ratio; and as the system pressure decreased, the flow distribution is improved. It is extremely important to obtain these interesting findings for the safe and stable operation of solar cavity receiver, and can also provide valuable references for the design and optimization of operating parameters solar tower power station system.
Heat flow at the proposed Appalachian Ultradeep Core Hole (ADCOH) Site: Tectonic implications
Costain, John K.; Decker, Edward R.
The heat flow in northwestern South Carolina at the Appalachian Ultradeep Core Hole (ADCOH) site area is approximately 55 mW/m². This data supplements other data to the east in the Piedmont and Atlantic Coastal Plain provinces where heat flows > 55 mW/m² are characteristic of post- and late-synmetamorphic granitoids. Piedmont heat flow and heat generation data for granites, metagranites, and one Slate Belt site, in a zone approximately parallel to major structural Appalachian trends, define a linear relation. Tectonic truncation of heat-producing crust at a depth of about 8 km (a depth equal to the slope of the heat flow-heat production line) is proposed to explain the linear relation. Using the value of reduced heat flow estimated from this empirical relation, and assuming thicknesses of heat-producing crust defined by new ADCOH seismic data, the heat flow and heat production at the ADCOH site are consistent with a depth to the base of the Inner Piedmont crystalline allochthon of about 5.5 km. Seismic data at the ADCOH site confirm that the Inner Piedmont is tectonically truncated at about 5.5 km by the Blue Ridge master decollement. Temperatures at 10 km at the ADCOH site are predicted to be less than 200 °C.
THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER
Directory of Open Access Journals (Sweden)
R. Tuğrul OĞULATA
1996-03-01
Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.
Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics
International Nuclear Information System (INIS)
Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J
2015-01-01
This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)
Directory of Open Access Journals (Sweden)
I-Chung Liu
2012-01-01
Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.
International Nuclear Information System (INIS)
Raisson, Claude
1968-01-01
This research thesis reports the experimental study of flows and of their evolution until critical heating by using appropriate measurement instruments. The objective is to understand how flow evolution may condition critical heating. After a recall of some notions and values related to the study of two-phase flows, and an overview of published works on flow configurations and on critical heating, the author describes test installation and measurement devices, presents the typical test process, reports instrument calibration, and flow configuration tests with water-air flow under low pressure. Results are reported. The author proposes explanations regarding observed phenomena, and a possible scheme to explain the flow evolution until critical heating [fr
Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.
2017-12-01
Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.
CCC, Heat Flow and Mass Flow in Liquid Saturated Porous Media
International Nuclear Information System (INIS)
Mangold, D.C.; Lippmann, M.J.; Bodvarsson, G.S.
1982-01-01
1 - Description of problem or function: The numerical model CCC (conduction-convection-consolidation) solves the heat and mass flow equations for a fully, liquid-saturated, anisotropic porous medium and computes one-dimensional (vertical) consolidation of the simulated systems. The model has been applied to problems in the fields of geothermal reservoir engineering, aquifer thermal energy storage, well testing, radioactive waste isolation, and in situ coal combustion. The code has been validated against analytic solutions for fluid and heat flow, and against a field experiment for underground storage of hot water. 2 - Method of solution: The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated porous medium and formulating the governing equations. The sets of equations are sol- ved by an iterative solution technique. The vertical deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. 3 - Restrictions on the complexity of the problem: Maximum of 12 materials. It is assumed that: (a) Darcy's law adequately describes fluid movement through fractured and porous media. (b) The rock and fluid are in thermal equilibrium at any given time. (c) Energy changes due to the fluid compressibility, acceleration and viscous dissipation are neglected. (d) One-dimensional consolidation theory adequately describes the vertical deformation of the medium
Entanglement without nonlocality
International Nuclear Information System (INIS)
Hewitt-Horsman, C.; Vedral, V.
2007-01-01
We consider the characterization of entanglement from the perspective of a Heisenberg formalism. We derive a two-party generalized separability criterion, and from this describe a physical understanding of entanglement. We find that entanglement may be considered as fundamentally a local effect, and therefore as a separate computational resource from nonlocality. We show how entanglement differs from correlation physically, and explore the implications of this concept of entanglement for the notion of classicality. We find that this understanding of entanglement extends naturally to multipartite cases
Numerical simulation of flow field in shellside of heat exchanger in nuclear power plant
International Nuclear Information System (INIS)
Wang Xinliang; Qiu Jinrong; Gong Zili
2010-01-01
Heat exchanger is the important equipment of nuclear power plant. Numerical simulation can give the detail information inside the heat exchange, and has been an effective research method. The geometric structure of shell-and-tube heat exchanger is very complex and it is difficult to simulate the whole flow field presently. According to the structure characteristics of the heat exchanger, a periodic whole-section calculation model was presented. The numerical simulation of flow field in shellside of heat exchange of a nuclear power plant was done by using this model. The results of simulation show that heat transfer in the periodic section of the heat exchange is uniform, the heat transfer is enhanced by using baffles in heat exchange, and frictional resistance is primary from the effect of segmental baffles. (authors)
DEFF Research Database (Denmark)
Vejen, Niels Kristian
1997-01-01
A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....
International Nuclear Information System (INIS)
Peletier, Mark A.; Redig, Frank; Vafayi, Kiamars
2014-01-01
We consider three one-dimensional continuous-time Markov processes on a lattice, each of which models the conduction of heat: the family of Brownian Energy Processes with parameter m (BEP(m)), a Generalized Brownian Energy Process, and the Kipnis-Marchioro-Presutti (KMP) process. The hydrodynamic limit of each of these three processes is a parabolic equation, the linear heat equation in the case of the BEP(m) and the KMP, and a nonlinear heat equation for the Generalized Brownian Energy Process with parameter a (GBEP(a)). We prove the hydrodynamic limit rigorously for the BEP(m), and give a formal derivation for the GBEP(a). We then formally derive the pathwise large-deviation rate functional for the empirical measure of the three processes. These rate functionals imply gradient-flow structures for the limiting linear and nonlinear heat equations. We contrast these gradient-flow structures with those for processes describing the diffusion of mass, most importantly the class of Wasserstein gradient-flow systems. The linear and nonlinear heat-equation gradient-flow structures are each driven by entropy terms of the form −log ρ; they involve dissipation or mobility terms of order ρ 2 for the linear heat equation, and a nonlinear function of ρ for the nonlinear heat equation
Numerical analysis of cavitating flow characteristics in impeller of residual heat removal pump
Hong, Feng; Yuan, Jianping; Zhou, Banglun
2016-01-01
In order to investigate internal cavitating flow characteristics of the impeller in residual heat removal pumps, the three-dimensional cavitating flow in a residual heat removal model pump is numerically calculated by using the homogeneous mixture cavitation model based on the Rayleigh-Plesset
Analysis of the convective heat transfer of a fluid flow over an ...
African Journals Online (AJOL)
Convective heat transfer in a homogeneous fluid flow Reynolds number of order less than 2000 over an immersed axi-symmetrical body with curved surfaces has been investigated. The fluid flow in consideration was unsteady and of constant density .This study analysed the extent to which convective heat transfer has on ...
Probabilistic tectonic heat flow modelling for basin maturation: method and applications
van Wees, J.D.A.M.; van Bergen, F.; David, P.; Nepveu, M.; Beekman, W.W.W.; Cloetingh, S.A.P.L.; Bonte, D.D.P.
2009-01-01
Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify
Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications
Wees, J.D. van; Bergen, F. van; David, P.; Nepveu, M.; Beekman, F.; Cloetingh, S.; Bonté, D.
2009-01-01
Tectonic modeling is often neglected in the basin modeling workflow and heat flow is most times considered a user input. Such heat flows can, therefore, result in erroneous basin modeling outcomes, resulting in false overoptimistic identification of prospective areas or failure to identify
Turbulent heat transfer to longitudinal flow through a triangular array of circular rods
International Nuclear Information System (INIS)
Pfann, J.
1975-01-01
Temperature distribution and heat transfer to longitudinal turbulent, fully developed flow through triangular arrays of smooth circular rods are analysed for liquids with Prandtl number approximately 1 and << 1. Nusselt number is plotted versus pitch and turbulence for constant heat flow and for constant temperature on the rod surface, and the optimum pitch is determined. The influence of Prandtl number is analysed. (Auth.)
Directory of Open Access Journals (Sweden)
Xue Xiang
2010-08-01
Full Text Available The boundary heat flow has important significance for the microstructures of directional solidified binary alloy. Interface evolution of the directional solidified microstructure with different boundary heat flow was discussed. In this study, only one interface was allowed to have heat flow, and Neumann boundary conditions were imposed at the other three interfaces. From the calculated results, it was found that different boundary heat flows will result in different microstructures. When the boundary heat flow equals to 20 W·cm-2, the growth of longitudinal side branches is accelerated and the growth of transverse side branches is restrained, and meanwhile, there is dendritic remelting in the calculation domain. When the boundary heat flow equals to 40 W·cm-2, the growths of the transverse and longitudinal side branches compete with each other, and when the boundary heat flow equals to 100-200 W·cm-2, the growth of transverse side branches dominates absolutely. The temperature field of dendritic growth was analyzed and the relation between boundary heat flow and temperature field was also investigated.
Wees, J.D. van; Bonte, D.; Nelskamp, S.
2009-01-01
Basement heat flow is one of the most influential parameters on basin maturity. Although rapid progress has been made in the development of tectonic models capable of modelling the thermal consequences of basin formation, these models are hardly used in basin modelling. To better predict heat flows
Nonlocal higher order evolution equations
Rossi, Julio D.; Schö nlieb, Carola-Bibiane
2010-01-01
In this article, we study the asymptotic behaviour of solutions to the nonlocal operator ut(x, t)1/4(-1)n-1 (J*Id -1)n (u(x, t)), x ∈ ℝN, which is the nonlocal analogous to the higher order local evolution equation vt(-1)n-1(Δ)nv. We prove
Comparison of heat transfer in straight and corrugated minichannels with two-phase flow
Directory of Open Access Journals (Sweden)
Peukert P.
2014-03-01
Full Text Available Measurements of heat transfer rates performed with an experimental condensation heat exchanger are reported for a corrugated minichannel tube and for a straight minichannel tube. The two cases were compared at same flow regimes. The corrugation appears advantageous for relatively low steam pressures and flow rates where much higher heat transfer rates were observed close to the steam entrance, thus allowing shortening the heat exchanger with the associated advantages of costs lowering and smaller built-up space. At high steam pressures and high flow rates both tubes performed similarly.
Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow
Taher, R.; Abid, C.
2018-05-01
This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.
Directory of Open Access Journals (Sweden)
Zonghao Yang
2017-12-01
Full Text Available In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.
Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux
International Nuclear Information System (INIS)
Kawamura, Hiroshi
1978-01-01
Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)
Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin
2017-08-01
Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.
Critical heat-flux experiments under low-flow conditions in a vertical annulus
International Nuclear Information System (INIS)
Mishima, K.; Ishii, M.
1982-03-01
An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF
Heat transfer and fluid flow in biological processes advances and applications
Becker, Sid
2015-01-01
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...
International Nuclear Information System (INIS)
Kurganov, V.A.; Gladuntsov, A.I.
1977-01-01
Analysed are the experimental data obtained for heat transfer to gaseous dissociating ammonium (NH 3 ) under heating in round pipes (steel Kh18N10T) at developed eddying input flow and marginal condition of heat supply gsub(c) approximately equal to const in the ranges of the following parameters: p=3-10 atm; Tsub(input)=310-720 K; Tsub(c) ( 3 ; gsub(c)/-anti rho W 8.8 kJ/kg; gsub(c)/(anti rho WCsub(p) sub(input)Tsub(input)) (<=) 0.0104; 1/d (<=) 150 (where Tsub(c) is the wall temperature, gsub(c) the heat flow density on wall, and anti rho W velocity). The discussion involves phenomena of worsened heat transfer at high heat loads. The authors show the basic relationship between these phenomena and laminarization of the near-wall flow at the input site of the pipe. The regularities of heat transfer were noted to undergo substantial transformation under laminarized flow
Semi-empirical model for heat transfer coefficient in liquid metal turbulent flow
International Nuclear Information System (INIS)
Fernandez y Fernandez, E.; Carajilescov, P.
1982-01-01
The heat transfer by forced convection in a metal liquid turbulent flow for circular ducts is analyzed. An analogy between the momentum and heat in the wall surface, is determined, aiming to determine an expression for heat transfer coefficient in function of the friction coefficient. (E.G.) [pt
Investigation of heat transfer of tube line of staggered tube bank in two-phase flow
Jakubcionis, Mindaugas
2015-06-01
This article presents the results of experimental investigation of heat transfer process, carried out using the model of heat exchanger. Two-phase statically stable foam flow was used as a heat transfer fluid. Heat exchanger model consisted of staggered tube bank. Experimental results are presented with the focus on influence of tube position in the line of the bank, volumetric void component and velocity of gas component of the foam. The phenomena of liquid draining in cellular foam flow and its influence on heat transfer rate has also been discussed. The experimental results have been generalized by relationship between Nusselt, Reynolds and Prandtl numbers.
Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available The objective of present attempt is to analyse the flow and heat transfer in the flow of an Oldroyd-B fluid over a non-linear stretching sheet having variable thickness. Characteristics of heat transfer are analyzed with temperature dependent thermal conductivity and heat source/sink. Cattaneo-Christov heat flux model is considered rather than Fourier’s law of heat conduction in the present flow analysis. Thermal conductivity varies with temperature. Resulting partial differential equations through laws of conservation of mass, linear momentum and energy are converted into ordinary differential equations by suitable transformations. Convergent series solutions for the velocity and temperature distributions are developed and discussed. Keywords: Oldroyd-B fluid, Variable sheet thickness, Cattaneo-Christov heat flux model, Heat source/sink, Temperature dependent thermal conductivity
Mathematical modelling of thermal and flow processes in vertical ground heat exchangers
Directory of Open Access Journals (Sweden)
Pater Sebastian
2017-12-01
Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.
Systematic heat flow measurements across the Wagner Basin, northern Gulf of California
Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio
2017-12-01
A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.
An analytical solution to the heat transfer problem in thick-walled hunt flow
International Nuclear Information System (INIS)
Bluck, Michael J; Wolfendale, Michael J
2017-01-01
Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.
Heat transfer to air-water two-phase flow in slug/churn region
International Nuclear Information System (INIS)
Wadekar, V.V.; Tuzla, K.; Chen, J.C.
1996-01-01
Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data
Analysis of the one-dimensional transient compressible vapor flow in heat pipes
Jang, Jong H.; Faghri, Amir; Chang, Won S.
1991-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.
Analysis of Tube Bank Heat Transfer In Downward Directed Foam Flow
Directory of Open Access Journals (Sweden)
Jonas Gylys
2004-06-01
Full Text Available Apparatus with the foam flow are suitable to use in different technologies like heat exchangers, food industry, chemical and oil processing industry. Statically stable liquid foam until now is used in technologic systems rather seldom. Although a usage of this type of foam as heat transfer agent in foam equipment has a number of advantages in comparison with one phase liquid equipment: small quantity of liquid is required, heat transfer rate is rather high, mass of equipment is much smaller, energy consumption for foam delivery into heat transfer zone is lower. The paper analyzes the peculiarities of heat transfer from distributed in staggered order and perpendicular to foam flow in channel of rectangular cross section tube bundle to the foam flow. It was estimated the dependence of mean gas velocity and volumetric void fraction of foam flow to heat transfer in downward foam flow. Significant difference of heat transfer intensity from front and back tubes of tube row in laminar foam flow was noticed. Dependence of heat transfer on flow velocity and volumetric void fraction of foam was confirmed and estimated by criterion equations.
International Nuclear Information System (INIS)
Sahin, Ahmet Z.
2012-01-01
Highlights: ► The optimality in both heat and fluid flow systems has been investigated. ► A new thermodynamic property has been introduced. ► The second law of thermodynamics was extended to present the temheat balance that included the temheat destruction. ► The principle of temheat destruction minimization was introduced. ► It is shown that the rate of total temheat destruction is minimized in steady heat conduction and fluid flow problems. - Abstract: Heat transfer and fluid flow processes exhibit similarities as they occur naturally and are governed by the same type of differential equations. Natural phenomena occur always in an optimum way. In this paper, the natural optimality that exists in the heat transfer and fluid flow processes is investigated. In this regard, heat transfer and fluid flow problems are treated as optimization problems. We discovered a thermodynamic quantity that is optimized during the steady heat transfer and fluid flow processes. Consequently, a new thermodynamic property, the so called temheat, is introduced using the second law of thermodynamics and the definition of entropy. It is shown, through several examples, that overall temheat destruction is always minimized in steady heat and fluid flow processes. The principle of temheat destruction minimization that is based on the temheat balance equation provides a better insight to understand how the natural flow processes take place.
International Nuclear Information System (INIS)
Bhattacharyya Krishnendu
2013-01-01
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting
Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow
International Nuclear Information System (INIS)
Targui, N.; Kahalerras, H.
2013-01-01
Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating
On sizing of flow meters used in customer accounting devices in district heating systems
Energy Technology Data Exchange (ETDEWEB)
Ingimundarson, Ari; Wollerstrand, J.; Arvastson, Lars
1998-12-31
The paper deals with accuracy problems when heat energy consumption in district heating (DH) systems is calculated by measuring the DH water flow rate and its cooling. An investigation on the influence that sizing of flow meters used has on the accuracy of DH water flow measurements in a typical DH subscriber station is presented. Furthermore the consequences of the choice of flow meter size on energy metering accuracy is studied. The goal is to determine rules leading to optimal sizing of the flow meters 9 refs, 14 figs
Numerical Study of the Inertia Effect on Flow Distribution in Micro-gap Plate Heat Exchanger
International Nuclear Information System (INIS)
Park, Jang Min; Yoon, Seok Ho; Lee, Kong Hoon; Song Chan Ho
2014-01-01
This paper presents numerical study on flow and heat transfer characteristics in micro-gap plate heat exchanger. In particular, we investigate the effect of flow inertia on the flow distribution from single main channel to multiple parallel micro-gaps. The flow regime of the main channel is varied from laminar regime (Reynolds number of 100) to turbulent regime (Reynolds number of 10000) by changing the flow rate, and non-uniformity of the flow distribution and temperature field is evaluated quantitatively based on the standard deviation. The flow distribution is found to be significantly affected by not only the header design but also the flow rate of the main channel. It is also observed that the non-uniformity of the temperature field has its maximum at the intermediate flow regime
Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...
African Journals Online (AJOL)
This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...
Introduction of image analysis for the quantification of the boiling flow heat transfer
Ferret, C.; Falk, L.; d'Ortona, U.; Chenu, A.; Veenstra, T.T.
2004-01-01
Heat transfer performances for non-boiling and boiling flow of a micro-vaporizer have been measured by standard methods (temperatures, flow rates, effective power input). The study was carried out for laminar flow (Re<25) in silicon micro-channels (5 mm×3 cm×200 μm) filled with ordered obstacles to
Two models for the dynamics of a cross flow heat exchanger
Energy Technology Data Exchange (ETDEWEB)
Hopkinson, A [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1962-12-15
Two models of a cross flow heat exchanger, a concentric tube counter flow model and a cross flow model, are studied theoretically. Differential equations describing the behaviour of the models are derived and from them equations for the steady state temperatures and the temperature transfer functions are obtained. (author)
Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow
International Nuclear Information System (INIS)
Kawamura, Koji
1986-01-01
The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)
Extent of multiparticle quantum nonlocality
International Nuclear Information System (INIS)
Jones, Nick S.; Linden, Noah; Massar, Serge
2005-01-01
It is well known that entangled quantum states are nonlocal: the corrrelations between local measurements carried out on these states cannot be reproduced by local hidden variable models. Svetlichny, followed by others, showed that multipartite quantum states are more nonlocal than bipartite ones in the sense that even some nonlocal classical models with (super-luminal) communication between some of the parties cannot reproduce the quantum correlations. Here we study in detail the kinds of nonlocality present in quantum states. More precisely, we enquire what kinds of classical communication patterns cannot reproduce quantum correlations. By studying the extremal points of the space of all multiparty probability distributions, in which all parties can make one of a pair of measurements each with two possible outcomes, we find a necessary condition for classical nonlocal models to reproduce the statistics of all quantum states. This condition extends and generalizes work of Svetlichny and others in which it was showed that a particular class of classical nonlocal models, the 'separable' models, cannot reproduce the statistics of all multiparticle quantum states. Our condition shows that the nonlocality present in some entangled multiparticle quantum states is much stronger than previously thought. We also study the sufficiency of our condition
Effects of roll waves on annular flow heat transfer at horizontal condenser tube
International Nuclear Information System (INIS)
Kondo, Masaya; Nakamura, Hideo; Anoda, Yoshinari; Sakashita, Akihiro
2002-01-01
Heat removal characteristic of a horizontal in-tube condensation heat exchanger is under investigation to be used for a passive containment cooling system (PCCS) of a next generation-type BWR. Flow regime observed at the inlet of the condenser tube was annular flow, and the local heat transfer rate was ∼20% larger than the prediction by the Dobson-Chato correlation. Roll waves were found to appear on the liquid film in the annular flow. The measured local condensation heat transfer rate was being closely related to the roll waves frequency. Based on these observations, a model is proposed which predicts the condensation heat transfer coefficient for annular flows around the tube inlet. The proposed model predicts well the influences of pressure, local gas-phase velocity and film thickness. (author)
DNS of fully developed turbulent heat transfer of a viscoelastic drag-reducing flow
Energy Technology Data Exchange (ETDEWEB)
Yu, Bo [Department of Oil and Gas Storage and Transportation Engineering, China University of Petroleum, Beijing 102249 (China); Kawaguchi, Yasuo [Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)
2005-10-01
A direct numerical simulation (DNS) of turbulent heat transfer in a channel flow with a Giesekus model was carried out to investigate turbulent heat transfer mechanism of a viscoelastic drag-reducing flow by additives. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both the walls. The temperature was considered as a passive scalar with the effect of buoyancy force neglected. The Reynolds number based on the friction velocity and half the channel height was 150. Statistical quantities such as root-mean-square temperature fluctuations, turbulent heat fluxes and turbulent Prandtl number were obtained and compared with those of a Newtonian fluid flow. Budget terms of the temperature variance and turbulent heat fluxes were also presented. (author)
Ice slurry flow and heat transfer during flow through tubes of rectangular and slit cross-sections
Directory of Open Access Journals (Sweden)
Niezgoda-Żelasko Beata
2014-09-01
Full Text Available The paper presents the results of experimental research of pressure drop and heat transfer coefficients of ice slurry during its flow through tubes of rectangular and slit cross-sections. Moreover, the work discusses the influence of solid particles, type of motion and cross-section on the changes in the pressure drop and heat transfer coefficient. The analysis presented in the paper allows for identification of the criterial relations used to calculate the Fanning factor and the Nusselt number for laminar and turbulent flow, taking into account elements such as phase change, which accompanies the heat transfer process. Ice slurry flow is treated as a generalized flow of a non-Newtonian fluid.
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
Evaluation method for two-phase flow and heat transfer in a feed-water heater
International Nuclear Information System (INIS)
Takamori, Kazuhide; Minato, Akihiko
1993-01-01
A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)
Depression of the Superfluid Transition Temperature in 4He by a Heat Flow
International Nuclear Information System (INIS)
Yin Liang; Qi Xin; Lin Peng
2014-01-01
The depression of the superfluid transition temperature T λ in 4 He by a heat flow Q is studied. A small sealed cell with a capillary is introduced and a stable and flat superfluid transition temperature plateau is easily obtained by controlling the temperature of the variable-temperature platform and the bottom chamber of the sealed cell. Owing to the depression effect of the superfluid transition temperature by the heat flow, the heat flow through the capillary is changed by the temperature control to obtain multiple temperature plateaus of different heat flows. The thermometer self-heating effect, the residual heat leak of the 4.2 K environment, the temperature difference on the He II liquid column, the Kapiza thermal resistance between the liquid helium and the copper surface of the sealed cell, the temperature gradient of the sealed cell, the static pressure of the He II liquid column and other factors have influence on the depression effect and the influence is analyzed in detail. Twenty experiments of the depression of the superfluid transition temperature in 4 He by heat flow are made with four sealed cells in one year. The formula of the superfluid transition temperature pressured by the heat flow is T λ (Q) = −0.00000103Q + 2.1769108, and covers the range 229 ≤ Q ≤ 6462 μW/cm 2
A Heat Transfer Correlation in a Vertical Upward Flow of CO2 at Supercritical Pressures
International Nuclear Information System (INIS)
Kim, Hyung Rae; Bae, Yoon Yeong; Song, Jin Ho; Kim, Hwan Yeol
2006-01-01
Heat transfer data has been collected in the heat transfer test loop, named SPHINX (Supercritical Pressure Heat Transfer Investigation for NeXt generation), in KAERI. The facility primarily aims at the generation of heat transfer data in the flow conditions and geometries relevant to SCWR (SuperCritical Water-cooled Reactor). The produced data will aid the thermohydraulic design of a reactor core. The loop uses carbon dioxide, and later the results will be scaled to the water flows. The heat transfer data has been collected for a vertical upward flow in a circular tube with varying mass fluxes, heat fluxes, and operating pressures. The results are compared with the existing correlations and a new correlation is proposed by fine-tuning the one of the existing correlations
International Nuclear Information System (INIS)
Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao
2016-01-01
Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.
Raju, C. S. K.; Sanjeevi, P.; Raju, M. C.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.
2017-11-01
A theoretical analysis is performed for studying the flow and heat and mass transfer characteristics of Maxwell fluid over a cylinder with Cattaneo-Christov and non-uniform heat source/sink. The Brownian motion and thermophoresis parameters also considered into account. Numerical solutions are carried out by using Runge-Kutta-based shooting technique. The effects of various governing parameters on the flow and temperature profiles are demonstrated graphically. We also computed the friction factor coefficient, local Nusselt and Sherwood numbers for the permeable and impermeable flow over a cylinder cases. It is found that the rising values of Biot number, non-uniform heat source/sink and thermophoresis parameters reduce the rate of heat transfer. It is also found that the friction factor coefficient is high in impermeable flow over a cylinder case when compared with the permeable flow over a cylinder case.
Li, Yanna; Gessner, Manuel; Li, Weidong; Smerzi, Augusto
2018-02-01
The controlled generation and identification of quantum correlations, usually encoded in either qubits or continuous degrees of freedom, builds the foundation of quantum information science. Recently, more sophisticated approaches, involving a combination of two distinct degrees of freedom, have been proposed to improve on the traditional strategies. Hyperentanglement describes simultaneous entanglement in more than one distinct degree of freedom, whereas hybrid entanglement refers to entanglement shared between a discrete and a continuous degree of freedom. In this work we propose a scheme that allows us to combine the two approaches, and to extend them to the strongest form of quantum correlations. Specifically, we show how two identical, initially separated particles can be manipulated to produce Bell nonlocality among their spins, among their momenta, as well as across their spins and momenta. We discuss possible experimental realizations with atomic and photonic systems.
International Nuclear Information System (INIS)
Howard, J A; Walsh, P A
2014-01-01
This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Control of District Heating System with Flow-dependent Delays
DEFF Research Database (Denmark)
Bendtsen, Jan Dimon; Ledesma, Jorge Val; Kallesøe, Carsten Skovmose
2017-01-01
All flow systems are subject to transport delays, which are governed by the flow rates in the system. When the flow rates themselves are control inputs, the system becomes subject to input-dependent state delays, which poses significant theoretical problems. In an earlier paper, we proposed...
International Nuclear Information System (INIS)
Baek, Seong Gu; Park, Seung O.
2003-01-01
This paper provides the assessment of prediction performance of explicit algebraic stress and heat-flux models under conditions of mixed convective gas flows in a strongly-heated vertical tube. Two explicit algebraic stress models and four algebraic heat-flux models are selected for assessment. Eight combinations of explicit algebraic stress and heat-flux models are used in predicting the flows experimentally studied by Shehata and McEligot (IJHMT 41(1998) p.4333) in which property variation was significant. Among the various model combinations, the Wallin and Johansson (JFM 403(2000) p. 89) explicit algebraic stress model-Abe, Kondo, and Nagano (IJHFF 17(1996) p. 228) algebraic heat-flux model combination is found to perform best. We also found that the dimensionless wall distance y + should be calculated based on the local property rather than the property at the wall for property-variation flows. When the buoyancy or the property variation effects are so strong that the flow may relaminarize, the choice of the basic platform two-equation model is a most important factor in improving the predictions
Heating limits of boiling downward two-phase flow in parallel channels
International Nuclear Information System (INIS)
Fukuda, Kenji; Kondoh, Tetsuya; Hasegawa, Shu; Sakai, Takaaki.
1989-01-01
Flow characteristics and heating limits of downward two-phase flow in single or parallel multi-channels are investigated experimentally and analytically. The heating section used is made of glass tube, in which the heater tube is inserted, and the flow regime inside it is observed. In single channel experiments with low flow rate conditions, it is found that, initially, gas phase which flows upward against the downward liquid phase flow condenses and diminishes as it flows up being cooled by inflowing liquid. However, as the heating power is increased, some portion of the gas phase reaches the top and accumulates to form an liquid level, which eventually causes the dryout. On the other hand, for high flow rate condition, the flooding at the bottom of the heated section is the cause of the dryout. In parallel multi-channels experiments, reversed (upward) flow which leads to the dryout is observed in some of these channels for low flow rate conditions, while the situation is the same to the single channel case for high flow rate conditions. Analyses are carried out to predict the onset of dryout in single channel using the drift flux model as well as the Wallis' flooding correlation. Above-mentioned two types of the dryout and their boundary are predicted which agree well with the experimental results. (author)
Vinsard, G.; Dufour, S.; Saatdjian, E.; Mota, J. P. B.
2016-03-01
Chaotic advection can effectively enhance the heat transfer rate between a boundary and fluids with high Prandtl number. These fluids are usually highly viscous and thus turbulent agitation is not a viable solution since the energy required to mix the fluid would be prohibitive. Here, we analyze previously obtained results on chaotic advection and heat transfer in two similar 2-D periodic flows and on their corresponding 3-D periodic flows when an axial velocity component is superposed. The two flows studied are the flow between eccentric rotating cylinders and the flow between confocal ellipses. For both of these flows the analysis is simplified because the Stokes equations can be solved analytically to obtain a closed form solution. For both 2-D periodic flows, we show that chaotic heat transfer is enhanced by the displacement of the saddle point location during one period. Furthermore, the enhancement by chaotic advection in the elliptical geometry is approximately double that obtained in the cylindrical geometry because there are two saddle points instead of one. We also explain why, for high eccentricity ratios, there is no heat transfer enhancement in the cylindrical geometry. When an axial velocity component is added to both of these flows so that they become 3-D, previous work has shown that there is an optimum modulation frequency for which chaotic advection and heat transfer enhancement is a maximum. Here we show that the optimum modulation frequency can be derived from results without an axial flow. We also explain by physical arguments other previously unanswered questions in the published data.
Ocular blood flow decreases during passive heat stress in resting humans
Ikemura, Tsukasa; Miyaji, Akane; Kashima, Hideaki; Yamaguchi, Yuji; Hayashi, Naoyuki
2013-01-01
Background Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow. Findings Ocular blood flow, end-tidal carbon dioxide (P ETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the s...
Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems
Meisner, Gregory P
2013-10-08
Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.
Experimental Study of Flow Boiling Heat Transfer in a Horizontal Microfin Tube
Yu, Jian; Koyama, Shigeru; Momoki, Satoru
1995-01-01
An experimental study on flow boiling heat transfer in a horizontal microfin tube is conducted with pure refrigerants HFC134a, HCFC123 and HCFC22 using a water-heated double-tube type test section. The test microfin tube is a copper tube having the following dimensions: 8.37mm mean inside diameter, 0.168mm fin height, 60fin number and 18 degree of helix angle. The local heat transfer coefficients for both counter and parallel flows are measured in a range of heat flux of 1 to 93W/m^2, mass ve...
An experimental investigation on ground heat flow balance issue for a GCHP
Jiufa Chen; Hongqi Zheng; Qin Xue; Erming An; Weilai Qiao
2010-01-01
For a ground-coupled heat pump (GCHP), it is vital to keep the ground heat flow balanced in order to achieve sustainable energy-saving operation. However, the importance of this issue has not been well studied. Focused on the heat flow balance issue, this paper made an exclusive experimental study using a newly installed GCHP system with the designed cooling capacity 1960 kW and heating capacity 1590 kW. The GCHP system was equipped with a data acquisition system and had temperature sensors i...
Theoretical analysis and experimental research on dispersed-flow boiling heat transfer
International Nuclear Information System (INIS)
Yu Zhenwan; Jia Dounan; Li Linjiao; Mu Quanhou
1989-01-01
Experiment on dispersed-flow boiling heat transfer at low pressure has been done. The hot patch technique has been used to establish post-dryout conditions. The position of the hot patch can be varied along the test section. The superheated vapor temperatures at different elevations after dryout point are obtained. The experimental data are generally in agreement with the models of predictions of existing nonequilibrium film boiling. A heat transfer model for dispersed-flow boiling heat transfer has been developed. And the model can explain the phenomena of heat transfer near the dryout point. (orig./DG)
He, Lijuan; Hu, Shengbiao; Huang, Shaopeng; Yang, Wencai; Wang, Jiyang; Yuan, Yusong; Yang, Shuchun
2008-02-01
The Chinese Continental Scientific Drilling (CCSD) Project offers a unique opportunity for studying the thermal regime of the Dabie-Sulu ultrahigh-pressure metamorphic belt. In this paper, we report measurements of borehole temperature, thermal conductivity, and radiogenic heat production from the 5158 m deep main hole (CCSD MH). We have obtained six continuous temperature profiles from this borehole so far. The temperature logs show a transient mean thermal gradient that has increased from 24.38 to 25.28 K km-1 over a period of about 1.5 years. We measured thermal conductivities and radiogenic heat productions on more than 400 core samples from CCSD MH. The measured thermal conductivities range between 1.71 and 3.60 W m-1 K-1, and the radiogenic heat productions vary from 0.01 μW m-3 to over 5.0 μW m-3, with a mean value of 1.23 ± 0.82 μW m-3 for the upper 5-km layer of the crust. The heat productions in CCSD MH appear to be more rock-type than depth-dependent and, over the depth range of CCSD MH, do not fit the popular model of heat production decreasing exponentially with increasing depth. The measured heat flow decreases with depth from ˜75 mW m-2 near the surface to ˜66 mW m-2 at a depth of 4600 m. High heat flow anomalies occur at ˜1000 and ˜2300 m, and low anomalies occur at 3300-4000 m. A preliminary two-dimensional numerical model suggests that both radiogenic heat production and thermal refraction due to structural heterogeneity are at least partially responsible for the vertical variation of heat flow in CCSD MH.
On a non-local gas dynamics like integrable hierarchy
International Nuclear Information System (INIS)
Brunelli, Jose Carlos; Das, Ashok
2004-01-01
We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)
International Nuclear Information System (INIS)
Sirvydas, A.; Poskas, R.
2006-01-01
We present the results on numerical investigation of the local opposing mixed convection heat transfer in a vertical flat channel with symmetrical heating at low Reynolds numbers. Numerical two-dimensional simulation was performed for the same channel and for the same conditions as in the experiment using the FLUENT 6.1 code. The unsteady flow investigations were performed in airflow for the experimental conditions at the Reynolds number 2130 and Grashof number 6.2* 10 8 . Quasi-steady flow investigations were performed for two Reynolds numbers (2130 and 4310) and the Grashof number up to 3.1*10 9 in order to simulate the buoyancy effect on the flow structure. In both steady and quasi-steady modelling cases the results demonstrated that under the high buoyancy effect the chequerwise local circular flow took place near the heated walls. This made velocity profiles asymmetrical and caused pulsations of the wall temperature. Wall temperature had a pulsatory character, however, the resulting averaged values correlated rather well with experimental data for steady and quasi-steady cases for Re in = 2130. For Re in = 4310, the resulting averaged values for x/d e ≤25 correlated rather well with experimental data. When x/d e > 25, the difference between the experimental and the calculated wall temperature was increasing, increasing, possibly due to a steady flow and heat transfer modelling. (author)
An improved mechanistic critical heat flux model for subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1997-12-31
Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng [School of Energy and Power Engineering, Jiangsu University, Zhenjiang (China); Kim, Hyoung Bum [School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju (Korea, Republic of)
2016-12-15
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition.
An improved mechanistic critical heat flux model for subcooled flow boiling
Energy Technology Data Exchange (ETDEWEB)
Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)
Axial slit wall effect on the flow instability and heat transfer in rotating concentric cylinders
International Nuclear Information System (INIS)
Liu, Dong; Chao, Chang Qing; Wang, Ying Ze; Zhu, Fang Neng; Kim, Hyoung Bum
2016-01-01
The slit wall effect on the flow instability and heat transfer characteristics in Taylor-Couette flow was numerically studied by changing the rotating Reynolds number and applying the negative temperature gradient. The concentric cylinders with slit wall are seen in many rotating machineries. Six different models with the slit number 0, 6, 9, 12, 15 and 18 were investigated in this study. The results show the axial slit wall enhances the Taylor vortex flow and suppresses the azimuthal variation of wavy Taylor vortex flow. When negative temperature gradient exists, the results show that the heat transfer augmentation appears from laminar Taylor vortex to turbulent Taylor flow regime. The heat transfer enhancement become stronger as increasing the Reynolds number and slit number. The larger slit number model also accelerates the flow transition regardless of the negative temperature gradient or isothermal condition
Directory of Open Access Journals (Sweden)
Kumar Hitesh
2009-01-01
Full Text Available The boundary layer steady flow and heat transfer of a viscous incompressible fluid due to a stretching plate with viscous dissipation effect in the presence of a transverse magnetic field is studied. The equations of motion and heat transfer are reduced to non-linear ordinary differential equations and the exact solutions are obtained using properties of confluent hypergeometric function. It is assumed that the prescribed heat flux at the stretching porous wall varies as the square of the distance from origin. The effects of the various parameters entering into the problem on the velocity field and temperature distribution are discussed.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
Directory of Open Access Journals (Sweden)
Musiał Tomasz
2017-01-01
Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
Analogy of convective heat transfer between developing laminar secondary flows in pipes
Ishigaki, Hiroshi; 石垣 博
1998-01-01
Analogy of convective heat transfer between developing laminar flows in curved pipes and orthogonally rotating pipes is described through similarity arguments and numerical computation. Governing parameters and a dimensionless axial distance are properly used for the respective flows. When the second parameter is large in each flow, it is shown that the temperature profiles and the Nusselt numbers of the two flows are approximately similar for the same values of the governing parameter, Prand...
Subcooled flow boiling heat transfer from microporous surfaces in a small channel
International Nuclear Information System (INIS)
Yan, Sun; Li, Zhang; Hong, Xu; Xiaocheng, Zhong
2011-01-01
The continuously increasing requirement for high heat transfer rate in a compact space can be met by combining the small channel/microchannel and heat transfer enhancement methods during fluid subcooled flow boiling. In this paper, the sintered microporous coating, as an efficient means of enhancing nucleate boiling, was applied to a horizontal, rectangular small channel. Water flow boiling heat transfer characteristics from the small channel with/without the microporous coating were experimentally investigated. The small channel, even without the coating, presented flow boiling heat transfer enhancement at low vapor quality due to size effects of the channel. This enhancement was also verified by under-predictions from macro-scale correlations. In addition to the enhancement from the channel size, all six microporous coatings with various structural parameters were found to further enhance nucleate boiling significantly. Effects of the coating structural parameters, fluid mass flux and inlet subcooling were also investigated to identify the optimum condition for heat transfer enhancement. Under the optimum condition, the microporous coating could produce the heat transfer coefficients 2.7 times the smooth surface value in subcooled flow boiling and 3 times in saturated flow boiling. The combination of the microporous coating and small channel led to excellent heat transfer performance, and therefore was deemed to have promising application prospects in many areas such as air conditioning, chip cooling, refrigeration systems, and many others involving compact heat exchangers. (authors)
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
A review of surface heat-flow data of the northern Middle Atlas (Morocco)
Chiozzi, Paolo; Barkaoui, Alae-Eddine; Rimi, Abdelkrim; Verdoya, Massimo; Zarhloule, Yassine
2017-12-01
We revised thermal data available from water and oil wells in the northern sector of the Middle Atlas region. To avoid biased estimation of surface heat flow caused by advection likely occurring in shallow aquifers, temperature measurements in water boreholes were carefully inspected and selected. The heat flow in the oil wells was inferred by taking into account the porosity variation with depth, the temperature effect on thermal conductivity of the matrix and the pore fluid, together with the contribution of the radiogenic heat production. Moreover, the possible bias in heat flow caused by convection occurring in confined carbonate aquifers was evaluated. The results of heat flow slightly modify the picture reported in previous investigations. The heat flow value over the investigated region is rather uniform (about 80 mW m-2) and is similar in oil wells and in water boreholes. Geothermal calculations indicate that such a surface heat flow is compatible with a ∼70 km thick thermal lithosphere and normal thermal conditions in the asthenospheric mantle.
Heat transfer enhancement through control of added perturbation velocity in flow field
International Nuclear Information System (INIS)
Wang, Jiansheng; Wu, Cui; Li, Kangning
2013-01-01
Highlights: ► Three strategies which restrain the flow drag in heat transfer are proposed. ► Added perturbation induces quasi-streamwise vortices around controlled zone. ► The flow and heat transfer features depend on induced quasi-streamwise vortices. ► Vertical strategy has the best synthesis performance of three control strategies. ► Synthesis performance with control strategy is superior to that without strategy. - Abstract: The characteristics of heat transfer and flow, through an added perturbation velocity, in a rectangle channel, are investigated by Large Eddy Simulation (LES). The downstream, vertical, and upstream control strategy, which can suppress the lift of low speed streaks in the process of improving the performance of heat transfer, are adopted in numerical investigation. Taking both heat transfer and flow properties into consideration, the synthesis performance of heat transfer and flow of three control strategies are evaluated. The numerical results show that the flow structure in boundary layer has been varied obviously for the effect of perturbation velocity and induced quasi-streamwise vortices emerging around the controlled zone. The results indicate that the vertical control strategy has the best synthesis performance of the three control strategies, which also has the least skin frication coefficient. The upstream and downstream strategies can improve the heat transfer performance, but the skin frication coefficient is higher than that with vertical control strategy
Directory of Open Access Journals (Sweden)
M. Das
2015-12-01
Full Text Available The influence of Newtonian heating on heat and mass transfer in unsteady hydromagnetic flow of a Casson fluid past a vertical plate in the presence of thermal radiation and chemical reaction is studied. The Casson fluid model is used to distinguish the non-Newtonian fluid behavior. The fluid flow is induced due to periodic oscillations of the plate along its length and a uniform transverse magnetic field is applied in a direction which is normal to the direction of fluid flow. The partial differential equations governing the flow, heat, and mass transfer are transformed to non-dimensional form using suitable non-dimensional variables which are then solved analytically by using Laplace transform technique. The numerical values of the fluid velocity, fluid temperature, and species concentration are depicted graphically whereas the values of skin-friction, Nusselt number, and Sherwood number are presented in tabular form. It is noticed that the fluid velocity and temperature decrease with increasing values of Casson parameter while concentration decreases with increasing values of chemical reaction parameter and Schmidt number. Such a fluid flow model has several industrial and medical applications such as in glass manufacturing, paper production, purification of crude oil and study of blood flow in the cardiovascular system.
Comprehensive study of flow and heat transfer at the surface of circular cooling fin
Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.
2017-11-01
For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.
Noxious heat and scratching decrease histamine-induced itch and skin blood flow.
Yosipovitch, Gil; Fast, Katharine; Bernhard, Jeffrey D
2005-12-01
The aim of this study was to assess the effect of thermal stimuli or distal scratching on skin blood flow and histamine-induced itch in healthy volunteers. Twenty-one healthy volunteers participated in the study. Baseline measurements of skin blood flow were obtained on the flexor aspect of the forearm. These measurements were compared with skin blood flow after various stimuli: heating the skin, cooling the skin, noxious cold 2 degrees C, noxious heat 49 degrees C, and scratching via a brush with controlled pressure. Afterwards histamine iontophoresis was performed and skin blood flow and itch intensity were measured immediately after the above-mentioned stimuli. Scratching reduced mean histamine-induced skin blood flow and itch intensity. Noxious heat pain increased basal skin blood flow but reduced histamine-induced maximal skin blood flow and itch intensity. Cold pain and cooling reduced itch intensity, but neither affected histamine-induced skin blood flow. Sub-noxious warming the skin did not affect the skin blood flow or itch intensity. These findings suggest that heat pain and scratching may inhibit itch through a neurogenic mechanism that also affects skin blood flow.
MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux
International Nuclear Information System (INIS)
Ishak, Anuar; Nazar, Roslinda; Pop, Ioan
2009-01-01
The steady magnetohydrodynamic (MHD) mixed convection flow towards a vertical permeable surface with prescribed heat flux is investigated. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analysed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for the assisting flow, besides the solutions usually reported in the literature for the opposing fow
Nonlocal gravity simulates dark matter
Hehl, Friedrich W.; Mashhoon, Bahram
2009-01-01
A nonlocal generalization of Einstein's theory of gravitation is constructed within the framework of the translational gauge theory of gravity. In the linear approximation, the nonlocal theory can be interpreted as linearized general relativity but in the presence of "dark matter" that can be simply expressed as an integral transform of matter. It is shown that this approach can accommodate the Tohline-Kuhn treatment of the astrophysical evidence for dark matter.
Buoyancy induced convective flow in porous media with heat source
International Nuclear Information System (INIS)
Hwang, I.T.
1978-01-01
An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order
International Nuclear Information System (INIS)
Denten, J.G.; Ishii, M.
1988-11-01
A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs
Heat-flow and temperature control in Tian–Calvet microcalorimeters: toward higher detection limits
International Nuclear Information System (INIS)
Vilchiz-Bravo, L E; Pacheco-Vega, A; Handy, B E
2010-01-01
Strategies based on the principle of heat flow and temperature control were implemented, and experimentally tested, to increase the sensitivity of a Tian–Calvet microcalorimeter for measuring heats of adsorption. Here, both heat-flow and temperature control schemes were explored to diminish heater-induced thermal variations within the heat sink element, hence obtaining less noise in the baseline signal. PID controllers were implemented within a closed-loop system to perform the control actions in a calorimetric setup. The experimental results demonstrate that the heat flow control strategy provided a better baseline stability when compared to the temperature control. The effects on the results stemming from the type of power supply used were also investigated
Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions
Directory of Open Access Journals (Sweden)
Muhammad Ijaz Khan
Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation
Buoyancy driven flow in a hot water tank due to standby heat loss
DEFF Research Database (Denmark)
Fan, Jianhua; Furbo, Simon
2012-01-01
Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...
Darcy-Forchheimer flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions.
Hayat, Tasawar; Haider, Farwa; Muhammad, Taseer; Alsaedi, Ahmed
2017-01-01
Here Darcy-Forchheimer flow of viscoelastic fluids has been analyzed in the presence of Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Results for two viscoelastic fluids are obtained and compared. A linear stretching surface has been used to generate the flow. Flow in porous media is characterized by considering the Darcy-Forchheimer model. Modified version of Fourier's law through Cattaneo-Christov heat flux is employed. Equal diffusion coefficients are employed for both reactants and auto catalyst. Optimal homotopy scheme is employed for solutions development of nonlinear problems. Solutions expressions of velocity, temperature and concentration fields are provided. Skin friction coefficient and heat transfer rate are computed and analyzed. Here the temperature and thermal boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to classical Fourier's law of heat conduction. Moreover, the homogeneous and heterogeneous reactions parameters have opposite behaviors for concentration field.
APOLLO 15 HEAT FLOW THERMAL CONDUCTIVITY RDR SUBSAMPLED V1.0
National Aeronautics and Space Administration — This data set comprises a reduced, subsampled set of the data returned from the Apollo 15 Heat Flow Experiment from 31 July 1971 through 31 December 1974. The...
APOLLO 17 HEAT FLOW THERMAL CONDUCTIVITY RDR SUBSAMPLED V1.0
National Aeronautics and Space Administration — This data set comprises a reduced, subsampled set of the data returned from the Apollo 17 Heat Flow Experiment from 12 December 1972 through 31 December 1974. The...
Heat-flow properties of systems with alternate masses or alternate on-site potentials
Pereira, Emmanuel; Santana, Leonardo M.; Ávila, Ricardo
2011-07-01
We address a central issue of phononics: the search of properties or mechanisms to manage the heat flow in reliable materials. We analytically study standard and simple systems modeling the heat flow in solids, namely, the harmonic, self-consistent harmonic and also anharmonic chains of oscillators, and we show an interesting insulating effect: While in the homogeneous models the heat flow decays as the inverse of the particle mass, in the chain with alternate masses it decays as the inverse of the square of the mass difference, that is, it decays essentially as the mass ratio (between the smaller and the larger one) for a large mass difference. A similar effect holds if we alternate on-site potentials instead of particle masses. The existence of such behavior in these different systems, including anharmonic models, indicates that it is a ubiquitous phenomenon with applications in the heat flow control.
Heat Transfer Characteristics of the Supercritical CO{sub 2} Flowing in a Vertical Annular Channel
Energy Technology Data Exchange (ETDEWEB)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO{sub 2} at several test sections with a different geometry. The loop uses CO{sub 2} because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO{sub 2} in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO{sub 2} flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
Heat Transfer Characteristics of the Supercritical CO2 Flowing in a Vertical Annular Channel
International Nuclear Information System (INIS)
Yoo, Tae Ho; Bae, Yoon Yeong; Kim, Hwan Yeol
2010-01-01
Heat transfer test facility, SPHINX(Supercritical Pressure Heat transfer Investigation for NeXt generation), has been operated at KAERI for an investigation of the thermal-hydraulic characteristics of supercritical CO 2 at several test sections with a different geometry. The loop uses CO 2 because it has much lower critical pressure and temperature than those of water. Experimental study of heat transfer to supercritical CO 2 in a vertical annular channel with and hydraulic diameter of 4.5 mm has been performed. CO 2 flows downward through the annular channel simulating the downward-flowing coolant in a multi-pass reactor or water rod moderator in a single pass reactor. The heat transfer characteristics in a downward flow were analyzed and compared with the upward flow test results performed previously with the same test section at KAERI
CFD investigation of flow and heat transfer of nanofluids in isoflux spirally fluted tubes
Salama, Amgad; Azamatov, Abdulaziz Irgashevich; El-Amin, Mohamed; Sun, Shuyu; Huang, Huancong
2012-01-01
In this work, the problem of flow and heat transfer of nanofluids in spirally fluted tubes is investigated numerically using the CFD code Fluent. The tube investigated in this work is characterized by the existence of helical ridging which
Effect of regional heating on the liver blood flow in rats
International Nuclear Information System (INIS)
Nakajima, T.; Song, C.W.; Osborn, J.L.; Rhee, J.G.; Levitt, S.H.
1987-01-01
The authors measured the blood flow in the liver of rats heated with a radio frequency capacitive heating device. The blood flow through the hepatic artery, as measured with the radioactive microsphere method, was 0.21 ml/min/gm; it increased by 13% and 16% when heated for 15 minutes at 41 0 C and 43 0 C, respectively. The portal vein blood flow was 1.09 ml/min/gm and decreased by 12% and 20% on heating for 15 minutes at 41 0 C and 43 0 C, respectively. The total liver blood flow, therefore, decreased by 11% at 41 0 C and by 14% at 43 0 C from the control value of 1.30 ml/min/gm
FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media
Diersch, Hans-Jörg G
2013-01-01
Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
DR OKE
International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.
Relaxed impact craters on Ganymede: Regional variation and high heat flows
Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.
2018-05-01
Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.
International Nuclear Information System (INIS)
Kajihara, Tomoyuki; Kaiho, Kazuhiro; Okawa, Tomio
2014-01-01
Subcooled flow boiling plays an important role in boiling water reactors because it influences the heat transfer performance from fuel rods, two-phase flow stabilities, and neutron moderation characteristics. In the present study, flow visualization of water subcooled flow boiling in a vertical heated channel was carried out to investigate the mechanisms of void fraction development. The two surfaces of distinctly different contact angles were used as the heated surface to investigate the effect of the surface wettability. It was observed that with an increase in the wall heat flux, more nucleation sites were activated and larger bubbles were produced at low-frequency. It was considered that formation of these large bubbles primarily contributed to the void fraction development. (author)
Lukjanov Alexander V.; Ostapenko Dmitry V.; Basist Dmitry V.
2014-01-01
Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical ...
International Nuclear Information System (INIS)
Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto
2014-01-01
Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat
Two-phase flow instabilities in a silicon microchannels heat sink
International Nuclear Information System (INIS)
Bogojevic, D.; Sefiane, K.; Walton, A.J.; Lin, H.; Cummins, G.
2009-01-01
Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.
Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow
International Nuclear Information System (INIS)
Saha, A.K.
2006-01-01
The fluid flow and heat transfer from a stationary cube placed in a uniform flow is studied numerically. The three-dimensional unsteady Navier Stokes and energy equations are solved using higher order temporal and spatial discretizations. Computations are carried out for a Reynolds number range of 50-400. At Re = 218, the symmetry seen at Re = 216 breaks down in one of the orthogonal planes while remains symmetric on the other thus showing a planar symmetry. The flow experiences a Hopf bifurcation at a Reynolds number between 265 and 270 and becomes unsteady. The thermal field also shows all the transitions same as those of flow transitions. The drag coefficient decreases while the heat transfer shows an increasing trend with Reynolds number. The transition from a steady to an unsteady flow does not show any significant increase in the heat transfer. Both the flow and thermal fields show multiple frequencies at high Reynolds number and the number of frequencies increases with the increase in Reynolds number. The instantaneous flow and temperature field are seen to deviate from planar symmetry at Re = 400
SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris
International Nuclear Information System (INIS)
Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung
1999-01-01
Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region
SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris
International Nuclear Information System (INIS)
Coryell, E.W.; Siefken, L.J.; Paik, S.
1998-01-01
Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and non-porous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of non-porous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. A design is also described for implementing a model of heat transfer by radiation from debris to the interstitial fluid. A design is described for implementation of models for flow losses and interphase drag in porous debris. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region
Energy Technology Data Exchange (ETDEWEB)
Tiruselvam, R.; Raghavan, Vijay R. [Universiti Teknologi PETRONAS, Faculty of Mechanical Engineering, Tronoh (Malaysia)
2012-04-15
The study is conducted to evaluate the flow characteristics in a double tube heat exchanger using two new and versatile enhancement configurations. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Correlations are proposed for flow development length and friction factor for use in predicting fluid pumping power in thermal equipment as well as in subsequent heat transfer characterization of the surface. (orig.)
Bistability of heat transfer of a viscous liquid under conditions of flow channel
International Nuclear Information System (INIS)
Melkikh, A.V.; Seleznev, V.D.
2001-01-01
The heat exchange model for a viscous liquid flowing under the pressure drop effect in a tube, surrounded by the medium with a lower temperature, is considered. It is shown that the system bistable behavior is possible by availability of the liquid viscosity exponential dependence on the temperature and by negligible dissipative heat release. The transitions between cold and hot flows in this case should proceed by a jump. The liquid and channel parameters, whereby the bistability may be observed, are determined [ru
Xiao, Tiejun
2016-11-01
In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic properties.
Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.
Microgravity two-phase flow and heat transfer
Gabriel, Kamiel S
2007-01-01
Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, but such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. This book presents a coverage of various aspects of two-phase flow behaviour in the virtual absence of gravity.
Directory of Open Access Journals (Sweden)
Abid Hussanan
Full Text Available In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
International Nuclear Information System (INIS)
Gang Wu; Bi Qincheng; Yang Zhendong; Wang Han; Zhu Xiaojing; Hao Hou; Leung, L.K.H.
2011-01-01
Highlights: → Two annular test sections were constructed with annular gaps of 4 and 6 mm. → Two heat transfer regions have been observed: normal and deteriorated heat transfer. → The spacer enhances the heat transfer at downstream locations. → The Jackson correlation agrees quite closely with the experimental data. - Abstract: An experiment has recently been completed at Xi'an Jiaotong University (XJTU) to obtain wall-temperature measurements at supercritical pressures with upward flow of water inside vertical annuli. Two annular test sections were constructed with annular gaps of 4 and 6 mm, respectively, and an internal heater of 8 mm outer diameter. Experimental-parameter ranges covered pressures of 23-28 MPa, mass fluxes of 350-1000 kg/m 2 /s, heat fluxes of 200-1000 kW/m 2 , and bulk inlet temperatures up to 400 deg. C. Depending on the flow conditions and heat fluxes, two distinctive heat transfer regimes, referring to as the normal heat transfer and deteriorated heat transfer, have been observed. At similar flow conditions, the heat transfer coefficients for the 6 mm gap annular channel are larger than those for the 4 mm gap annular channel. A strong effect of spiral spacer on heat transfer has been observed with a drastic reduction in wall temperature at locations downstream of the device in the annuli. Two tube-data-based correlations have been assessed against the experimental heat transfer results. The Jackson correlation agrees with the experimental trends and overpredicts slightly the heat transfer coefficients. The Dittus-Boelter correlation is applicable only for the normal heat transfer region but not for the deteriorated heat transfer region.
Laboratory experiments on heat-drive two-phase flows in natural and artificial rock fractures
International Nuclear Information System (INIS)
Kneafsey, Timothy J.; Pruess, Karsten
1998-01-01
Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed but not when vapor-liquid counterflow was hindered by very narrow apertures and when an inadequate working fluid volume was used
Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow
International Nuclear Information System (INIS)
Jackson, J.D.; Li, J.
2002-01-01
A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)
The characteristics of heat flow in the Shenhu gas hydrate drilling area, northern South China Sea
Xu, Xing; Wan, Zhifeng; Wang, Xianqing; Sun, Yuefeng; Xia, Bin
2016-12-01
Marine heat flow is of great significance for the formation and occurrence of seabed oil, gas and gas hydrate resources. Geothermal gradient is an important parameter in determining the thickness of the hydrate stability zone. The northern slope of the South China Sea is rich in gas hydrate resources. Several borehole drilling attempts were successful in finding hydrates in the Shenhu area, while others were not. The failures demand further study on the distribution regularities of heat flow and its controlling effects on hydrate occurrence. In this study, forty-eight heat flow measurements are analyzed in the Shenhu gas hydrate drilling area, located in the northern South China Sea, together with their relationship to topography, sedimentary environment and tectonic setting. Canyons are well developed in the study area, caused mainly by the development of faults, faster sediment supply and slumping of the Pearl River Estuary since the late Miocene in the northern South China Sea. The heat flow values in grooves, occurring always in fault zones, are higher than those of ridges. Additionally, the heat flow values gradually increase from the inner fan, to the middle fan, to the external fan subfacies. The locations with low heat flow such as ridges, locations away from faults and the middle fan subfacies, are more conducive to gas hydrate occurrence.
Influence of Wind Speed on Heat Flow through Polypropylene Insulating Material
Institute of Scientific and Technical Information of China (English)
SUN Yu-chai; CHENG Zhong-hao; FENG Xun-wei
2006-01-01
The heat transfer properties of polypropylene insulation at different ambient temperature against wind were analysed.A theoretical model of the combined conductive, convective and radiative heat flow through fibrous insulating material was presented. Detail study was carried out by using the finite element method. The theoretical results are in accordance to the experimental results which were accomplished in an artificial climate chamber.
Acoustic scattering behavior of a 2D flame with heat exchanger in cross-flow
Chen, L.S.; Polifke, W.; Hosseini, N.; Teerling, O. J.; Arteaga, I.L.; Kornilov, V.; De Goey, P.
2016-01-01
In practical heat production systems, premixed flames with cold heat exchanger in cross-flow is a widely used configuration. Self-excited thermoacoustic instabilities often occur in such systems. A practical way to predict the presence of the instabilities is the network model approach. In the
Latent Heat Flow in Light Weight Roofs and its Influence on the Thermal Performance
DEFF Research Database (Denmark)
Rode, Carsten; Rudbeck, Claus Christian
1998-01-01
Under certain conditions, migration of small amounts of moisture in the envelope of buildings can cause heat flow through permeable thermal insulation materials due to the conversion of latent heat when moisture evaporates from a warm surface, diffuses through the insulation, and condenses...
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger
Watanabe, Satoshi
2005-11-01
Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.
Directory of Open Access Journals (Sweden)
Yang Xiao-Jun
2016-01-01
Full Text Available In this article we propose a new fractional derivative without singular kernel. We consider the potential application for modeling the steady heat-conduction problem. The analytical solution of the fractional-order heat flow is also obtained by means of the Laplace transform.
Development of gas-solid direct contact heat exchanger by use of axial flow cyclone
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Akihiko; Yokomine, Takehiko [Kyushu University (Japan). Interdisciplinary Graduate School of Engineering Sciences; Nagafuchi, Tatsuro [Miura Co. Ltd., Matsuyamashi (Japan)
2004-10-01
A heat exchanger between particulate or granular materials and gas is developed. It makes use of a swirling gas flow similar to the usual cyclone separators but the difference from them is that the swirl making gas is issued into the cyclone chamber with downward axial velocity component. After it turns the flow direction near the bottom of the chamber, the low temperature gas receives heat from high temperature particles supplied from above at the chamber's center. Through this configuration, a direct contact and quasi counter-flow heat exchange pattern is realized so that the effective recovery of heat carried by particles is achieved. A model heat exchanger was manufactured via several numerical experiments and its performances of heat exchange as well as particle recovery were examined. Attaching a small particle diffuser below the particle-feeding nozzle brought about a drastic improvement of the heat exchange performance without deteriorating the particle recovery efficiency. The outlet gas temperature much higher than the particle outlet temperature was finally obtained, which is never realized in the parallel flow heat exchanger. (author)
Exergy analysis for stationary flow systems with several heat exchange temperatures
Energy Technology Data Exchange (ETDEWEB)
Lampinen, M J; Heikkinen, M A [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Energy Engineering
1995-07-01
A thermodynamic theory of exergy analysis for a stationary flow system having several heat inputs and outputs at different temperature levels is presented. As a new result a relevant reference temperature of the surroundings is derived for each case. Also a general formula which combines exergy analysis with a modified Carnot efficiency is derived. The results are illustrated by numerical examples for mechanical multi-circuit heat pump cycles, for a Brayton process and for an absorption heat pump. (Author)
A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles
Scammell, Alexander David
2016-01-01
Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field
Nonlocal Intracranial Cavity Extraction
Manjón, José V.; Eskildsen, Simon F.; Coupé, Pierrick; Romero, José E.; Collins, D. Louis; Robles, Montserrat
2014-01-01
Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV) is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden. PMID:25328511
Nonlocal Intracranial Cavity Extraction
Directory of Open Access Journals (Sweden)
José V. Manjón
2014-01-01
Full Text Available Automatic and accurate methods to estimate normalized regional brain volumes from MRI data are valuable tools which may help to obtain an objective diagnosis and followup of many neurological diseases. To estimate such regional brain volumes, the intracranial cavity volume (ICV is often used for normalization. However, the high variability of brain shape and size due to normal intersubject variability, normal changes occurring over the lifespan, and abnormal changes due to disease makes the ICV estimation problem challenging. In this paper, we present a new approach to perform ICV extraction based on the use of a library of prelabeled brain images to capture the large variability of brain shapes. To this end, an improved nonlocal label fusion scheme based on BEaST technique is proposed to increase the accuracy of the ICV estimation. The proposed method is compared with recent state-of-the-art methods and the results demonstrate an improved performance both in terms of accuracy and reproducibility while maintaining a reduced computational burden.
Wang, C. R.; Towne, C. E.; Hippensteele, S. A.; Poinsatte, P. E.
1997-01-01
This study investigated the Navier-Stokes computations of the surface heat transfer coefficients of a transition duct flow. A transition duct from an axisymmetric cross section to a non-axisymmetric cross section, is usually used to connect the turbine exit to the nozzle. As the gas turbine inlet temperature increases, the transition duct is subjected to the high temperature at the gas turbine exit. The transition duct flow has combined development of hydraulic and thermal entry length. The design of the transition duct required accurate surface heat transfer coefficients. The Navier-Stokes computational method could be used to predict the surface heat transfer coefficients of a transition duct flow. The Proteus three-dimensional Navier-Stokes numerical computational code was used in this study. The code was first studied for the computations of the turbulent developing flow properties within a circular duct and a square duct. The code was then used to compute the turbulent flow properties of a transition duct flow. The computational results of the surface pressure, the skin friction factor, and the surface heat transfer coefficient were described and compared with their values obtained from theoretical analyses or experiments. The comparison showed that the Navier-Stokes computation could predict approximately the surface heat transfer coefficients of a transition duct flow.
Goodge, John W.
2018-02-01
Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central
Effect of thermal interface on heat flow in carbon nanofiber composites.
Gardea, F; Naraghi, M; Lagoudas, D
2014-01-22
The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.
International Nuclear Information System (INIS)
Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard
2005-01-01
Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements
Prediction of incipient flow boiling from a uniformly heated surface
International Nuclear Information System (INIS)
Yin, S.T.; Abdelmessih, A.H.
1977-01-01
This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation
Analysis of counter flow of corona wind for heat transfer enhancement
Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo
2018-03-01
A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.
Nonlocal non-Markovian effects in dephasing environments
International Nuclear Information System (INIS)
Xie Dong; Wang An-Min
2014-01-01
We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)
Abnormal high surface heat flow caused by the Emeishan mantle plume
Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing
2016-04-01
It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.