WorldWideScience

Sample records for nonlocal continuum model

  1. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei

    2011-08-09

    The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.

  2. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.

    2012-04-17

    Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.

  3. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  4. Nonlocal continuum model and molecular dynamics for free vibration of single-walled carbon nanotubes.

    Science.gov (United States)

    Hu, Yan-Gao; Liew, K M; Wang, Q

    2011-12-01

    Free transverse, longitudinal and torsional vibrations of single-walled carbon nanotubes (SWCNTs) are investigated through nonlocal beam model, nonlocal rod model and verified by molecular dynamics (MD) simulations. The nonlocal Timoshenko beam model offers a better prediction of the fundamental frequencies of shorter SWCNTs, such as a (5, 5) SWCNT shorter than 3.5 nm, than local beam models. The nonlocal rod model is employed to study the longitudinal and torsional vibrations of SWCNT and found to enable a good prediction of the MD results for shorter SWCNTs. Nonlocal and local continuum models provide a good agreement with MD results for relatively longer SWCNTs, such as (5, 5) SWCNTs longer than 3.5 nm. The scale parameter in nonlocal beam and rod models is estimated by calibrations from MD results.

  5. Internal noise-driven generalized Langevin equation from a nonlocal continuum model.

    Science.gov (United States)

    Sarkar, Saikat; Chowdhury, Shubhankar Roy; Roy, Debasish; Vasu, Ram Mohan

    2015-08-01

    Starting with a micropolar formulation, known to account for nonlocal microstructural effects at the continuum level, a generalized Langevin equation (GLE) for a particle, describing the predominant motion of a localized region through a single displacement degree of freedom, is derived. The GLE features a memory-dependent multiplicative or internal noise, which appears upon recognizing that the microrotation variables possess randomness owing to an uncertainty principle. Unlike its classical version, the present GLE qualitatively reproduces the experimentally measured fluctuations in the steady-state mean square displacement of scattering centers in a polyvinyl alcohol slab. The origin of the fluctuations is traced to nonlocal spatial interactions within the continuum, a phenomenon that is ubiquitous across a broad class of response regimes in solids and fluids. This renders the proposed GLE a potentially useful model in such cases.

  6. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    Energy Technology Data Exchange (ETDEWEB)

    Rafii-Tabar, Hashem, E-mail: rafii-tabar@nano.ipm.ac.ir [Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of)

    2016-06-06

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  7. Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures

    Science.gov (United States)

    Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2016-06-01

    Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models

  8. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Sarp Adali

    2012-01-01

    Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

  9. Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: Theoretical formulations

    Science.gov (United States)

    Kiani, Keivan

    2011-10-01

    The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.

  10. Nonlocal Theories in Continuum Mechanics

    Directory of Open Access Journals (Sweden)

    M. Jirásek

    2004-01-01

    Full Text Available The purpose of this paper is to explain why the standard continuum theory fails to properly describe certain mechanical phenomena and how the description can be improved by enrichments that incorporate the influence of gradients or weighted spatial averages of strain or of an internal variable. Three typical mechanical problems that require such enrichments are presented: (i dispersion of short elastic waves in heterogeneous or discrete media, (ii size effects in microscale elastoplasticity, in particular with the size dependence of the apparent hardening modulus, and (iii localization of strain and damage in quasibrittle structures and with the resulting transitional size effect. Problems covered in the examples encompass static and dynamic phenomena, linear and nonlinear behavior, and three constitutive frameworks, namely elasticity, plasticity and continuum damage mechanics. This shows that enrichments of the standard continuum theory can be useful in a wide range of mechanical problems. 

  11. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  12. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  13. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2011-09-14

    We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity.

  14. Plastic flow in a composite : a comparison of nonlocal continuum and discrete dislocation predictions

    NARCIS (Netherlands)

    Bassani, J.L.; Needleman, A.; Giessen, E. van der

    2001-01-01

    A two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear is considered using both discrete dislocation plasticity and a nonlocal continuum crystal plasticity theory. Only single slip is permitted in the matrix material. The discrete dislocati

  15. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics.

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S Ahmad

    2013-02-22

    Radial vibration of spherical nanoparticles made of materials with anisotropic elasticity is theoretically investigated using nonlocal continuum mechanics. The anisotropic elastic model is reformulated using the nonlocal differential constitutive relations of Eringen. The nonlocal differential equation of radial motion is derived in terms of radial displacement. Cubic, hexagonal, trigonal and tetragonal symmetries of the elasticity are discussed. The suggested model is justified by a good agreement between the results given by the present model and available experimental data. Furthermore, the model is used to elucidate the effect of small scale on the vibration of several nanoparticles. Our results show that the small scale is essential for the radial vibration of the nanoparticles when the nanoparticle radius is smaller than 1.5 nm.

  16. Towards LHC physics with nonlocal Standard Model

    OpenAIRE

    Tirthabir Biswas; Nobuchika Okada

    2015-01-01

    We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Stan...

  17. Exact Solutions in Nonlocal Linear Models

    OpenAIRE

    Vernov, S. Yu.

    2008-01-01

    A general class of cosmological models driven by a nonlocal scalar field inspired by the string field theory is studied. Using the fact that the considering linear nonlocal model is equivalent to an infinite number of local models we have found an exact special solution of the nonlocal Friedmann equations. This solution describes a monotonically increasing Universe with the phantom dark energy.

  18. Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory

    Science.gov (United States)

    Wang, Yi-Ze; Wang, Yue-Sheng; Ke, Liao-Liang

    2016-09-01

    In the present work, the nonlinear vibration of a carbon nanotube which is subjected to the external parametric excitation is studied. By the nonlocal continuum theory and nonlinear von Kármán beam theory, the governing equation of the carbon nanotube is derived with the consideration of the large deformation. The principle parametric resonance of the nanotube is discussed and the approximation explicit solution is presented by the multiple scale method. Numerical calculations are performed. It can be observed that when the mode number is 1, the stable region can be significantly changed by the parametric excitation, length-to-diameter ratio and matrix stiffness. This phenomenon becomes different to appear if the mode number increases. Moreover, the small scale effects have great influences on the positive bifurcation point for the short carbon nanotube, and the nonlocal continuum theory can present the proper model.

  19. Discrete model of dislocations in fractional nonlocal elasticity

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2016-01-01

    Full Text Available Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used. The fractional differences allow us to describe long-range interactions in materials. In continuous limit the suggested discrete models give continuum models of dislocations in nonlocal continua. Fractional generalization of the Frenkel–Kontorova model by using long-range interactions is suggested. We also propose a fractional generalization of interacting atomic chains (IAC model of dislocations by considering long-range interacting chains.

  20. Application of Nonlocal Elasticity Shell Model for Axial Buckling of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Farzad Khademolhosseini

    2009-10-01

    Full Text Available Recently, nano devices have been developed which use Carbon Nanotubes (CNTs as structural elements. To define the range of applicability of CNTs in such devices, it is important to investigate failure modes such as the axial buckling limit. Classical continuum models are inaccurate as they are unable to account for the size-effects in such devices. In this work, a modified nonlocal continuum shell model for the axial buckling of CNTs is proposed and compared with a nonlocal model for torsional buckling. This is done through modifying classical continuum models by incorporating basic concepts from nonlocal elasticity. Furthermore, molecular dynamics (MD simulations are performed on a range of nanotubes with different diameters. Compared to classical models, the modified nonlocal models provide a much better fit to MD simulation results. Using MD simulation results for axial buckling, values of the nonlocal constant and shell thickness are calculated.

  1. A review on the application of modified continuum models in modeling and simulation of nanostructures

    Science.gov (United States)

    Wang, K. F.; Wang, B. L.; Kitamura, T.

    2016-02-01

    Analysis of the mechanical behavior of nanostructures has been very challenging. Surface energy and nonlocal elasticity of materials have been incorporated into the traditional continuum analysis to create modified continuum mechanics models. This paper reviews recent advancements in the applications of such modified continuum models in nanostructures such as nanotubes, nanowires, nanobeams, graphenes, and nanoplates. A variety of models for these nanostructures under static and dynamic loadings are mentioned and reviewed. Applications of surface energy and nonlocal elasticity in analysis of piezoelectric nanomaterials are also mentioned. This paper provides a comprehensive introduction of the development of this area and inspires further applications of modified continuum models in modeling nanomaterials and nanostructures.

  2. Self-localized states for electron transfer in nonlocal continuum deformable media

    Energy Technology Data Exchange (ETDEWEB)

    Cisneros-Ake, Luis A., E-mail: cisneros@esfm.ipn.mx

    2016-08-19

    We consider the problem of electron transport in a deformable continuum medium subjected to an external harmonic substrate potential. We then consider the quasi-stationary state of the full problem to find a Gross–Pitaevskii type equation with a nonlocal external potential, which is solved by variational and numerical means (considered as the exact solution) to find the parameter conditions for the existence of self-localized solutions. The variational approach predicts a threshold on the on-site or nonlocality parameter where localized solutions cease to exist from the Non-Linear Schrödinger soliton limit. A numerical continuation of stationary state solutions in the corresponding discrete system is used to confirm the prediction of the turning value in the on-site term. We finally study the full stationary state and make use of an approximation, proposed by Briedis et al. [17], for the nonlocal term, corresponding to strong nonlocalities, to find analytic expressions for self-localized states in terms of the series solutions of a nonlinear modified Bessel equation. - Highlights: • Nonlocality overcomes nonlinearity at a threshold value to cease the existence of coherent solutions. • Variational and series expansion solutions predict the formation of coherent structures in nonlocal deformable media. • Full numerical solutions confirm the persistence of localized solutions.

  3. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  4. Towards LHC physics with nonlocal Standard Model

    Directory of Open Access Journals (Sweden)

    Tirthabir Biswas

    2015-09-01

    Full Text Available We take a few steps towards constructing a string-inspired nonlocal extension of the Standard Model. We start by illustrating how quantum loop calculations can be performed in nonlocal scalar field theory. In particular, we show the potential to address the hierarchy problem in the nonlocal framework. Next, we construct a nonlocal abelian gauge model and derive modifications of the gauge interaction vertex and field propagators. We apply the modifications to a toy version of the nonlocal Standard Model and investigate collider phenomenology. We find the lower bound on the scale of nonlocality from the 8 TeV LHC data to be 2.5–3 TeV.

  5. A New Model of Nonlocal Modified Gravity

    CERN Document Server

    Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran

    2014-01-01

    We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$

  6. Experimental falsification of Leggett's nonlocal variable model.

    Science.gov (United States)

    Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio

    2007-11-23

    Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.

  7. On a Nonlocal Damping Model in Ferromagnetism

    Directory of Open Access Journals (Sweden)

    M. Moumni

    2015-01-01

    Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.

  8. Nonlocal continuum analysis of a nonlinear uniaxial elastic lattice system under non-uniform axial load

    Science.gov (United States)

    Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud

    2016-09-01

    The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.

  9. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model.

    Science.gov (United States)

    Adali, Sarp

    2009-05-01

    Variational principles are derived for multiwalled carbon nanotubes undergoing vibrations. Derivations are based on the continuum modeling with the Euler-Bernoulli beam representing the nanotubes and small scale effects taken into account via the nonlocal elastic theory. Hamilton's principle for multiwalled nanotubes is given and Rayleigh's quotient for the frequencies is derived for nanotubes undergoing free vibrations. Natural and geometric boundary conditions are derived which lead to a set of coupled boundary conditions due to nonlocal effects.

  10. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity

    Science.gov (United States)

    Norouzzadeh, A.; Ansari, R.

    2017-04-01

    Stress-strain relation in Eringen's nonlocal elasticity theory was originally formulated within the framework of an integral model. Due to difficulty of working with that integral model, the differential model of nonlocal constitutive equation is widely used for nanostructures. However, paradoxical results may be obtained by the differential model for some boundary and loading conditions. Presented in this article is a finite element analysis of Timoshenko nano-beams based on the integral model of nonlocal continuum theory without employing any simplification in the model. The entire procedure of deriving equations of motion is carried out in the matrix form of representation, and hence, they can be easily used in the finite element analysis. For comparison purpose, the differential counterparts of equations are also derived. To study the outcome of analysis based on the integral and differential models, some case studies are presented in which the influences of boundary conditions, nonlocal length scale parameter and loading factor are analyzed. It is concluded that, in contrast to the differential model, there is no paradox in the numerical results of developed integral model of nonlocal continuum theory for different situations of problem characteristics. So, resolving the mentioned paradoxes by means of a purely numerical approach based on the original integral form of nonlocal elasticity theory is the major contribution of present study.

  11. Axial buckling scrutiny of doubly orthogonal slender nanotubes via nonlocal continuum theory

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Keivan [K.N. Toosi University of Technolog, Tehran (Iran, Islamic Republic of)

    2015-10-15

    Using nonlocal Euler-Bernoulli beam theory, buckling behavior of elastically embedded Doubly orthogonal single-walled carbon nanotubes (DOSWCNTs) is studied. The nonlocal governing equations are obtained. In fact, these are coupled fourth-order integroordinary differential equations which are very difficult to be solved explicitly. As an alternative solution, Galerkin approach in conjunction with assumed mode method is employed, and the axial compressive buckling load of the nanosystem is evaluated. For DOSWCNTs with simply supported tubes, the influences of the slenderness ratio, aspect ratio, intertube free space, small-scale parameter, and properties of the surrounding elastic matrix on the axial buckling load of the nanosystem are addressed. The proposed model could be considered as a pivotal step towards better understanding the buckling behavior of more complex nanosystems such as doubly orthogonal membranes or even jungles of carbon nanotubes.

  12. Dynamics in Nonlocal Cosmological Models Derived from String Field Theory

    OpenAIRE

    Joukovskaya, Liudmila

    2007-01-01

    A general class of nonlocal cosmological models is considered. A new method for solving nonlocal Friedmann equations is proposed, and solutions of the Friedmann equations with nonlocal operator are presented. The cosmological properties of these solutions are discussed. Especially indicated is $p$-adic cosmological model in which we have obtained nonsingular bouncing solution and string field theory tachyon model in which we have obtained full solution of nonlocal Friedmann equations with $w=...

  13. Nonlocal regularization of abelian models with spontaneous symmetry breaking

    OpenAIRE

    Clayton, M. A.

    2001-01-01

    We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.

  14. A Generalized Nonlocal Calculus with Application to the Peridynamics Model for Solid Mechanics

    OpenAIRE

    Alali, Bacim; Liu, Kuo; Gunzburger, Max

    2014-01-01

    A nonlocal vector calculus was introduced in [2] that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A generalization is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal...

  15. Classification of scalar and dyadic nonlocal optical response models

    DEFF Research Database (Denmark)

    Wubs, Martijn

    2015-01-01

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response...

  16. Dynamical parametric instability of carbon nanotubes under axial harmonic excitation by nonlocal continuum theory

    Science.gov (United States)

    Wang, Yi-Ze; Li, Feng-Ming

    2016-08-01

    Structures under parametric load can be induced to the parametric instability in which the excitation frequency is located the instability region. In the present work, the parametric instability of double-walled carbon nanotubes is studied. The axial harmonic excitation is considered and the nonlocal continuum theory is applied. The critical equation is derived as the Mathieu form by the Galerkin's theory and the instability condition is presented with the Bolotin's method. Numerical calculations are performed and it can be seen that the van der Waals interaction can enhance the stability of double-walled nanotubes under the parametric excitation. The parametric instability becomes more obvious with the matrix stiffness decreasing and small scale coefficient increasing. The parametric instability is going to be more significant for higher mode numbers. For the nanosystem with the soft matrix and higher mode number, the small scale coefficient and the ratio of the length to the diameter have obvious influences on the starting point of the instability region.

  17. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  18. Continuum modeling of myxobacteria clustering

    Science.gov (United States)

    Harvey, Cameron W.; Alber, Mark; Tsimring, Lev S.; Aranson, Igor S.

    2013-03-01

    In this paper we develop a continuum theory of clustering in ensembles of self-propelled inelastically colliding rods with applications to collective dynamics of common gliding bacteria Myxococcus xanthus. A multi-phase hydrodynamic model that couples densities of oriented and isotropic phases is described. This model is used for the analysis of an instability that leads to spontaneous formation of directionally moving dense clusters within initially dilute isotropic ‘gas’ of myxobacteria. Numerical simulations of this model confirm the existence of stationary dense moving clusters and also elucidate the properties of their collisions. The results are shown to be in a qualitative agreement with experiments.

  19. Classification of scalar and dyadic nonlocal optical response models.

    Science.gov (United States)

    Wubs, M

    2015-11-30

    Nonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both. In phenomenological scalar models the nonlocal response is described as a smearing out of the commonly assumed infinitely localized response, as characterized by a distribution with a finite width. Here we calculate explicitly whether and how tensorial models, such as the hydrodynamic Drude model and generalized nonlocal optical response theory, follow this phenomenological description. We find considerable differences, for example that nonlocal response functions, in contrast to simple distributions, assume negative and complex values. Moreover, nonlocal response regularizes some but not all diverging optical near fields. We identify the scalar model that comes closest to the hydrodynamic model. Interestingly, for the hydrodynamic Drude model we find that actually only one third (1/3) of the free-electron response is smeared out nonlocally. In that sense, nonlocal response is stronger for transverse and scalar nonlocal response models, where the smeared-out fractions are 2/3 and 3/3, respectively. The latter two models seem to predict novel plasmonic resonances also below the plasma frequency, in contrast to the hydrodynamic model that predicts standing pressure waves only above the plasma frequency.

  20. Nonlocal continuum theories of beams for the analysis of carbon nanotubes

    Science.gov (United States)

    Reddy, J. N.; Pang, S. D.

    2008-01-01

    The equations of motion of the Euler-Bernoulli and Timoshenko beam theories are reformulated using the nonlocal differential constitutive relations of Eringen [International Journal of Engineering Science 10, 1-16 (1972)]. The equations of motion are then used to evaluate the static bending, vibration, and buckling responses of beams with various boundary conditions. Numerical results are presented using the nonlocal theories to bring out the effect of the nonlocal behavior on deflections, buckling loads, and natural frequencies of carbon nanotubes.

  1. Nonlocal beam models for buckling of nanobeams using state-space method regarding different boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sahmani, S.; Ansari, R. [University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-09-15

    Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen's equations of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary conditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analysis of nanobeams relevant to each type of nonlocal beam model and boundary conditions analysis.

  2. Modeling elastic tensile fractures in snow using nonlocal damage mechanics

    Science.gov (United States)

    Borstad, C. P.; McClung, D. M.

    2011-12-01

    The initiation and propagation of tensile fractures in snow and ice are fundamental to numerous important physical processes in the cryosphere, from iceberg calving to ice shelf rift propagation to slab avalanche release. The heterogeneous nature of snow and ice, their proximity to the melting temperature, and the varied governing timescales typically lead to nonlinear fracture behavior which does not follow the predictions of Linear Elastic Fracture Mechanics (LEFM). Furthermore, traditional fracture mechanics is formally inapplicable for predicting crack initiation in the absence of a pre-existing flaw or stress concentration. An alternative to fracture mechanics is continuum damage mechanics, which accounts for the material degradation associated with cracking in a numerically efficient framework. However, damage models which are formulated locally (e.g. stress and strain are defined as point properties) suffer from mesh-sensitive crack trajectories, spurious localization of damage and improper fracture energy dissipation with mesh refinement. Nonlocal formulations of damage, which smear the effects of the material heterogeneity over an intrinsic length scale related to the material microstructure, overcome these difficulties and lead to numerically efficient and mesh-objective simulations of the tensile failure of heterogeneous materials. We present the results of numerical simulations of tensile fracture initiation and propagation in cohesive snow using a nonlocal damage model. Seventeen beam bending experiments, both notched and unnotched, were conducted using blocks of cohesive dry snow extracted from an alpine snowpack. Material properties and fracture parameters were calculated from the experimental data using beam theory and quasi-brittle fracture mechanics. Using these parameters, a nonlocal isotropic damage model was applied to two-dimensional finite element meshes of the same scale as the experiments. The model was capable of simulating the propagation

  3. The charge-asymmetric nonlocally-determined local-electric (CANDLE) solvation model

    CERN Document Server

    Sundararaman, Ravishankar

    2014-01-01

    Many important applications of electronic structure methods involve molecules or solid surfaces in a solvent medium. Since explicit treatment of the solvent in such methods is usually not practical, calculations often employ continuum solvation models to approximate the effect of the solvent. Previous solvation models either involve a parametrization based on atomic radii, which limits the class of applicable solutes, or based on solute electron density, which is more general but less accurate, especially for charged systems. We develop an accurate and general solvation model that includes a cavity that is a nonlocal functional of both solute electron density and potential, local dielectric response on this nonlocally-determined cavity, and nonlocal approximations to the cavity-formation and dispersion energies. The dependence of the cavity on the solute potential enables an explicit treatment of the solvent charge asymmetry. With only three parameters per solvent, this `CANDLE' model simultaneously reproduce...

  4. Nonlocal Crowd Dynamics Models for several Populations

    CERN Document Server

    Colombo, Rinaldo M

    2011-01-01

    This paper develops the basic analytical theory related to some recently introduced crowd dynamics models. Where well posedness was known only locally in time, it is here extended to all of $\\reali^+$. The results on the stability with respect to the equations are improved. Moreover, here the case of several populations is considered, obtaining the well posedness of systems of multi-D non-local conservation laws. The basic analytical tools are provided by the classical Kruzkov theory of scalar conservation laws in several space dimensions.

  5. NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS

    Institute of Scientific and Technical Information of China (English)

    Rinaldo M. Colombo; Magali Lécureux-Mercier

    2012-01-01

    This paper develops the basic analytical theory related to some recently introduced crowd dynamics models.Where well posedness was known only locally in time,it is here extended to all of R+.The results on the stability with respect to the equations are improved.Moreover,here the case of several populations is considered,obtaining the well posedness of systems of multi-D non-local conservation laws.The basic analytical tools are provided by the classical Kru(z)kov theory of scalar conservation laws in several space dimensions.

  6. A Nonlocal Model for Carbon Nanotubes under Axial Loads

    Directory of Open Access Journals (Sweden)

    Raffaele Barretta

    2013-01-01

    Full Text Available Various beam theories are formulated in literature using the nonlocal differential constitutive relation proposed by Eringen. A new variational framework is derived in the present paper by following a consistent thermodynamic approach based on a nonlocal constitutive law of gradient-type. Contrary to the results obtained by Eringen, the new model exhibits the nonlocality effect also for constant axial load distributions. The treatment can be adopted to get new benchmarks for numerical analyses.

  7. Non-local models for ductile failure

    Science.gov (United States)

    César de Sá, José; Azinpour, Erfan; Santos, Abel

    2016-08-01

    Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching

  8. Modulational instability in the nonlocal chi(2)-model

    DEFF Research Database (Denmark)

    Wyller, John Andreas; Krolikowski, Wieslaw; Bang, Ole

    2007-01-01

    We investigate in detail the linear regime of the modulational instability (MI) properties of the plane waves of the nonlocal model for chi((2))- media formulated in Nikolov et al. [N.I. Nikolov, D. Neshev, O. Bang, W.Z. Krolikowski, Quadratic solitons as nonlocal solitons, Phys. Rev. E 68 (2003...... in the parameter space for which a fundamental gain band exists, and regions for which higher order gain bands and modulational stability exist. We also show that the MI analysis for the nonlocal model is applicable in the finite walk-off case. Finally, we show that the plane waves of the nonlocal chi((2))-model...... of the nonlocal chi((2))-model, by using the singular perturbational approach. The other branch of the plane waves (i.e. the nonadiabatic branch or the optical branch) is always modulationally unstable. We compare the MI results for the adiabatic branch with the predictions obtained from the full chi((2))-model...

  9. A nonlocal spatial model for Lyme disease

    Science.gov (United States)

    Yu, Xiao; Zhao, Xiao-Qiang

    2016-07-01

    This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.

  10. A simple nonlocal model for exchange.

    Science.gov (United States)

    Janesko, Benjamin G

    2009-12-21

    This work presents a new nonlocal model for the exchange energy density. The model is obtained from the product of the Kohn-Sham one-particle density matrix used to construct exact [Hartree-Fock-like (HF)] exchange, and an approximate density matrix used to construct local spin-density approximation (LSDA) exchange. The proposed exchange energy density has useful formal properties, including correct spin and coordinate scaling and the correct uniform limit. It can readily be evaluated in finite basis sets, with a computational scaling intermediate between HF exchange and semilocal quantities such as the noninteracting kinetic energy density. Applications to representative systems indicate that its properties are typically intermediate between HF and LSDA exchange, and often similar to global hybrids of HF and LSDA exchange. The model is proposed as a novel "Rung 3.5" ingredient for constructing approximate exchange-correlation functionals.

  11. ON THE CONTINUUM MODELING OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    张鹏; 黄永刚; Philippe H.Geubelle; 黄克智

    2002-01-01

    We have recently proposed a nanoscale continuum theory for carbonnanotubes. The theory links continuum analysis with atomistic modeling by incor-porating interatomic potentials and atomic structures of carbon nanotubes directlyinto the constitutive law. Here we address two main issues involved in setting upthe nanoscale continuum theory for carbon nanotubes, namely the multi-body in-teratomic potentials and the lack of centrosymmetry in the nanotube structure. Weexplain the key ideas behind these issues in establishing a nanoscale continuum theoryin terms of interatomic potentials and atomic structures.

  12. Mass concentration in a nonlocal model of clonal selection.

    Science.gov (United States)

    Busse, J-E; Gwiazda, P; Marciniak-Czochra, A

    2016-10-01

    Self-renewal is a constitutive property of stem cells. Testing the cancer stem cell hypothesis requires investigation of the impact of self-renewal on cancer expansion. To better understand this impact, we propose a mathematical model describing the dynamics of a continuum of cell clones structured by the self-renewal potential. The model is an extension of the finite multi-compartment models of interactions between normal and cancer cells in acute leukemias. It takes a form of a system of integro-differential equations with a nonlinear and nonlocal coupling which describes regulatory feedback loops of cell proliferation and differentiation. We show that this coupling leads to mass concentration in points corresponding to the maxima of the self-renewal potential and the solutions of the model tend asymptotically to Dirac measures multiplied by positive constants. Furthermore, using a Lyapunov function constructed for the finite dimensional counterpart of the model, we prove that the total mass of the solution converges to a globally stable equilibrium. Additionally, we show stability of the model in the space of positive Radon measures equipped with the flat metric (bounded Lipschitz distance). Analytical results are illustrated by numerical simulations.

  13. Higher harmonic nonlocal polymerization driven diffusion model: generalized nonlinearities and nonlocal responses

    Science.gov (United States)

    Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.

    2004-10-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.

  14. Discrete model of dislocations in fractional nonlocal elasticity

    National Research Council Canada - National Science Library

    Tarasov, Vasily E

    2016-01-01

    Discrete models of dislocations in fractional nonlocal materials are suggested. The proposed models are based on fractional-order differences instead of finite differences of integer orders that are usually used...

  15. Stochastic waves in a Brusselator model with nonlocal interaction.

    Science.gov (United States)

    Biancalani, Tommaso; Galla, Tobias; McKane, Alan J

    2011-08-01

    We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.

  16. Fractional Lattice Dynamics: Nonlocal constitutive behavior generated by power law matrix functions and their fractional continuum limit kernels

    CERN Document Server

    Michelitsch, Thomas; Riascos, Alejandro; Nowakowski, Andrzej F; Nicolleau, Franck C G A

    2016-01-01

    We introduce positive elastic potentials in the harmonic approximation leading by Hamilton's variational principle to fractional Laplacian matrices having the forms of power law matrix functions of the simple local Bornvon Karman Laplacian. The fractional Laplacian matrices are well defined on periodic and infinite lattices in $n=1,2,3,..$ dimensions. The present approach generalizes the central symmetric second differenceoperator (Born von Karman Laplacian) to its fractional central symmetric counterpart (Fractional Laplacian matrix).For non-integer powers of the Born von Karman Laplacian, the fractional Laplacian matrix is nondiagonal with nonzero matrix elements everywhere, corresponding to nonlocal behavior: For large lattices the matrix elements far from the diagonal expose power law asymptotics leading to continuum limit kernels of Riesz fractional derivative type. We present explicit results for the fractional Laplacian matrix in 1D for finite periodic and infinite linear chains and their Riesz fractio...

  17. Mathematical Modeling in Continuum Mechanics

    Science.gov (United States)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  18. INVESTIGATION ON GRADIENT-DEPENDENT NONLOCAL CONSTITUTIVE MODELS FOR ELASTO-PLASTICITY COUPLED WITH DAMAGE

    Institute of Scientific and Technical Information of China (English)

    SHEN Xin-pu; SHEN Guo-xiao; CHEN Li-xin; YANG Lu

    2005-01-01

    Firstly, typical gradient-dependent nonlocal inelastic models were briefly gradient-dependent constitutive model for plasticity coupled with isotropic damage was presented in the framework of continuum thermodynamics. Numerical scheme for calculation of Laplacian term of damage field with the numerical results obtained by FEM calculation was proposed. Equations have been presented on the basis of Taylor series for both 2-dimensional and 3-dimensional cases, respectively. Numerical results have indicated the validity of the proposed gradient-dependent model and corresponding numerical scheme.

  19. Improvements in continuum modeling for biomolecular systems

    CERN Document Server

    Qiao, Yu

    2015-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulation. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and PNP equations, the coupling of polar and nonpolar interactions, and numerical progress.

  20. Nonlocal Condensate Model for QCD Sum Rules

    CERN Document Server

    Hsieh, Ron-Chou

    2009-01-01

    We include effects of nonlocal quark condensates into QCD sum rules (QSR) via the K$\\ddot{\\mathrm{a}}$ll$\\acute{\\mathrm{e}}$n-Lehmann representation for a dressed fermion propagator, in which a negative spectral density function manifests their nonperturbative nature. Applying our formalism to the pion form factor as an example, QSR results are in good agreement with data for momentum transfer squared up to $Q^2 \\approx 10 $ GeV$^2$. It is observed that the nonlocal quark-condensate contribution descends like $1/Q^4$, different from the exponential decrease in $Q^2$ obtained in the literature, and contrary to the linear rise in the local-condensate approximation.

  1. A Nonlocal Poisson-Fermi Model for Ionic Solvent

    CERN Document Server

    Xie, Dexuan; Eisenberg, Bob; Scott, L Ridgway

    2016-01-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-type kernel function. Moreover, the Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Finally, numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  2. Nonlocal Poisson-Fermi model for ionic solvent.

    Science.gov (United States)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  3. Discrete and continuum modelling of soil cutting

    Science.gov (United States)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  4. A Caveat on Building Nonlocal Models of Cosmology

    CERN Document Server

    Tsamis, N C

    2014-01-01

    Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.

  5. Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model

    Science.gov (United States)

    Yang, Yang; Zhang, Lixiang; Lim, C. W.

    2011-04-01

    This paper is concerned with the characteristics of wave propagation in double-walled carbon nanotubes (DWCNTs). The DWCNTs is simulated with a Timoshenko beam model based on the nonlocal continuum elasticity theory, referred to as an analytically nonlocal Timoshenko-beam (ANT) model. The governing equations of the DWCNTs beam consist of a set of four equations that are derived from the variational principle of the beam with high-order boundary conditions at the both ends, in which the effects of the nano-scale nonlocality and the van der Waals interaction between inner and outer tubes are inclusive. The characteristics of the wave propagation in the DWCNTs beam were analyzed with the new ANT model proposed and the comparisons with the partially nonlocal Timoshenko-beam (PNT) models in publication were made in details. The results show that the nonlocal effects of the ANT model proposed in the present study on the wave propagations are more significant because it is in stronger stiffness enhancement to the DWCNTs beam.

  6. Modelling population growth with delayed nonlocal reaction in 2-dimensions.

    Science.gov (United States)

    Liang, Dong; Wu, Jianhong; Zhang, Fan

    2005-01-01

    In this paper, we consider the population growth of a single species living in a two-dimensional spatial domain. New reaction-difusion equation models with delayed nonlocal reaction are developed in two-dimensional bounded domains combining diferent boundary conditions. The important feature of the models is the reflection of the joint efect of the difusion dynamics and the nonlocal maturation delayed efect. We consider and ana- lyze numerical solutions of the mature population dynamics with some wellknown birth functions. In particular, we observe and study the occurrences of asymptotically stable steady state solutions and periodic waves for the two-dimensional problems with nonlocal delayed reaction. We also investigate numerically the efects of various parameters on the period, the peak and the shape of the periodic wave as well as the shape of the asymptotically stable steady state solution.

  7. Non-local modeling of materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof

    2002-01-01

    Numerical studies of non-local plasticity effects on different materials and problems are carried out. Two different theories are used. One is of lower order in that it retains the structure of a conventional plasticity boundary value problem, while the other is of higher order and employs higher...... order stresses as work conjugates to higher order strains and uses higher order boundary conditions. The influence of internal material length parameters is studied, and the effects of higher order boundary conditions are analyzed. The focus of the thesis is on metal-matrix composites, and non...

  8. Comparative assessment of continuum-scale models of bimolecular reactive transport in porous media under pre-asymptotic conditions

    Science.gov (United States)

    Porta, G. M.; Ceriotti, G.; Thovert, J.-F.

    2016-02-01

    We compare the ability of various continuum-scale models to reproduce the key features of a transport setting associated with a bimolecular reaction taking place in the fluid phase and numerically simulated at the pore-scale level in a disordered porous medium. We start by considering a continuum-scale formulation which results from formal upscaling of this reactive transport process by means of volume averaging. The resulting (upscaled) continuum-scale system of equations includes nonlocal integro-differential terms and the effective parameters embedded in the model are quantified directly through computed pore-scale fluid velocity and pore space geometry attributes. The results obtained through this predictive model formulation are then compared against those provided by available effective continuum models which require calibration through parameter estimation. Our analysis considers two models recently proposed in the literature which are designed to embed incomplete mixing arising from the presence of fast reactions under advection-dominated transport conditions. We show that best estimates of the parameters of these two models heavily depend on the type of data employed for model calibration. Our upscaled nonlocal formulation enables us to reproduce most of the critical features observed through pore-scale simulation without any model calibration. As such, our results clearly show that embedding into a continuum-scale model the information content associated with pore-scale geometrical features and fluid velocity yields improved interpretation of typically available continuum-scale transport observations.

  9. Lorentz Invariant CPT Violating Effects for a Class of Gauge-invariant Nonlocal Thirring Models

    CERN Document Server

    Patra, Pinaki

    2013-01-01

    CPT violation and Lorentz invariance can coexist in the framework of non-local field theory. Local gauge-invariance may not hold for the few non-local interaction terms. However, the gauge-invariance for the non-local interaction term can be formulated by the inclusion of Swinger non-integrable phase factor. In this article we have proposed a class of CPT violating Lorentz invariant Nonlocal Gauge-invariant models which can be termed as non-local gauge-invariant Thirring models. The inclusion of non-locality will modify the current conservation laws. Also, the possible particle antiparticle mass-splitting in this respect is discussed.

  10. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  11. Size Effect in Continuum Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Foulk, James W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Huestis, Edwin M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Connelly, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Song, Bo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Mechanics of Materials; Yang, Nancy Y. C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engineered Materials

    2008-09-01

    The mechanical properties of some materials (Cu, Ni, Ag, etc.) have been shown to develop strong dependence on the geometric dimensions, resulting in a size effect. Several theories have been proposed to model size effects, but have been based on very few experiments conducted at appropriate scales. Some experimental results implied that size effects are caused by increasing strain gradients and have been used to confirm many strain gradient theories. On the other hand, some recent experiments show that a size effect exists in the absence of strain gradients. This report describes a brief analytical and experimental study trying to clarify the material and experimental issues surrounding the most influential size-effect experiments by Fleck et al (1994). This effort is to understand size effects intended to further develop predictive models.

  12. Improvements in continuum modeling for biomolecular systems

    Science.gov (United States)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  13. Bipotential continuum models for granular mechanics

    Science.gov (United States)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  14. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  15. Non-local model analysis of heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  16. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  17. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  18. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  19. On Friedrichs Model with Two Continuum States

    CERN Document Server

    Xiao, Zhiguang

    2016-01-01

    The Friedrichs model with one discrete state coupled to more than one continuum is studied. The exact eigenstates for the full Hamiltonian can be solved explicitly. The discrete state is found to generate more than one virtual state pole or more than one pair of resonance poles in different Riemann sheets in different situations. The form factors could also generate new states on different sheets. All these states can appear in the generalized completeness relation.

  20. DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW

    Institute of Scientific and Technical Information of China (English)

    H. P. Zhu; Y. H. WU; A. B. Yu

    2005-01-01

    This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.

  1. Prey-predator model with a nonlocal consumption of prey.

    Science.gov (United States)

    Banerjee, M; Volpert, V

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  2. Prey-predator model with a nonlocal consumption of prey

    Science.gov (United States)

    Banerjee, M.; Volpert, V.

    2016-08-01

    The prey-predator model with nonlocal consumption of prey introduced in this work extends previous studies of local reaction-diffusion models. Linear stability analysis of the homogeneous in space stationary solution and numerical simulations of nonhomogeneous solutions allow us to analyze bifurcations and dynamics of stationary solutions and of travelling waves. These solutions present some new properties in comparison with the local models. They correspond to different feeding strategies of predators observed in ecology.

  3. Structure formation in a nonlocally modified gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sohyun; Dodelson, Scott

    2013-01-01

    We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.

  4. A non-local evolution equation model of cell-cell adhesion in higher dimensional space.

    Science.gov (United States)

    Dyson, Janet; Gourley, Stephen A; Webb, Glenn F

    2013-01-01

    A model for cell-cell adhesion, based on an equation originally proposed by Armstrong et al. [A continuum approach to modelling cell-cell adhesion, J. Theor. Biol. 243 (2006), pp. 98-113], is considered. The model consists of a nonlinear partial differential equation for the cell density in an N-dimensional infinite domain. It has a non-local flux term which models the component of cell motion attributable to cells having formed bonds with other nearby cells. Using the theory of fractional powers of analytic semigroup generators and working in spaces with bounded uniformly continuous derivatives, the local existence of classical solutions is proved. Positivity and boundedness of solutions is then established, leading to global existence of solutions. Finally, the asymptotic behaviour of solutions about the spatially uniform state is considered. The model is illustrated by simulations that can be applied to in vitro wound closure experiments.

  5. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    CERN Document Server

    Sundararaman, Ravishankar; Arias, T A

    2014-01-01

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold ($n_c$), and a single solvent-dependent parameter: the dispersion scale factor ($s_6$), reproduces solvation energies of organic molecules in water, chloroform and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0....

  6. Continuum modeling an approach through practical examples

    CERN Document Server

    Muntean, Adrian

    2015-01-01

    This book develops continuum modeling skills and approaches the topic from three sides: (1) derivation of global integral laws together with the associated local differential equations, (2) design of constitutive laws and (3) modeling boundary processes. The focus of this presentation lies on many practical examples covering aspects such as coupled flow, diffusion and reaction in porous media or microwave heating of a pizza, as well as traffic issues in bacterial colonies and energy harvesting from geothermal wells. The target audience comprises primarily graduate students in pure and applied mathematics as well as working practitioners in engineering who are faced by nonstandard rheological topics like those typically arising in the food industry.

  7. Two-direction nonlocal model for image denoising.

    Science.gov (United States)

    Zhang, Xuande; Feng, Xiangchu; Wang, Weiwei

    2013-01-01

    Similarities inherent in natural images have been widely exploited for image denoising and other applications. In fact, if a cluster of similar image patches is rearranged into a matrix, similarities exist both between columns and rows. Using the similarities, we present a two-directional nonlocal (TDNL) variational model for image denoising. The solution of our model consists of three components: one component is a scaled version of the original observed image and the other two components are obtained by utilizing the similarities. Specifically, by using the similarity between columns, we get a nonlocal-means-like estimation of the patch with consideration to all similar patches, while the weights are not the pairwise similarities but a set of clusterwise coefficients. Moreover, by using the similarity between rows, we also get nonlocal-autoregression-like estimations for the center pixels of the similar patches. The TDNL model leads to an alternative minimization algorithm. Experiments indicate that the model can perform on par with or better than the state-of-the-art denoising methods.

  8. Nonlocal-response diffusion model of holographic recording in photopolymer

    OpenAIRE

    Sheridan, John T.; Lawrence, Justin R.

    2000-01-01

    The standard one-dimensional diffusion equation is extended to include nonlocal temporal and spatial medium responses. How such nonlocal effects arise in a photopolymer is discussed. It is argued that assuming rapid polymer chain growth, any nonlocal temporal response can be dealt with so that the response can be completely understood in terms of a steady-state nonlocal spatial response. The resulting nonlocal diffusion equation is then solved numerically, in low-harmonic approximation, to de...

  9. Multiple Temperature Model for Near Continuum Flows

    Energy Technology Data Exchange (ETDEWEB)

    XU, Kun; Liu, Hongwei [Hong Kong University of Science and Technology, Kowloon (Hong Kong); Jiang, Jianzheng [Chinese Academy ofSciences, Beijing (China)

    2007-09-15

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime.

  10. Generalized non-local responses and higher harmonic retention in non-local polymerization driven diffusion model based simulations

    Science.gov (United States)

    Sheridan, J. T.; Kelly, J. V.; O'Brien, G.; Gleeson, M. R.; O'Neill, F. T.

    2004-12-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is described as non-local as it is assumed that monomers are polymerized to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The material model is non-linear as a general non-linear material response to the incident light is included. Typically the numerical method of solution has involved retaining only up to four harmonics of the Fourier series of monomer concentration in the calculations. In this paper a general set of coupled first-order differential equations is derived which allow the inclusion of a higher number of harmonics. The resulting effect on the convergence of the algorithm, as the number of harmonics retained is increased, is investigated. Special care is taken to note the effect of physical parameters, i.e. the non-local material variance σ, the power-law degree k, and the rates of diffusion, D, and polymerization, F0.

  11. A CONTINUUM DAMAGE MODEL OF AGING CONCRETE

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenyang; Xie Huicai; Xu Tao; Yu Jie; Cai Changan

    2001-01-01

    There is up to now no constitutive model in the current theories of CDM that could give a description for the degradation of aging concrete. The two internal state variables β and ω are introduced in this paper. β is called cohesion variable as an additional kinematic parameter, reflecting the cohesion state among material particles. ω is called damage factor for micro-defects such as voids.Then a damage model and a series of constitutive equations are developed on Continuum Mechanics.The model proposed could give a valid description for the whole-course-degradation of aging concrete due tochemical and mechanical actions. Finally, the validity of the model is evaluated by an example and experimental results.

  12. Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys.

    Science.gov (United States)

    Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul

    2011-02-25

    We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle.

  13. Constraint algebra of general relativity from a formal continuum limit of canonical tensor model

    Energy Technology Data Exchange (ETDEWEB)

    Sasakura, Naoki [Yukawa Institute for Theoretical Physics, Kyoto University,Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics, School of Physics andMandelstam Institute for Theoretical Physics, University of the Witwatersrand,Wits 2050 (South Africa)

    2015-10-16

    Canonical tensor model (CTM for short below) is a rank-three tensor model formulated as a totally constrained system in the canonical formalism. In the classical case, the constraints form a first-class constraint Poisson algebra with structures similar to that of the ADM formalism of general relativity, qualifying CTM as a possible discrete formalism for quantum gravity. In this paper, we show that, in a formal continuum limit, the constraint Poisson algebra of CTM with no cosmological constant exactly reproduces that of the ADM formalism. To this end, we obtain the expression of the metric tensor field in general relativity in terms of one of the dynamical rank-three tensors in CTM, and determine the correspondence between the constraints of CTM and those of the ADM formalism. On the other hand, the cosmological constant term of CTM seems to induce non-local dynamics, and is inconsistent with an assumption about locality of the continuum limit.

  14. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  15. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  16. Spherical systems in models of nonlocally corrected gravity

    CERN Document Server

    Bronnikov, K A

    2009-01-01

    The properties of static, spherically symmetric configurations are considered in the framework of two models of nonlocally corrected gravity, suggested in S. Deser and R. Woodard., Phys. Rev. Lett. 663, 111301 (2007), and S. Capozziello et al., Phys. Lett. B 671, 193 (2009). For the first case, where the Lagrangian of nonlocal origin represents a scalar-tensor theory with two massless scalars, an explicit condition is found under which both scalars are canonical (non-phantom). If this condition does not hold, one of the fields exhibits a phantom behavior. Scalar-vacuum configurations then behave in a manner known for scalar-tensor theories. In the second case, the Lagrangian of nonlocal origin exhibits a scalar field interacting with the Gauss-Bonnet (GB) invariant and contains an arbitrary scalar field potential. It is found that the GB term, in general, leads to violation of the well-known no-go theorems valid for minimally coupled scalar fields in general relativity. It is shown, however, that some configu...

  17. Characterizing 3-qubit UPB states: violations of LHV models, preparation via nonlocal unitaries and PPT entangled nonlocal orbits

    CERN Document Server

    Altafini, C

    2004-01-01

    For the 3-qubit UPB state, i.e., the bound entangled state constructed from an Unextendable Product Basis of Bennett et al. (Phys. Rev. Lett. 82:5385, 1999), we provide a set of violations of Local Hidden Variable (LHV) models based on the particular type of reflection symmetry encoded in this state. The explicit nonlocal unitary operation needed to prepare the state from its reflected separable mixture of pure states is given, as well as a nonlocal one-parameter orbit of states with Positive Partial Transpositions (PPT) which swaps the entanglement between a state and its reflection twice during a period.

  18. Natural frequencies and buckling of pressurized nanotubes using shear deformable nonlocal shell model

    Energy Technology Data Exchange (ETDEWEB)

    Firouz-Abadi, R. D.; Fotouhi, M. M.; Permoon, M. R.; Haddadpour, H. [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-02-15

    The small-scale effect on the natural frequencies and buckling of pressurized nanotubes is investigated in this study. Based on the firstorder shear deformable shell theory, the nonlocal theory of elasticity is used to account for the small-scale effect and the governing equations of motion are obtained. Applying modal analysis technique and based on Galerkin's method a procedure is proposed to obtain natural frequencies of vibrations. For the case of nanotubes with simply supported boundary conditions, explicit expressions are obtained which establish the dependency of the natural frequencies and buckling loads of the nanotube on the small-scale parameter and natural frequencies obtained by local continuum mechanics. The obtained solutions generalize the results of nano-bar and -beam models and are verified by the literature. Based on several numerical studies some conclusions are drawn about the small-scale effect on the natural frequencies and buckling pressure of the nanotubes.

  19. Soft Matrix Elements in Non-local Chiral Quark Model

    CERN Document Server

    Kotko, Piotr

    2009-01-01

    Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form factors and compare them with existing data. Axial form factor turns out to be much lower then the vector one, what indeed is seen in the experimental data.

  20. Nonlocal order parameters for the 1D Hubbard model.

    Science.gov (United States)

    Montorsi, Arianna; Roncaglia, Marco

    2012-12-07

    We characterize the Mott-insulator and Luther-Emery phases of the 1D Hubbard model through correlators that measure the parity of spin and charge strings along the chain. These nonlocal quantities order in the corresponding gapped phases and vanish at the critical point U(c)=0, thus configuring as hidden order parameters. The Mott insulator consists of bound doublon-holon pairs, which in the Luther-Emery phase turn into electron pairs with opposite spins, both unbinding at U(c). The behavior of the parity correlators is captured by an effective free spinless fermion model.

  1. Nonlocal quark model description of a composite Higgs particle

    CERN Document Server

    Kachanovich, Aliaksei

    2016-01-01

    We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.

  2. Application of nonlocal models to nano beams. Part II: Thickness length scale effect.

    Science.gov (United States)

    Kim, Jun-Sik

    2014-10-01

    Applicability of nonlocal models to nano-beams is discussed in terms of the Eringen's nonlocal Euler-Bernoulli (EB) beam model. In literature, most work has taken the axial coordinate derivative in the Laplacian operator presented in nonlocal elasticity. This causes that the non-locality always makes the beam soften as compared to the local counterpart. In this paper, the thickness scale effect is solely considered to investigate if the nonlocal model can simulate stiffening effect. Taking the thickness derivative in the Laplacian operator leads to the presence of a surface stress state. The governing equation derived is compared to that of the EB model with the surface stress. The results obtained reveal that the nonlocality tends to decrease the bending moment stiffness whereas to increase the bending rigidity in the governing equation. This tendency also depends on the surface conditions.

  3. The Elastic Continuum Limit of the Tight Binding Model

    Institute of Scientific and Technical Information of China (English)

    Weinan E; Jianfeng LU

    2007-01-01

    The authors consider the simplest quantum mechanics model of solids, the tight binding model, and prove that in the continuum limit, the energy of tight binding model converges to that of the continuum elasticity model obtained using Cauchy-Born rule. Thet echnique in this paper is based mainly on spectral perturbation theory for large matrices.

  4. Free vibrations analysis of carbon nanotubes resting on Winkler foundations based on nonlocal models

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanian, M.; Torkaman-Asadi, M.A., E-mail: torkaman-asadi@ae.sharif.edu; Firouz-Abadi, R.D.; Kouchakzadeh, M.A.

    2016-03-01

    In the present study, free vibrations of single walled carbon nanotubes (SWCNT) on an elastic foundation is investigated by nonlocal theory of elasticity with both beam and shell models. The nonlocal boundary conditions are derived explicitly and effectiveness of nonlocal parameter appearing in nonlocal boundary conditions is studied. Also it is demonstrated that the beam model is comparatively incapable of capturing size effects while shell model captures size effects more precisely. Moreover, the effects of some parameters such as mechanical properties, foundation stiffness, length and radius ratios on the natural frequencies are studied and some conclusions are drawn.

  5. Specific heat of a non-local attractive Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Calegari, E.J., E-mail: eleonir@ufsm.br [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Lobo, C.O. [Laboratório de Teoria da Matéria Condensada, Departamento de Física, UFSM, 97105-900, Santa Maria, RS (Brazil); Magalhaes, S.G. [Instituto de Física, Universidade Federal Fluminense, Av. Litorânea s/n, 24210, 346, Niterói, Rio de Janeiro (Brazil); Chaves, C.M.; Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro, RJ (Brazil)

    2013-10-01

    The specific heat C(T) of an attractive (interaction G<0) non-local Hubbard model is investigated within a two-pole approximation that leads to a set of correlation functions, which play an important role as a source of anomalies as the pseudogap. For a giving range of G and n{sub T} (where n{sub T}=n{sub ↑}+n{sub ↓}), the specific heat as a function of the temperature presents a two peak structure. Nevertehelesss, the presence of a pseudogap eliminates the two peak structure. The effects of the second nearest-neighbor hopping on C(T) are also investigated.

  6. Nonlinear analysis of lipid tubules by nonlocal beam model.

    Science.gov (United States)

    Shen, Hui-Shen

    2011-05-07

    Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.

  7. A nonlocal, ordinary, state-based plasticity model for peridynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony

    2011-05-01

    An implicit time integration algorithm for a non-local, state-based, peridynamics plasticity model is developed. The flow rule was proposed in [3] without an integration strategy or yield criterion. This report addresses both of these issues and thus establishes the first ordinary, state-based peridynamics plasticity model. Integration of the flow rule follows along the lines of the classical theories of rate independent J{sub 2} plasticity. It uses elastic force state relations, an additive decomposition of the deformation state, an elastic force state domain, a flow rule, loading/un-loading conditions, and a consistency condition. Just as in local theories of plasticity (LTP), state variables are required. It is shown that the resulting constitutive model does not violate the 2nd law of thermodynamics. The report also develops a useful non-local yield criterion that depends upon the yield stress and horizon for the material. The modulus state for both the ordinary elastic material and aforementioned plasticity model is also developed and presented.

  8. Equivalent bosonic theory for the massive Thirring model with non-local interaction

    OpenAIRE

    Li, Kang; Naon, Carlos

    1997-01-01

    We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass-expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the famous Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional...

  9. A continuum damage model for piezoelectric materials

    Institute of Scientific and Technical Information of China (English)

    Yiming Fu; Xianqiao Wang

    2008-01-01

    In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks.The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helmhotlz free energy of piezoelectric mate-rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the ten-sorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of the piezoelectric mate-rial, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With theKirchhoff hypothesis of plate, the free vibration equationsof the piezoelectric rectangular plate considering damage isestablished. By using Galerkin method, the equations are sol-ved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory.

  10. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  11. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Ehsan, E-mail: eamani@aut.ac.ir; Movahed, Saeid, E-mail: smovahed@aut.ac.ir

    2016-06-07

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. - Highlights: • A hybrid continuum-atomistic model is proposed for electrokinetics in nanochannels. • The model is validated by molecular dynamics. • This is a promising approach to model more complicated geometries and physics.

  12. Dynamical nonlocality of the entangled coherent state in the phase damping model

    Institute of Scientific and Technical Information of China (English)

    Lu Huai-Xin; Li Ying-De

    2009-01-01

    This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.

  13. A straightforward approach to Eringen's nonlocal elasticity stress model and applications for nanobeams

    Science.gov (United States)

    Koutsoumaris, C. Chr.; Eptaimeros, K. G.; Zisis, T.; Tsamasphyros, G. J.

    2016-12-01

    The nonlocal theory of elasticity is widely employed to the study of nanoscale problems. The differential approach of Eringen's nonlocal beam theory has been widely used to solve problems whose size effect is substantial in structures. However, in the case of Euler-Bernoulli beam theory (EBBT), this approach reveals inconsistencies that do not allow for the energy functional formulation. To avoid these inconsistencies, an alternative route is to use the integral form of nonlocal elasticity. This study revolves around the nonlocal integral beam model for various attenuation functions with the intention to explore the static response of a beam (or a nanobeam) for different types of loadings and boundary conditions (BC).

  14. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  15. Static analysis of ultra-thin beams based on a semi-continuum model

    Institute of Scientific and Technical Information of China (English)

    Cheng Li; Zhi-Jun Zheng; Ji-Lin Yu; C.W.Lim

    2011-01-01

    A linear semi-continuum model with discrete atomic layers in the thickness direction was developed to investigate the bending behaviors of ultra-thin beams with nanoscale thickness.The theoretical results show that the deflection of an ultra-thin beam may be enhanced or reduced due to different relaxation coefficients.If the relaxation coefficient is greater/less than one,the deflection of micro/nano-scale structures is enhanced/reduced in comparison with macro-scale structures.So,two opposite types of size-dependent behaviors are observed and they are mainly caused by the relaxation coefficients.Comparisons with the classical continuum model,exact nonlocal stress model and finite element model (FEM) verify the validity of the present semi-continuum model.In particular,an explanation is proposed in the debate whether the bending stiffness of a micro/nano-scale beam should be greater or weaker as compared with the macro-scale structures.The characteristics of bending stiffness are proved to be associated with the relaxation coefficients.

  16. Nonlocal Generalized Models of Predator-Prey Systems

    CERN Document Server

    Kuehn, Christian

    2011-01-01

    The method of generalized modeling has been applied successfully in many different contexts, particularly in ecology and systems biology. It can be used to analyze the stability and bifurcations of steady-state solutions. Although many dynamical systems in mathematical biology exhibit steady-state behaviour one also wants to understand nonlocal dynamics beyond equilibrium points. In this paper we analyze predator-prey dynamical systems and extend the method of generalized models to periodic solutions. First, we adapt the equilibrium generalized modeling approach and compute the unique Floquet multiplier of the periodic solution which depends upon so-called generalized elasticity and scale functions. We prove that these functions also have to satisfy a flow on parameter (or moduli) space. Then we use Fourier analysis to provide computable conditions for stability and the moduli space flow. The final stability analysis reduces to two discrete convolutions which can be interpreted to understand when the predator...

  17. Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential

    CERN Document Server

    Frasca, Marco

    2016-01-01

    We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.

  18. Spicing up continuum solvation models with SaLSA: the spherically-averaged liquid susceptibility ansatz

    CERN Document Server

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T A

    2014-01-01

    Continuum solvation models enable electronic structure calculations of systems in liquid environments, but because of the large number of empirical parameters, they are limited to the class of systems in their fit set (typically organic molecules). Here, we derive a solvation model with no empirical parameters for the dielectric response by taking the linear response limit of a classical density functional for molecular liquids. This model directly incorporates the nonlocal dielectric response of the liquid using an angular momentum expansion, and with a single fit parameter for dispersion contributions it predicts solvation energies of neutral molecules with an RMS error of 1.3 kcal/mol in water and 0.8 kcal/mol in chloroform and carbon tetrachloride. We show that this model is more accurate for strongly polar and charged systems than previous solvation models because of the parameter-free electric response, and demonstrate its suitability for ab initio solvation, including self-consistent solvation in quant...

  19. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the rig...

  20. On a Nonlocal Problem Modelling Ohmic Heating in Planar Domains

    Institute of Scientific and Technical Information of China (English)

    Fei LIANG; Qi Lin LIU; Yu Xiang LI

    2013-01-01

    In this paper, we consider the nonlocal problem of the form ut-△u=λe-u/(∫Ωe-udx)2,x∈Ω,t>0 and the associated nonlocal stationary problem -△v=λe-v/(∫Ωe-vdx)2,x∈Ω, where A is a positive parameter. For Ω to be an annulus, we prove that the nonlocal stationary problem has a unique solution if and only if λ < 2|(6)Ω|2, and for A = 2|(6)Ω|2, the solution of the nonlocal parabolic problem grows up globally to infinity as t → ∞.

  1. A non-local, ordinary-state-based viscoelasticity model for peridynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, John Anthony

    2011-10-01

    A non-local, ordinary-state-based, peridynamics viscoelasticity model is developed. In this model, viscous effects are added to deviatoric deformations and the bulk response remains elastic. The model uses internal state variables and is conceptually similar to linearized isotropic viscolelasticity in the local theory. The modulus state, which is used to form the Jacobian matrix in Newton-Raphson algorithms, is presented. The model is shown to satisfy the 2nd law of thermodynamics and is applicable to problems in solid continuum mechanics where fracture and rate effects are important; it inherits all the advantages for modeling fracture associated with peridynamics. By combining this work with the previously published ordinary-state-based plasticity model, the model may be amenable to viscoplasticity problems where plasticity and rate effects are simultaneously important. Also, the model may be extended to include viscous effects for spherical deformations as well. The later two extensions are not presented and may be the subject of further work.

  2. Evolution of Bell- nonlocality of two cavity fields in the double Jaynes-Cummings model

    Institute of Scientific and Technical Information of China (English)

    Long Miao; Yunkun Jiang

    2011-01-01

    The Bell-nonlocality of two initially entangled macroscopic fields in the double Jaynes-Cummings model is investigated.Moreover,the process by which detuning between the atomic transition frequency and the field frequency affects the evolution of the Bell-nonlocality of two macroscopic fields is studied.The effect of the disparity between the two coupling strengths is discussed.

  3. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations.

    Science.gov (United States)

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-03-02

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as {111} dislocations in Al-based and Ti-based intermetallic compounds.

  4. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    Science.gov (United States)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  5. AC-conductance of a non-local Thirring model

    Energy Technology Data Exchange (ETDEWEB)

    Trobo, Marta Liliana; Von Reichenbach, Maria Cecilia [Universidad Nacional de La Plata (UNLP) (Argentina); Barci, Daniel G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)]|[Illinois Univ., Urbana, IL (United States); Medeiros Neto, J.F. de [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2000-07-01

    Full text follows: In recent years renewed interest has arisen in the study of low dimensional field theories. In particular, research on the one dimensional (1-d) fermionic gas has been very active, mainly due to the actual nano-fabrication of the so called quantum wires and their relevance for low dimensional condensed matter physics as, for instance, the quantum Hall effect and high-T{sub c} superconductivity. Experimental and theoretical investigations of the AC-transport phenomena in nano-structures are of profound scientific interest since they provide insight into the behavior of quantum systems. In this frame, we consider a field theoretical approach that can be used to describe a system of 1-d strongly correlated particles in the low transferred momentum limit. We study a non-local and non-covariant version of the Thirring model where the fermionic densities and currents are coupled through bilocal, distance-dependent potentials which describe the forward scattering processes. We apply the functional bosonization formalism, a very useful technique to understand the non-perturbative regime of strongly correlated one-dimensional fermionic systems, to this non local Thirring like model (NLTM). We are interesting in the transport properties of the system, in particular in the AC-conductance. To this end, we consider a NLTM in the presence of an external electromagnetic field. We obtain the AC-conductance of the model in terms of non-local potentials used to describe the interactions between fermionic currents. We also analyze the transport properties in the case in which weak couplings between fermionic currents and localized impurities are taken into account. (author)

  6. A Note on a Nonlocal Nonlinear Reaction-Diffusion Model

    OpenAIRE

    Walker, Christoph

    2011-01-01

    We give an application of the Crandall-Rabinowitz theorem on local bifurcation to a system of nonlinear parabolic equations with nonlocal reaction and cross-diffusion terms as well as nonlocal initial conditions. The system arises as steady-state equations of two interacting age-structured populations.

  7. Characteristics of the chiral phase transition in nonlocal quark models

    CERN Document Server

    Dumm, D G

    2004-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.

  8. Generalized cavity model and nonlocal effects in nanoslit arrays

    CERN Document Server

    Dechaux, Mathieu; Ciracì, Cristian; Benedicto, Jessica; Pollès, Rémi; Centeno, Emmanuel; Smith, David R; Moreau, Antoine

    2016-01-01

    Gap-plasmon resonators are a class of nanogap-based plasmonic structures presenting unprecedented optical properties despite a size that can be smaller than the skin depth of metals. In the case of extremely narrow slit arrays, these ultra-small resonators are better described by a generalized cavity model. Moreover, such structures are sensitive to the nonlocal response of the metals arising from interactions between free electrons inside the jellium. This phenomenon actually influences the necessarily intense plasmonic slowdown (very low phase and group velocities) experienced by the gap-plasmon in such tiny cavities. Accurately describing the optical response of this class of structures requires to take all of these effects into account, and will undoubtedly be necessary to design or characterize future gap-plasmon resonators.

  9. Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity

    Science.gov (United States)

    Sedighi, H. M.; Yaghootian, A.

    2016-01-01

    This article presents a new asymptotic method to predict dynamic pull-in instability of nonlocal clamped-clamped carbon nanotubes (CNTs) near graphite sheets. Nonlinear governing equations of carbon nanotubes actuated by an electric field are derived. With due allowance for the van der Waals effects, the pull-in instability and the natural frequency-amplitude relationship are investigated by a powerful analytical method, namely, the parameter expansion method. It is demonstrated that retaining two terms in series expansions is sufficient to produce an acceptable solution. The obtained results from numerical methods verify the strength of the analytical procedure. The qualitative analysis of system dynamics shows that the equilibrium points of the autonomous system include center points and unstable saddle points. The phase portraits of the carbon nanotube actuator exhibit periodic and homoclinic orbits.

  10. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    Science.gov (United States)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  11. Application of nonlocal models to nano beams. Part I: Axial length scale effect.

    Science.gov (United States)

    Kim, Jun-Sik

    2014-10-01

    Applicability of nonlocal models to nano-beams is discussed in terms of physical implications via the similarity between a nonlocal Euler-Bernoulli (EB) beam theory and a classical Rankine-Timoshenko (RT) beam theory. The nonlocal EB beam model, Eringen's model, is briefly reviewed and the classical RT beam theory is recast by the primary variables of the EB model. A careful comparison of these two models reveals that the scale parameter used to the Eringen's model has a strike resemblance to the shear flexibility in the RT model. This implies that the nonlocal model employed in literature consider the axial length scale effect only. In addition, the paradox for a cantilevered nano-beam subjected to tip shear force is clearly explained by finding appropriate displacement prescribed boundary conditions.

  12. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  13. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  14. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W.; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  15. Analytical solutions of nonlocal Poisson dielectric models with multiple point charges inside a dielectric sphere.

    Science.gov (United States)

    Xie, Dexuan; Volkmer, Hans W; Ying, Jinyong

    2016-04-01

    The nonlocal dielectric approach has led to new models and solvers for predicting electrostatics of proteins (or other biomolecules), but how to validate and compare them remains a challenge. To promote such a study, in this paper, two typical nonlocal dielectric models are revisited. Their analytical solutions are then found in the expressions of simple series for a dielectric sphere containing any number of point charges. As a special case, the analytical solution of the corresponding Poisson dielectric model is also derived in simple series, which significantly improves the well known Kirkwood's double series expansion. Furthermore, a convolution of one nonlocal dielectric solution with a commonly used nonlocal kernel function is obtained, along with the reaction parts of these local and nonlocal solutions. To turn these new series solutions into a valuable research tool, they are programed as a free fortran software package, which can input point charge data directly from a protein data bank file. Consequently, different validation tests can be quickly done on different proteins. Finally, a test example for a protein with 488 atomic charges is reported to demonstrate the differences between the local and nonlocal models as well as the importance of using the reaction parts to develop local and nonlocal dielectric solvers.

  16. A nonlocal shell model for mode transformation in single-walled carbon nanotubes.

    Science.gov (United States)

    Shi, M X; Li, Q M; Huang, Y

    2009-11-11

    A second-order strain gradient nonlocal shell model is established to study the mode transformation in single-walled carbon nanotubes (SWCNTs). Nonlocal length is calibrated carefully for SWCNTs in reference to molecular dynamics (MD) simulations through analysis of nonlocal length effects on the frequencies of the radial breathing mode (RBM) and circumferential flexural modes (CFMs) and its effects on mode transformation. All analyses show that only a negative second-order nonlocal shell model is appropriate to SWCNTs. Nonlocal length is evidently related to vibration modes and the radius-to-thickness ratio. It is found that a nonlocal length is approximately 0.1 nm in an average sense when RBM frequency is concerned. A nonlocal length of 0.122-0.259 nm is indicated for the mode transformation in a selected group of armchair SWCNTs. 2:1 and 1:1 internal resonances are found for the same SWCNT based on different models, which implies that the internal resonance mechanism depends on the model employed. Furthermore, it is shown that an effective thickness of approximately 0.1 nm is more appropriate to SWCNTs than 0.066 nm.

  17. Hidden-variable models for the spin singlet: I. Non-local theories reproducing quantum mechanics

    CERN Document Server

    Di Lorenzo, Antonio

    2011-01-01

    A non-local hidden variable model reproducing the quantum mechanical probabilities for a spin singlet is presented. The non-locality is concentrated in the distribution of the hidden variables. The model otherwise satisfies both the hypothesis of outcome independence, made in the derivation of Bell inequality, and of compliance with Malus's law, made in the derivation of Leggett inequality. It is shown through the prescription of a protocol that the non-locality can be exploited to send information instantaneously provided that the hidden variables can be measured, even though they cannot be controlled.

  18. Continuum Nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Dyre, Jeppe C; Daivis, Peter

    2015-01-01

    This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response...

  19. Continuum Nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper S; Dyre, Jeppe C; Daivis, Peter;

    2015-01-01

    This paper introduces the fundamental continuum theory governing momentum transport in isotropic nanofluidic systems. The theory is an extension of the classical Navier-Stokes equation, and includes coupling between translational and rotational degrees of freedom as well as nonlocal response...

  20. QCD topological susceptibility from the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2016-01-01

    We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...

  1. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  2. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer

    Science.gov (United States)

    Lyashenko, V.; Kobilskaya, O.

    2015-10-01

    In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.

  3. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION.

    Science.gov (United States)

    Finch, Craig; Clarke, Thomas; Hickman, James J

    2013-07-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.

  4. Nonlocal elasticity defined by Eringen's integral model: Introduction of a boundary layer method

    National Research Council Canada - National Science Library

    Abdollahi, R; Boroomand, B

    2014-01-01

    In this paper we consider a nonlocal elasticity theory defined by Eringen's integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs...

  5. Analysis of Stability for Gas-Kinetic Non-Local Traffic Model

    Institute of Scientific and Technical Information of China (English)

    SUN Xi-Ming; DONG Yu-Jie

    2006-01-01

    @@ The gas-kinetic non-local traffic model is improved by taking into account the relative velocity of the correlated vehicles. The stability of different relaxation time modes is analytically investigated with the perturbation method.

  6. Vector and axial vector mesons in a nonlocal chiral quark model

    Science.gov (United States)

    Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.

    2016-09-01

    Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.

  7. Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model

    CERN Document Server

    Loewe, M; Villavicencio, C; Zamora, R

    2014-01-01

    In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.

  8. Vector and axial vector mesons in a nonlocal chiral quark model

    CERN Document Server

    Villafañe, M F Izzo; Scoccola, N N

    2016-01-01

    Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.

  9. Continuum model of tendon pathology - where are we now?

    Science.gov (United States)

    McCreesh, Karen; Lewis, Jeremy

    2013-08-01

    Chronic tendon pathology is a common and often disabling condition, the causes of which remain poorly understood. The continuum model of tendon pathology was proposed to provide a model for the staging of tendon pathology and to assist clinicians in managing this often complex condition (Br. J. Sports Med., 43, 2009, 409). The model presents clinical, histological and imaging evidence for the progression of tendon pathology as a three-stage continuum: reactive tendinopathy, tendon disrepair and degenerative tendinopathy. It also provides clinical information to assist in identifying the stage of pathology, in addition to proposed treatment approaches for each stage. The usefulness of such a model is determined by its ability to incorporate and inform new and emerging research. This review examines the degree to which recent research supports or refutes the continuum model and proposes future directions for clinical and research application of the model. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  10. Convergence of capillary fluid models: from the non-local to the local Korteweg model

    CERN Document Server

    Charve, Frédéric

    2011-01-01

    In this paper we are interested in the barotropic compressible Navier-Stokes system endowed with a non-local capillarity tensor depending on a small parameter $\\epsilon$ such that it heuristically tends to the local Korteweg system. After giving some physical motivations related to the theory of non-classical shocks (see [28]) we prove global well-posedness (in the whole space $R^d$ with $d\\geq 2$) for the non-local model and we also prove the convergence, as $\\epsilon$ goes to zero, to the solution of the local Korteweg system.

  11. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene.

    Science.gov (United States)

    Schüler, M; Rösner, M; Wehling, T O; Lichtenstein, A I; Katsnelson, M I

    2013-07-19

    To understand how nonlocal Coulomb interactions affect the phase diagram of correlated electron materials, we report on a method to approximate a correlated lattice model with nonlocal interactions by an effective Hubbard model with on-site interactions U(*) only. The effective model is defined by the Peierls-Feynman-Bogoliubov variational principle. We find that the local part of the interaction U is reduced according to U(*)=U-V[over ¯], where V[over ¯] is a weighted average of nonlocal interactions. For graphene, silicene, and benzene we show that the nonlocal Coulomb interaction can decrease the effective local interaction by more than a factor of 2 in a wide doping range.

  12. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  13. A nonlocal constitutive model for trabecular bone softening in compression.

    Science.gov (United States)

    Charlebois, Mathieu; Jirásek, Milan; Zysset, Philippe K

    2010-10-01

    Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.

  14. The density wave in a new anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Ge Hong-Xia; Dai Shi-Qiang; Dong Li-Yun

    2008-01-01

    In this paper the new continuum traffic flow model proposed by Jiang et al is developed based on an improved car-following model,in which the speed gradient term replaces the density gradient term in the equation of motion.It overcomes the wrong-way travel which exists in many high-order continuum models.Based on the continuum version of car-following model,the condition for stable traffic flow is derived.Nonlinear analysis shows that the density fluctuation in traffic flow induces a variety of density waves.Near the onset of instability,a small disturbance could lead to solitons determined by the Korteweg-de-Vries (KdV) equation,and the soliton solution is derived.

  15. Simulation of concrete perforation based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P. [Sandia National Labs., Albuquerque, NM (United States). Solid and Structural Mechanics Dept.

    1994-10-01

    Numerical simulation of dynamic fracture of concrete slabs, impacted by steel projectiles, was carried out in this study. The concrete response was described by a continuum damage model. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study with an emphasis on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code LS-DYNA2D and the code was then used for the numerical simulations. The specific impact configuration of this study follows the experiment series conducted by Hanchak et al. Comparisons between calculated results and measured data were made. Good agreements were found.

  16. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

  17. Adhesive contact:from atomistic model to continuum model

    Institute of Scientific and Technical Information of China (English)

    Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan

    2011-01-01

    Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a selfconsistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

  18. Continuum model for dipolar coupled planar lattices

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel D.; Pogorelov, Yuri G. E-mail: ypogorel@fc.up.pt

    2003-03-01

    In an effective continuum approach alike the phenomenological Landau theory, we study low energy excitations in a square lattice of dipolar coupled magnetic moments {mu}, over continuously degenerate microvortex (MV) ground states defined by an arbitrary angle 0<{theta}<{pi}/2. We consider two vector order parameters: the MV vector v={mu} (cos {theta}, sin {theta}) and the ferromagnetic (FM) vector f=((1)/(2)) ({partial_derivative}{sub y}v{sub x}, -{partial_derivative}{sub x}v{sub y}). The excitation energy density {approx}f{sup 2} leads to a non-linear Euler equation. It allows, besides common linear waves of small amplitude, also non-linear excitations with unlimited (but slow) variation of {theta}(r). For plane wave excitations {theta}(r)={theta}(n{center_dot}r) propagating along n=(cos phi (cursive,open) Greek, sin phi (cursive,open) Greek), exact integrals of Euler equation are found. The density of excitation states turns anisotropic in {theta}, conforming to the enhanced occurrence of MV-like states with {theta} close to 0 or {pi}/2 in our Monte Carlo simulations of this system at low excitation energies.

  19. Possibilities of modeling masonry as a composite softening material: Interface modeling and anisotropic continuum modeling

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.

    1998-01-01

    Results of using recently developed material models for the analysis of masonry structures are shown. Both interface modeling, in which masonry components (units and joints) are represented, as continuum modeling, in which masonry is represented as a homogeneous continuum, are addressed. It is shown

  20. Continuum radiative transfer Modeling of Sagittarius B2

    OpenAIRE

    Schmiedeke, A.; Schilke, P.; Möller, Th.; Sánchez-Monge, Á.; Bergin, E.; Comito, C.; Csengeri, T.; Lis, D. C.; Molinari, S.; Qin, S.L.; Rolffs, R.

    2016-01-01

    We present results from radiative transfer modeling of the continuum emission towards Sagittarius B2 (hereafter Sgr B2). We have developed a radiative transfer framework – Pandora – that employs RADMC-3D (Dullemond 2012) for a self-consistent determination of the dust temperature. With this pipeline, we have set-up a single model that consistently reproduces the thermal dust and free-free continuum emission of Sgr B2 spanning four orders of magnitude in spatial scales (0.02–45 pc) and two ord...

  1. Moving nonradiating kinks in nonlocal φ4 and φ4-φ6 models.

    Science.gov (United States)

    Alfimov, G L; Medvedeva, E V

    2011-11-01

    We explore the existence of moving nonradiating kinks in nonlocal generalizations of φ(4) and φ(4)-φ(6) models. These models are described by nonlocal nonlinear Klein-Gordon equation, u(tt)-Lu+F(u)=0, where L is a Fourier multiplier operator of a specific form and F(u) includes either just a cubic term (φ(4) case) or cubic and quintic (φ(4)-φ(6) case) terms. The general mechanism responsible for the discretization of kink velocities in the nonlocal model is discussed. We report numerical results obtained for these models. It is shown that, contrary to the traditional φ(4) model, the nonlocal φ(4) model does not admit moving nonradiating kinks but admits solitary waves that do not exist in the local model. At the same time the nonlocal φ(4)-φ(6) model describes moving nonradiating kinks. The set of velocities allowed for these kinks is discrete with the highest possible velocity c(1). This set of velocities is unambiguously determined by the parameters of the model. Numerical simulations show that a kink launched at the velocity c higher than c(1) starts to decelerate, and its velocity settles down to the highest value of the discrete spectrum c(1).

  2. Nonlocal dispersive optical model ingredients for ${}^{40}$Ca

    CERN Document Server

    Mahzoon, M H; Dickhoff, W H; Dussan, H; Waldecker, S J

    2013-01-01

    A comprehensive description of all single-particle properties associated with the nucleus ${}^{40}$Ca has been generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. We gather all relevant functional forms and the numerical values of the parameters in this contribution.

  3. Modelling evolution in a spatial continuum

    Science.gov (United States)

    Barton, N. H.; Etheridge, A. M.; Véber, A.

    2013-01-01

    We survey a class of models for spatially structured populations which we have called spatial Λ-Fleming-Viot processes. They arise from a flexible framework for modelling in which the key innovation is that random genetic drift is driven by a Poisson point process of spatial 'events'. We demonstrate how this overcomes some of the obstructions to modelling populations which evolve in two-(and higher-) dimensional spatial continua, how its predictions match phenomena observed in data and how it fits with classical models. Finally we outline some directions for future research.

  4. Nonlocal Inflation

    CERN Document Server

    Barnaby, Neil

    2008-01-01

    We consider the possibility of realizing inflation in nonlocal field theories containing infinitely many derivatives. Such constructions arise naturally in string field theory and also in a number of toy models, such as the p-adic string. After reviewing the complications (ghosts and instabilities) that arise when working with high derivative theories we discuss the initial value problem and perturbative stability of theories with infinitely many derivatives. Next, we examine the inflationary dynamics and phenomenology of such theories. Nonlocal inflation can proceed even when the potential is naively too steep and generically predicts large nongaussianity in the Cosmic Microwave Background.

  5. A continuum three-zone model for swarms.

    Science.gov (United States)

    Miller, Jennifer M; Kolpas, Allison; Juchem Neto, Joao Plinio; Rossi, Louis F

    2012-03-01

    We present a progression of three distinct three-zone, continuum models for swarm behavior based on social interactions with neighbors in order to explain simple coherent structures in popular biological models of aggregations. In continuum models, individuals are replaced with density and velocity functions. Individual behavior is modeled with convolutions acting within three interaction zones corresponding to repulsion, orientation, and attraction, respectively. We begin with a variable-speed first-order model in which the velocity depends directly on the interactions. Next, we present a variable-speed second-order model. Finally, we present a constant-speed second-order model that is coordinated with popular individual-based models. For all three models, linear stability analysis shows that the growth or decay of perturbations in an infinite, uniform swarm depends on the strength of attraction relative to repulsion and orientation. We verify that the continuum models predict the behavior of a swarm of individuals by comparing the linear stability results with an individual-based model that uses the same social interaction kernels. In some unstable regimes, we observe that the uniform state will evolve toward a radially symmetric attractor with a variable density. In other unstable regimes, we observe an incoherent swarming state.

  6. Out-of-Plane Elastic Waves in 2D Models of Solids: A Case Study for a Nonlocal Discretization Scheme with Reduced Numerical Dispersion

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2015-01-01

    Full Text Available The paper addresses the problem of numerical dispersion in simulations of wave propagation in solids. This characteristic of numerical models results from both spatial discretization and temporal discretization applied to carry out transient analyses. A denser mesh of degrees of freedom could be a straightforward solution to mitigate numerical dispersion, since it provides more advantageous relation between the model length scale and considered wavelengths. However, this approach also leads to higher computational effort. An alternative approach is the application of nonlocal discretization schemes, which employ a relatively sparse spatial distribution of nodes. Numerical analysis carried out to study the propagation of elastic waves in isotropic solid materials is demonstrated. Fourier-based nonlocal discretization for continuum mechanics is introduced for a two-dimensional model undergoing out-of-plane wave propagation. The results show gradual increase of the effectiveness of this approach while expanding the region of nonlocal interactions in the numerical model. A challenging case of high ratio between the model length scale and wavelength is investigated to present capability of the proposed approach. The elaborated discretization method also provides the perspective of accurate representation of any arbitrarily shaped dispersion relation based on physical properties of modelled materials.

  7. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  8. Modelling of Nonlocal Effects in Electromechanical Nano-Switches

    OpenAIRE

    Toropova, M. M.

    2010-01-01

    Dielectric nano-swithes made of the materials that exhibit piezoelectric and/or flexoelectric properties with significant electro-mechanical coupling are considered. In this case, a nonuniform strain field may locally break inversion symmetry and induce polarization even in nonpiezoelectrics. At reducing dimensions to the nanoscale, the flexoelectric effect demonstrates the nonlocality of the dielectric materials and plays more significant role than piezoelectric effect. The flexoelectric eff...

  9. Shell Model States in the Continuum

    CERN Document Server

    Shirokov, A M; Mazur, I A; Vary, J P

    2016-01-01

    We suggest a method for calculating scattering phase shifts and energies and widths of resonances which utilizes only eigenenergies obtained in variational calculations with oscillator basis and their dependence on oscillator basis spacing $\\hbar\\Omega$. We make use of simple expressions for the $S$-matrix at eigenstates of a finite (truncated) Hamiltonian matrix in the oscillator basis obtained in the HORSE ($J$-matrix) formalism of quantum scattering theory. The validity of the suggested approach is verified in calculations with model Woods--Saxon potentials and applied to calculations of $n\\alpha$ resonances and non-resonant scattering using the no-core shell model.

  10. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    CERN Document Server

    Byler, Nell; Conroy, Charlie; Johnson, Benjamin D

    2016-01-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$\\alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies...

  11. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    Science.gov (United States)

    Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.

    2017-02-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.

  12. Nonlocal nonlinear refractive index of gold nanoparticles synthesized by ascorbic acid reduction: comparison of fitting models.

    Science.gov (United States)

    Balbuena Ortega, A; Arroyo Carrasco, M L; Méndez Otero, M M; Gayou, V L; Delgado Macuil, R; Martínez Gutiérrez, H; Iturbe Castillo, M D

    2014-12-12

    In this paper, the nonlinear refractive index of colloidal gold nanoparticles under continuous wave illumination is investigated with the z-scan technique. Gold nanoparticles were synthesized using ascorbic acid as reductant, phosphates as stabilizer and cetyltrimethylammonium chloride (CTAC) as surfactant agent. The nanoparticle size was controlled with the CTAC concentration. Experiments changing incident power and sample concentration were done. The experimental z-scan results were fitted with three models: thermal lens, aberrant thermal lens and the nonlocal model. It is shown that the nonlocal model reproduces with exceptionally good agreement; the obtained experimental behaviour.

  13. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  14. Fragmentation functions of pions and kaons in the nonlocal chiral quark model

    Directory of Open Access Journals (Sweden)

    Kao Chung Wen

    2014-03-01

    Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.

  15. SR 97. Alternative models project. Stochastic continuum modelling of Aberg

    Energy Technology Data Exchange (ETDEWEB)

    Widen, H. [Kemakta AB, Stockholm (Sweden); Walker, D. [INTERA KB/DE and S (Sweden)

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10{sup -4} m/yr and a median F-ratio of 3.3 x 10{sup 5} yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study.

  16. Challenges in Continuum Modelling of Intergranular Fracture

    DEFF Research Database (Denmark)

    Coffman, Valerie; Sethna, James P.; Ingraffea, A. R.;

    2011-01-01

    Intergranular fracture in polycrystals is often simulated by finite elements coupled to a cohesive zone model for the interfaces, requiring cohesive laws for grain boundaries as a function of their geometry. We discuss three challenges in understanding intergranular fracture in polycrystals. First......, 3D grain boundary geometries comprise a five-dimensional space. Second, the energy and peak stress of grain boundaries have singularities for all commensurate grain boundaries, especially those with short repeat distances. Thirdly, fracture nucleation and growth depend not only upon the properties...... properties. To address the last challenge, we demonstrate a method for atomistically extracting the fracture properties of geometrically complex local regions on the fly from within a finite element simulation....

  17. Cosmological perturbations in SFT inspired non-local scalar field models

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, Alexey S. [Vrije Universiteit Brussel and The International Solvay Institutes, Theoretische Natuurkunde, Brussels (Belgium); Vernov, Sergey Yu. [Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Bellaterra, Barcelona (Spain); Lomonosov Moscow State University, Theoretical High Energy Physics Division, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)

    2012-10-15

    We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up. (orig.)

  18. Pion-to-photon transition distribution amplitudes in the non-local chiral quark model

    CERN Document Server

    Kotko, Piotr

    2008-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  19. Spicing up continuum solvation models with SaLSA: The spherically averaged liquid susceptibility ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Sundararaman, Ravishankar; Schwarz, Kathleen A.; Letchworth-Weaver, Kendra; Arias, T. A. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States)

    2015-02-07

    Continuum solvation models enable electronic structure calculations of systems in liquid environments, but because of the large number of empirical parameters, they are limited to the class of systems in their fit set (typically organic molecules). Here, we derive a solvation model with no empirical parameters for the dielectric response by taking the linear response limit of a classical density functional for molecular liquids. This model directly incorporates the nonlocal dielectric response of the liquid using an angular momentum expansion, and with a single fit parameter for dispersion contributions it predicts solvation energies of neutral molecules with a RMS error of 1.3 kcal/mol in water and 0.8 kcal/mol in chloroform and carbon tetrachloride. We show that this model is more accurate for strongly polar and charged systems than previous solvation models because of the parameter-free electric response, and demonstrate its suitability for ab initio solvation, including self-consistent solvation in quantum Monte Carlo calculations.

  20. Dynamic brittle material response based on a continuum damage model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  1. A continuum of compass spin models on the honeycomb lattice

    Science.gov (United States)

    Zou, Haiyuan; Liu, Bo; Zhao, Erhai; Liu, W. Vincent

    2016-05-01

    Quantum spin models with spatially dependent interactions, known as compass models, play an important role in the study of frustrated quantum magnetism. One example is the Kitaev model on the honeycomb lattice with spin-liquid (SL) ground states and anyonic excitations. Another example is the geometrically frustrated quantum 120° model on the same lattice whose ground state has not been unambiguously established. To generalize the Kitaev model beyond the exactly solvable limit and connect it with other compass models, we propose a new model, dubbed ‘the tripod model’, which contains a continuum of compass-type models. It smoothly interpolates the Ising model, the Kitaev model, and the quantum 120° model by tuning a single parameter {θ }\\prime , the angle between the three legs of a tripod in the spin space. Hence it not only unifies three paradigmatic spin models, but also enables the study of their quantum phase transitions. We obtain the phase diagram of the tripod model numerically by tensor networks in the thermodynamic limit. We show that the ground state of the quantum 120° model has long-range dimer order. Moreover, we find an extended spin-disordered (SL) phase between the dimer phase and an antiferromagnetic phase. The unification and solution of a continuum of frustrated spin models as outline here may be useful to exploring new domains of other quantum spin or orbital models.

  2. Filter length scale for continuum modeling of subgrid physics

    Science.gov (United States)

    Simeonov, Julian; Calantoni, Joseph

    2014-11-01

    Modeling the wide range of scales of geophysical processes with direct numerical simulations (DNS) is currently not feasible. It is therefore typical to explicitly resolve only the large energy-containing scales and to parameterize the unresolved small scales. One approach to separate the scales is by means of spatial filters and here we discuss practical considerations regarding the choice of a volume averaging scale L. We use a macroscopically homogeneous scalar field and quantify the smoothness of the filtered field using a noise metric, ν, defined by the standard deviation of the filtered field normalized by the domain-averaged value of the field. For illustration, we consider the continuum modeling of the particle phase in discrete element method (DEM) simulations and the salt fingers in DNS of double-diffusive convection. We find that ν2 follows an inverse power law dependence on L with an exponent and coefficients proportional to the domain-averaged field value. The empirical power law relation can aid in the development of continuum models from fully resolved simulations while also providing uncertainty estimates of the modeled continuum fields.

  3. Nonlocal multi-scale traffic flow models: analysis beyond vector spaces

    Directory of Open Access Journals (Sweden)

    Peter E. Kloeden

    2016-08-01

    Full Text Available Abstract Realistic models of traffic flow are nonlinear and involve nonlocal effects in balance laws. Flow characteristics of different types of vehicles, such as cars and trucks, need to be described differently. Two alternatives are used here, $$L^p$$ L p -valued Lebesgue measurable density functions and signed Radon measures. The resulting solution spaces are metric spaces that do not have a linear structure, so the usual convenient methods of functional analysis are no longer applicable. Instead ideas from mutational analysis will be used, in particular the method of Euler compactness will be applied to establish the well-posedness of the nonlocal balance laws. This involves the concatenation of solutions of piecewise linear systems on successive time subintervals obtained by freezing the nonlinear nonlocal coefficients to their values at the start of each subinterval. Various compactness criteria lead to a convergent subsequence. Careful estimates of the linear systems are needed to implement this program.

  4. A Nagumo-type model for competing populations with nonlocal coupling.

    Science.gov (United States)

    Tanzy, M C; Volpert, V A; Bayliss, A; Nehrkorn, M E

    2015-05-01

    We consider a model of two competing species with nonlocal competition for resources. The net birthrate is cubic, so that the model allows simulation of the Allee effect, whereby extinction is stable and intermediate populations promote growth, while saturation occurs via cubic competition terms. The model includes both interspecies and intraspecies nonlocal competition which enters via convolution integrals with a specified asymmetric competition kernel function. We introduce two parameters, δ, describing the extent of the coupling, with δ = 0 corresponding to local coupling, and α, describing the extent of the asymmetry, with α = 0 corresponding to symmetric nonlocal interactions. We consider the case where the local model admits a stable coexistence (populations of both species positive) equilibrium solution. We perform a linear stability analysis and show that this solution can be destabilized by sufficient nonlocality, i.e., when δ increases beyond a critical value. We then consider nonlinear patterns, far from the stability boundary. We show that nonlinear patterns consist of arrays of islands, regions of nonzero population, separated by deadzones, where the populations are essentially extinct, (with the array propagating in the case α ≠ 0). The predominant effect of the cubic model is that the islands for the two species are disjoint, so that each species lives in the deadzone of the other species. In addition, some patterns involve both hospitable and inhospitable deadzones, so that islands form in only some of the deadzones.

  5. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duc; Moses, Gregory [University of Wisconsin—Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Delettrez, Jacques [Laboratory for Laser Energetics of the University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  6. The virial theorem for the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, R., E-mail: roberto.cammi@unipr.it [Dipartimento di Chimica, Università di Parma, Parco Area delle Scienze 17/A, I-43100 Parma (Italy)

    2014-02-28

    The electronic virial theorem is extended to molecular systems within the framework of the Polarizable Continuum Model (PCM) to describe solvation effects. The theorem is given in the form of a relation involving the components of the energy (kinetic and potential) of a molecular solute and its electrostatic properties (potential and field) at the boundary of the cavity in the continuum medium. The virial theorem is also derived in the presence of the Pauli repulsion component of the solute-solvent interaction. Furthermore, it is shown that these forms of the PCM virial theorem may be related to the virial theorem of more simple systems as a molecule in the presence of fixed point charges, and as an atom in a spherical box with confining potential.

  7. The virial theorem for the Polarizable Continuum Model.

    Science.gov (United States)

    Cammi, R

    2014-02-28

    The electronic virial theorem is extended to molecular systems within the framework of the Polarizable Continuum Model (PCM) to describe solvation effects. The theorem is given in the form of a relation involving the components of the energy (kinetic and potential) of a molecular solute and its electrostatic properties (potential and field) at the boundary of the cavity in the continuum medium. The virial theorem is also derived in the presence of the Pauli repulsion component of the solute-solvent interaction. Furthermore, it is shown that these forms of the PCM virial theorem may be related to the virial theorem of more simple systems as a molecule in the presence of fixed point charges, and as an atom in a spherical box with confining potential.

  8. Evolution of states in a continuum migration model

    Science.gov (United States)

    Kondratiev, Yuri; Kozitsky, Yuri

    2017-03-01

    The Markov evolution of states of a continuum migration model is studied. The model describes an infinite system of entities placed in R^d in which the constituents appear (immigrate) with rate b(x) and disappear, also due to competition. For this model, we prove the existence of the evolution of states μ _0 mapsto μ _t such that the moments μ _t(N_Λ ^n) , nin N, of the number of entities in compact Λ subset R^d remain bounded for all t>0 . Under an additional condition, we prove that the density of entities and the second correlation function remain point-wise bounded globally in time.

  9. Continuum modeling for two-lane traffic flow

    Institute of Scientific and Technical Information of China (English)

    Haijun Huang; Tieqiao Tang; Ziyou Gao

    2006-01-01

    In this paper,we study the continuum modeling of traffic dynamics for two-lane freeways.A new dynamics model is proposed, which contains the speed gradient-based momentum equations derived from a car-following theory suited to two-lane traffic flow.The conditions for securing the linear stability of the new model are presented.Numerical tests are carried out and some nonequilibrium phenomena are observed, such as small disturbance instability,stop-andgo waves,local clusters and phase transition.

  10. Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.

    Science.gov (United States)

    Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2013-01-01

    Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.

  11. Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium

    Energy Technology Data Exchange (ETDEWEB)

    Shen Huishen, E-mail: hsshen@mail.sjtu.edu.c [Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200030 (China); State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2010-08-30

    A nonlocal shear deformable shell model is developed for buckling of microtubules embedded in an elastic matrix of cytoplasm under bending in thermal environments. The results reveal that the lateral constraint has a significant effect on the buckling moments of a microtubule when the foundation stiffness is sufficiently large.

  12. Traveling Wave Solutions for a Delayed SIRS Infectious Disease Model with Nonlocal Diffusion and Nonlinear Incidence

    Directory of Open Access Journals (Sweden)

    Xiaohong Tian

    2014-01-01

    Full Text Available A delayed SIRS infectious disease model with nonlocal diffusion and nonlinear incidence is investigated. By constructing a pair of upper-lower solutions and using Schauder's fixed point theorem, we derive the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.

  13. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    Science.gov (United States)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie; Johnson, Benjamin D.

    2017-05-01

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on Hα, and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.

  14. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  15. Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities

    Science.gov (United States)

    Ghosh, Somnath; Bai, Jie; Paquet, Daniel

    2009-07-01

    This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.

  16. Coupled continuum and molecular model of flow through fibrous filter

    Science.gov (United States)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  17. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  18. Shear deformable deformation of carbon nanotubes based on a new analytical nonlocal Timoshenko beam nodel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianming; Yang, Yang [Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650051, Yunnan (China)

    2015-03-10

    According to Hamilton’s principle, a new mathematical model and analytical solutions for nonlocal Timoshenko beam model (ANT) is established based on nonlocal elastic continuum theory when shear deformation and nonlocal effect are considered. The new ANT equilibrium equations and boundary conditions are derived for bending analysis of carbon nanotubes (CNTs) with simply supported, clamped and cantilever. The ANT deflection solutions demonstrate that the CNT stiffness is enhanced by the presence of nonlocal stress effects. Furthermore, the new ANT model concluded verifiable bending behaviors for a cantilever CNT with point load at the free end, which depends on the strength of nonlocal stress. Therefore, this new model will gives a better prediction for mechanical behaviors of nanostructures.

  19. Nonviolent nonlocality

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    If quantum mechanics governs nature, black holes must evolve unitarily, providing a powerful constraint on the dynamics of quantum gravity. Such evolution apparently must in particular be nonlocal, when described from the usual semiclassical geometric picture, in order to transfer quantum information into the outgoing state. While such transfer from a disintegrating black hole has the dangerous potential to be violent to generic infalling observers, this paper proposes the existence of a more innocuous form of information transfer, to relatively soft modes in the black hole atmosphere. Simplified models for such nonlocal transfer are described and parameterized, within a possibly more basic framework of a Hilbert tensor network. Sufficiently sensitive measurements by infalling observers may detect departures from Hawking's predictions, and in generic models black holes decay more rapidly. Constraints of consistency -- internally and with known and expected features of physics -- restrict the form of informati...

  20. Non-Local effective SU(2) Polyakov-loop models from inverse Monte-Carlo methods

    CERN Document Server

    Bahrampour, Bardiya; von Smekal, Lorenz

    2016-01-01

    The strong-coupling expansion of the lattice gauge action leads to Polyakov-loop models that effectively describe gluodynamics at low temperatures, and together with the hopping expansion of the fermion determinant provides insight into the QCD phase diagram at finite density and low temperatures, although for rather heavy quarks. At higher temperatures the strong-coupling expansion breaks down and it is expected that the interactions between Polyakov loops become non-local. Here, we therefore test how well pure SU(2) gluodynamics can be mapped onto different non-local Polyakov models with inverse Monte-Carlo methods. We take into account Polyakov loops in higher representations and gradually add interaction terms at larger distances. We are particularly interested in extrapolating the range of non-local terms in sufficiently large volumes and higher representations. We study the characteristic fall-off in strength of the non-local couplings with the interaction distance, and its dependence on the gauge coupl...

  1. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    Science.gov (United States)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  2. Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer

    CERN Document Server

    Omotani, John

    2013-01-01

    By using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an ELM crash in the JET SOL, simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.

  3. Plastic deformation modelling of tempered martensite steel block structure by a nonlocal crystal plasticity model

    Directory of Open Access Journals (Sweden)

    Martin Boeff

    2014-01-01

    Full Text Available The plastic deformations of tempered martensite steel representative volume elements with different martensite block structures have been investigated by using a nonlocal crystal plasticity model which considers isotropic and kinematic hardening produced by plastic strain gradients. It was found that pronounced strain gradients occur in the grain boundary region even under homogeneous loading. The isotropic hardening of strain gradients strongly influences the global stress–strain diagram while the kinematic hardening of strain gradients influences the local deformation behaviour. It is found that the additional strain gradient hardening is not only dependent on the block width but also on the misorientations or the deformation incompatibilities in adjacent blocks.

  4. Multiscale modeling of rapid granular flow with a hybrid discrete-continuum method

    CERN Document Server

    Chen, Xizhong; Li, Jinghai

    2015-01-01

    Both discrete and continuum models have been widely used to study rapid granular flow, discrete model is accurate but computationally expensive, whereas continuum model is computationally efficient but its accuracy is doubtful in many situations. Here we propose a hybrid discrete-continuum method to profit from the merits but discard the drawbacks of both discrete and continuum models. Continuum model is used in the regions where it is valid and discrete model is used in the regions where continuum description fails, they are coupled via dynamical exchange of parameters in the overlap regions. Simulation of granular channel flow demonstrates that the proposed hybrid discrete-continuum method is nearly as accurate as discrete model, with much less computational cost.

  5. Packed bed heat storage: Continuum mechanics model and validation

    Science.gov (United States)

    Knödler, Philipp; Dreißigacker, Volker; Zunft, Stefan

    2016-05-01

    Thermal energy storage (TES) systems are key elements for various types of new power plant concepts. As possible cost-effective storage inventory option, packed beds of miscellaneous material come into consideration. However, high technical risks arise due to thermal expansion and shrinking of the packed bed's particles during cyclic thermal operation, possibly leading to material failure. Therefore, suitable tools for designing the heat storage system are mandatory. While particle discrete models offer detailed simulation results, the computing time for large scale applications is inefficient. In contrast, continuous models offer time-efficient simulation results but are in need of effective packed bed parameters. This work focuses on providing insight into some basic methods and tools on how to obtain such parameters and on how they are implemented into a continuum model. In this context, a particle discrete model as well as a test rig for carrying out uniaxial compression tests (UCT) is introduced. Performing of experimental validation tests indicate good agreement with simulated UCT results. In this process, effective parameters required for a continuous packed bed model were identified and used for continuum simulation. This approach is validated by comparing the simulated results with experimental data from another test rig. The presented method significantly simplifies subsequent design studies.

  6. A semi-nonlocal numerical approach for modeling of temperature-dependent crack-wave interaction

    Science.gov (United States)

    Martowicz, Adam; Kijanka, Piotr; Staszewski, Wieslaw J.

    2016-04-01

    Numerical tools, which are used to simulate complex phenomena for models of complicated shapes suffer from either long computational time or accuracy. Hence, new modeling and simulation tools, which could offer reliable results within reasonable time periods, are highly demanded. Among other approaches, the nonlocal methods have appeared to fulfill these requirements quite efficiently and opened new perspectives for accurate simulations based on crude meshes of the model's degrees of freedom. In the paper, the preliminary results are shown for simulations of the phenomenon of temperature-dependent crack-wave interaction for elastic wave propagation in a model of an aluminum plate. Semi-nonlocal finite differences are considered to solve the problem of thermoelasticity - based on the discretization schemes, which were already proposed by the authors and taken from the previously published work. Numerical modeling is used to examine wave propagation primarily in the vicinity of a notch. Both displacement and temperature fields are sought in the investigated case study.

  7. Continuum neural dynamics models for visual object identification

    Science.gov (United States)

    Singh, Vijay; Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    Visual object identification has remained one of the most challenging problems even after decades of research. Most of the current models of the visual cortex represent neurons as discrete elements in a largely feedforward network arrangement. They are generally very specific in the objects they can identify. We develop a continuum model of recurrent, nonlinear neural dynamics in the primary visual cortex, incorporating connectivity patterns and other experimentally observed features of the cortex. The model has an interesting correspondence to the Landau-DeGennes theory of a nematic liquid crystal in two dimensions. We use collective spatiotemporal excitations of the model cortex as a signal for segmentation of contiguous objects from the background clutter. The model is capable of suppressing clutter in images and filling in occluded elements of object contours, resulting in high-precision, high-recall identification of large objects from cluttered scenes. This research has been partially supported by the ARO grant No. 60704-NS-II.

  8. Space-Time Quantization and Nonlocal Field Theory -Relativistic Second Quantization of Matrix Model

    CERN Document Server

    Tanaka, S

    2000-01-01

    We propose relativistic second quantization of matrix model of D particles in a general framework of nonlocal field theory based on Snyder-Yang's quantized space-time. Second-quantized nonlocal field is in general noncommutative with quantized space-time, but conjectured to become commutative with light cone time $X^+$. This conjecture enables us to find second-quantized Hamiltonian of D particle system and Heisenberg's equation of motion of second-quantized {\\bf D} field in close contact with Hamiltonian given in matrix model. We propose Hamilton's principle of Lorentz-invariant action of {\\bf D} field and investigate what conditions or approximations are needed to reproduce the above Heisenberg's equation given in light cone time. Both noncommutativities appearing in position coordinates of D particles in matrix model and in quantized space-time will be eventually unified through second quantization of matrix model.

  9. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    Energy Technology Data Exchange (ETDEWEB)

    Xu Rui [Department of Applied Mathematics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: rxu88@yahoo.com.cn; Chaplain, M.A.J. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Davidson, F.A. [Department of Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom)

    2006-11-15

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model.

  10. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  11. A continuum model for current distribution in Rutherford cables

    CERN Document Server

    Akhmedov, A I; Breschi, M

    2001-01-01

    An analysis of eddy currents induced in flat Rutherford-type cables by external time dependent magnetic fields has been performed. The induced currents generate in turn a secondary magnetic field which has a longitudinal periodicity (periodic pattern). The dependence of the amplitude of the pattern on the history of the cable excitation has been investigated. The study has been carried out with two different models for the simulation of current distribution in Rutherford cables, namely a network model, based on a lumped parameters circuit and a "continuum" model, based on a distributed parameters circuit. We show the results of simulations of the current distribution in the inner cable of a short LHC dipole model in different powering conditions and compare them to experimental data. (12 refs).

  12. Magnetic susceptibility of the QCD vacuum in a nonlocal SU(3) PNJL model

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    The magnetic susceptibility of the QCD vacuum is analyzed in the framework of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model. Considering two different model parametrizations, we estimate the values of the $u$ and $s$-quark tensor coefficients and magnetic susceptibilities and then we extend the analysis to finite temperature systems. Our numerical results are compared to those obtained in other theoretical approaches and in lattice QCD calculations.

  13. A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation

    Energy Technology Data Exchange (ETDEWEB)

    Milovanov, Alexander V. [ENEA National Laboratory, Centro Ricerche Frascati, I-00044 Frascati, Rome (Italy); Department of Space Plasma Physics, Space Research Institute, Russian Academy of Sciences, 117997 Moscow (Russian Federation); Juul Rasmussen, Jens [Physics Department, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-04-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker–Planck equation with space-fractional derivatives from a stochastic Markov process with the transition probabilities defined in reciprocal space. The hybrid model observes the Sparre Andersen universality and defines a new universality class of SOC.

  14. A hybridizable discontinuous Galerkin method for solving nonlocal optical response models

    CERN Document Server

    Li, Liang; Mortensen, N Asger; Wubs, Martijn

    2016-01-01

    We propose Hybridizable Discontinuous Galerkin (HDG) methods for solving the frequency-domain Maxwell's equations coupled to the Nonlocal Hydrodynamic Drude (NHD) and Generalized Nonlocal Optical Response (GNOR) models, which are employed to describe the optical properties of nano-plasmonic scatterers and waveguides. Brief derivations for both the NHD model and the GNOR model are presented. The formulations of the HDG method are given, in which we introduce two hybrid variables living only on the skeleton of the mesh. The local field solutions are expressed in terms of the hybrid variables in each element. Two conservativity conditions are globally enforced to make the problem solvable and to guarantee the continuity of the tangential component of the electric field and the normal component of the current density. Numerical results show that the proposed HDG methods converge at optimal rate. We benchmark our implementation and demonstrate that the HDG method has the potential to solve complex nanophotonic pro...

  15. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V. [Centre Lasers Intenses et Applications, Université de Bordeaux-CNRS-CEA, UMR 5107, F-33405 Talence (France)

    2015-08-15

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  16. Reduced entropic model for studies of multidimensional nonlocal transport in high-energy-density plasmas

    Science.gov (United States)

    Del Sorbo, D.; Feugeas, J.-L.; Nicolaï, Ph.; Olazabal-Loumé, M.; Dubroca, B.; Guisset, S.; Touati, M.; Tikhonchuk, V.

    2015-08-01

    Hydrodynamic simulations of high-energy-density plasmas require a detailed description of energy fluxes. For low and intermediate atomic number materials, the leading mechanism is the electron transport, which may be a nonlocal phenomenon requiring a kinetic modeling. In this paper, we present and test the results of a nonlocal model based on the first angular moments of a simplified Fokker-Planck equation. This multidimensional model is closed thanks to an entropic relation (the Boltzman H-theorem). It provides a better description of the electron distribution function, thus enabling studies of small scale kinetic effects within the hydrodynamic framework. Examples of instabilities of electron plasma and ion-acoustic waves, driven by the heat flux, are presented and compared with the classical formula.

  17. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model

    Directory of Open Access Journals (Sweden)

    Atangana Abdon

    2016-01-01

    Full Text Available In this manuscript we proposed a new fractional derivative with non-local and no-singular kernel. We presented some useful properties of the new derivative and applied it to solve the fractional heat transfer model.

  18. Pattern formation in a model of competing populations with nonlocal interactions

    Science.gov (United States)

    Segal, B. L.; Volpert, V. A.; Bayliss, A.

    2013-06-01

    We analyze and compute an extension of a previously developed population model based on the well-known diffusive logistic equation with nonlocal interaction, to a system involving competing species. Our model involves a system of nonlinear integro-differential equations, with the nonlocal interaction characterized by convolution integrals of the population densities against specified kernel functions. The extent of the nonlocal coupling is characterized by a parameter δ so that when δ→0 the problem becomes local. We consider critical points of the model, i.e., spatially homogeneous equilibrium solutions. There is generally one critical point in the first quadrant (i.e., both population densities positive), denoting coexistence of the two species. We show that this solution can be destabilized by the nonlocal coupling and obtain general conditions for stability of this critical point as a function of δ, the specific kernel function and parameters of the model. We study the nonlinear behavior of the model and show that the populations can evolve to localized cells, or islands. We find that the stability transition is supercritical. Near the stability boundary solutions are small amplitude, nearly sinusoidal oscillations, however, when δ increases large amplitude, nonlinear states are found. We find a multiplicity of stable, steady state patterns. We further show that with a stepfunction kernel function the structure of these islands, a highly nonlinear phenomenon, can be described analytically. Finally, we analyze the role of the kernel function and show that for some choices of kernel function the resulting population islands can exhibit tip-splitting behavior and island amplitude modulation.

  19. Enhancing the Trace Norm and Bures Norm Measurement-Induced Nonlocality in the Heisenberg XYZ Model

    Science.gov (United States)

    Xie, Yu-Xia; Liu, Jing; Ma, Hong

    2016-11-01

    Nonlocality is one unique characteristic of quantum mechanics and an essential resource for quantum communication and computation. We investigate two measures of the well-defined geometric measurement-induced nonlocality (MIN) in the Heisenberg XYZ model, and found that considerable enhancement of the MINs can be achieved by tuning strength of the anisotropic parameter, the J z coupling, and the Dzyaloshinsky-Moriya (DM) interaction of the model. Particularly, the maxima of the two MINs can be obtained when the strength of the J z coupling or the DM interaction approaches infinity. We have also demonstrated the singular behaviors of the two MINs such as the nonunique states ordering and the sudden change behaviors.

  20. He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations

    Science.gov (United States)

    Heasley, J. N.; Timothy, J. G.; Wolff, S. C.

    1982-01-01

    Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.

  1. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models

    Science.gov (United States)

    Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng

    2017-02-01

    This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.

  2. An investigation of a nonlocal hyperbolic model for self-organization of biological groups.

    Science.gov (United States)

    Fetecau, Razvan C; Eftimie, Raluca

    2010-10-01

    In this article, we introduce and study a new nonlocal hyperbolic model for the formation and movement of animal aggregations. We assume that the nonlocal attractive, repulsive, and alignment interactions between individuals can influence both the speed and the turning rates of group members. We use analytical and numerical techniques to investigate the effect of these nonlocal interactions on the long-time behavior of the patterns exhibited by the model. We establish the local existence and uniqueness and show that the nonlinear hyperbolic system does not develop shock solutions (gradient blow-up). Depending on the relative magnitudes of attraction and repulsion, we show that the solutions of the model either exist globally in time or may exhibit finite-time amplitude blow-up. We illustrate numerically the various patterns displayed by the model: dispersive aggregations, finite-size groups and blow-up patterns, the latter corresponding to aggregations which may collapse to a point. The transition from finite-size to blow-up patterns is governed by the magnitude of the social interactions and the random turning rates. The presence of these types of patterns and the absence of shocks are consequences of the biologically relevant assumptions regarding the form of the speed and the turning rate functions, as well as of the kernels describing the social interactions.

  3. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images.

    Science.gov (United States)

    Chen, Yunjie; Zhan, Tianming; Zhang, Ji; Wang, Hongyuan

    2016-01-01

    We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM) is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  4. 高阶非局部变分模型%Higher-order nonlocal variational model

    Institute of Scientific and Technical Information of China (English)

    李亚峰; 冯象初

    2012-01-01

    To describe the nonlocal structure of images better and remove noise, this paper proposes a higher-order nonlocal variational model by defining a new weighted function. Theoretical analysis and numerical experiments are presented to demonstrate the performance of the proposed model, which is better than the original in terms of both PSNR and visual perception. As a result, the new model keeps the advantages of the nonlocal variational model, while it can preserve image features better.%为了更好地描述图像的非局部结构并抑制噪声,通过定义新的权函数,提出了一个高阶非局部变分模型.理论分析和实验结果表明,相比于非局部平均去噪算子和非局部变分模型,提出的高阶非局部变分模型在去噪结果上有更高的信噪比和更好的视觉效果.因此,新模型保持了非局部变分模型的优点,同时能够更好地保留图像特征.

  5. A mixed SOC-turbulence model for nonlocal transport and space-fractional Fokker-Planck equation

    CERN Document Server

    Milovanov, Alexander V

    2013-01-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker-Planck equation with space-fractional derivatives from a stochastic Markovian process with the transition probabilities defined in reciprocal space.

  6. A continuum limit for the Kronig-Penney model

    Science.gov (United States)

    Colangeli, Matteo; Ndreca, Sokol; Procacci, Aldo

    2015-06-01

    We investigate the transmission properties of a quantum one-dimensional periodic system of fixed length L, with N barriers of constant height V and width λ and N wells of width δ. In particular, we study the behaviour of the transmission coefficient in the limit N → ∞, with L fixed. This is achieved by letting δ and λ both scale as 1/N, in such a way that their ratio γ = λ/δ is a fixed parameter characterizing the model. In this continuum limit, the multi-barrier system behaves as it were constituted by a unique barrier of constant height Eo = (γV)/(1 + γ). The analysis of the dispersion relation of the model shows the presence of forbidden energy bands at any finite N.

  7. An Inhomogeneous Space-Time Patching Model Based on a Nonlocal and Nonlinear Schrodinger Equation

    CERN Document Server

    Dantas, Christine C

    2016-01-01

    We consider an integrable, nonlocal and nonlinear, Schr\\"odinger equation (NNSE) as a model for building space-time patchings in inhomogeneous loop quantum cosmology (LQC). We briefly review exact solutions of the NNSE, specially those obtained through "geometric equivalence" methods. Furthemore, we argue that the integrability of the NNSE could be linked to consistency conditions derived from LQC, under the assumption that the patchwork dynamics behaves as an integrable many-body system.

  8. Simulation Evidence for Nonlocal Interface Models: Two Correlation Lengths Describe Complete Wetting

    Science.gov (United States)

    Pang, Lijun; Landau, D. P.; Binder, K.

    2011-06-01

    Monte Carlo simulations of (fluctuating) interfaces in Ising models confined between competing walls at temperatures above the wetting transition are presented and various correlation functions probing the interfacial fluctuation are computed. Evidence for the nonlocal interface Hamiltonian approach of A. O. Parry et al. [Phys. Rev. Lett. 93, 086104 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.086104] is given. In particular, we show that two correlation lengths exist with different dependence on the distance D between the walls.

  9. Simulation evidence for nonlocal interface models: two correlation lengths describe complete wetting.

    Science.gov (United States)

    Pang, Lijun; Landau, D P; Binder, K

    2011-06-10

    Monte Carlo simulations of (fluctuating) interfaces in Ising models confined between competing walls at temperatures above the wetting transition are presented and various correlation functions probing the interfacial fluctuation are computed. Evidence for the nonlocal interface Hamiltonian approach of A. O. Parry et al. [Phys. Rev. Lett. 93, 086104 (2004)] is given. In particular, we show that two correlation lengths exist with different dependence on the distance D between the walls.

  10. Possible detection of causality violation in a non-local scalar model

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Asrarul; Joglekar, Satish D [Department of Physics, IIT Kanpur, Kanpur 208016 (India)], E-mail: ahaque@iitk.ac.in, E-mail: sdj@iitk.ac.in

    2009-02-13

    We consider the possibility that there may be causality violation detectable at higher energies. We take a scalar non-local theory containing a mass scale {lambda} as a model example and make a preliminary study of how the causality violation can be observed. We show how to formulate an observable whose detection would signal causality violation. We study the range of energies (relative to {lambda}) and couplings to which the observable can be used.

  11. Spectral analysis of approximations of Dirichlet-Neumann operators and nonlocal shallow water wave models

    Science.gov (United States)

    Vargas-Magaña, Rosa; Panayotaros, Panayotis

    2015-11-01

    We study the problem of wave propagation in a long-wave asymptotic regime over variable bottom of an ideal irrotational fluid in the framework of the Hamiltonian formulation in which the non-local Dirichlet-Neumann (DtN) operator appears explicitly in the Hamiltonian. We propose a non-local Hamiltonian model for bidirectional wave propagation in shallow water that involves pseudodifferential operators that approximate the DtN operator for variable depth. These models generalize the Boussinesq system as they include the exact dispersion relation in the case of constant depth. We present results for the normal modes and eigenfrequencies of the linearized problem. We see that variable topography introduces effects such as steepening of normal modes with increasing variation of depth, as well as amplitude modulation of the normal modes in certain wavelength ranges. Numerical integration shows that the constant depth nonlocal Boussinesq model with quadratic nonlinearity can capture the evolution obtained with higher order approximations of the DtN operator. In the case of variable depth we observe certain oscillations in width of the crest and also some interesting textures in the evolution of wave crests during the passage from obstacles.

  12. Power-counting theorem for non-local matrix models and renormalisation

    CERN Document Server

    Grosse, H; Grosse, Harald; Wulkenhaar, Raimar

    2003-01-01

    Solving the exact renormalisation group equation a la Wilson-Polchinski perturbatively, we derive a power-counting theorem for general matrix models with arbitrarily non-local propagators. The power-counting degree is determined by three different scaling dimensions of the cut-off propagator and various topological data of ribbon graphs. The main application is the renormalisation problem of field theories on noncommutative R^D written in matrix formulation. It turns out that the propagator for the real scalar field has anomalous scaling dimensions, which for D>2 result in arbitrarily high power-counting degrees of divergence. This feature is known as UV/IR-mixing, which we conclude to emerge in any non-local matrix model with anomalous scaling dimensions of the propagator. Models in which the propagator has regular scaling dimensions are for D=2,4 power-counting renormalisable but acquire due to non-locality an infinite number of relevant or marginal interactions. By a reduction-of-couplings mechanism it is ...

  13. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  14. $\\eta$-$\\gamma$ and $\\eta'$-$\\gamma$ transition form factors in a nonlocal NJL model

    CERN Document Server

    Dumm, D Gomez; Scoccola, N N

    2016-01-01

    We study the $\\eta$ and $\\eta'$ distribution amplitudes (DAs) in the context of a nonlocal SU(3)_L x SU(3)_R chiral quark model. The corresponding Lagrangian allows to reproduce the phenomenological values of pseudoscalar meson masses and decay constants, as well as the momentum dependence of the quark propagator arising from lattice calculations. It is found that the obtained DAs have two symmetric maxima, which arise from new contributions generated by the nonlocal character of the interactions. These DAs are then applied to the calculation of the $\\eta$-$\\gamma$ and $\\eta'$-$\\gamma$ transition form factors. Implications of our results regarding higher twist corrections and/or contributions to the transition form factors originated by gluon-gluon components in the $\\eta$ and $\\eta'$ mesons are discussed.

  15. Critical dynamics of a nonlocal model and critical behavior of perovskite manganites.

    Science.gov (United States)

    Singh, Rohit; Dutta, Kishore; Nandy, Malay K

    2016-05-01

    We investigate the nonconserved critical dynamics of a nonlocal model Hamiltonian incorporating screened long-range interactions in the quartic term. Employing dynamic renormalization group analysis at one-loop order, we calculate the dynamic critical exponent z=2+εf_{1}(σ,κ,n)+O(ε^{2}) and the linewidth exponent w=-σ+εf_{2}(σ,κ,n)+O(ε^{2}) in the leading order of ε, where ε=4-d+2σ, with d the space dimension, n the number of components in the order parameter, and σ and κ the parameters coming from the nonlocal interaction term. The resulting values of linewidth exponent w for a wide range of σ is found to be in good agreement with the existing experimental estimates from spin relaxation measurements in perovskite manganite samples.

  16. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 Falicov–Kimball model

    Indian Academy of Sciences (India)

    S K Bhowmick; N K Ghosh

    2012-02-01

    The two-dimensional (2D) extended Falicov–Kimball model has been studied to observe the role of nonlocal Coulomb interaction (nc) using an exact diagonalization technique. The f-state occupation ($n^f$), the f–d intersite correlation function (fd), the specific heat (), entropy () and the specific heat coefficient () have been examined. Nonlocal Coulomb interaction-induced discontinuous insulator-to-metal transition occurs at a critical f-level energy. More ordered state is obtained with the increase of nc. In the specific heat curves, two-peak structure as well as a singlepeak structure appears. At low-temperature region, a sharp rise in the specific heat coefficient is observed. The peak value of shifts to the higher temperature region with nc.

  17. Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media

    Science.gov (United States)

    Qiu, Yunli; Chen, Zhaoxi; He, Yingji

    2017-04-01

    Analytical expressions for the cross-spectral density function and the second-order moments of the Wigner distribution function of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in strongly nonlocal nonlinear media are derived. The propagation properties, such as beam irradiance, beam width, the spectral degree of coherence and the propagation factor of a LGCSM beam inside the media are investigated in detail. The effect of the beam parameters and the input power on the evolution properties of a LGCSM is illustrated numerically. It is found that the beam width varies periodically or keeps invariant for a certain proper input power. And both the beam irradiance and the spectral degree of coherence of the LGCSM beam change periodically with the propagation distance for the arbitrary input power which however has no influence on the propagation factor. The coherent length and the mode order mainly affect the evolution speed of the LGCSM beam in strongly nonlocal nonlinear media.

  18. Solitons in spiraling systems: a continuum model for dynamical phyllotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Laboratory

    2009-01-01

    A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.

  19. Nonlinear analysis of traffic jams in an anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar Gupta; Sapna Sharma

    2010-01-01

    This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.

  20. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective

  1. A continuum solvent model of the multipolar dispersion solvation energy.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation.

  2. Perspective on Continuum Modeling of Mesoscale/ Macroscale Phenomena

    Science.gov (United States)

    Bammann, D. J.

    The attempt to model or predict the inelastic response or permanent deformation and failure observed in metals dates back over 180 years. Various descriptions of the post elastic response of metals have been proposed from the fields of physics, materials science (metallurgy), engineering, mechanics, and applied mathematics. The communication between these fields has improved and many of the modeling efforts today involve concepts from most or all of these fields. Early engineering description of post yield response treated the material as perfectly plastic — the material continues to deform with zero additional increase in load. These models became the basis of the mathematical theory of plasticity and were extended to account for hardening, unloading, and directional hardening. In contradistinction, rheological models treated the finite deformation of a solid similar to the deformation of a viscous fluid. In many cases of large deformation, rheological models have provided both adequate and accurate information about the deformed shape of a metal during many manufacturing processes. The treatment of geometric defects in solid bodies initiated within the mathematical theory of elasticity, the dislocation, introduced as an incompatible "cut" in a continuum body. This resulted in a very large body of literature devoted to the linear elastic study of dislocations, dislocation structures, and their interactions, and has provided essential information in the understanding of the "state" of a deformed material.

  3. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, J.P. [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gómez Dumm, D., E-mail: dumm@fisica.unlp.edu.ar [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N.N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires (Argentina); Universidad Favaloro, Solís 453, 1078 Buenos Aires (Argentina)

    2015-05-18

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.

  4. Continuum damage modeling and simulation of hierarchical dental enamel

    Science.gov (United States)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  5. A contoured continuum surface force model for particle methods

    Science.gov (United States)

    Duan, Guangtao; Koshizuka, Seiichi; Chen, Bin

    2015-10-01

    A surface tension model is essential to simulate multiphase flows with deformed interfaces. This study develops a contoured continuum surface force (CCSF) model for particle methods. A color function that varies sharply across the interface to mark different fluid phases is smoothed in the transition region, where the local contour curvature can be regarded as the interface curvature. The local contour passing through each reference particle in the transition region is extracted from the local profile of the smoothed color function. The local contour curvature is calculated based on the Taylor series expansion of the smoothed color function, whose derivatives are calculated accurately according to the definition of the smoothed color function. Two schemes are proposed to specify the smooth radius: fixed scheme, where 2 ×re (re = particle interaction radius) is assigned to all particles in the transition region; and varied scheme, where re and 2 ×re are assigned to the central and edged particles in the transition region respectively. Numerical examples, including curvature calculation for static circle and ellipse interfaces, deformation of square droplet to a circle (2D and 3D), droplet deformation in shear flow, and droplet coalescence, are simulated to verify the CCSF model and compare its performance with those of other methods. The CCSF model with the fixed scheme is proven to produce the most accurate curvature and lowest parasitic currents among the tested methods.

  6. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  7. A double continuum hydrological model for glacier applications

    Science.gov (United States)

    de Fleurian, B.; Gagliardini, O.; Zwinger, T.; Durand, G.; Le Meur, E.; Mair, D.; Råback, P.

    2014-01-01

    The flow of glaciers and ice streams is strongly influenced by the presence of water at the interface between ice and bed. In this paper, a hydrological model evaluating the subglacial water pressure is developed with the final aim of estimating the sliding velocities of glaciers. The global model fully couples the subglacial hydrology and the ice dynamics through a water-dependent friction law. The hydrological part of the model follows a double continuum approach which relies on the use of porous layers to compute water heads in inefficient and efficient drainage systems. This method has the advantage of a relatively low computational cost that would allow its application to large ice bodies such as Greenland or Antarctica ice streams. The hydrological model has been implemented in the finite element code Elmer/Ice, which simultaneously computes the ice flow. Herein, we present an application to the Haut Glacier d'Arolla for which we have a large number of observations, making it well suited to the purpose of validating both the hydrology and ice flow model components. The selection of hydrological, under-determined parameters from a wide range of values is guided by comparison of the model results with available glacier observations. Once this selection has been performed, the coupling between subglacial hydrology and ice dynamics is undertaken throughout a melt season. Results indicate that this new modelling approach for subglacial hydrology is able to reproduce the broad temporal and spatial patterns of the observed subglacial hydrological system. Furthermore, the coupling with the ice dynamics shows good agreement with the observed spring speed-up.

  8. Spectral Dimension from Causal Set Nonlocal Dynamics

    CERN Document Server

    Belenchia, Alessio; Marciano, Antonino; Modesto, Leonardo

    2015-01-01

    We investigate the spectral dimension obtained from non-local continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to 2 dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  9. Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model

    Science.gov (United States)

    Autry, E. A.; Bayliss, A.; Volpert, V. A.

    2017-08-01

    We consider an analytically tractable switching model that is a simplification of a nonlocal, nonlinear reaction-diffusion model of population growth where we take the source term to be piecewise linear. The form of this source term allows us to consider both the monostable and bistable versions of the problem. By transforming to a traveling frame and choosing specific kernel functions, we are able to reduce the problem to a system of algebraic equations. We construct solutions and examine the propagation speed and monotonicity of the resulting waves.

  10. Local hidden-variable model for a recent experimental test of quantum nonlocality and local contextuality

    Science.gov (United States)

    La Cour, Brian R.

    2017-07-01

    An experiment has recently been performed to demonstrate quantum nonlocality by establishing contextuality in one of a pair of photons encoding four qubits; however, low detection efficiencies and use of the fair-sampling hypothesis leave these results open to possible criticism due to the detection loophole. In this Letter, a physically motivated local hidden-variable model is considered as a possible mechanism for explaining the experimentally observed results. The model, though not intrinsically contextual, acquires this quality upon post-selection of coincident detections.

  11. Steering of Multisegment Continuum Manipulators Using Rigid-Link Modeling and FBG-Based Shape Sensing

    NARCIS (Netherlands)

    Roesthuis, Roy; Misra, Sarthak

    2016-01-01

    Accurate closed-loop control of continuum manipulators requires integration of both models that describe their motion and methods to evaluate manipulator shape. This work presents a model that approximates the continuous shape of a continuum manipulator by a serial chain of rigid links, connected by

  12. PREFACE: Continuum Models and Discrete Systems Symposia (CMDS-12)

    Science.gov (United States)

    Chakrabarti, Bikas K.

    2011-09-01

    The 12th International Symposium on Continuum Models and Discrete Systems (CMDS-12) (http://www.saha.ac.in/cmp/cmds.12/) took place at the Saha Institute of Nuclear Physics in Kolkata from 21-25 February 2011. Previous CMDS symposia were held in Kielce (Poland, 1975), Mont Gabriel (Canada, 1977), Freudenstadt (Federal Republic of Germany, 1979), Stockholm (Sweden, 1981), Nottingham (United Kingdom, 1985), Dijon (France, 1989), Paderborn (Germany, 1992), Varna (Bulgaria, 1995), Istanbul (Turkey, 1998), Shoresh (Israel, 2003) and Paris (France, 2007). The broad interdisciplinary character, limited number of participants (not exceeding 100) and informal and friendly atmosphere of these meetings has made them a well-acknowledged place to make highly fruitful contacts and exchange ideas, methods and results. The purpose of CMDS is to bring together scientists with different backgrounds who work on continuum theories of discrete mechanical and thermodynamical systems in the fields of mathematics, theoretical and applied mechanics, physics, material science, and engineering. The spirit of the CMDS meetings is to stimulate extensive and active interdisciplinary research. The International Scientific Committee members of this conference were: David J Bergman (Chairman CMDS 10), Tel Aviv University, Israel; Bikas K Chakrabarti (Chairman CMDS 12), Saha Institute of Nuclear Physics, India; Alex Hansen, Norwegian University of Science and Technology, Norway; Hans Jürgen Herrmann, Institute for Building Materials, ETH, Switzerland; Esin Inan (Chairman CMDS 9), Istanbul Technical University, Turkey; Dominique Jeulin (Chairman CMDS 11), Ecole des Mines de Paris, France; Frank Juelicher, Max-Planck-Institute for the Physics of Complex Systems, Germany; Hikaru Kawamura, University of Osaka, Japan; Graeme Milton, University of Utah, USA; Natalia Movchan, University of Liverpool, UK; and Ping Sheng, The Hong Kong University of Science and Technology, Hong Kong. At CMDS-12 the topics

  13. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  14. Electron affinities of uracil: microsolvation effects and polarizable continuum model.

    Science.gov (United States)

    Melicherčík, Miroslav; Pašteka, Lukáš F; Neogrády, Pavel; Urban, Miroslav

    2012-03-08

    We present adiabatic electron affinities (AEAs) and the vertical detachment energies (VDEs) of the uracil molecule interacting with one to five water molecules. Credibility of MP2 and DFT/B3LYP calculations is supported by comparison with available benchmark CCSD(T) data. AEAs and VDEs obtained by MP2 and DFT/B3LYP methods copy trends of benchmark CCSD(T) results for the free uracil and uracil-water complexes in the gas phase being by 0.20 - 0.28 eV higher than CCSD(T) values depending on the particular structure of the complex. AEAs and VDEs from MP2 are underestimated by 0.09-0.15 eV. For the free uracil and uracil-(H(2)O)(n) (n = 1,2,3,5) complexes, we also consider the polarizable continuum model (PCM) and discuss the importance of the microsolvation when combined with PCM. AEAs and VDEs of uracil and uracil-water complexes enhance rapidly with increasing relative dielectric constant (ε) of the solvent. Highest AEAs and VDEs of the U(H(2)O)(5) complexes from B3LYP with ε = 78.4 are 2.03 and 2.81 eV, respectively, utilizing the correction from CCSD(T). Specific structural features of the microsolvated uracil-(H(2)O)(n) complexes and their anions are preserved also upon considering PCM in calculations of AEAs and VDEs.

  15. Microscopic Description of the Granular Fluidity Field in Nonlocal Flow Modeling

    Science.gov (United States)

    Zhang, Qiong; Kamrin, Ken

    2017-02-01

    A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.

  16. Nonlocal correlations and spectral properties of the Falicov-Kimball model

    Science.gov (United States)

    Ribic, T.; Rohringer, G.; Held, K.

    2016-05-01

    We derive an analytical expression for the local two-particle vertex of the Falicov-Kimball model, including its dependence on all three frequencies, the full vertex, and all reducible vertices. This allows us to calculate the self-energy in diagrammatic extensions of dynamical mean field theory, specifically in the dual fermion and the one-particle irreducible approach. Nonlocal correlations are thence included and originate here from charge-density wave fluctuations. At low temperatures and in two dimensions, they lead to a larger self-energy contribution at low frequencies and a more insulating spectrum.

  17. A convergent scheme for a non-local coupled system modelling dislocations densities dynamics

    Science.gov (United States)

    Hajj, A. El; Forcadel, N.

    2008-06-01

    In this paper, we study a non-local coupled system that arises in the theory of dislocations densities dynamics. Within the framework of viscosity solutions, we prove a long time existence and uniqueness result for the solution of this model. We also propose a convergent numerical scheme and we prove a Crandall-Lions type error estimate between the continuous solution and the numerical one. As far as we know, this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also provide some numerical simulations.

  18. Microscopic Description of the Granular Fluidity Field in Nonlocal Flow Modeling.

    Science.gov (United States)

    Zhang, Qiong; Kamrin, Ken

    2017-02-03

    A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.

  19. Equivalence between a bosonic theory and a massive non-local Thirring model at Finite Temperature

    CERN Document Server

    Manias, M V

    1998-01-01

    Using the path-integral bosonization procedure at Finite Temperature we study the equivalence between a massive Thirring model with non-local interaction between currents (NLMT) and a non-local extension of the sine-Gordon theory (NLSG). To this end we make a perturbative expansion in the mass parameter of the NLMT model and in the cosine term of the NLSG theory in order to obtain explicit expressions for the corresponding partition functions. We conclude that for certain relationship between NLMT and NLSG potentials both the fermionic and bosonic expansions are equal term by term. This result constitutes a generalization of Coleman's equivalence at T=0, when considering a Thirring model with bilocal potentials in the interaction term at Finite Temperature. The study of this model is relevant in connection with the physics of strongly correlated systems in one spatial dimension. Indeed, in the language of many-body non-relativistic systems, the relativistic mass term can be shown to represent the introduction...

  20. Three-state Potts model on non-local directed small-world lattices

    Science.gov (United States)

    Ferraz, Carlos Handrey Araujo; Lima, José Luiz Sousa

    2017-10-01

    In this paper, we study the non-local directed Small-World (NLDSW) disorder effects in the three-state Potts model as a form to capture the essential features shared by real complex systems where non-locality effects play a important role in the behavior of these systems. Using Monte Carlo techniques and finite-size scaling analysis, we estimate the infinite lattice critical temperatures and the leading critical exponents in this model. In particular, we investigate the first- to second-order phase transition crossover when NLDSW links are inserted. A cluster-flip algorithm was used to reduce the critical slowing down effect in our simulations. We find that for a NLDSW disorder densities p model exhibits a continuous phase transition falling into a new universality class, which continuously depends on the value of p, while for p∗ ⩽ p ⩽ 1 . 0, the model presents a weak first-order phase transition.

  1. Fluid Simulations with Atomistic Resolution: Multiscale Model with Account of Nonlocal Momentum Transfer

    NARCIS (Netherlands)

    Svitenkov, A.I.; Chivilikhin, S.A.; Hoekstra, A.G.; Boukhanovsky, A.V.

    2015-01-01

    Nano- and microscale flow phenomena turn out to be highly non-trivial for simulation and require the use of heterogeneous modeling approaches. While the continuum Navier-Stokes equations and related boundary conditions quickly break down at those scales, various direct simulation methods and hybrid

  2. A continuum model for flow induced by metachronal coordination between beating cilia

    NARCIS (Netherlands)

    Hussong, J.; Breugem, W.-P.; Westerweel, J.

    2011-01-01

    In this numerical study we investigate the flow induced by metachronal coordination between beating cilia arranged in a densely packed layer by means of a continuum model. The continuum approach allows us to treat the problem as two-dimensional as well as stationary, in a reference frame moving with

  3. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    KAUST Repository

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  4. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  5. Characterization of fracture processes by continuum and discrete modelling

    Science.gov (United States)

    Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.

    2012-09-01

    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

  6. Nonlocal correlations in the vicinity of the $\\alpha$-$\\gamma$ phase transition in iron within a DMFT plus spin-fermion model approach

    OpenAIRE

    Katanin, A. A.; Belozerov, A. S.; Anisimov, V. I.

    2016-01-01

    We consider nonlocal correlations in iron in the vicinity of the $\\alpha$-$\\gamma$ phase transition within the spin-rotationally-invariant dynamical mean-field theory (DMFT) approach, combined with the recently proposed spin-fermion model of iron. The obtained nonlocal corrections to DMFT yield a decrease of the Curie temperature of the $\\alpha$ phase, leading to an agreement with its experimental value. We show that the corresponding nonlocal corrections to the energy of the $\\alpha$ phase a...

  7. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.

    Science.gov (United States)

    Shen, Hui-Shen

    2010-06-01

    Buckling and postbuckling analysis is presented for axially compressed microtubules (MTs) embedded in an elastic matrix of cytoplasm. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The surrounding elastic medium is modeled as a Pasternak foundation. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e (0) a is estimated by matching the buckling load from their vibrational behavior of MTs with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling load and postbuckling behavior of MTs are very sensitive to the small scale parameter e (0) a. The results reveal that the MTs under axial compressive loading condition have an unstable postbuckling path, and the lateral constraint has a significant effect on the postbuckling response of a microtubule when the foundation stiffness is sufficiently large.

  8. Nonlocal theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-09-01

    Full Text Available New models for plane curved rods based on linear nonlocal theory of elasticity have been developed. The 2-D theory is developed from general 2-D equations of linear nonlocal elasticity using a special curvilinear system of coordinates related to the middle line of the rod along with special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate. Thereby, all equations of elasticity including nonlocal constitutive relations have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of local elasticity, a system of differential equations in terms of displacements for Fourier coefficients has been obtained. First and second order approximations have been considered in detail. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear nonlocal theory of elasticity which are considered in a special curvilinear system of coordinates related to the middle line of the rod. The obtained equations can be used to calculate stress-strain and to model thin walled structures in micro- and nanoscales when taking into account size dependent and nonlocal effects.

  9. Non-local first-order modelling of crowd dynamics: a multidimensional framework with applications

    CERN Document Server

    Bruno, Luca; Tricerri, Paolo; Venuti, Fiammetta

    2010-01-01

    In this work a physical modelling framework is presented, describing the intelligent, non-local, and anisotropic behaviour of pedestrians. Its phenomenological basics and constitutive elements are detailed, and a qualitative analysis is provided. Within this common framework, two first-order mathematical models, along with related numerical solution techniques, are derived. The models are oriented to specific real world applications: a one-dimensional model of crowd-structure interaction in footbridges and a two-dimensional model of pedestrian flow in an underground station with several obstacles and exits. The noticeable heterogeneity of the applications demonstrates the significance of the physical framework and its versatility in addressing different engineering problems. The results of the simulations point out the key role played by the physiological and psychological features of human perception on the overall crowd dynamics.

  10. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model.

    Science.gov (United States)

    Shen, Hui-Shen

    2010-05-21

    This paper presents an investigation on the buckling and postbuckling of microtubules (MTs) subjected to a uniform external radial pressure in thermal environments. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The small scale parameter e(0)a is estimated by matching the buckling pressure of MTs measured from the experiments with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling pressure and postbuckling behavior of MTs are very sensitive to the small scale parameter e(0)a. The results reveal that the 13_3 microtubule has a stable postbuckling path, whereas the 13_2 microtubule has an unstable postbuckling behavior due to the presence of skew angles.

  11. A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens; Milovanov, Alexander V.

    2014-01-01

    The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable...... with self-organized critical (SOC) behavior. Using statistical arguments, it is shown that an amplification mechanism is needed to introduce nonlocality into dynamics. We obtain a consistent derivation of nonlocal Fokker-Planck equation with space-fractional derivatives from a stochastic Markov process...... with the transition probabilities defined in reciprocal space. The hybrid model observes the Sparre Andersen universality and defines a new universality class of SOC. (C) 2014 Elsevier B.V. All rights reserved....

  12. Verification of a laboratory-based dilation model for in situ conditions using continuum models

    Institute of Scientific and Technical Information of China (English)

    G. Walton; M.S. Diederichs; L.R. Alejano; J. Arzúa

    2014-01-01

    With respect to constitutive models for continuum modeling applications, the post-yield domain re-mains the area of greatest uncertainty. Recent studies based on laboratory testing have led to the development of a number of models for brittle rock dilation, which account for both the plastic shear strain and confining stress dependencies of this phenomenon. Although these models are useful in providing an improved understanding of how dilatancy evolves during a compression test, there has been relatively little work performed examining their validity for modeling brittle rock yield in situ. In this study, different constitutive models for rock dilation are reviewed and then tested, in the context of a number of case studies, using a continuum finite-difference approach (FLAC). The uncertainty associated with the modeling of brittle fracture localization is addressed, and the overall ability of mobilized dilation models to replicate in situ deformation measurements and yield patterns is evaluated.

  13. Nonlocal optical response in metallic nanostructures.

    Science.gov (United States)

    Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N

    2015-05-13

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response.

  14. Nonlocal optical response in metallic nanostructures

    DEFF Research Database (Denmark)

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn

    2015-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response...... on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response....

  15. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)

  16. Nonlocal sparse model with adaptive structural clustering for feature extraction of aero-engine bearings

    Science.gov (United States)

    Zhang, Han; Chen, Xuefeng; Du, Zhaohui; Li, Xiang; Yan, Ruqiang

    2016-04-01

    Fault information of aero-engine bearings presents two particular phenomena, i.e., waveform distortion and impulsive feature frequency band dispersion, which leads to a challenging problem for current techniques of bearing fault diagnosis. Moreover, although many progresses of sparse representation theory have been made in feature extraction of fault information, the theory also confronts inevitable performance degradation due to the fact that relatively weak fault information has not sufficiently prominent and sparse representations. Therefore, a novel nonlocal sparse model (coined NLSM) and its algorithm framework has been proposed in this paper, which goes beyond simple sparsity by introducing more intrinsic structures of feature information. This work adequately exploits the underlying prior information that feature information exhibits nonlocal self-similarity through clustering similar signal fragments and stacking them together into groups. Within this framework, the prior information is transformed into a regularization term and a sparse optimization problem, which could be solved through block coordinate descent method (BCD), is formulated. Additionally, the adaptive structural clustering sparse dictionary learning technique, which utilizes k-Nearest-Neighbor (kNN) clustering and principal component analysis (PCA) learning, is adopted to further enable sufficient sparsity of feature information. Moreover, the selection rule of regularization parameter and computational complexity are described in detail. The performance of the proposed framework is evaluated through numerical experiment and its superiority with respect to the state-of-the-art method in the field is demonstrated through the vibration signals of experimental rig of aircraft engine bearings.

  17. Searching for the CEP location with nonlocal PNJL models constrained by Lattice QCD

    CERN Document Server

    Contrera, Gustavo A; Blaschke, David

    2016-01-01

    We investigate the possible location of the critical end point in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift $\\Delta P / T^4$ vs $T/T_c$ with lattice QCD results shows a better agreement when Lorentzian formfactors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences on results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study supports the existence of a critical point and favors for its location the region $69.9~{\\rm MeV}\\le T_{\\rm CEP} \\le...

  18. Variational Principles for Buckling of Microtubules Modeled as Nonlocal Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Sarp Adali

    2014-01-01

    Full Text Available A variational principle for microtubules subject to a buckling load is derived by semi-inverse method. The microtubule is modeled as an orthotropic shell with the constitutive equations based on nonlocal elastic theory and the effect of filament network taken into account as an elastic surrounding. Microtubules can carry large compressive forces by virtue of the mechanical coupling between the microtubules and the surrounding elastic filament network. The equations governing the buckling of the microtubule are given by a system of three partial differential equations. The problem studied in the present work involves the derivation of the variational formulation for microtubule buckling. The Rayleigh quotient for the buckling load as well as the natural and geometric boundary conditions of the problem is obtained from this variational formulation. It is observed that the boundary conditions are coupled as a result of nonlocal formulation. It is noted that the analytic solution of the buckling problem for microtubules is usually a difficult task. The variational formulation of the problem provides the basis for a number of approximate and numerical methods of solutions and furthermore variational principles can provide physical insight into the problem.

  19. Derivation of a non-local interfacial model for 3D wetting in an external field

    Energy Technology Data Exchange (ETDEWEB)

    Bernardino, N R [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Parry, A O [Department of Mathematics, Imperial College London, London SW7 2BZ (United Kingdom); Rascon, C [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, E-28911 Leganes, Madrid (Spain); Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Seville (Spain)

    2009-11-18

    We extend recent studies of 3D short-ranged wetting transitions by deriving an interfacial Hamiltonian in the presence of an arbitrary external field. The binding potential functional, describing the interaction of the interface and the substrate, can still be written in a diagrammatic form, but now includes new classes of diagrams due to the coupling to the external potential, which are determined exactly. Applications to systems with long-ranged (algebraically decaying) and short-ranged (exponentially decaying) external potentials are considered at length. We show how the familiar 'sharp-kink' approximation to the binding potential emerges, and determine the corrections to this arising from interactions between bulk-like fluctuations and the external field. A connection is made with earlier local effective interfacial Hamiltonian approaches. It is shown that, for the case of an exponentially decaying potential, non-local effects have a particularly strong influence on the approach to the critical regime at second-order wetting transitions, even when they appear to be sub-dominant. This is confirmed by Monte Carlo simulation studies of a discretized version of a non-local interfacial model.

  20. Vibration of quadrilateral embedded multilayered graphene sheets based on noniocal continuum models using the Galerkin method

    Institute of Scientific and Technical Information of China (English)

    H. Babaei; A.R. Shahidi

    2011-01-01

    Free vibration analysis of quadrilateral multilayered graphene sheets (MLGS) embedded in polymer matrix is carried out employing nonlocal continuum mechanics.The principle of virtual work is employed to derive the equations of motion.The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis.The dependence of small scale effect on thickness,elastic modulus,polymer matrix stiffness and interaction coefficient between two adjacent sheets is illustrated.The non-dimensional natural frequencies of skew,rhombic,trapezoidal and rectangular MLGS are obtained with various geometrical parameters and mode numbers taken into account,and for each case the effects of the small length scale are investigated.

  1. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  2. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  3. Thermo-magnetic nonlocal NJL model in the real and imaginary time formalisms

    CERN Document Server

    Márquez, F

    2016-01-01

    In this article we study a nonlocal Nambu--Jona-Lasinio (nNJL) model with a Gaussian regulator in presence of a uniform magnetic field. We take a mixed approach to the incorporation of temperature in the model, and consider aspects of both real and imaginary time formalisms. We include confinement in the model through the quasiparticle interpretation of the poles of the propagator. The effect of the magnetic field in the deconfinement phase transition is then studied. It is found that, like with chiral symmetry restoration, magnetic catalysis occurs for the deconfinement phase transition. It is also found that the magnetic field enhances the thermodynamical instability of the system. We work in the weak field limit, i.e. $(eB)<5m_\\pi^2$. At this level there is no splitting of the critical temperatures for chiral and deconfinement phase transitions.

  4. A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing

    CERN Document Server

    Turner, Daniel Z

    2012-01-01

    Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...

  5. Power-Counting Theorem for Non-Local Matrix Models and Renormalisation

    Science.gov (United States)

    Grosse, Harald; Wulkenhaar, Raimar

    2005-02-01

    Solving the exact renormalisation group equation à la Wilson-Polchinski perturbatively, we derive a power-counting theorem for general matrix models with arbitrarily non-local propagators. The power-counting degree is determined by two scaling dimensions of the cut-off propagator and various topological data of ribbon graphs. As a necessary condition for the renormalisability of a model, the two scaling dimensions have to be large enough relative to the dimension of the underlying space. In order to have a renormalisable model one needs additional locality properties—typically arising from orthogonal polynomials—which relate the relevant and marginal interaction coefficients to a finite number of base couplings. The main application of our power-counting theorem is the renormalisation of field theories on noncommutative RD in matrix formulation.

  6. Quantum Entanglement and Nonlocality Properties of Two-Mode Squeezed Thermal States in a Common-Reservoir Model

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-Hua; SONG Ke-Hui; WEN Wei; SHI Zhen-Gang

    2011-01-01

    We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In (V)u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.

  7. Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures

    Directory of Open Access Journals (Sweden)

    Bailey Timothy L

    2006-02-01

    Full Text Available Abstract Background The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.

  8. A simple nonlocal damage model for predicting failure of notched laminates

    Science.gov (United States)

    Kennedy, T. C.; Nahan, M. F.

    1995-01-01

    The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.

  9. Velocity selection at large undercooling in a two-dimensional nonlocal model of solidification

    Science.gov (United States)

    Barbieri, Angelo

    1987-01-01

    The formation of needle-crystal dendrites from an undercooled melt is investigated analytically, applying the method of Caroli et al. (1986) to Langer's (1980) symmetric two-dimensional nonlocal model of solidification with finite anisotropy in the limit of large undercooling. A solution based on the WKB approximation is obtained, and a saddle-point evaluation is performed. It is shown that needle-crystal solutions exist only if the capillary anisotropy is nonzero, in which case a particular value of the growth velocity can be selected. This finding and the expression for the dependence of the selected velocity on the singular perturbation parameter and the strength of the anisotropy are found to be in complete agreement with the results of a boundary-layer model (Langer and Hong, 1986).

  10. Dynamics Modeling of a Continuum Robotic Arm with a Contact Point in Planar Grasp

    Directory of Open Access Journals (Sweden)

    Mohammad Dehghani

    2014-01-01

    Full Text Available Grasping objects by continuum arms or fingers is a new field of interest in robotics. Continuum manipulators have the advantages of high adaptation and compatibility with respect to the object shape. However, due to their extremely nonlinear behavior and infinite degrees of freedom, continuum arms cannot be easily modeled. In fact, dynamics modeling of continuum robotic manipulators is state-of-the-art. Using the exact modeling approaches, such as theory of Cosserat rod, the resulting models are either too much time-taking for computation or numerically unstable. Thus, such models are not suitable for applications such as real-time control. However, based on realistic assumptions and using some approximations, these systems can be modeled with reasonable computational efforts. In this paper, a planar continuum robotic arm is modeled, considering its backbone as two circular arcs. In order to simulate finger grasping, the continuum arm experiences a point-force along its body. Finally, the results are validated using obtained experimental data.

  11. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research?

    Science.gov (United States)

    Cook, J L; Rio, E; Purdam, C R; Docking, S I

    2016-10-01

    The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Continuum model for Couette-Poiseuille flow in a drag molecular pump

    CERN Document Server

    Skovorodko, P A

    2004-01-01

    A continuum one-dimensional model of the plane Couette-Poiseuille flow is developed to describe the pressure distribution in a drag stage of molecular pump of either the Gaede or Holweck type. In spite of its simplicity and approximate nature the model provides a good qualitative representation of the drag pump operation in the whole range of the regimes from the continuum to free molecular ones.

  13. Atomistic-continuum modeling of ultrafast laser-induced melting of silicon targets

    OpenAIRE

    Lipp, Vladimir

    2015-01-01

    In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First...

  14. Non-local convergence coupling in a simple stochastic convection model

    Science.gov (United States)

    Brenowitz, N. D.; Frenkel, Y.; Majda, A. J.

    2016-06-01

    Observational studies show a strong correlation between large-scale wind convergence and precipitation. However, using this as a convective closure assumption to determine the total precipitation in a numerical model typically leads to deleterious wave-CISK behavior such as grid-scale noise. The quasi-equilibrium (QE) schemes ameliorate this issue and smooth the precipitation field, but still inadequately represent the intermittent and organized nature of tropical convection. However, recent observational evidence highlights that the large-scale convergence field primarily affects precipitation by increasing the overall convective cloud fraction rather than the energetics of individual convective elements. In this article, the dynamical consequences of this diagnostic observation are studied using a simple one baroclinic mode stochastic model for convectively coupled waves. A version of this model is implemented which couples the stochastic formation of convective elements to the wind convergence. Linearized analysis shows that using the local convergence results in a classic wave-CISK standing instability where the growth rate increases with the wavenumber. However, using a large-scale averaged convergence restricts the instability to physically plausible scales. Convergence coupling is interpreted as a surrogate for the non-local effects of gregarious convection. In nonlinear stochastic simulations with a non-uniform imposed sea surface temperature (SST) field, the non-local convergence coupling introduces desirable intermittent variability on intraseasonal time scales. Convergence coupling leads to a circulation with a similar mean but higher variability than the equivalent parameterization without convergence coupling. Finally, the model is shown to retain these features on fine and coarse mesh sizes.

  15. Integro-differential equations of fractional order with nonlocal fractional boundary conditions associated with financial asset model

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2013-02-01

    Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.

  16. New non-local lattice models for the description of wave dispersion in concrete

    Science.gov (United States)

    Iliopoulos, Sokratis N.; Polyzos, Demosthenes; Aggelis, Dimitrios G.

    2015-03-01

    The propagation of longitudinal waves through concrete materials is strongly affected by dispersion. This is clearly indicated experimentally from the increase of phase velocity at low frequencies whereas many attempts have been made to explain this behavior analytically. Since the classical elastic theory for bulk media is by default non-dispersive, enhanced theories have been developed. The most commonly used higher order theory is the dipolar gradient elastic theory which takes into account the microstructural effects in heterogeneous media like concrete. The microstructural effects are described by two internal length scale parameters (g and h) which correspond to the micro-stiffness and micro-inertia respectively. In the current paper, this simplest possible version of the general gradient elastic theory proposed by Mindlin is reproduced through non-local lattice models consisting of discrete springs and masses. The masses simulate the aggregates of the concrete specimen whereas the springs are the mechanical similitude of the concrete matrix. The springs in these models are connecting the closest masses between them as well as the second or third closest to each other masses creating a non-local system of links. These non-neighboring interactions are represented by massless springs of constant stiffness while on the other hand one cannot neglect the significant mass of the springs connecting neighboring masses as this is responsible for the micro-inertia term. The major advantage of the presented lattice models is the fact that the considered microstructural effects can be accurately expressed as a function of the size and the mechanical properties of the microstructure.

  17. Nonlocal regularization for active appearance model: Application to medial temporal lobe segmentation.

    Science.gov (United States)

    Hu, Shiyan; Coupé, Pierrick; Pruessner, Jens C; Collins, D Louis

    2014-02-01

    The human medial temporal lobe (MTL) is an important part of the limbic system, and its substructures play key roles in learning, memory, and neurodegeneration. The MTL includes the hippocampus (HC), amygdala (AG), parahippocampal cortex (PHC), entorhinal cortex, and perirhinal cortex--structures that are complex in shape and have low between-structure intensity contrast, making them difficult to segment manually in magnetic resonance images. This article presents a new segmentation method that combines active appearance modeling and patch-based local refinement to automatically segment specific substructures of the MTL including HC, AG, PHC, and entorhinal/perirhinal cortex from MRI data. Appearance modeling, relying on eigen-decomposition to analyze statistical variations in image intensity and shape information in study population, is used to capture global shape characteristics of each structure of interest with a generative model. Patch-based local refinement, using nonlocal means to compare the image local intensity properties, is applied to locally refine the segmentation results along the structure borders to improve structure delimitation. In this manner, nonlocal regularization and global shape constraints could allow more accurate segmentations of structures. Validation experiments against manually defined labels demonstrate that this new segmentation method is computationally efficient, robust, and accurate. In a leave-one-out validation on 54 normal young adults, the method yielded a mean Dice κ of 0.87 for the HC, 0.81 for the AG, 0.73 for the anterior parts of the parahippocampal gyrus (entorhinal and perirhinal cortex), and 0.73 for the posterior parahippocampal gyrus.

  18. Nonlocal optical response in metallic nanostructures

    OpenAIRE

    Raza, Søren; Bozhevolnyi, Sergey I.; Wubs, Martijn; Mortensen, N. Asger

    2014-01-01

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future w...

  19. Acausality in Nonlocal Gravity Theory

    CERN Document Server

    Zhang, Ying-li; Sasaki, Misao; Zhao, Gong-Bo

    2016-01-01

    We investigate the nonlocal gravity theory by deriving nonlocal equations of motion using the traditional variation principle in a homogeneous background. We focus on a class of models with a linear nonlocal modification term in the action. It is found that the resulting equations of motion contain the advanced Green's function, implying that there is an acausality problem. As a consequence, a divergence arises in the solutions due to contributions from the future infinity unless the Universe will go back to the radiation dominated era or become the Minkowski spacetime in the future. We also discuss the relation between the original nonlocal equations and its biscalar-tensor representation and identify the auxiliary fields with the corresponding original nonlocal terms. Finally, we show that the acusality problem cannot be avoided by any function of nonlocal terms in the action.

  20. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    Science.gov (United States)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.; Praprotnik, M.

    2015-11-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  1. Non-classical solutions of a continuum model for rock descriptions

    Institute of Scientific and Technical Information of China (English)

    Mikhail A.Guzev

    2014-01-01

    The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models’ results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.

  2. Combined effects of local and nonlocal hybridization on formation and condensation of excitons in the extended Falicov-Kimball model

    Science.gov (United States)

    Farkašovský, Pavol

    2017-04-01

    We study the combined effects of local and nonlocal hybridization on the formation and condensation of the excitonic bound states in the extended Falicov-Kimball model by the density-matrix-renormalization-group (DMRG) method. Analysing the resultant behaviours of the excitonic momentum distribution N(q) we found, that unlike the local hybridization V, which supports the formation of the q=0 momentum condensate, the nonlocal hybridization Vn supports the formation of the q = π momentum condensate. The combined effect of local and nonlocal hybridization further enhances the excitonic correlations in q=0 as well as q = π state, especially for V and Vn values from the charge-density-wave (CDW) region. Strong effects of local and nonlocal hybridization are observed also for other ground-state quantities of the model such as the f-electron density, or the density of unbound d-electrons, which are generally enhanced with increasing V and Vn. The same calculations performed for nonzero values of f-level energy Ef revealed that this model can yield a reasonable explanation for the pressure-induced resistivity anomaly observed experimentally in TmSe0.45Te0.55 compound.

  3. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity.

  4. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16  dB with a small 5.4% loss of similarity.

  5. A fast collocation method for a variable-coefficient nonlocal diffusion model

    Science.gov (United States)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  6. Discrete and Continuum Virasoro Constraints in Two-Cut Hermitian Matrix Models

    CERN Document Server

    Ogura, W

    1993-01-01

    Continuum Virasoro constraints in the two-cut hermitian matrix models are derived from the discrete Ward identities by means of the mapping from the $GL(\\infty )$ Toda hierarchy to the nonlinear Schr\\"odinger (NLS) hierarchy. The invariance of the string equation under the NLS flows is worked out. Also the quantization of the integration constant $\\alpha$ reported by Hollowood et al. is explained by the analyticity of the continuum limit.

  7. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  8. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  9. Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model

    Science.gov (United States)

    Liu, Cheng-cheng; Shi, Jia-dong; Ding, Zhi-yong; Ye, Liu

    2016-08-01

    In this paper, the effect of external magnet field g on the relationship among the quantum discord, Bell non-locality and quantum phase transition by employing quantum renormalization-group (QRG) method in the one-dimensional transverse Ising model is investigated. In our model, external magnet field g can influence the phase diagrams. The results have shown that both the two quantum correlation measures can develop two saturated values, which are associated with two distinct phases: long-ranged ordered Ising phase and the paramagnetic phase with the number of QRG iterations increasing. Additionally, quantum non-locality always existent in the long-ranged ordered Ising phase no matter whatever the value of g is and what times QRG steps are carried out and we conclude that the quantum non-locality always exists not only suitable for the two sites of block, but for nearest-neighbor blocks in the long-ranged ordered Ising phase. However, the block-block correlation in the paramagnetic phase is not strong enough to violate the Bell-CHSH inequality as the size of system becomes large. Furthermore, when the system violates the CHSH inequality, i.e., satisfies quantum non-locality, it needs to be entangled. On the other way, if the system obeys the CHSH inequality, it may be entangled or not. To gain further insight, the non-analytic and scaling behavior of QD and Bell non-locality have also been analyzed in detail and this phenomenon indicates that the behavior of the correlation can perfectly help one to observe the quantum critical properties of the model.

  10. Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach

    Science.gov (United States)

    Norouzzadeh, A.; Ansari, R.; Rouhi, H.

    2017-05-01

    Differential form of Eringen's nonlocal elasticity theory is widely employed to capture the small-scale effects on the behavior of nanostructures. However, paradoxical results are obtained via the differential nonlocal constitutive relations in some cases such as in the vibration and bending analysis of cantilevers, and recourse must be made to the integral (original) form of Eringen's theory. Motivated by this consideration, a novel nonlocal formulation is developed herein based on the original formulation of Eringen's theory to study the buckling behavior of nanobeams. The governing equations are derived according to the Timoshenko beam theory, and are represented in a suitable vector-matrix form which is applicable to the finite-element analysis. In addition, an isogeometric analysis (IGA) is conducted for the solution of buckling problem. Construction of exact geometry using non-uniform rational B-splines and easy implementation of geometry refinement tools are the main advantages of IGA. A comparison study is performed between the predictions of integral and differential nonlocal models for nanobeams under different kinds of end conditions.

  11. A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    Directory of Open Access Journals (Sweden)

    J. Toti

    2011-10-01

    Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.

  12. Existence Results for a Michaud Fractional, Nonlocal, and Randomly Position Structured Fragmentation Model

    Directory of Open Access Journals (Sweden)

    Emile Franc Doungmo Goufo

    2014-01-01

    Full Text Available Until now, classical models of clusters’ fission remain unable to fully explain strange phenomena like the phenomenon of shattering (Ziff and McGrady, 1987 and the sudden appearance of infinitely many particles in some systems having initial finite number of particles. That is why there is a need to extend classical models to models with fractional derivative order and use new and various techniques to analyze them. In this paper, we prove the existence of strongly continuous solution operators for nonlocal fragmentation models with Michaud time derivative of fractional order (Samko et al., 1993. We focus on the case where the splitting rate is dependent on size and position and where new particles generating from fragmentation are distributed in space randomly according to some probability density. In the analysis, we make use of the substochastic semigroup theory, the subordination principle for differential equations of fractional order (Prüss, 1993, Bazhlekova, 2000, the analogy of Hille-Yosida theorem for fractional model (Prüss, 1993, and useful properties of Mittag-Leffler relaxation function (Berberan-Santos, 2005. We are then able to show that the solution operator to the full model is positive and contractive.

  13. The dual quark condensate in local and nonlocal NJL models: An order parameter for deconfinement?

    Directory of Open Access Journals (Sweden)

    Federico Marquez

    2015-07-01

    Full Text Available We study the behavior of the dual quark condensate Σ1 in the Nambu–Jona-Lasinio (NJL model and its nonlocal variant. In quantum chromodynamics Σ1 can be related to the breaking of the center symmetry and is therefore an (approximate order parameter of confinement. The deconfinement transition is then signaled by a strong rise of Σ1 as a function of temperature. However, a similar behavior is also seen in the NJL model, which is known to have no confinement. Indeed, it was shown that in this model the rise of Σ1 is triggered by the chiral phase transition. In order to shed more light on this issue, we calculate Σ1 for several variants of the NJL model, some of which have been suggested to be confining. Switching between “confining” and “non-confining” models and parametrizations we find no qualitative difference in the behavior of Σ1, namely, it always rises in the region of the chiral phase transition. We conclude that without having established a relation to the center symmetry in a given model, Σ1 should not blindly be regarded as an order parameter of confinement.

  14. Image Denoising via Bandwise Adaptive Modeling and Regularization Exploiting Nonlocal Similarity.

    Science.gov (United States)

    Xiong, Ruiqin; Liu, Hangfan; Zhang, Xinfeng; Zhang, Jian; Ma, Siwei; Wu, Feng; Gao, Wen

    2016-09-27

    This paper proposes a new image denoising algorithm based on adaptive signal modeling and regularization. It improves the quality of images by regularizing each image patch using bandwise distribution modeling in transform domain. Instead of using a global model for all the patches in an image, it employs content-dependent adaptive models to address the non-stationarity of image signals and also the diversity among different transform bands. The distribution model is adaptively estimated for each patch individually. It varies from one patch location to another and also varies for different bands. In particular, we consider the estimated distribution to have non-zero expectation. To estimate the expectation and variance parameters for every band of a particular patch, we exploit the nonlocal correlation in image to collect a set of highly similar patches as the data samples to form the distribution. Irrelevant patches are excluded so that such adaptively-learned model is more accurate than a global one. The image is ultimately restored via bandwise adaptive soft-thresholding, based on a Laplacian approximation of the distribution of similar-patch group transform coefficients. Experimental results demonstrate that the proposed scheme outperforms several state-of-the-art denoising methods in both the objective and the perceptual qualities.

  15. Deconvolution closure for mesoscopic continuum models of particle systems

    CERN Document Server

    Panchenko, Alexander; Cooper, Kevin

    2011-01-01

    The paper introduces a general framework for derivation of continuum equations governing meso-scale dynamics of large particle systems. The balance equations for spatial averages such as density, linear momentum, and energy were previously derived by a number of authors. These equations are not in closed form because the stress and the heat flux cannot be evaluated without the knowledge of particle positions and velocities. We propose a closure method for approximating fluxes in terms of other meso-scale averages. The main idea is to rewrite the non-linear averages as linear convolutions that relate micro- and meso-scale dynamical functions. The convolutions can be approximately inverted using regularization methods developed for solving ill-posed problems. This yields closed form constitutive equations that can be evaluated without solving the underlying ODEs. We test the method numerically on Fermi-Pasta-Ulam chains with two different potentials: the classical Lennard-Jones, and the purely repulsive potenti...

  16. An improved and fully implicit multi-group non-local electron transport model and its validations

    Science.gov (United States)

    Sijoy, C. D.; Mishra, V.; Chaurasia, S.

    2017-09-01

    The combined effect of thermal flux inhibition and non-local electron heat flux in the radiation hydrodynamics (RHD) simulation of laser-driven systems can be accurately predicted by using non-local electron transport (NLET) models. These models can avoid commonly used space and time-independent ad-hoc flux-limiting procedures. However, the use of classical electron collision frequency in these models is rigorously valid for high temperature non-degenerate plasmas. In laser-driven systems, the electron thermal energy transport is important in regions between the critical density and ablation surface where the plasma is partially degenerate. Therefore, an improved model for electron collision frequency in this regime is required to accurately predict the thermal energy transport. Previously, we have reported an improved single group non-local electron transport model by using a wide-range electron collision frequency model valid from warm-dense matter (WDM) to fully ionized plasmas. In this work, we have extended this idea into a two-dimensional multi-group non-local electron transport (MG-NLET) model. Moreover, we have used a fully implicit numerical integration scheme in which the models for multi-group thermal radiation transport, laser absorption, electron-ion thermal energy relaxation and ion heat conduction are included in a single step. The performance of this improved MG-NLET model has been assessed by comparing the simulated foil trajectories with the reported experimental data for laser-driven plastic foils. The results indicate that the improved model yields results that are in better agreement with the experimental data.

  17. Non-local Closure Models for Large Eddy Simulations using the Mori-Zwanzig Formalism

    CERN Document Server

    Parish, Eric J

    2016-01-01

    This work uses the Mori-Zwanzig (M-Z) formalism, a concept originating from non-equilibrium statistical mechanics, as a basis for the development of coarse-grained models of turbulence. The mechanics of the generalized Langevin equation (GLE) are considered and a methodology for approximating the orthogonal (unresolved) dynamics equation is presented. Insight gained from the GLE is used as a starting point for model development. A class of sub-grid models is considered which represent non-local behavior via a finite memory approximation (Stinis, 2012), the length of which is determined using a heuristic that is related to the spectral radius of the Jacobian of the resolved variables. The resulting models are intimately tied to the underlying numerical resolution and are capable of approximating non-Markovian effects. Numerical experiments on the Burgers equation demonstrate that the M-Z based models can accurately predict the temporal evolution of the total kinetic energy and the total dissipation rate at var...

  18. A continuum-mechanical model for the flow of anisotropic polar ice

    CERN Document Server

    Greve, Ralf; Seddik, Hakime

    2009-01-01

    In order to study the mechanical behaviour of polar ice masses, the method of continuum mechanics is used. The newly developed CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is described, which comprises an anisotropic flow law as well as a fabric evolution equation. The flow law is an extension of the isotropic Glen's flow law, in which anisotropy enters via an enhancement factor that depends on the deformability of the polycrystal. The fabric evolution equation results from an orientational mass balance and includes constitutive relations for grain rotation and recrystallization. The CAFFE model fulfills all the fundamental principles of classical continuum mechanics, is sufficiently simple to allow numerical implementations in ice-flow models and contains only a limited number of free parameters. The applicability of the CAFFE model is demonstrated by a case study for the site of the EPICA (European Project for Ice Coring in Antarctica) ice core ...

  19. UV completion of the Starobinsky model, tensor-to-scalar ratio, and constraints on non-locality

    CERN Document Server

    Edholm, James

    2016-01-01

    In this paper, we build upon the successes of the ultraviolet (UV) completion of the Starobinsky model of inflation. This involves an extension of the Einstein-Hilbert term by an infinite covariant derivative theory of gravity, which is quadratic in curvature. It has been shown that such a theory can potentially resolve the cosmological singularity for a flat, homogeneous and isotropic geometry, and now it can also provide a successful cosmological inflation model, which in the infrared matches all the predictions of the Starobinsky model of inflation. The aim of this note is to show that the tensor-to-scalar ratio is modified by the scale of non-locality, and in general a wider range of tensor-to-scalar ratios can be obtained in this class of model, which can put a lower bound on the scale of non-locality for the first time as large as the O$(10^{14})$ GeV.

  20. Modeling the Dynamic Failure of Railroad Tank Cars Using a Physically Motivated Internal State Variable Plasticity/Damage Nonlocal Model

    Directory of Open Access Journals (Sweden)

    Fazle R. Ahad

    2013-01-01

    Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.

  1. Local and Nonlocal Impacts of Soil Moisture Initialization on AGCM Seasonal Forecasts: A Model Sensitivity Study.

    Science.gov (United States)

    Zhang, H.; Frederiksen, C. S.

    2003-07-01

    Using a version of the Australian Bureau of Meteorology Research Centre (BMRC) atmospheric general circulation model, this study investigates the model's sensitivity to different soil moisture initial conditions in its dynamically extended seasonal forecasts of June-August 1998 climate anomalies, with focus on the south and northeast China regions where severe floods occurred. The authors' primary aim is to understand the model's responses to different soil moisture initial conditions in terms of the physical and dynamical processes involved. Due to a lack of observed global soil moisture data, the efficacy of using soil moisture anomalies derived from the NCEP-NCAR reanalysis is assessed. Results show that by imposing soil moisture percentile anomalies derived from the reanalysis data into the BMRC model initial condition, the regional features of the model's simulation of seasonal precipitation and temperature anomalies are modulated. Further analyses reveal that the impacts of soil moisture conditions on the model's surface temperature forecasts are mainly from localized interactions between land surface and the overlying atmosphere. In contrast, the model's sensitivity in its forecasts of rainfall anomalies is mainly due to the nonlocal impacts of the soil moisture conditions. Over the monsoon-dominated east Asian region, the contribution from local water recycling, through surface evaporation, to the model simulation of precipitation is limited. Rather, it is the horizontal moisture transport by the regional atmospheric circulation that is the dominant factor in controlling the model rainfall. The influence of different soil moisture conditions on the model forecasts of rainfall anomalies is the result of the response of regional circulation to the anomalous soil moisture condition imposed. Results from the BMRC model sensitivity study support similar findings from other model studies that have appeared in recent years and emphasize the importance of improving

  2. TRAVELING WAVES IN A BIOLOGICAL REACTION-DIFFUSION MODEL WITH STRONG GENERIC DELAY KERNEL AND NON-LOCAL EFFECT

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,we consider the reaction diffusion equations with strong generic delay kernel and non-local effect,which models the microbial growth in a flow reactor.The existence of traveling waves is established for this model.More precisely,using the geometric singular perturbation theory,we show that traveling wave solutions exist provided that the delay is sufficiently small with the strong generic delay kernel.

  3. An approach for the modeling of interface-body coupled nonlocal damage

    Directory of Open Access Journals (Sweden)

    J. Toti

    2010-04-01

    Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.

  4. Algebraic and group structure for bipartite anisotropic Ising model on a non-local basis

    Science.gov (United States)

    Delgado, Francisco

    2015-01-01

    Entanglement is considered a basic physical resource for modern quantum applications as Quantum Information and Quantum Computation. Interactions based on specific physical systems able to generate and sustain entanglement are subject to deep research to get understanding and control on it. Atoms, ions or quantum dots are considered key pieces in quantum applications because they are elements in the development toward a scalable spin-based quantum computer through universal and basic quantum operations. Ising model is a type of interaction generating entanglement in quantum systems based on matter. In this work, a general bipartite anisotropic Ising model including an inhomogeneous magnetic field is analyzed in a non-local basis. This model summarizes several particular models presented in literature. When evolution is expressed in the Bell basis, it shows a regular block structure suggesting a SU(2) decomposition. Then, their algebraic properties are analyzed in terms of a set of physical parameters which define their group structure. In particular, finite products of pulses in this interaction are analyzed in terms of SU(4) covering. Thus, evolution denotes remarkable properties, in particular those related potentially with entanglement and control, which give a fruitful arena for further quantum developments and generalization.

  5. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  6. Evaluating London Dispersion Interactions in DFT: A Nonlocal Anisotropic Buckingham-Hirshfeld Model.

    Science.gov (United States)

    Krishtal, A; Geldof, D; Vanommeslaeghe, K; Alsenoy, C Van; Geerlings, P

    2012-01-10

    In this work, we present a novel model, referred to as BH-DFT-D, for the evaluation of London dispersion, with the purpose to correct the performance of local DFT exchange-correlation functionals for the description of van der Waals interactions. The new BH-DFT-D model combines the equations originally derived by Buckingham [Buckingham, A. D. Adv. Chem. Phys1967, 12, 107] with the definition of distributed multipole polarizability tensors within the Hirshfeld method [Hirshfeld, F.L. Theor. Chim. Acta1977, 44, 129], resulting in nonlocal, fully anisotropic expressions. Since no damping function has been introduced yet into the model, it is suitable in its present form for the evaluation of dispersion interactions in van der Waals dimers with no or negligible overlap. The new method is tested for an extended collection of van der Waals dimers against high-level data, where it is found to reproduce interaction energies at the BH-B3LYP-D/aug-cc-pVTZ level with a mean average error (MAE) of 0.20 kcal/mol. Next, development steps of the model will consist of adding a damping function, analytical gradients, and generalization to a supramolecular system.

  7. Multi-class continuum traffic flow models: Analysis and simulation methods

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.

    2013-01-01

    How to model and simulate traffic flow including different vehicles such as cars and trucks? This dissertation answers this question by analyzing existing models and simulation methods and by developing new ones. The new model (Fastlane) describes traffic as a continuum flow while accounting for dif

  8. A triple-continuum approach for modeling flow and transportprocesses in fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S; Zellmer, K .E.

    2001-08-31

    This paper presents a triple-continuum conceptual model forsimulating flow and transport processes in fractured rock. Field datacollected from the unsaturated zone of Yucca Mountain, a repository siteof high-level nuclear waste, show a large number of small-scalefractures. The effect of these small fractures has not been considered inprevious modeling investigations within the context of a continuumapproach. A new triple-continuum model (consisting of matrix,small-fracture, and large-fracture continua) has been developed toinvestigate the effect of these small fractures. This paper derives themodel formulation and discusses the basic triple-continuum behavior offlow and transport processes under different conditions, using bothanalytical solutions and numerical approaches. The simulation resultsfrom the site-scale model of the unsaturated zone of Yucca Mountainindicate that these small fractures may have an important effect onradionuclide transport within the mountain

  9. Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using finite elements method

    CERN Document Server

    Hiremath, Kirankumar R; Schmidt, Frank

    2012-01-01

    Nonlocal material response distinctively changes the optical properties of nano-plasmonic scatterers and waveguides. It is described by the nonlocal hydrodynamic Drude model, which -- in frequency domain -- is given by a coupled system of equations for the electric field and an additional polarization current of the electron gas modeled analogous to a hydrodynamic flow. Recent works encountered difficulties in dealing with the grad-div operator appearing in the governing equation of the hydrodynamic current. Therefore, in these studies the model has been simplified with the curl-free hydrodynamic current approximation; but this causes spurious resonances. In this paper we present a rigorous weak formulation in the Sobolev spaces $H(\\mathrm{curl})$ for the electric field and $H(\\mathrm{div})$ for the hydrodynamic current, which directly leads to a consistent discretization based on N\\'ed\\'elec's finite element spaces. Comparisons with the Mie theory results agree well. We also demonstrate the capability of the...

  10. Nonlocal quantum fluctuations and fermionic superfluidity in the imbalanced attractive Hubbard model.

    Science.gov (United States)

    Heikkinen, M O J; Kim, D-H; Troyer, M; Törmä, P

    2014-10-31

    We study fermionic superfluidity in strongly anisotropic optical lattices with attractive interactions utilizing the cluster dynamical mean-field theory method, and focusing in particular on the role of nonlocal quantum fluctuations. We show that nonlocal quantum fluctuations impact the BCS superfluid transition dramatically. Moreover, we show that exotic superfluid states with a delicate order parameter structure, such as the Fulde-Ferrell-Larkin-Ovchinnikov phase driven by spin population imbalance, can emerge even in the presence of such strong fluctuations.

  11. Molecular response functions for the polarizable continuum model physical basis and quantum mechanical formalism

    CERN Document Server

    Cammi, Roberto

    2013-01-01

    This Brief presents the main aspects of the response functions theory (RFT) for molecular solutes described within the framework of the Polarizable Continuum Model (PCM). PCM is a solvation model for a Quantum Mechanical molecular system in which the solvent is represented as a continuum distribution of matter. Particular attention is devoted to the description of the basic features of the PCM model, and to the problems characterizing the study of the response function theory for molecules in solution with respect to the analogous theory on isolated molecules.

  12. Modelos contínuos do solvente: fundamentos Continuum solvation models: fundamentals

    Directory of Open Access Journals (Sweden)

    Josefredo R. Pliego Jr

    2006-06-01

    Full Text Available Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.

  13. Hybrid Continuum and Molecular Modeling of Nano-scale Flows

    Science.gov (United States)

    Povitsky, Alex; Zhao, Shunliu

    2010-11-01

    A novel hybrid method combining the continuum approach based on boundary singularity method (BSM) and the molecular approach based on the direct simulation Monte Carlo (DSMC) is developed and then used to study viscous fibrous filtration flows in the transition flow regime, Kn>0.25. The DSMC is applied to a Knudsen layer enclosing the fiber and the BSM is employed to the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size and the size of the coupling zone are determined. Results are compared to the experiments measuring pressure drop and flowfield in filters. The optimal location of singularities outside of flow domain was determined and results are compared to those obtained by regularized Stokeslets. The developed hybrid method is parallelized by using MPI and extended to multi-fiber filtration flows. The multi-fiber filter flows considered are in the partial-slip and transition regimes. For Kn˜1, the computed velocity near fibers changes significantly that confirms the need of molecular methods in evaluation of the flow slip in transitional regime.

  14. Modeling of the Propagation of Seismic Waves in Non-Classical Media: Reduced Cosserat Continuum

    Science.gov (United States)

    Grekova, E.; Kulesh, M.; Herman, G.; Shardakov, I.

    2006-12-01

    In rock mechanics, elastic wave propagation is usually modeled in terms of classical elasticity. There are situations, however, when rock behaviour is still elastic but cannot be described by the classical model. In particular, current effective medium theories, based on classical elasticity, do not properly describe strong dispersive or attenuative behaviour of wave propagation observed sometimes. The approach we have taken to address this problem is to introduce supplementary and independent degrees of freedom of material particles, in our case rotational ones. Various models of this kind are widely used in continuum mechanics: Cosserat theory, micropolar model of Eringen, Cosserat pseudocontinuum, reduced Cosserat continuum etc. We have considered the reduced Cosserat medium where the couple stress is zero, while the rotation vector is independent of the translational displacement. In this model, the stress depends on the rotation of a particle relatively to the background continuum of mass centers, but it does not depend on the relative rotation of two neighboring particles. This model seems to be adequate for the description of granular media, consolidated soils, and rocks with inhomogeneous microstructure. A real inhomogeneous medium is considered as effective homogeneous enriched continuum, where proper rotational dynamics of inhomogeneities are taken into account by means of rotation of a particle of the enriched continuum. We have obtained and analyzed theoretical solutions for this model describing the propagation of body waves and surface waves. We have shown both the dispersive character of these waves in elastic space and half space, and the existence of forbidden frequency zones. These results can be used for the preparation, execution, and interpretation of seismic experiments, which would allow one to determine whether (and in which situations) polar theories are important in rock mechanics, and to help with the identification of material parameters

  15. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2013-01-01

    Full Text Available We introduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs. This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N, the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.

  16. Polarization energy gradients in combined quantum mechanics, effective fragment potential, and polarizable continuum model calculations.

    Science.gov (United States)

    Li, Hui; Gordon, Mark S

    2007-03-28

    A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFPPCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.

  17. Modeling of the continuum and molecular line emission from the Sagittarius B2 molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Lis, D.C.; Goldsmith, P.F. (Massachusetts Univ., Amherst (USA))

    1990-06-01

    The continuum and molecular line emission from the Sagittarius B2 molecular cloud are modeled in order to determine the conditions in the core and the envelope of the cloud. The continuum models suggest that the total luminosity of the middle source Sgr B2(M) is an order of magnitude higher than that of the northern source Sgr B2(N). The microturbulent models of the molecular line emission predict the correct spatial intensity distribution of the J = 1 - 0 transitions of C(O-18) and (C-13)O. They have difficulties, however, reproducing the observed intensities of the higher transitions of these molecules. This may indicate that the envelope has a clumpy structure. Sgr B2 differs significantly from typical disk giant molecular clouds in that it has higher mass and luminosity of the continuum sources, much greater H2 column density and mean volume density, and different fractional abundances of many interstellar molecules. 43 refs.

  18. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  19. State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zenkour, A. M.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaid, A. A.; Aifanti, E. C. [King Abdulaziz University, Jeddah (Saudi Arabia); Abouelregal, A. E. [Mansoura University, Mansoura (Egypt)

    2015-07-15

    In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.

  20. Effective-Range Expansion of Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Science.gov (United States)

    Fukukawa, K.; Fujiwara, Y.

    2011-05-01

    The S-wave effective-range parameters of the neutron-deuteron (nd) scattering are calculated in the Faddeev formalism using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-body force, yielding almost correct values of the scattering length and the triton binding energy without the three-nucleon force. This feature is due to the strong distortion effect of the deuteron in this spin channel, which is very sensitive to the nonlocal description of the short-range repulsion in the quark-model nucleon-nucleon interaction. We incorporate the Coulomb force by extending the framework of the Coulomb externally corrected approximation and calculate the differential cross sections of the pd scattering.

  1. A 2D analytical multiple slip model for continuum texture development and plastic spin

    NARCIS (Netherlands)

    Giessen, E. van der; Houtte, P. van

    1992-01-01

    A two-dimensional continuum slip model is presented which accounts in an approximate way for texture development in polycrystalline metals during large strain plastic deformations. The basic kinematic model is that of a rigid-plastic laminated material deforming predominantly by slip along its conta

  2. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  3. Randomly-fluctuating heterogeneous continuum model of a ballasted railway track

    Science.gov (United States)

    de Abreu Corrêa, Lucio; Quezada, Juan Carlos; Cottereau, Régis; d'Aguiar, Sofia Costa; Voivret, Charles

    2017-07-01

    This paper proposes a description of a granular medium as a stochastic heterogeneous continuum medium. The heterogeneity of the material properties field recreates the heterogeneous stress field in a granular medium. The stochastic approach means that only statistical information, easily available, is required to construct the model. The heterogeneous continuum model is Calibrated with respect to discrete simulations of a set of railway ballast samples. As they are continuum-based, the equilibrium equations can be solved on a large scale using a parallel implementation of an explicit time discretization scheme for the Finite Element Method. Simulations representative of the influence on the environment of the passage of a train on a ballasted railway track clearly show the influence of the heterogeneity. These simulations seem to correlate well with previously unexplained overly damped measurements in the free field.

  4. Spiking cortical model based non-local means method for despeckling multiframe optical coherence tomography data

    Science.gov (United States)

    Gu, Yameng; Zhang, Xuming

    2017-05-01

    Optical coherence tomography (OCT) images are severely degraded by speckle noise. Existing methods for despeckling multiframe OCT data cannot deliver sufficient speckle suppression while preserving image details well. To address this problem, the spiking cortical model (SCM) based non-local means (NLM) method has been proposed in this letter. In the proposed method, the considered frame and two neighboring frames are input into three SCMs to generate the temporal series of pulse outputs. The normalized moment of inertia (NMI) of the considered patches in the pulse outputs is extracted to represent the rotational and scaling invariant features of the corresponding patches in each frame. The pixel similarity is computed based on the Euclidean distance between the NMI features and used as the weight. Each pixel in the considered frame is restored by the weighted averaging of all pixels in the pre-defined search window in the three frames. Experiments on the real multiframe OCT data of the pig eye demonstrate the advantage of the proposed method over the frame averaging method, the multiscale sparsity based tomographic denoising method, the wavelet-based method and the traditional NLM method in terms of visual inspection and objective metrics such as signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), equivalent number of looks (ENL) and cross-correlation (XCOR).

  5. Mathematical model for the adsorption-induced nonlocal frequency shift in adatoms-nanobeam system

    Science.gov (United States)

    Bourouina, Hicham; Yahiaoui, Réda; Kerid, Rachid; Amine Benamar, Mohammed El; Brioua, Fathi

    2017-09-01

    This paper models and investigates the resonance frequency shift induced by the adsorption phenomena for an adatoms-nanobeam system including the small scale effect as well as rotary inertia and shear distortion effects. The Lennard-Jones (6-12) type potential is used to determine the adsorption-induced energy owing van der Waals (vdW) interaction mechanism between adatom-adatom and adatom-substrate. The small scale effect is introduced by using Eringen's nonlocal elasticity theory while the explicit expressions of inertia moment and shear force are derived from the standard Timoshenko beam equations in which the residual stress effect is accounted as an additive axial load. Numerical results showed that the resonance frequency shift is depended on each of the adsorption density, mode number and small scale effects. Thus, numerical results are discussed in detail for a proper analysis of dynamic vibration behavior of adatoms-nanobeam systems which are of interest in the development of mass sensing devices.

  6. A Nonlocal Model for Contact Attraction and Repulsion in Heterogeneous Cell Populations.

    Science.gov (United States)

    Painter, K J; Bloomfield, J M; Sherratt, J A; Gerisch, A

    2015-06-01

    Instructing others to move is fundamental for many populations, whether animal or cellular. In many instances, these commands are transmitted by contact, such that an instruction is relayed directly (e.g. by touch) from signaller to receiver: for cells, this can occur via receptor-ligand mediated interactions at their membranes, potentially at a distance if a cell extends long filopodia. Given that commands ranging from attractive to repelling can be transmitted over variable distances and between cells of the same (homotypic) or different (heterotypic) type, these mechanisms can clearly have a significant impact on the organisation of a tissue. In this paper, we extend a system of nonlocal partial differential equations (integrodifferential equations) to provide a general modelling framework to explore these processes, performing linear stability and numerical analyses to reveal its capacity to trigger the self-organisation of tissues. We demonstrate the potential of the framework via two illustrative applications: the contact-mediated dispersal of neural crest populations and the self-organisation of pigmentation patterns in zebrafish.

  7. Singular dynamics and emergence of nonlocality in long-range quantum models

    CERN Document Server

    Lepori, L; Vodola, D

    2016-01-01

    We discuss how nonlocality originates in long-range quantum systems and how it affects their dynamics at and out of the equilibrium. We focus in particular on the Kitaev chains with long-range pairings and on the quantum Ising chain with long-range antiferromagnetic coupling (both having a power-law decay with exponent \\alpha). By studying the dynamic correlation functions, we find that for every finite \\alpha two different behaviours can be identified, one typical of short-range systems and the other connected with locality violation. The latter behaviour is shown related also with the known power-law decay tails previously observed in the static correlation functions, and originated by modes, having in general energies far from the minima of the spectrum, where particular singularities develop as a consequence of the long-rangedness of the system. We refer to these modes as to "singular" modes, and as to "singular dynamics" to their dynamics. For the Kitaev model they are manifest, at finite \\alpha, in deri...

  8. Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model

    Science.gov (United States)

    Tang, Yugang; Liu, Ying; Zhao, Dong

    2017-03-01

    Based on the nonlocal strain gradient theory and Timoshenko beam model, the properties of wave propagation in a viscoelastic single-walled carbon nanotube (SWCNT) are investigated. The characteristic equations for flexural and shear waves in visco-SWCNTs are established. The influence of the tube size on the wave dispersion is clarified. For a low damping coefficient, threshold diameter for shear wave (SW) is observed, below which the phase velocity of SW is equal to zero, whilst flexural wave (FW) always exists. For a high damping coefficient, SW is absolutely constrained, and blocking diameter for FW is observed, above which the wave propagation is blocked. The effects of the wave number, nonlocal and strain gradient length scale parameters on the threshold and blocking diameters are discussed in detail.

  9. Electron and phonon dispersions of the two-dimensional Holstein model: effects of vertex and non-local corrections

    CERN Document Server

    Hague, J P

    2003-01-01

    I apply the newly developed dynamical cluster approximation (DCA) to the calculation of the electron and phonon dispersions in the two-dimensional Holstein model. In contrast to previous work, the DCA enables the effects of spatial fluctuations (non-local corrections) to be examined. Approximations neglecting and incorporating lowest-order vertex corrections are investigated. I calculate the phonon density of states, the renormalized phonon dispersion, the electron dispersion and electron spectral functions. I demonstrate how vertex corrections stabilize the solution, stopping a catastrophic softening of the (pi, pi) phonon mode. A kink in the electron dispersion is found in the normal state along the (zeta, zeta) symmetry direction in both the vertex- and non-vertex-corrected theories for low phonon frequencies, corresponding directly to the renormalized phonon frequency at the (pi, 0) point. This kink is accompanied by a sudden drop in the quasi-particle lifetime. Vertex and non-local corrections enhance th...

  10. Analytical Nonlocal Electrostatics Using Eigenfunction Expansions of Boundary-Integral Operators

    CERN Document Server

    Bardhan, Jaydeep P; Brune, Peter R

    2012-01-01

    In this paper, we present an analytical solution to nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for analytical calculations in separable geometries, we rederive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion layer and then a dilute electrolyte (modeled with the linearized Poisson--Boltzmann equation). Our main result, however, is an analytical method for calculating the reaction potential in a protein embedded in a nonlocal-dielectric solvent, the Lorentz model studied by Dogonadze and Kornyshev. The analytical method enables biophysicists to study the new nonlocal theory in a simple, computationally fast way; an open-source MATLAB implementatio...

  11. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments

    Science.gov (United States)

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic

  12. Spectral dimension from nonlocal dynamics on causal sets

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Marcianò, Antonino; Modesto, Leonardo

    2016-02-01

    We investigate the spectral dimension obtained from nonlocal continuum d'Alembertians derived from causal sets. We find a universal dimensional reduction to two dimensions, in all dimensions. We conclude by discussing the validity and relevance of our results within the broader context of quantum field theories based on these nonlocal dynamics.

  13. Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis

    Science.gov (United States)

    Xiao, Di; Wang, Jun

    2012-10-01

    The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

  14. Linking discrete particle simulation to continuum process modelling for granular matter: Theory and application

    Institute of Scientific and Technical Information of China (English)

    H.P. Zhu; Z.Y. Zhou; Q.F. Hou; A.B. YU

    2011-01-01

    Two approaches are widely used to describe particle systems:the continuum approach at macroscopic scale and the discrete approach at particle scale,Each has its own advantages and disadvantages in the modelling of particle systems.It is of paramount significance to develop a theory to overcome the disadvantages of the two approaches.Averaging method to link the discrete to continuum approach is a potential technique to develop such a theory.This paper introduces an averaging method,including the theory and its application to the particle flow in a hopper and the particle-fluid flow in an ironmaking blast furnace.

  15. Continuum excitations of $^{26}$O in a three-body model: $0^+$ and $2^+$ states

    CERN Document Server

    Grigorenko, L V

    2015-01-01

    The structure and decay dynamics for $0^+$ and $2^+$ continuum excitations of $^{26}$O are investigated in a three-body $^{24}$O+$n$+$n$ model. Validity of a simple approximation for the cross section profile for long-lived $2n$ emission is demonstrated. Sequence of three $0^+$ monopole ("breathing mode" type) excited states is predicted. These states could probably be interpreted as analogues of Efimov states pushed into continuum by insufficient binding. The possible energies of the $2^+$ states are related to excitation spectrum of $^{25}$O. We discuss possible connection of predicted $^{26}$O spectrum with observations.

  16. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the

  17. Successful aging as a continuum of functional independence: lessons from physical disability models of aging.

    NARCIS (Netherlands)

    Lowry, K.A.; Vallejo, A.N.; Studenski, S.A.

    2012-01-01

    Successful aging is a multidimensional construct that could be viewed as a continuum of achievement. Based on the disability model proposed by the WHO International Classification of Functioning, Disability and Health, successful aging includes not only the presence or absence of disease, but also

  18. Interweaving monitoring activities and model development towards enhancing knowledge of the soil-plant-atmosphere continuum

    NARCIS (Netherlands)

    Romano, N.; Angulo-Jaramillo, M.; Javaux, M.; Ploeg, van der M.J.

    2012-01-01

    The guest editors summarize the advances and challenges associated with monitoring and modeling of the soil–plant–atmosphere continuum. They introduce the contributions in the special section, with an emphasis on the scale addressed in each study. The study of water pathways from the soil to the atm

  19. Continuum modeling of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld; Bruus, Henrik

    2016-01-01

    A continuum model is established for numerical studies of hydrodynamic particle–particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced by an external force, is described by a continuous particle...

  20. Successful aging as a continuum of functional independence: lessons from physical disability models of aging.

    NARCIS (Netherlands)

    Lowry, K.A.; Vallejo, A.N.; Studenski, S.A.

    2012-01-01

    Successful aging is a multidimensional construct that could be viewed as a continuum of achievement. Based on the disability model proposed by the WHO International Classification of Functioning, Disability and Health, successful aging includes not only the presence or absence of disease, but also a

  1. Coupled continuum modeling of fracture reactivation and induced seismicity during enhanced geothermal operations

    NARCIS (Netherlands)

    Wassing, B.B.T.; Wees, J.D. van; Fokker, P.A.

    2012-01-01

    We developed a coupled code to obtain a better understanding of the role of pore pressure changes in causing fracture reactivation and seismicity during EGS. We implemented constitutive models for fractures in a continuum approach, which is advantageous because of the ease of integration in existing

  2. Numerical Simulation of Transport Phenomena in Solidification of Multicomponent Ingot Using a Continuum Model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A continuum model proposed for dendrite solidification of multicomponent alloys, with any partial solid back diffusion, was used to numerically simulate the macroscopic solidification transport phenomena and macrosegregations in an upwards directionally solidified plain carbon steel ingot. The computational results of each macroscopic field of the physical variables involved in the solidification process at a middle solidification stage were presented.

  3. Forced imbibition in natural porous media: comparison between experiments and continuum models.

    Science.gov (United States)

    Riaz, Amir; Tang, Guo-Qing; Tchelepi, Hamdi A; Kovscek, Anthony R

    2007-03-01

    A well-characterized set of large-scale laboratory experiments is presented, illustrating forced imbibition displacements in the presence of irreducible wetting phase saturation in a cylindrical, homogeneous Berea sandstone rock. Experiments are designed to operate in the regime of compact microscopic flows and large-scale viscous instability. The distribution of fluid phases during the flow process is visualized by high-resolution computed tomography imaging. Linear stability analysis and high-accuracy numerical simulations are employed to analyze the ability of macroscopic continuum equations to provide a consistent approximation of the displacement process. The validity of the equilibrium relative permeability functions, which form the basis for the continuum model, is fundamentally related to the stability of the displacement process. It is shown that not only is the stable flow regime modeled accurately by existing continuum models, but the onset of instability as well as the initial unstable modes are also determined with reasonable accuracy for unstable flows. However, the continuum model is found to be deficient in the case of fully developed unstable flows.

  4. Universal iso-density polarizable continuum model for molecular solvents

    CERN Document Server

    Gunceler, Deniz

    2014-01-01

    Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

  5. Continuum modeling of rate-dependent granular flows in SPH

    Science.gov (United States)

    Hurley, Ryan C.; Andrade, José E.

    2016-09-01

    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  6. Continuum modeling of rate-dependent granular flows in SPH

    Science.gov (United States)

    Hurley, Ryan C.; Andrade, José E.

    2017-01-01

    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  7. A dual flowing continuum approach to model denitrification experiments in porous media colonized by biofilms

    Science.gov (United States)

    Delay, Frederick; Porel, Gilles; Chatelier, Marion

    2013-07-01

    We present a modeling exercise of solute transport and biodegradation in a coarse porous medium widely colonized by a biofilm phase. Tracer tests in large laboratory columns using both conservative (fluorescein) and biodegradable (nitrate) solutes are simulated by means of a dual flowing continuum approach. The latter clearly distinguishes concentrations in a flowing porous phase from concentrations conveyed in the biofilm. With this conceptual setting, it becomes possible to simulate the sharp front of concentrations at early times and the flat tail of low concentrations at late times observed on the experimental breakthrough curves. Thanks to the separation of flow in two phases at different velocities, dispersion coefficients in both flowing phases keep reasonable values with some physical meaning. This is not the case with simpler models based on a single continuum (eventually concealing dead-ends), for which inferred dispersivity may reach the unphysical value of twice the size of the columns. We also show that the behavior of the dual flowing continuum is mainly controlled by the relative fractions of flow passing in each phase and the rate of mass transfer between phases. These parameters also condition the efficiency of nitrate degradation, the degradation rate in a well-seeded medium being a weakly sensitive parameter. Even though the concept of dual flowing continuum appears promising for simulating transport in complex porous media, its inversion onto experimental data really benefits from attempts with simpler models providing a rough pre-evaluation of parameters such as porosity and mean fluid velocity in the system.

  8. Nanoscale Continuum Modelling of Carbon Nanotubes by Polyhedral Finite Elements

    Directory of Open Access Journals (Sweden)

    Logah Perumal

    2016-01-01

    Full Text Available As the geometry of a cell of carbon nanotube is hexagonal, a new approach is presented in modelling of single-walled carbon nanotubes using polyhedral finite elements. Effect of varying length, diameter, and thickness of carbon nanotubes on Young’s modulus is studied. Both armchair and zigzag configurations are modelled and simulated in Mathematica. Results from current approach found good agreement with the other published data.

  9. Resolution of a Challenge for Solvation Modeling: Calculation of Dicarboxylic Acid Dissociation Constants Using Mixed Discrete-Continuum Solvation Models

    Energy Technology Data Exchange (ETDEWEB)

    Marenich, Aleksandr; Ding, Wendu; Cramer, Christopher J.; Truhlar, Donald G.

    2012-06-07

    First and second dissociation constants (pKa values) of oxalic acid, malonic acid, and adipic acid were computed by using a number of theoretical protocols based on density functional theory and using both continuum solvation models and mixed discrete-continuum solvation models. We show that fully implicit solvation models (in which the entire solvent is represented by a dielectric continuum) fail badly for dicarboxylic acids with mean unsigned errors averaged over six pKa values) of 2.4-9.0 log units, depending on the particular implicit model used. The use of water-solute clusters and accounting for multiple conformations in solution significantly improve the performance of both generalized Born solvation models and models that solve the nonhomogeneous dielectric Poisson equation for bulk electrostatics. The four most successful models have mean unsigned errors of only 0.6-0.8 log units.

  10. Continuum Limit of a Mesoscopic Model with Elasticity of Step Motion on Vicinal Surfaces

    Science.gov (United States)

    Gao, Yuan; Liu, Jian-Guo; Lu, Jianfeng

    2016-12-01

    This work considers the rigorous derivation of continuum models of step motion starting from a mesoscopic Burton-Cabrera-Frank-type model following the Xiang's work (Xiang in SIAM J Appl Math 63(1):241-258, 2002). We prove that as the lattice parameter goes to zero, for a finite time interval, a modified discrete model converges to the strong solution of the limiting PDE with first-order convergence rate.

  11. KdV-Burgers equation in the modified continuum model considering anticipation effect

    Science.gov (United States)

    Liu, Huaqing; Zheng, Pengjun; Zhu, Keqiang; Ge, Hongxia

    2015-11-01

    The new continuum model mentioned in this paper is developed based on optimal velocity car-following model, which takes the drivers' anticipation effect into account. The critical condition for traffic flow is derived, and nonlinear analysis shows density waves occur in traffic flow because of the small disturbance. Near the neutral stability line, the KdV-Burgers equation is derived and one of the solutions is given. Numerical simulation is carried out to show the local cluster described by the model.

  12. A continuum model for metabolic gas exchange in pear fruit.

    Directory of Open Access Journals (Sweden)

    Q Tri Ho

    2008-03-01

    Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.

  13. Discrete dynamical models: combinatorics, statistics and continuum approximations

    CERN Document Server

    Kornyak, Vladimir V

    2015-01-01

    This essay advocates the view that any problem that has a meaningful empirical content, can be formulated in constructive, more definitely, finite terms. We consider combinatorial models of dynamical systems and approaches to statistical description of such models. We demonstrate that many concepts of continuous physics --- such as continuous symmetries, the principle of least action, Lagrangians, deterministic evolution equations --- can be obtained from combinatorial structures as a result of the large number approximation. We propose a constructive description of quantum behavior that provides, in particular, a natural explanation of appearance of complex numbers in the formalism of quantum mechanics. Some approaches to construction of discrete models of quantum evolution that involve gauge connections are discussed.

  14. Existence and uniqueness of positive solutions for a nonlocal dispersal population model

    Directory of Open Access Journals (Sweden)

    Jian-Wen Sun

    2014-06-01

    Full Text Available In this article, we study the solutions of a nonlocal dispersal equation with a spatial weight representing competitions and aggregation. To overcome the limitations of comparison principles, we introduce new definitions of upper-lower solutions. The proof of existence and uniqueness of positive solutions is based on the method of monotone iteration sequences.

  15. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations

    Science.gov (United States)

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Karimi Zeverdejani, Mehran

    2017-09-01

    The present paper is concerned with the applicability of nonlocal strain gradient theory for axial buckling analysis of nanotubes. The first order shear deformation theory with the von Kármán geometrical nonlinearity is utilized to establish theoretical formulations. The governing equations and boundary conditions are derived using the minimum potential energy principle. As main purpose of this study, the small length scale parameters are calibrated for the axial buckling problem of carbon nanotubes (CNTs) using molecular dynamics (MDs) simulations. Further the influences of different geometrical and material parameters, such as length and thickness ratio as well as small length scale parameters on the buckling response of nanotubes are studied. It is indicated that the effect of small length scale parameters on the critical buckling load becomes more prominent by increasing thickness and decreasing length ratio. Moreover, the calibrated small length scale parameters presented herein would be useful for the purpose of applying the nonlocal strain gradient theory for the analysis of nanotubes. The calibrated nonlocal strain gradient theory presented herein should be useful for researchers who are using the nonlocal strain gradient shell theories for analysis of micro/nanotubes.

  16. Continuum model for masonry: Parameter estimation and validation

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J.

    1998-01-01

    A novel yield criterion that includes different strengths along each material axis is presented. The criterion includes two different fracture energies in tension and two different fracture energies in compression. The ability of the model to represent the inelastic behavior of orthotropic materials

  17. Orion MPCV Continuum RCS Heating Augmentation Model Development

    Science.gov (United States)

    Hyatt, Andrew J.; White, Molly E.

    2014-01-01

    The reaction control system jets of the Orion Multi Purpose Crew Vehicle can have a significant impact on the magnitude and distribution of the surface heat flux on the leeside of the aft-body, when they are fired. Changes in surface heating are expressed in terms of augmentation factor over the baseline smooth body heating. Wind tunnel tests revealed heating augmentation factors as high as 13.0, 7.6, 2.8, and 5.8 for the roll, pitch down, pitch up, and yaw jets respectively. Heating augmentation factor models, based almost exclusively on data from a series of wind tunnel tests have been developed, for the purposes of thermal protection system design. The wind tunnel tests investigated several potential jet-to-freestream similarity parameters, and heating augmentation factors derived from the data showed correlation with the jet-to-freestream momentum ratio. However, this correlation was not utilized in the developed models. Instead augmentation factors were held constant throughout the potential trajectory space. This simplification was driven by the fact that ground to flight traceability and sting effects are not well understood. Given the sensitivity of the reaction control system jet heating augmentation to configuration, geometry, and orientation the focus in the present paper is on the methodology used to develop the models and the lessons learned from the data. The models that are outlined in the present work are specific to the aerothermal database used to design the thermal protection system for the Exploration Flight Test 1 vehicle.

  18. A continuum theory for modeling the dynamics of crystalline materials.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper introduces a multiscale field theory for modeling and simulation of the dynamics of crystalline materials. The atomistic formulation of a multiscale field theory is briefly introduced. Its applicability is discussed. A few application examples, including phonon dispersion relations of ferroelectric materials BiScO3 and MgO nano dot under compression are presented.

  19. Single-Mode and Dual-Mode Nongomogeneous Dissipative Structures in the Nonlocal Model of Erosion

    Directory of Open Access Journals (Sweden)

    A. M. Kovaleva

    2015-01-01

    Full Text Available We consider a periodic boundary-value problem for a nonlinear equation with the deviating spatial argument in the case when the deviation is small. This equation is called a spatially nonlocal erosion equation. It describes the formation of undulating surface relief under the influence of ion bombardment and can be interpreted as a development of the well-known Bradley-Harper model. It is shown that the nonhomogeneous surface relief can occur when the stability of the homogeneous states of equilibrium changes. In this boundary value problem the loss of stability can occur at the higher modes and a number of such modes. The mode number depends on many factors. For example, it depends on the angle of incidence. It is also shown that the nonlinear boundary value problem can be included into the class of abstract parabolic equations. Solvability of this problem was studied in the works by P.E. Sobolevsky, and this method assumes to use the analytical theory of semigroups of bounded linear operators. In order to solve the occurring bifurcation problems there were used the investigation methods of dynamical systems with an infinite-dimensional phase space (a space of initial conditions such as: the method of integral manifolds, the method of Poincare–Dulac normal forms and asymptotic methods of analysis. Both possible in the given situation problems were studied: in codimension one and in codimension two. In particular, asymptotic formulas were obtained for solutions which describe nonhomogeneous undulating surface relief. The question about the stability of these solutions was studied. And the analysis of normal form was given. Also the asymptotic formulas for the nonhomogeneous undulating solutions were obtained. In conclusion some possible interpretations of the obtained results are indicated.

  20. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    Science.gov (United States)

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  1. The continuum shell-model neutron states of 209Pb

    Indian Academy of Sciences (India)

    Ramendra Nath Majumdar

    2003-12-01

    The neutron strength distributions of the three high-spin 117/2, 2ℎ11/2 and 113/2 states of 209Pb have been obtained within the formalism of the core-polarisation effect where the effect of interaction of the neutron shell-model states of 209Pb with the collective vibrational states (originating also from the giant resonances) have been taken into consideration. The theoretical results have been discussed in the light of works on 117/2, 2ℎ11/2 and 113/2 neutron orbitals of 209Pb. The shell-model energies of the neutron states have been obtained by Skyrme–Hartree–Fock method.

  2. A Continuum Model of Actin Waves in Dictyostelium discoideum

    Science.gov (United States)

    Khamviwath, Varunyu; Hu, Jifeng; Othmer, Hans G.

    2013-01-01

    Actin waves are complex dynamical patterns of the dendritic network of filamentous actin in eukaryotes. We developed a model of actin waves in PTEN-deficient Dictyostelium discoideum by deriving an approximation of the dynamics of discrete actin filaments and combining it with a signaling pathway that controls filament branching. This signaling pathway, together with the actin network, contains a positive feedback loop that drives the actin waves. Our model predicts the structure, composition, and dynamics of waves that are consistent with existing experimental evidence, as well as the biochemical dependence on various protein partners. Simulation suggests that actin waves are initiated when local actin network activity, caused by an independent process, exceeds a certain threshold. Moreover, diffusion of proteins that form a positive feedback loop with the actin network alone is sufficient for propagation of actin waves at the observed speed of . Decay of the wave back can be caused by scarcity of network components, and the shape of actin waves is highly dependent on the filament disassembly rate. The model allows retraction of actin waves and captures formation of new wave fronts in broken waves. Our results demonstrate that a delicate balance between a positive feedback, filament disassembly, and local availability of network components is essential for the complex dynamics of actin waves. PMID:23741312

  3. Explicit 3D continuum fracture modeling with smooth particle hydrodynamics

    Science.gov (United States)

    Benz, W.; Asphaug, E.

    1993-01-01

    Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings

  4. On the maintenance of genetic variation: global analysis of Kimura's continuum-of-alleles model.

    Science.gov (United States)

    Bürger, R

    1986-01-01

    Methods of functional analysis are applied to provide an exact mathematical analysis of Kimura's continuum-of-alleles model. By an approximate analysis, Kimura obtained the result that the equilibrium distribution of allelic effects determining a quantitative character is Gaussian if fitness decreases quadratically from the optimum and if production of new mutants follows a Gaussian density. Lande extended this model considerably and proposed that high levels of genetic variation can be maintained by mutation even when there is strong stabilizing selection. This hypothesis has been questioned recently by Turelli, who published analyses and computer simulations of some multiallele models, approximating the continuum-of-alleles model, and reviewed relevant data. He found that the Kimura and Lande predictions overestimate the amount of equilibrium variance considerably if selection is not extremely weak or mutation rate not extremely high. The present analysis provides the first proof that in Kimura's model an equilibrium in fact exists and, moreover, that it is globally stable. Finally, using methods from quantum mechanics, estimates of the exact equilibrium variance are derived which are in best accordance with Turelli's results. This shows that continuum-of-alleles models may be excellent approximations to multiallele models, if analysed appropriately.

  5. Heterogeneous traffic flow modelling using second-order macroscopic continuum model

    Science.gov (United States)

    Mohan, Ranju; Ramadurai, Gitakrishnan

    2017-01-01

    Modelling heterogeneous traffic flow lacking in lane discipline is one of the emerging research areas in the past few years. The two main challenges in modelling are: capturing the effect of varying size of vehicles, and the lack in lane discipline, both of which together lead to the 'gap filling' behaviour of vehicles. The same section length of the road can be occupied by different types of vehicles at the same time, and the conventional measure of traffic concentration, density (vehicles per lane per unit length), is not a good measure for heterogeneous traffic modelling. First aim of this paper is to have a parsimonious model of heterogeneous traffic that can capture the unique phenomena of gap filling. Second aim is to emphasize the suitability of higher-order models for modelling heterogeneous traffic. Third, the paper aims to suggest area occupancy as concentration measure of heterogeneous traffic lacking in lane discipline. The above mentioned two main challenges of heterogeneous traffic flow are addressed by extending an existing second-order continuum model of traffic flow, using area occupancy for traffic concentration instead of density. The extended model is calibrated and validated with field data from an arterial road in Chennai city, and the results are compared with those from few existing generalized multi-class models.

  6. Nonlocal continuous models for forced vibration analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes

    Science.gov (United States)

    Kiani, Keivan

    2014-06-01

    Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.

  7. Application of bi-Helmholtz nonlocal elasticity and molecular simulations to the dynamical response of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Koutsoumaris, C. Chr.; Tsamasphyros, G. J. [School of Applied Mathematical and Physical Sciences National Technical University of Athens (NTUA) 5 Iroon Polytechniou Str., Zografou, Zografou Campus, Athens, GR-157 73 (Greece); Vogiatzis, G. G.; Theodorou, D. N. [School of Chemical Engineering National Technical University of Athens (NTUA) 5 Iroon Polytechniou Str., Zografou, Zografou Campus, Athens, GR-157 73 (Greece)

    2015-12-31

    The nonlocal theory of elasticity is employed for the study of the free vibrations of carbon nanotubes (CNT). For the first time, a bi-Helmholtz operator has been used instead of the standard Helmholtz operator in a nonlocal beam model. Alongside the continuum formulation and its numerical solution, atomistic Molecular Dynamics (MD) simulations have been conducted in order to directly evaluate the eigenfrequencies of vibrating CNTs with a minimum of adjustable parameters. Our results show that the bi-Helmholtz operator is the most appropriate one to fit MD simulation results. However, the estimation of vibration eigenfrequencies from molecular simulations still remains an open (albeit well-posed) problem.

  8. Atomistic and continuums modeling of cluster migration and coagulation in precipitation reactions.

    Science.gov (United States)

    Warczok, Piotr; Ženíšek, Jaroslav; Kozeschnik, Ernst

    2012-07-01

    The influence of vacancy preference towards one of the constituents in a binary system on the formation of precipitates was investigated by atomistic and continuums modeling techniques. In case of vacancy preference towards the solute atoms, we find that the mobility of individual clusters as well as entire atom clusters is significantly altered compared to the case of vacancy preference towards the solvent atoms. The increased cluster mobility leads to pronounced cluster collisions, providing a precipitate growth and coarsening mechanism competitive to that of pure solute evaporation and adsorption considered in conventional diffusional growth and Ostwald ripening. A modification of a numerical Kampmann-Wagner type continuum model for precipitate growth is proposed, which incorporates the influence of both mechanisms. The prognoses of the modified model are validated against the growth laws obtained with lattice Monte Carlo simulations and a growth simulation considering solely the coalescence mechanism.

  9. Shell Model Embedded in the Continuum for Binding Systematics in Neutron-Rich Isotopes of Oxygen and Fluor

    CERN Document Server

    Luo, Y; Ploszajczak, M; Michel, N

    2002-01-01

    Continuum coupling correction to binding energies in the neutron rich oxygen and fluorine isotopes is studied using the Shell Model Embedded in the Continuum. We discuss the importance of different effects, such as the position of one-neutron emission threshold, the effective interaction or the number of valence particles on the magnitude of this correction.

  10. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  11. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

    2008-09-01

    Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

  12. Weak-coupling approach to the semi-infinite Hubbard model: Non-locality of the self-energy

    OpenAIRE

    Potthoff, M.; Nolting, W.

    1997-01-01

    The Hubbard model on a semi-infinite three-dimensional lattice is considered to investigate electron-correlation effects at single-crystal surfaces. The standard second-order perturbation theory in the interaction U is used to calculate the electronic self-energy and the quasi-particle density of states (QDOS) in the bulk as well as in the vicinity of the surface. Within a real-space representation we fully account for the non-locality of the self-energy and examine the quality of the local a...

  13. Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    CERN Document Server

    Fukukawa, Kenji

    2010-01-01

    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.

  14. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-12-15

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  15. Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Zarei, M.Sh.; Amir, S.; Khoddami Maraghi, Z. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-02-01

    In this work nonlinear vibration of double-walled carbon nanotube (DWCNT) embedded in an elastic medium and subjected to an axial fluid flow (incompressible and non-viscose) is investigated. The elastic medium is simulated using Pasternak foundation in which adjacent layer interactions are assumed to have been coupled by van der Waals (VdW) force. The higher-order equation of motion is derived using Hamilton's principle and nonlocal-nonlinear shell theory. Galerkin and averaging methods are adopted to solve the higher-order governing equations. Elastic medium, small scale parameter, velocity and fluid density are taken into account to calculate the effects of axial and circumferential wave numbers in this study. Results reveal that increasing circumferential wave number, leads to enhanced nonlinearity. Critical flow velocities of DWCNT are inversely related to the non-local parameter (e{sub 0}a), so that increase in the later lead to reduced critical flow velocities.

  16. Gauge-origin-independent magnetizabilities of solvated molecules using the polarizable continuum model

    Science.gov (United States)

    Ferrighi, Lara; Marchesan, Domenico; Ruud, Kenneth; Frediani, Luca; Coriani, Sonia

    2005-11-01

    We present an implementation of the polarizable continuum model in its integral equation formulation for the calculation of the magnetizabilities of solvated molecules. The gauge-origin independence of the calculated magnetizabilities and the fast basis set convergence are ensured through the use of London atomic orbitals. Our implementation can use Hartree-Fock and multiconfigurational self-consistent-field (MCSCF) wave functions as well as density-functional theory including hybrid functionals such as B3LYP. We present the results of dielectric continuum effects on water and pyridine using MCSCF wave functions, as well as dielectric medium effects on the magnetizability of the aromatic amino acids as a model for how a surrounding protein environment affects the magnetizability of these molecules. It is demonstrated that the dielectric medium effects on the magnetizability anisotropies of the aromatic amino acids may be substantial, being as large as 25% in the case of tyrosine.

  17. Analytical Validation of a Continuum Model for Epitaxial Growth with Elasticity on Vicinal Surfaces

    Science.gov (United States)

    Dal Maso, G.; Fonseca, I.; Leoni, G.

    2014-06-01

    Within the context of heteroepitaxial growth of a film onto a substrate, terraces and steps self-organize according to misfit elasticity forces. Discrete models of this behavior were developed by Duport et al. (J Phys I 5:1317-1350, 1995) and Tersoff et al. (Phys Rev Lett 75:2730-2733, 1995). A continuum limit of these was in turn derived by Xiang (SIAM J Appl Math 63:241-258, 2002) (see also the work of Xiang and Weinan Phys Rev B 69:035409-1-035409-16, 2004; Xu and Xiang SIAM J Appl Math 69:1393-1414, 2009). In this paper we formulate a notion of weak solution to Xiang's continuum model in terms of a variational inequality that is satisfied by strong solutions. Then we prove the existence of a weak solution.

  18. Parameter passing between molecular dynamics and continuum models for droplets on solid substrates: the static case.

    Science.gov (United States)

    Tretyakov, Nikita; Müller, Marcus; Todorova, Desislava; Thiele, Uwe

    2013-02-14

    We study equilibrium properties of polymer films and droplets on a solid substrate employing particle-based simulation techniques (molecular dynamics) and a continuum description. Parameter-passing techniques are explored that facilitate a detailed comparison of the two models. In particular, the liquid-vapor, solid-liquid, and solid-vapor interface tensions, and the Derjaguin or disjoining pressure are determined by molecular dynamics simulations. This information is then introduced into continuum descriptions accounting for (i) the full curvature and (ii) a long-wave approximation of the curvature (thin film model). A comparison of the dependence of the contact angle on droplet size indicates that the theories agree well if the contact angles are defined in a compatible manner.

  19. Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model

    Science.gov (United States)

    Hosseini, S. A. H.; Rahmani, O.

    2016-03-01

    A free vibration analysis of shallow and deep curved functionally graded (FG) nanobeam is presented. Differential equations and boundary conditions are obtained using Hamilton's principle, and then, nonlocal theory is employed to derive differential equations in small scale. Properties of the material are FG in radial direction. In order to investigate the effects of deep curved beam, extensional stiffness, bending-extension coupling stiffness, and bending stiffness are calculated in the deep case, analytically. By employing Navier method, an analytical solution is presented. Results are compared and validated with available studies, and a good agreement is seen. The influences of effective parameters such as geometrical deep term, nonlocal parameter, opening angle, aspect ratio, mode number, and gradient index are discussed in detail. It is found that the frequency of deep curved nanobeam is higher than that of shallow one, and the aspect ratio significantly affects this difference to decrease. Also, it is concluded that the opening angle, nonlocal parameter, and power gradient index can notably influence the amount of frequency.

  20. Entanglement without hidden nonlocality

    Science.gov (United States)

    Hirsch, Flavien; Túlio Quintino, Marco; Bowles, Joseph; Vértesi, Tamás; Brunner, Nicolas

    2016-11-01

    We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheless violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.

  1. Nonlocal response in thin-film waveguides: loss versus nonlocality and breaking of complementarity

    CERN Document Server

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I; Mortensen, N Asger

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide structures taking into account also retardation and interband effects, and examine the delicate interplay between nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the non-retarded limit.

  2. A Model of Discrete-Continuum Time for a Simple Physical System

    Directory of Open Access Journals (Sweden)

    Karimov A. R.

    2008-04-01

    Full Text Available Proceeding from the assumption that the time flow of an individual object is a real physical value, in the framework of a physical kinetics approach we propose an analogy between time and temperature. The use of such an analogy makes it possible to work out a discrete-continuum model of time for a simple physical system. The possible physical properties of time for the single object and time for the whole system are discussed.

  3. Modeling of Stone-impact Resistance of Monolithic Glass Ply Using Continuum Damage Mechanics

    OpenAIRE

    Sun, Xin; Khaleel, Mohammad A.; Davies, Richard W.

    2005-01-01

    Abstract The stone-impact resistance of a monolithic glass ply is studied using a combined experimental and computational approach. Instrumented stone-impact tests are first carried out in a controlled environment. Explicit finite element analyses are then used to simulate the interactions of the indentor and the glass layer during the impact event, and a continuum damage mechanics (CDM) model is used to de...

  4. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    Science.gov (United States)

    Mitran, Sorin

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  5. Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment

    Energy Technology Data Exchange (ETDEWEB)

    Mitran, Sorin, E-mail: mitran@unc.edu

    2013-07-01

    The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.

  6. Continuum modelling of the collapse of a granular mass and its subsequent flow

    Science.gov (United States)

    Lagrée, P.; Staron, L.; Popinet, S.

    2011-12-01

    The continuum modelling of transient granular flows is of primary importance in the context of prediction and risk mitigation in relation with rock avalanches and dry debris flows. In this perspective, the granular column collapse experiment provides an interesting benchmark, due to both its relevance to natural granular flows and its challenging complexity (Lube 2004 et al, Lajeunesse et al 2006). In this contribution, we present 2D continuum simulations of granular column collapse using the Navier-Stokes solver Gerris (Popinet 2003), solving the full Navier-Stokes equations. The rheology implemented to model the granular media is the so-called μ (I) rheology, relating the frictional properties and the viscosity of the material to the pressure and shear rate (Jop et al 2006). In addition, discrete simulations using the Contact Dynamics method are performed for systematic comparison between the granular flow dynamics and its continuum counterpart (Staron & Hinch 2005). We find a good agreement, recovering the shape of the flow in the course of time, the internal flow structure, as well as experimental scaling laws for the run-out. A systematic underestimation of the latter is nevertheless observed, and discussed in terms of physical and numerical modeling. This work opens important new prospect for the simulation of more complex situations relevant to geophysical granular flows.

  7. Modulational instability in nonlocal nonlinear Kerr media

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens

    2001-01-01

    We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function....... For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for a smooth profile (e.g., a Gaussian) plane waves are always stable, but MI may occur for a rectangular response. We also find that the reduced model for a weak nonlocality predicts MI in defocusing media...... for arbitrary response profiles, as long as the intensity exceeds a certain critical value. However, it appears that this regime of MI is beyond the validity of the reduced model, if it is to represent the weakly nonlocal limit of a general nonlocal nonlinearity, as in optics and the theory of Bose...

  8. Local and Nonlocal Regularization to Image Interpolation

    Directory of Open Access Journals (Sweden)

    Yi Zhan

    2014-01-01

    Full Text Available This paper presents an image interpolation model with local and nonlocal regularization. A nonlocal bounded variation (BV regularizer is formulated by an exponential function including gradient. It acts as the Perona-Malik equation. Thus our nonlocal BV regularizer possesses the properties of the anisotropic diffusion equation and nonlocal functional. The local total variation (TV regularizer dissipates image energy along the orthogonal direction to the gradient to avoid blurring image edges. The derived model efficiently reconstructs the real image, leading to a natural interpolation which reduces blurring and staircase artifacts. We present experimental results that prove the potential and efficacy of the method.

  9. Making nonlocal reality compatible with relativity

    OpenAIRE

    Nikolic, H.

    2010-01-01

    It is often argued that hypothetic nonlocal reality responsible for nonlocal quantum correlations between entangled particles cannot be consistent with relativity. I review the most frequent arguments of that sort, explain how they can all be circumvented, and present an explicit Bohmian model of nonlocal reality (compatible with quantum phenomena) that fully obeys the principle of relativistic covariance and does not involve a preferred Lorentz frame.

  10. Continuum fusion solutions for replacement target models in electro-optic detection.

    Science.gov (United States)

    Schaum, Alan

    2014-05-01

    The additive target model is used routinely in the statistical detection of opaque targets, despite its phenomenological inaccuracy. The more appropriate replacement target model is seldom used, because the standard method for producing a detection algorithm from it proves to be intractable, unless narrow restrictions are imposed. Now, the recently developed continuum fusion (CF) methodology allows an expanded solution set to the general replacement target problem. It also provides a mechanism for producing approximate solutions for the standard approach. We illustrate the principles of CF by using them to generate both types of answers for the correct detection model.

  11. A continuum membrane model for small deformations of a spider orb-web

    Science.gov (United States)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  12. Kinematics in a slowly drying porous medium: Reconciliation of pore network simulations and continuum modeling

    Science.gov (United States)

    Attari Moghaddam, Alireza; Kharaghani, Abdolreza; Tsotsas, Evangelos; Prat, Marc

    2017-02-01

    We study the velocity field in the liquid phase during the drying of a porous medium in the capillarity-dominated regime with evaporation from the top surface. A simple mass balance in the continuum framework leads to a linear variation of the filtration velocity across the sample. By contrast, the instantaneous slice-averaged velocity field determined from pore network simulations leads to step velocity profiles. The vertical velocity profile is almost constant near the evaporative top surface and zero close to the bottom of the sample. The relative extent of the two regions with constant velocity is dictated by the position of the most unstable meniscus. It is shown that the continuum and pore network results can be reconciled by averaging the velocity field obtained from the pore network simulations over time. This opens up interesting prospects regarding the transport of dissolved species during drying. Also, the study reveals the existence of an edge effect, which is not taken into account in the classical continuum models of drying.

  13. Advanced numerical simulation based on a non-local micromorphic model for metal forming processes

    Directory of Open Access Journals (Sweden)

    Diamantopoulou Evangelia

    2016-01-01

    Full Text Available An advanced numerical methodology is developed for metal forming simulation based on thermodynamically-consistent nonlocal constitutive equations accounting for various fully coupled mechanical phenomena under finite strain in the framework of micromorphic continua. The numerical implementation into ABAQUS/Explicit is made for 2D quadrangular elements thanks to the VUEL users’ subroutine. Simple examples with presence of a damaged area are made in order to show the ability of the proposed methodology to describe the independence of the solution from the space discretization.

  14. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations

    NARCIS (Netherlands)

    Gómez, I.; Ronda, R.J.; Caselles, V.; Estrela, M.J.

    2016-01-01

    This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU)

  15. Spiralling solitons and multipole localized modes in nonlocal nonlinear media

    DEFF Research Database (Denmark)

    Buccoliero, Daniel; Lopez-Aguayo, Servando; Skupin, Stefan

    2007-01-01

    We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two differe...... models of nonlocal nonlinearity and suggest that the stabilization mechanism is a generic property of a spatial nonlocal nonlinear response independent of its particular functional form.......We analyze the propagation of rotating multi-soliton localized structures in optical media with spatially nonlocal nonlinearity. We demonstrate that nonlocality stabilizes the azimuthal breakup of rotating dipole as well as multipole localized soliton modes. We compare the results for two different...

  16. Comparison between a Terramechanics Model and a Continuum Soil Model Implemented within the Absolute Nodal Coordinate Formulation

    Science.gov (United States)

    2012-08-01

    be modified to capture viscous effects. While this paper focuses on discussing the basic differences between the terrmechanics and the continuum...detailed single-link track model for multi-body dynamic simulation of crawlers ”, Journal of Terramechanics, 4(4); pp. 355–364. [22] Ryu, H.S., Huh

  17. Does Model Development Ahead of Data Collection Have Merit? A Case for Advancing Non-Local Fluvial Transport Theories

    Science.gov (United States)

    Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.

    2013-12-01

    The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are

  18. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    Physically accurate continuum solvent models that can calculate solvation energies are crucial to explain and predict the behavior of solute particles in water. Here, we present such a model applied to small spherical ions and neutral atoms. It improves upon a basic Born electrostatic model by including a standard cavity energy and adding a dispersion component, consistent with the Born electrostatic energy and using the same cavity size parameter. We show that the well-known, puzzling differences between the solvation energies of ions of the same size is attributable to the neglected dispersion contribution. This depends on dynamic polarizability as well as size. Generally, a large cancellation exists between the cavity and dispersion contributions. This explains the surprising success of the Born model. The model accurately reproduces the solvation energies of the alkali halide ions, as well as the silver(I) and copper(I) ions with an error of 12 kJ mol(-1) (±3%). The solvation energy of the noble gases is also reproduced with an error of 2.6 kJ mol(-1) (±30%). No arbitrary fitting parameters are needed to achieve this. This model significantly improves our understanding of ionic solvation and forms a solid basis for the investigation of other ion-specific effects using a continuum solvent model.

  19. Application of a physical continuum model to recent X-ray observations of accreting pulsars

    Science.gov (United States)

    Marcu-Cheatham, Diana Monica; Pottschmidt, Katja; Wolff, Michael Thomas; Becker, Peter A.; Wood, Kent S.; Wilms, Joern; Britton Hemphill, Paul; Gottlieb, Amy; Fuerst, Felix; Schwarm, Fritz-Walter; Ballhausen, Ralf

    2016-04-01

    We present a uniform spectral analysis in the 0.5-50 keV energy range of a sample of accreting pulsars by applying an empirical broad-band continuum cut-off power-law model. We also apply the newly implemented physical continuum model developed by Becker and Wolff (2007, ApJ 654, 435) to a number of high-luminosity sources. The X-ray spectral formation process in this model consists of the Comptonization of bremsstrahlung, cyclotron, and black body photons emitted by the hot, magnetically channeled, accreting plasma near the neutron star surface. This model describes the spectral formation in high-luminosity accreting pulsars, where the dominant deceleration mechanism is via a radiation-dominated radiative shock. The resulting spectra depend on five physical parameters: the mass accretion rate, the radius of the accretion column, the electron temperature and electron scattering cross-sections inside the column, and the magnetic field strength. The empirical model is fitted to Suzaku data of a sample of high-mass X-ray binaries covering a broad luminosity range (0.3-5 x 10 37 erg/s). The physical model is fitted to Suzaku data from luminous sources: LMC X-4, Cen X-3, GX 304-1. We compare the results of the two types of modeling and summarize how they can provide new insight into the process of accretion onto magnetized neutron stars.

  20. Implications for (d ,p ) reaction theory from nonlocal dispersive optical model analysis of 40Ca(d ,p )41Ca

    Science.gov (United States)

    Waldecker, S. J.; Timofeyuk, N. K.

    2016-09-01

    The nonlocal dispersive optical model (NLDOM) nucleon potentials are used for the first time in the adiabatic analysis of a (d ,p ) reaction to generate distorted waves both in the entrance and exit channels. These potentials were designed and fitted by Mahzoon et al. [Phys. Rev. Lett. 112, 162503 (2014), 10.1103/PhysRevLett.112.162503] to constrain relevant single-particle physics in a consistent way by imposing the fundamental properties, such as nonlocality, energy-dependence and dispersive relations, that follow from the complex nature of nuclei. However, the NLDOM prediction for the 40Ca(d ,p )41Ca cross sections at low energy, typical for some modern radioactive beam ISOL (isotope separation online) facilities, is about 70% higher than the experimental data despite being reduced by the NLDOM spectroscopic factor of 0.73. This overestimation comes most likely either from insufficient absorption or due to constructive interference between ingoing and outgoing waves. This indicates strongly that additional physics arising from many-body effects is missing in the widely used current versions of (d ,p ) reaction theories.

  1. Perturbative loop corrections and nonlocal gravity

    CERN Document Server

    Maggiore, Michele

    2016-01-01

    Nonlocal gravity has been shown to provide a phenomenologically viable infrared modification of GR. A natural question is whether the required nonlocality can emerge from perturbative quantum loop corrections due to light particles. We show that this is not the case. For the value of the mass scale of the non-local models required by cosmology, the perturbative form factors obtained from the loop corrections, in the present cosmological epoch, are in the regime where they are local. The mechanism behind the generation of the required nonlocality must be more complex, possibly related to strong infrared effects and non-perturbative mass generation for the conformal mode.

  2. Continuum damage model for ferroelectric materials and its application to multilayer actuators

    Science.gov (United States)

    Gellmann, Roman; Ricoeur, Andreas

    2016-05-01

    In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.

  3. Error analysis for momentum conservation in Atomic-Continuum Coupled Model

    Science.gov (United States)

    Yang, Yantao; Cui, Junzhi; Han, Tiansi

    2016-08-01

    Atomic-Continuum Coupled Model (ACCM) is a multiscale computation model proposed by Xiang et al. (in IOP conference series materials science and engineering, 2010), which is used to study and simulate dynamics and thermal-mechanical coupling behavior of crystal materials, especially metallic crystals. In this paper, we construct a set of interpolation basis functions for the common BCC and FCC lattices, respectively, implementing the computation of ACCM. Based on this interpolation approximation, we give a rigorous mathematical analysis of the error of momentum conservation equation introduced by ACCM, and derive a sequence of inequalities that bound the error. Numerical experiment is carried out to verify our result.

  4. Mathematical toy model inspired by the problem of the adaptive origins of the sexual orientation continuum

    Science.gov (United States)

    Skinner, Brian

    2016-09-01

    Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical `toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.

  5. Continuum modeling of micro-particle electrorotation in Couette and Poiseuille flows—The zero spin viscosity limit

    OpenAIRE

    Huang, Hsin-Fu; Zahn, Markus; LEMAIRE, Elisabeth

    2010-01-01

    International audience; A continuum mechanical model is presented to analyze the negative electrorheological responses of a particle-liquid mixture with the suspended micro-particles undergoing Quincke rotation for both Couette and Poiseuille flow geometries by combining particle electromechanics and continuum antisymmetric/couple stress analyses in the zero spin viscosity limit. We propose a phenomenological polarization relaxation model to incorporate both the micro-particle rotation speed ...

  6. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    Science.gov (United States)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  7. Hybrid Monte Carlo and continuum modeling of electrolytes with concentration-induced dielectric variations

    Science.gov (United States)

    Guan, Xiaofei; Ma, Manman; Gan, Zecheng; Xu, Zhenli; Li, Bo

    2016-11-01

    The distribution of ions near a charged surface is an important quantity in many biological and material processes, and has been therefore investigated intensively. However, few theoretical and simulation approaches have included the influence of concentration-induced variations in the local dielectric permittivity of an underlying electrolyte solution. Such local variations have long been observed and known to affect the properties of ionic solution in the bulk and around the charged surface. We propose a hybrid computational model that combines Monte Carlo simulations with continuum electrostatic modeling to investigate such properties. A key component in our hybrid model is a semianalytical formula for the ion-ion interaction energy in a dielectrically inhomogeneous environment. This formula is obtained by solving for the Green's function Poisson's equation with ionic-concentration-dependent dielectric permittivity using a harmonic interpolation method and spherical harmonic series. We also construct a self-consistent continuum model of electrostatics to describe the effect of ionic-concentration-dependent dielectric permittivity and the resulting self-energy contribution. With extensive numerical simulations, we verify the convergence of our hybrid simulation scheme, show the qualitatively different structures of ionic distribution due to the concentration-induced dielectric variations, and compare our simulation results with the self-consistent continuum model. In particular, we study the differences between weakly and strongly charged surfaces and multivalencies of counterions. Our hybrid simulations conform particularly the depletion of ionic concentrations near a charged surface and also capture the charge inversion. We discuss several issues and possible further improvement of our approach for simulations of large charged systems.

  8. Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model

    Science.gov (United States)

    Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.

    2017-03-01

    Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.

  9. A non-local Richards equation to model infiltration into highly heterogeneous media under macroscopic non-equilibrium pressure conditions

    Science.gov (United States)

    Neuweiler, I.; Dentz, M.; Erdal, D.

    2012-04-01

    Infiltration into dry strongly heterogeneous media, such as fractured rocks, can often not be modelled by a standard Richards equation with homogeneous parameters, as the averaged water content is not in equilibrium with the averaged pressure. Often, double continua approaches are used for such cases. We describe infiltration into strongly heterogeneous media by a Richards model for the mobile domain, that is characterized by a memory kernel that encodes the local mass transfer dynamics as well as the geometry of the immobile zone. This approach is based on the assumption that capillary flow can be approximated as diffusion. We demonstrate that this approximation is in many cases justified. Comparison of the model predictions to the results of numerical simulations of infiltration into vertically layered media shows that the non-local approach describes well non-equilibrium effects due to mass transfer between high and low conductivity zones.

  10. An extended continuum model accounting for the driver's timid and aggressive attributions

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Rongjun; Ge, Hongxia [Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211 (China); Jiangsu Province Collaborative Innovation Center for Modern Urban Traffic Technologies, Nanjing 210096 (China); National Traffic Management Engineering and Technology Research Centre Ningbo University Sub-centre, Ningbo 315211 (China); Wang, Jufeng, E-mail: wjf@nit.zju.edu.cn [Ningbo Institute of Technology, Zhejiang University, Ningbo 315100 (China)

    2017-04-18

    Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV–Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption. - Highlights: • A new continuum model is developed with the consideration of the driver's timid and aggressive behaviors simultaneously. • Applying the linear stability theory, the new model's linear stability is obtained. • Through nonlinear analysis, the KdV–Burgers equation is derived. • The energy consumption for this model is studied.

  11. The solvatochromism of phenolate betaines: comparing different cavities of a polarized continuum model.

    Science.gov (United States)

    Rezende, Marcos Caroli; Domínguez, Moisés

    2015-08-01

    Two variations of the polarized continuum model employing default ("PCM model") and SMD radii ("SMD model") were compared for the reproduction of the solvatochromic behavior of Reichardt's betaine dye, and of eight other phenolate betaines that exhibit a negative, positive or an inverted solvatochromic behavior. Molecules were optimized at the CAM B3LYP/6-31+G(d,p) level of theory, and transition energies were calculated with the TD-DFT method. The PCM model failed to reproduce the negative and the inverted solvachromism of these dyes in protic solvents. The SMD model, though not entirely accounting for hydrogen-bond effects in small, polar hydroxylic solvents, should be recommended as a better alternative for the theoretical simulation of the solvatochromism of phenolate betaines in medium to highly polar solvents. Graphical Abstract A comparison of two polarized continuum models ("default PCM" and "PCM/SMD") for reproducing the solvatochromism of phenolate betaines, with nine examples of negative, positive, and inverted behavior.

  12. Continuous surface charge polarizable continuum models of solvation. I. General formalism.

    Science.gov (United States)

    Scalmani, Giovanni; Frisch, Michael J

    2010-03-21

    Continuum solvation models are appealing because of the simplified yet accurate description they provide of the solvent effect on a solute, described either by quantum mechanical or classical methods. The polarizable continuum model (PCM) family of solvation models is among the most widely used, although their application has been hampered by discontinuities and singularities arising from the discretization of the integral equations at the solute-solvent interface. In this contribution we introduce a continuous surface charge (CSC) approach that leads to a smooth and robust formalism for the PCM models. We start from the scheme proposed over ten years ago by York and Karplus and we generalize it in various ways, including the extension to analytic second derivatives with respect to atomic positions. We propose an optimal discrete representation of the integral operators required for the determination of the apparent surface charge. We achieve a clear separation between "model" and "cavity" which, together with simple generalizations of modern integral codes, is all that is required for an extensible and efficient implementation of the PCM models. Following this approach we are now able to introduce solvent effects on energies, structures, and vibrational frequencies (analytical first and second derivatives with respect to atomic coordinates), magnetic properties (derivatives with respect of magnetic field using GIAOs), and in the calculation more complex properties like frequency-dependent Raman activities, vibrational circular dichroism, and Raman optical activity.

  13. A Continuum Damage Mechanics Model to Predict Kink-Band Propagation Using Deformation Gradient Tensor Decomposition

    Science.gov (United States)

    Bergan, Andrew C.; Leone, Frank A., Jr.

    2016-01-01

    A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.

  14. Nature of the gas and dust around 51 Ophiuchi. Modelling continuum and Herschel line observations

    Science.gov (United States)

    Thi, W. F.; Ménard, F.; Meeus, G.; Carmona, A.; Riviere-Marichalar, P.; Augereau, J.-C.; Kamp, I.; Woitke, P.; Pinte, C.; Mendigutía, I.; Eiroa, C.; Montesinos, B.; Britain, S.; Dent, W.

    2013-09-01

    Context. Circumstellar disc evolution is paramount for the understanding of planet formation. The gas in protoplanetary discs large program (GASPS) aims at determining the circumstellar gas and solid mass around ~250 pre-main-sequence Herbig Ae and T Tauri stars. Aims: We aim to understand the origin and nature of the circumstellar matter orbiting 51 Oph, a young (ii] emission at 158 microns, the high-J CO emissions, and the warm water emissions were not detected. Continuum emission was detected at 1.2 mm. The continuum from the near- to the far-infrared and the [O i] emission are well explained by the emission from a compact (Rout = 10-15 AU) hydrostatic disc model with a gas mass of 5 × 10-6 M⊙, 100 times that of the solid mass. However, this model fails to match the continuum millimeter flux, which hints at a cold outer disc with a mass in solids of ~10-6 M⊙ or free-free emission from a photoevaporative disc wind. This outer disc can either be devoid of gas and/or is too cold to emit in the [O i] line. A very flat extended disc model (Rout = 400 AU) with a fixed vertical structure and dust settling matches all photometric points and most of the [O i] flux. Conclusions: The observations can be explained by an extended flat disc where dust grains have settled. However, a flat gas disc cannot be reproduced by hydrostatic disc models. The low mass of the 51 Oph inner disc in gas and dust may be explained either by the fast dissipation of an initial massive disc or by a very small initial disc mass. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. A continuum mechanics-based musculo-mechanical model for esophageal transport

    CERN Document Server

    Kou, Wenjun; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2016-01-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structures, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points for Lagrangian-Eulerian interaction equations based on a previous work. In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. For the material model, we extend our previous fiber-based model to a continuum-based model. We first study a case in which a three-dimensional short tube is dilated. Results match very well with those from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation a...

  16. Continuum modeling and limit equilibrium analysis of slope movement due to rainfall infiltration

    Science.gov (United States)

    Borja, Ronaldo; White, Joshua; Wu, Wei

    2010-05-01

    Hydrologically-driven landslides and debris flows are highly destructive events that threaten lives and critical infrastructure worldwide. Despite decades of extensive slope stability model development, the fundamental controls connecting the hydrologic and geotechnical processes that trigger slope failure are not well quantified. We use a fully coupled, physics-based finite element model to address this shortcoming. We develop and test a 3D continuum slope-deformation model that couples solid-deformation with fluid-flow processes in variably saturated soils, and assess the capability of the coupled model to predict stresses and deformation necessary to trigger slope failure. We then compare the continuum model with traditional limit equilibrium solutions based on the modified Bishop method of slices to assess the stability of the slope as a function of rainfall infiltration using a scalar stability indicator called factor of safety. For this assessment, we use extensive measurements from a densely instrumented mountain slope (The Coos Bay Experimental Catchment) where a large, rainfall-triggered slope failure occurred. The use of sophisticated, fully coupled numerical simulations combined with comprehensive field-measurements provides an unprecedented opportunity to advance the state of understanding of landslide failure processes and effective mitigation measures.

  17. Implementing a continuum of care model for older people - results from a Swedish case study

    Directory of Open Access Journals (Sweden)

    Anna Duner

    2011-11-01

    Full Text Available Introduction: There is a need for integrated care and smooth collaboration between care-providing organisations and professions to create a continuum of care for frail older people. However, collaboration between organisations and professions is often problematic. The aim of this study was to examine the process of implementing a new continuum of care model in a complex organisational context, and illuminate some of the challenges involved. The introduced model strived to connect three organisations responsible for delivering health and social care to older people: the regional hospital, primary health care and municipal eldercare.Methods: The actions of the actors involved in the process of implementing the model were understood to be shaped by the actors' understanding, commitment and ability. This article is based on 44 qualitative interviews performed on four occasions with 26 key actors at three organisational levels within these three organisations.Results and conclusions: The results point to the importance of paying regard to the different cultures of the organisations when implementing a new model. The role of upper management emerged as very important. Furthermore, to be accepted, the model has to be experienced as effectively dealing with real problems in the everyday practice of the actors in the organisations, from the bottom to the top.

  18. Implementing a continuum of care model for older people - results from a Swedish case study

    Directory of Open Access Journals (Sweden)

    Anna Duner

    2011-11-01

    Full Text Available Introduction: There is a need for integrated care and smooth collaboration between care-providing organisations and professions to create a continuum of care for frail older people. However, collaboration between organisations and professions is often problematic. The aim of this study was to examine the process of implementing a new continuum of care model in a complex organisational context, and illuminate some of the challenges involved. The introduced model strived to connect three organisations responsible for delivering health and social care to older people: the regional hospital, primary health care and municipal eldercare. Methods: The actions of the actors involved in the process of implementing the model were understood to be shaped by the actors' understanding, commitment and ability. This article is based on 44 qualitative interviews performed on four occasions with 26 key actors at three organisational levels within these three organisations. Results and conclusions: The results point to the importance of paying regard to the different cultures of the organisations when implementing a new model. The role of upper management emerged as very important. Furthermore, to be accepted, the model has to be experienced as effectively dealing with real problems in the everyday practice of the actors in the organisations, from the bottom to the top.

  19. The peeling behavior of nanowires and carbon nanotubes from a substrate using continuum modeling

    Science.gov (United States)

    Li, Yue; Xiong, Yan; Zhou, Zhikang; Tang, Bingxian; Yang, Zhaoyao; Zhao, Junhua

    2017-02-01

    The peeling behavior of different nanowires or single-walled/multi-walled carbon nanotubes (CNTs) from a substrate is studied by using the Kendall model of the continuum mechanics, where a basic assumption is that the deformation of the part of the nanowire/nanotube attached to the substrate under peeling force is ignored. The cohesive energy between a nanowire (or a CNT) and a substrate is obtained through continuum modeling of the van der Waals interaction, which has high accuracy by comparison of our molecular dynamics simulations. Our analytical results show that the peeling behavior strongly depends on the peeling angle, the pre-tension, the separation distance toward the substrate, the radius, and the Young's modulus of the nanowire (or the CNT). In particular, the peeling forces with a generalized peeling model in the steady-state stage are compared with those of the classical Kendall model. In the generalized peeling model, the effect of the bending stiffness and cohesive energy between the bending nanowire and the substrate on peeling forces is considered. The obtained analytical solution should be of great help for understanding the interaction between the nanostructures and the substrates, and designing nanoelectromechanical systems.

  20. Continuum modelling of pedestrian flows - Part 2: Sensitivity analysis featuring crowd movement phenomena

    Science.gov (United States)

    Duives, Dorine C.; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-04-01

    In recent years numerous pedestrian simulation tools have been developed that can support crowd managers and government officials in their tasks. New technologies to monitor pedestrian flows are in dire need of models that allow for rapid state-estimation. Many contemporary pedestrian simulation tools model the movements of pedestrians at a microscopic level, which does not provide an exact solution. Macroscopic models capture the fundamental characteristics of the traffic state at a more aggregate level, and generally have a closed form solution which is necessary for rapid state estimation for traffic management purposes. This contribution presents a next step in the calibration and validation of the macroscopic continuum model detailed in Hoogendoorn et al. (2014). The influence of global and local route choice on the development of crowd movement phenomena, such as dissipation, lane-formation and stripe-formation, is studied. This study shows that most self-organization phenomena and behavioural trends only develop under very specific conditions, and as such can only be simulated using specific parameter sets. Moreover, all crowd movement phenomena can be reproduced by means of the continuum model using one parameter set. This study concludes that the incorporation of local route choice behaviour and the balancing of the aptitude of pedestrians with respect to their own class and other classes are both essential in the correct prediction of crowd movement dynamics.

  1. Finite Volume schemes on unstructured grids for non-local models: Application to the simulation of heat transport in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Goudon, Thierry, E-mail: thierry.goudon@inria.fr [Team COFFEE, INRIA Sophia Antipolis Mediterranee (France); Labo. J.A. Dieudonne CNRS and Univ. Nice-Sophia Antipolis (UMR 7351), Parc Valrose, 06108 Nice cedex 02 (France); Parisot, Martin, E-mail: martin.parisot@gmail.com [Project-Team SIMPAF, INRIA Lille Nord Europe, Park Plazza, 40 avenue Halley, F-59650 Villeneuve d' Ascq cedex (France)

    2012-10-15

    In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.

  2. Continuum Damage Mechanics Models for the Analysis of Progressive Failure in Open-Hole Tension Laminates

    Science.gov (United States)

    Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.

    2011-01-01

    The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.

  3. Continuum modeling of projectile impact and penetration in dry granular media

    Science.gov (United States)

    Dunatunga, Sachith; Kamrin, Ken

    2017-03-01

    Modeling of impact into granular substrates is a topic of growing interest over the last decade. We present a fully continuum approach for this problem, which is shown to capture an array of experimentally observed behavior with regard to the intruder penetration dynamics as well as the flow and stress response of the granular media. The intruder is modeled as a stiff elastic body and the dry granular bulk is modeled using a 'trans-phase' constitutive relation. This relation has an elasto-viscoplastic response with pressure- and rate-sensitive yield behavior given by the μ (I) inertial rheology when the granular free volume is below a critical value. Above this critical value, the material is deemed to separate and is treated as a disconnected, stress-free medium. The Material Point Method is used to implement the impact problem numerically. Validations are conducted against a wide set of experimental data with a common granular material, which allows use of a single model calibration to test the agreement. In particular, continuum simulations of projectile impact with different shaped intruders and different impact energies show good agreement with experiments regarding of time-of-flight, penetration depth, and Poncelet drag force coefficients. Simultaneously, good agreement with experiments is found regarding the response of the granular media during impact, such as the pressure wave propagation process during the initial stage of impact, the flow fields that develop under the moving intruder, and the free-surface dynamics.

  4. Dynamic renormalization group study of a generalized continuum model of crystalline surfaces.

    Science.gov (United States)

    Cuerno, Rodolfo; Moro, Esteban

    2002-01-01

    We apply the Nozières-Gallet dynamic renormalization group (RG) scheme to a continuum equilibrium model of a d-dimensional surface relaxing by linear surface tension and linear surface diffusion, and which is subject to a lattice potential favoring discrete values of the height variable. The model thus interpolates between the overdamped sine-Gordon model and a related continuum model of crystalline tensionless surfaces. The RG flow predicts the existence of an equilibrium roughening transition only for d=2 dimensional surfaces, between a flat low-temperature phase and a rough high-temperature phase in the Edwards-Wilkinson (EW) universality class. The surface is always in the flat phase for any other substrate dimensions d>2. For any value of d, the linear surface diffusion mechanism is an irrelevant perturbation of the linear surface tension mechanism, but may induce long crossovers within which the scaling properties of the linear molecular-beam epitaxy equation are observed, thus increasing the value of the sine-Gordon roughening temperature. This phenomenon originates in the nonlinear lattice potential, and is seen to occur even in the absence of a bare surface tension term. An important consequence of this is that a crystalline tensionless surface is asymptotically described at high temperatures by the EW universality class.

  5. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  6. Promoting culturally competent chronic pain management using the clinically relevant continuum model.

    Science.gov (United States)

    Monsivais, Diane B

    2011-06-01

    This article reviews the culture of biomedicine and current practices in pain management education, which often merge to create a hostile environment for effective chronic pain care. Areas of cultural tensions in chronic pain frequently involve the struggle to achieve credibility regarding one's complaints of pain (or being believed that the pain is real) and complying with pain medication protocols. The clinically relevant continuum model is presented as a framework allowing providers to approach care from an evidence-based, culturally appropriate (patient centered) perspective that takes into account the highest level of evidence available, provider expertise, and patient preferences and values. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model

    Science.gov (United States)

    Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth

    2010-01-01

    The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.

  8. Hybrid discrete-continuum model of tumor growth considering capillary points

    Institute of Scientific and Technical Information of China (English)

    吕杰; 许世雄; 姚伟; 周瑜; 龙泉

    2013-01-01

    A hybrid discrete-continuum model of tumor growth in the avascular phase considering capillary points is established. The influence of the position of capillary points on tumor growth is also studied by simulation. The results of the dynamic tumor growth and the distribution of oxygen, matrix-degrading enzymes, and extracellular matrix-concentration in the microenvironment with respect to time are shown by graphs. The relationships between different oxygenated environments and the numbers of surviving, dead, proliferative, and quiescent tumor cells are also investigated.

  9. Drift model of a glow discharge with account for the nonlocal value of the electric field strength in the ionization source

    Science.gov (United States)

    Saifutdinov, A. I.; Timerkaev, B. A.

    2012-09-01

    A drift model of a glow discharge is proposed, which takes account of the nonlocal dependence of the ionization source on the electric field strength. The problem is reduced to solving a nonlinear differential equation of second order for the strength squared using the Newton-Kantorovich quasilinearization method.

  10. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models

    Science.gov (United States)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran

    2017-01-01

    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  11. Temporal Non-locality

    Science.gov (United States)

    Filk, Thomas

    2013-04-01

    In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.

  12. Individual-based and continuum models of growing cell populations: a comparison.

    Science.gov (United States)

    Byrne, Helen; Drasdo, Dirk

    2009-04-01

    In this paper we compare two alternative theoretical approaches for simulating the growth of cell aggregates in vitro: individual cell (agent)-based models and continuum models. We show by a quantitative analysis of both a biophysical agent-based and a continuum mechanical model that for densely packed aggregates the expansion of the cell population is dominated by cell proliferation controlled by mechanical stress. The biophysical agent-based model introduced earlier (Drasdo and Hoehme in Phys Biol 2:133-147, 2005) approximates each cell as an isotropic, homogeneous, elastic, spherical object parameterised by measurable biophysical and cell-biological quantities and has been shown by comparison to experimental findings to explain the growth patterns of dense monolayers and multicellular spheroids. Both models exhibit the same growth kinetics, with initial exponential growth of the population size and aggregate diameter followed by linear growth of the diameter and power-law growth of the cell population size. Very sparse monolayers can be explained by a very small or absent cell-cell adhesion and large random cell migration. In this case the expansion speed is not controlled by mechanical stress but by random cell migration and can be modelled by the Fisher-Kolmogorov-Petrovskii-Piskounov (FKPP) reaction-diffusion equation. The growth kinetics differs from that of densely packed aggregates in that the initial spread, as quantified by the radius of gyration, is diffusive. Since simulations of the lattice-free agent-based model in the case of very large random migration are too long to be practical, lattice-based cellular automaton (CA) models have to be used for a quantitative analysis of sparse monolayers. Analysis of these dense monolayers leads to the identification of a critical parameter of the CA model so that eventually a hierarchy of three model types (a detailed biophysical lattice-free model, a rule-based cellular automaton and a continuum approach

  13. Nonlocal study of ultimate plasmon hybridization

    DEFF Research Database (Denmark)

    Raza, Søren; Wubs, Martijn; Bozhevolnyi, Sergey I.

    2015-01-01

    Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is included by taking into account both convective and diffusive currents of the conduction electrons, we revisit the fundamental problem of an optically excited plasmonic dimer. We consider...

  14. On instabilities in tensorial nonlocal gravity

    CERN Document Server

    Nersisyan, Henrik; Amendola, Luca; Koivisto, Tomi S; Rubio, Javier; Solomon, Adam R

    2016-01-01

    We discuss the cosmological implications of nonlocal modifications of general relativity containing tensorial structures. Assuming the presence of standard radiation- and matter-dominated eras, we show that, except in very particular cases, the nonlocal terms contribute a rapidly-growing energy density. These models therefore generically do not have a stable cosmological evolution.

  15. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    Science.gov (United States)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  16. Nonlocal incoherent solitons

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole; Wyller, John

    2004-01-01

    We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....

  17. A quasi-continuum hydrodynamic model for slit shaped nanochannel flow

    Science.gov (United States)

    Bhadauria, Ravi; Aluru, N. R.

    2013-08-01

    We propose a quasi-continuum hydrodynamic model for isothermal transport of Lennard-Jones fluid confined in slit shaped nanochannels. In this work, we compute slip and viscous contributions independently and superimpose them to obtain the total velocity profile. Layering of fluid near the interface plays an important role in viscous contribution to the flow, by apparent viscosity change along the confining dimension. This relationship necessitates computing density profiles, which is done using the recently proposed empirical-potential based quasi-continuum theory [A. V. Raghunathan, J. H. Park, and N. R. Aluru, J. Chem. Phys. 127, 174701 (2007)], 10.1063/1.2793070. Existing correlations for density dependent viscosity provided by Woodcock [AIChE J. 52, 438 (2006)], 10.1002/aic.10676 are used to compute viscosity profile in the nanopores. A Dirichlet type slip boundary condition based on a static Langevin friction model describing center-of-mass motion of fluid particles is used, the parameters of which are dependent on the fluctuations of total wall-fluid force from an equilibrium molecular dynamics simulation. Different types of corrugated surfaces are considered to study wall-fluid friction effects on boundary conditions. Proposed hydrodynamic model yields good agreement of velocity profiles obtained from non-equilibrium molecular dynamics simulations for gravity driven flow.

  18. Nonlocal scalar quantum field theory from causal sets

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano

    2015-03-01

    We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.

  19. Nonlocal Scalar Quantum Field Theory from Causal Sets

    CERN Document Server

    Belenchia, Alessio; Liberati, Stefano

    2014-01-01

    We study a non-local scalar quantum field theory in flat spacetime derived from the dynamics of a scalar field on a causal set. We show that this non-local QFT contains a continuum of massive modes in any dimension. In 2 dimensions the Hamiltonian is positive definite and therefore the quantum theory is well-defined. In 4-dimensions, we show that the unstable modes of the non-local d'Alembertian are propagated via the so called Wheeler propagator and hence do not appear in the asymptotic states. In the free case studied here the continuum of massive mode are shown to not propagate in the asymptotic states. However the Hamiltonian is not positive definite, therefore potential issues with the quantum theory remain. Finally, we conclude with hints toward what kind of phenomenology one might expect from such non-local QFTs.

  20. NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An expose about covering method on differential equations was given. The general formulae to determine nonlocal symmetries were derived which are analogous to the prolongation formulae of generalized symmetries. In addition, a new definition of nonlocal recursion operators was proposed, which gave a satisfactory explalnation in covering theory for the integro-differcntial recursion operators.

  1. Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE)

    CERN Document Server

    Placidi, Luca; Seddik, Hakime; Faria, Sergio H

    2009-01-01

    A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...

  2. Finite element methods for a class of continuum models for immiscible flows with moving contact lines

    CERN Document Server

    Reusken, A; Zhang, L

    2015-01-01

    In this paper we present a finite element method (FEM) for two-phase incompressible flows with moving contact lines. We use a sharp interface Navier-Stokes model for the bulk phase fluid dynamics. Surface tension forces, including Marangoni forces and viscous interfacial effects, are modeled. For describing the moving contact we consider a class of continuum models which contains several special cases known from the literature. For the whole model, describing bulk fluid dynamics, surface tension forces and contact line forces, we derive a variational formulation and a corresponding energy estimate. For handling the evolving interface numerically the level-set technique is applied. The discontinuous pressure is accurately approximated by using a stabilized extended finite element space (XFEM). We apply a Nitsche technique to weakly impose the Navier slip conditions on the solid wall. A unified approach for discretization of the (different types of) surface tension forces and contact line forces is introduced. ...

  3. A continuum constitutive model for the active behaviour of skeletal muscle

    Science.gov (United States)

    Ehret, Alexander E.; Böl, Markus; Itskov, Mikhail

    2011-03-01

    In the present paper we propose a continuum constitutive model for the passive and active mechanical behaviour of skeletal muscle. Unlike most works in this field, the model is not based on an additive split between passive and active components but considers muscle tissue as one continuous biological material, which alters its properties when activated. This alteration also allows for a kinematic interpretation on the muscle fibre level and is described by a single activation-dependent model parameter. This as well as the other material parameters are obtained from standard experiments on resting and activated muscle or from microstructural information such as fibre type and twitch characteristics. In the passive state, the constitutive equations are governed by a transversely isotropic polyconvex and coercive strain-energy function. The model shows excellent agreement with experimental stress-stretch data of a passive and activated rat tibialis anterior muscle.

  4. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    Science.gov (United States)

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  5. Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhov, A.E. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation); M.V. Lomonosov Moscow State University, N.N. Bogoliubov Institute of Theoretical Problems of Microworld, Moscow (Russian Federation); Radzhabov, A.E. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Zhevlakov, A.S. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2015-09-15

    The hadronic corrections to the muon anomalous magnetic moment a{sub μ}, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a{sub μ} in the leading order in the 1/N{sub c} expansion. The result for the quark loop contribution is a{sub μ}{sup HLbL,Loop} = (11.0 ± 0.9) @ x 10{sup -10}, and the total result is a{sub μ}{sup HLbL,NχQM} = (16.8 ± 1.2) @ x 10{sup -10}. (orig.)

  6. Totality of Subquantum Nonlocal Correlations

    CERN Document Server

    Khrennikov, Andrei

    2011-01-01

    In a series of previous papers we developed a purely field model of microphenomena, so called prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of QM including correlations for entangled systems, but it also gives a possibility to go beyond quantum mechanics (QM), i.e., to make predictions of phenomena which could be observed at the subquantum level. In this paper we discuss one of such predictions - existence of nonlocal correlations between prequantum random fields corresponding to {\\it all} quantum systems. (And by PCSFT quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are "entangled", but in the sense of classical signal theory. On one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random back...

  7. Modelling dynamic tensile failure of quasi-brittle materials using stress-enhanced nonlocal models

    NARCIS (Netherlands)

    Magalhaes Pereira, L.F.; Weerheijm, J.; Sluys, L.J.

    2015-01-01

    The development of realistic numerical tools to efficiently model the response of concrete structures subjected to close-in detonations and high velocity impacts has been one of the major quests in defense research. Under these loading conditions, quasi-brittle materials undergo a multitude of failu

  8. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    Science.gov (United States)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air

  9. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Science.gov (United States)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    characterize both the convergence of these grain-scale parameters toward the empirical coefficients of the macroscopic descriptions, and the deviations from continuum model predictions caused by nonlocal granular effects for quantities such as erosion rate. We will also summarize the context and implications of our work for both granular physics theory and granular flow hazard risk assessment.

  10. On Continuum Damage Modeling of Fiber Reinforced Viscoelastic Composites with Microcracks in terms of Invariants

    Directory of Open Access Journals (Sweden)

    Melek Usal

    2015-01-01

    Full Text Available A continuum damage model is developed for the linear viscoelastic behavior of composites with microcracks consisting of an isotropic matrix reinforced by two arbitrarily independent and inextensible fiber families. Despite the fact that the matrix material is isotropic, the model in consideration bears the characteristic of directed media included in the transverse isotropy symmetry group solely due to its fibers distributions and the existence of microcracks. Using the basic laws of continuum damage mechanics and equations belonging to kinematics and deformation geometries of fibers, the constitutive functions have been obtained. It has been detected as a result of the thermodynamic constraints that the stress potential function is dependent on two symmetric tensors and two vectors, whereas the dissipative stress function is dependent on four symmetric tensors and two vectors. To determine arguments of the constitutive functionals, findings relating to the theory of invariants have been used as a method because of the fact that isotropy constraint is imposed on the material. As a result the linear constitutive equations of elastic stress, dissipative stress, and strain energy density release rate have been written in terms of material coordinate description. Using these expressions, total stress has been found.

  11. A precessing jet model for the PN K 3-35: simulated radio-continuum emission

    CERN Document Server

    Velazquez, P; Esquivel, A; Raga, A

    2007-01-01

    The bipolar morphology of the planetary nebula (PN) K 3-35 observed in radio-continuum images was modelled with 3D hydrodynamic simulations with the adaptive grid code yguazu-a. We find that the observed morphology of this PN can be reproduced considering a precessing jet evolving in a dense AGB circumstellar medium, given by a mass loss rate \\dot{M}_{csm}=5x10^{-5}M_{\\odot}/yr and a terminal velocity v_{w}=10 km/s. Synthetic thermal radio-continuum maps were generated from numerical results for several frequencies. Comparing the maps and the total fluxes obtained from the simulations with the observational results, we find that a model of precessing dense jets, where each jet injects material into the surrounding CSM at a rate \\dot{M}_j=2.8x10^{-4} {M_{\\odot}/yr (equivalent to a density of 8x10^{4} {cm}^{-3}, a velocity of 1500 km/s, a precession period of 100 yr, and a semi-aperture precession angle of 20 degrees agrees well with the observations.

  12. Continuum modelling of shock waves through granular gases and the role of statistical fluctuations

    Science.gov (United States)

    Sirmas, Nick; Radulescu, Matei I.

    2016-11-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases. The mechanisms controlling these instabilities are not well understood. Two-dimensional event-driven Molecular Dynamics (MD) simulations were previously completed to investigate the stability of piston driven shock waves through dilute granular gases. By considering viscoelastic collisions, allowing for finite dissipation within the shock wave, instabilities were found in the form of distinctive high density non-uniformities and convective rolls within the shock structure. This work is now extended to the continuum level. Euler and Navier-Stokes equations for granular gases are modelled with a modified cooling rate to include an impact threshold necessary for inelastic collisions. The shock structure predicted by the continuum formulation is found in good agreement with the structure obtained by MD. Introducing strong perturbations to the incoming density field, in accordance with the spacial fluctuations in the upstream state seen in MD, yields similar instabilities as those previously observed. While the inviscid model predicts a highly turbulent structure from these perturbations, the inclusion of viscosity and heat conductivity yields comparable wavelengths of pattern formations to those seen in MD.

  13. Continuum modelling of piston driven shock waves through granular gases and ensuing pattern formations

    Science.gov (United States)

    Sirmas, Nick; Radulescu, Matei

    2015-11-01

    Two-dimensional event-driven Molecular Dynamics (MD) simulations were previously completed to investigate the stability of piston driven shock waves through dilute granular gases. By considering viscoelastic collisions, allowing for finite dissipation within the shock wave, instabilities were found in the form of distinctive high density non-uniformities and convective rolls within the shock structure. This work is now extended to the continuum level. Euler and Navier-Stokes equations for granular gases are modelled with a modified cooling rate to include an impact threshold necessary for inelastic collisions. The shock structure predicted by the continuum formulation is found in good agreement with the structure obtained by MD. Non-linear stability analyses of the travelling wave solution are performed, showing a neutrally stable structure and responding only to fluctuations in the upstream state. Introducing strong perturbations to the incoming density field, in accordance with the spacial fluctuations in upstream state seen in MD, yields similar instabilities as those previously observed. While the inviscid model predicts a highly turbulent structure from these perturbations, the inclusion of viscosity yields comparable wavelengths of pattern formations to those seen in MD.

  14. Pattern formation in a reaction-advection model with delay: a continuum approach to myxobacterial rippling

    Science.gov (United States)

    Börner, U.; Bär, M.

    2004-07-01

    Standing wave oscillations of the cell density (rippling) are observed in premature aggregates of developing myxobacteria. Recently the underlying pattern formation mechanism was shown to be based on the interplay between active cell motion and local interactions triggering reversals in the cells' direction of motion. The propagation of information through the system is mediated by the internal state of moving cells rather than by diffusible chemical signals. Discrete cellular automata and coupled-map lattices have been investigated earlier and indicate the importance of a minimum refractory period between subsequent reversals of a cell. In this paper we consider the continuum limit of the process, that yields a set of hyperbolic partial differential equations with a a single discrete time delay. The time delay corresponds to the duration of the mentioned refractory period of the cells. According to linear stability analysis a minimal time delay is required for a wave instability to occur. The results of the continuum model are in reasonable agreement with the findings in the discrete models adding credibility to the earlier studies.

  15. Rheological-dynamical continuum damage model for concrete under uniaxial compression and its experimental verification

    Directory of Open Access Journals (Sweden)

    Milašinović Dragan D.

    2015-01-01

    Full Text Available A new analytical model for the prediction of concrete response under uniaxial compression and its experimental verification is presented in this paper. The proposed approach, referred to as the rheological-dynamical continuum damage model, combines rheological-dynamical analogy and damage mechanics. Within the framework of this approach the key continuum parameters such as the creep coefficient, Poisson’s ratio and damage variable are functionally related. The critical values of the creep coefficient and damage variable under peak stress are used to describe the failure mode of the concrete cylinder. The ultimate strain is determined in the post-peak regime only, using the secant stress-strain relation from damage mechanics. The post-peak branch is used for the energy analysis. Experimental data for five concrete compositions were obtained during the examination presented herein. The principal difference between compressive failure and tensile fracture is that there is a residual stress in the specimens, which is a consequence of uniformly accelerated motion of load during the examination of compressive strength. The critical interpenetration displacements and crushing energy are obtained theoretically based on the concept of global failure analysis. [Projekat Ministarstva nauke Republike Srbije, br. ON 174027: Computational Mechanics in Structural Engineering i br. TR 36017: Utilization of by-products and recycled waste materials in concrete composites for sustainable construction development in Serbia: Investigation and environmental assessment of possible applications

  16. A contribution to the modeling of metal plasticity and fracture: From continuum to discrete descriptions

    Science.gov (United States)

    Keralavarma, Shyam Mohan

    The objective of this dissertation is to further the understanding of inelastic behavior in metallic materials. Despite the increasing use of polymeric composites in aircraft structures, high specific strength metals continue to be used in key components such as airframe, fuselage, wings, landing gear and hot engine parts. Design of metallic structures subjected to thermomechanical extremes in aerospace, automotive and nuclear applications requires consideration of the plasticity, creep and fracture behavior of these materials. Consideration of inelasticity and damage processes is also important in the design of metallic components used in functional applications such as thin films, flexible electronics and micro electro mechanical systems. Fracture mechanics has been largely successful in modeling damage and failure phenomena in a host of engineering materials. In the context of ductile metals, the Gurson void growth model remains one of the most successful and widely used models. However, some well documented limitations of the model in quantitative prediction of the fracture strains and failure modes at low triaxialities may be traceable to the limited representation of the damage microstructure in the model. In the first part of this dissertation, we develop an extended continuum model of void growth that takes into account details of the material microstructure such as the texture of the plastically deforming matrix and the evolution of the void shape. The need for such an extension is motivated by a detailed investigation of the effects of the two types of anisotropy on the materials' effective response using finite element analysis. The model is derived using the Hill--Mandel homogenization theory and an approximate limit analysis of a porous representative volume element. Comparisons with several numerical studies are presented towards a partial validation of the analytical model. Inelastic phenomena such as plasticity and creep result from the collective

  17. Nonlocal Measurements via Quantum Erasure.

    Science.gov (United States)

    Brodutch, Aharon; Cohen, Eliahu

    2016-02-19

    Nonlocal observables play an important role in quantum theory, from Bell inequalities and various postselection paradoxes to quantum error correction codes. Instantaneous measurement of these observables is known to be a difficult problem, especially when the measurements are projective. The standard von Neumann Hamiltonian used to model projective measurements cannot be implemented directly in a nonlocal scenario and can, in some cases, violate causality. We present a scheme for effectively generating the von Neumann Hamiltonian for nonlocal observables without the need to communicate and adapt. The protocol can be used to perform weak and strong (projective) measurements, as well as measurements at any intermediate strength. It can also be used in practical situations beyond nonlocal measurements. We show how the protocol can be used to probe a version of Hardy's paradox with both weak and strong measurements. The outcomes of these measurements provide a nonintuitive picture of the pre- and postselected system. Our results shed new light on the interplay between quantum measurements, uncertainty, nonlocality, causality, and determinism.

  18. Nonlocal response in thin-film waveguides: Loss versus nonlocality and breaking of complementarity

    DEFF Research Database (Denmark)

    Raza, Søren; Christensen, Thomas; Wubs, Martijn

    2013-01-01

    We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal effects are described by a linearized hydrodynamic model, which includes...... in the metal. We also show that nonlocality breaks the complementarity of the MIM and IMI waveguides found in the nonretarded limit....

  19. Nonlocal thermal transport in solar flares

    Science.gov (United States)

    Karpen, Judith T.; Devore, C. Richard

    1987-01-01

    A flaring solar atmosphere is modeled assuming classical thermal transport, locally limited thermal transport, and nonlocal thermal transport. The classical, local, and nonlocal expressions for the heat flux yield significantly different temperature, density, and velocity profiles throughout the rise phase of the flare. Evaporation of chromospheric material begins earlier in the nonlocal case than in the classical or local calculations, but reaches much lower upward velocities. Much higher coronal temperatures are achieved in the nonlocal calculations owing to the combined effects of delocalization and flux limiting. The peak velocity and momentum are roughly the same in all three cases. A more impulsive energy release influences the evolution of the nonlocal model more than the classical and locally limited cases.

  20. Non-local parallel transport in BOUT++

    CERN Document Server

    Omotani, J T; Havlickova, E; Umansky, M

    2015-01-01

    Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an O(10) speedup of the non-local code.

  1. Stochastic structural model of rock and soil aggregates by continuum-based discrete element method

    Institute of Scientific and Technical Information of China (English)

    WANG; Yuannian; ZHAO; Manhong; LI; Shihai; J.G.; Wang

    2005-01-01

    This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.

  2. An extended continuum model accounting for the driver's timid and aggressive attributions

    Science.gov (United States)

    Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng

    2017-04-01

    Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV-Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption.

  3. 3D continuum phonon model for group-IV 2D materials

    KAUST Repository

    Willatzen, Morten

    2017-06-30

    A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles derivation includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materials but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A comparison of the long-wavelength modes to density-functional results is included.

  4. EFFECTS OF PHASE CONTINUITY ON RHEOLOGY OF TWO-PHASE ROCKS:A CONTINUUM MECHANICL MODEL

    Institute of Scientific and Technical Information of China (English)

    JI Shao-cheng

    2001-01-01

    Based on continuum mechanics,we have developed a model for semi-quantitative estimating effects of phase continuity on flow strength of two-phase rocks including partially melted or crystallized rocks.Calculations of the bulk flow strength of composite rocks as functions of the volume fraction,geometrical shape and continuity of the constitutive phases involve in numerically solving two non-linear equations and thus are easy to be performed.The model has been justified by a good agreement between the predicted and measured results on diabase (64% clinopyroxene and 36% plagioclase) in the range of experimental temperatures and strain-rates.It is believed that the present model could provide an approximate estimate for the rheological evolution of magmatic rocks during their life cycle of melting-crystallization-deformation.

  5. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    Energy Technology Data Exchange (ETDEWEB)

    Del Ben, Mauro, E-mail: delben@chem.uzh.ch; Hutter, Jürg, E-mail: hutter@chem.uzh.ch [Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland); VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch [Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2015-08-07

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  6. Innovation in pediatric surgery: the surgical innovation continuum and the ETHICAL model.

    Science.gov (United States)

    Schwartz, Jennifer A T

    2014-04-01

    Innovations are indispensable to the practice and advancement of pediatric surgery. Children represent a special type of vulnerable population and must be protected since they do not have legal capacity to consent, and their parent's judgment may be compromised in circumstances when the child is very ill or no adequate therapy exists. In an effort to protect patients, legislators could pass and enforce laws that prohibit or curtail surgical innovations and thus stifle noble advancement of the practice. The goals of this paper are, 1) To clearly define the characteristics of surgical innovation types so interventions may be classified into 1 of 3 distinct categories along a continuum: Practice Variation, Transition Zone, and Experimental Research, and 2) To propose a practical systematic method to guide surgeon decision-making when approaching interventions that fall into the "Transition Zone" category on the Surgical Intervention Continuum. The ETHICAL model allows those that know the intricacies and nuances of pediatric surgery best, the pediatric surgeons and professional pediatric surgical societies, to participate in self-regulation of innovation in a manner that safeguards patients without stifling creativity or unduly hampering surgical progress. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Nonlocally Centralized Simultaneous Sparse Coding

    Institute of Scientific and Technical Information of China (English)

    雷阳; 宋占杰

    2016-01-01

    The concept of structured sparse coding noise is introduced to exploit the spatial correlations and nonlo-cal constraint of the local structure. Then the model of nonlocally centralized simultaneous sparse coding(NC-SSC)is proposed for reconstructing the original image, and an algorithm is proposed to transform the simultaneous sparse coding into reweighted low-rank approximation. Experimental results on image denoisng, deblurring and super-resolution demonstrate the advantage of the proposed NC-SSC method over the state-of-the-art image resto-ration methods.

  8. A continuum model of piezoelectric potential generated in a bent ZnO nanorod

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Z Z; Wen, L Y; Wu, D M [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Wang, X F; Zhang, X A; Chang, S L, E-mail: zzshao2009@gmail.co [Center of Materials Science, College of Science, National University of Defense Technology, Changsha 410073 (China)

    2010-06-23

    A continuum model of piezoelectric potential generated in a bent ZnO nanorod cantilever is presented by means of the first piezoelectric effect approximation. The analytical solution of the model shows that the piezoelectric potential in the nanorod is proportional to the lateral force but is independent along the longitudinal direction. The electric potential in the tensile area and that in the compressive area are antisymmetric in the cross section of the nanorod, which makes the nanorod a 'parallel plate capacitor' for piezoelectric nanodevices, such as a nanogenerator. The magnitude of piezoelectric potential for a ZnO nanorod of 50 nm diameter and 600 nm length bent by a 80 nN lateral force is about 0.27 V, which is in good agreement with the finite element method calculation.

  9. A structured continuum modelling framework for martensitic transformation and reorientation in shape memory materials.

    Science.gov (United States)

    Bernardini, Davide; Pence, Thomas J

    2016-04-28

    Models for shape memory material behaviour can be posed in the framework of a structured continuum theory. We study such a framework in which a scalar phase fraction field and a tensor field of martensite reorientation describe the material microstructure, in the context of finite strains. Gradients of the microstructural descriptors naturally enter the formulation and offer the possibility to describe and resolve phase transformation localizations. The constitutive theory is thoroughly described by a single free energy function in conjunction with a path-dependent dissipation function. Balance laws in the form of differential equations are obtained and contain both bulk and surface terms, the latter in terms of microstreses. A natural constraint on the tensor field for martensite reorientation gives rise to reactive fields in these balance laws. Conditions ensuring objectivity as well as the relation of this framework to that provided by currently used models for shape memory alloy behaviour are discussed.

  10. Towards an integrated and multi-scale model of the land-sea continuum

    Science.gov (United States)

    De Maet, T.; Hanert, E.

    2012-04-01

    The land-sea continuum is home to a rich and complex system, controlled by strong exchanges of material and energy between land, sea and atmosphere. All the elements of such a system have to be taken into account to understand the whole process, which means explicitly linking together the watersheds, rivers, estuaries and coastal seas. A central issue is that the involved processes take place at very different scales in space and time. To overcome this issue, we consider an integrated model using a multi-scale framework, based on the finite element method (FEM) and unstructured meshes. In this presentation we focus on surface and subsurface models which are both fully-explicit for optimal scaling on parallel architectures. These models have been coupled with the hydrodynamical model SLIM1 which is currently able to model the river-estuary-coastal sea continuum. All these models use the discontinuous Galerkin (DG) FEM and include a tracer transport module. The 3D variably saturated groundwater model is based on the Richards equation, the 2D surface water model uses the diffusive wave approximation of the shallow water equation and the 1D river model is based on the full shallow water equation. As the overall model is designed for large scale simulations, we assume that small rivers are included in the surface model. Explicit methods in time allow for perfect parallel scaling and easy coupling. Our explicit model for the saturated-unsaturated subsurface water is robust and fully conservative. It is based on a mixed formulation, using both the pressure head h and the water content θ. On the one hand, θ is used for the unsaturated zone, where it is know to be more efficient. On the other hand h is used for the saturated zone, where θ is constant. To produce an explicit formulation of the Richards equation, we use the false transient method in the saturated zone, where the hydrodynamics is described by an elliptic equation. To allow physical discontinuities between

  11. Non-local thermodynamic equilibrium inversions from a 3D MHD chromospheric model

    CERN Document Server

    Rodríguez, Jaime de la Cruz; Carlsson, Mats; Leenaarts, Jorrit

    2012-01-01

    The structure of the solar chromosphere is believed to be governed by magnetic fields, even in quiet-Sun regions that have a relatively weak photospheric field. During the past decade inversion methods have emerged as powerful tools for analyzing the chromosphere of active regions. The applicability of inversions to infer the stratification of the physical conditions in a dynamic 3D solar chromosphere has not yet been studied in detail. This study aims to establish the diagnostic capabilities of non-local thermodynamical equilibrium (NLTE) inversion techniques of Stokes profiles induced by the Zeeman effect in the Ca II 8542 line. We computed the Ca II atomic level populations in a snapshot from a 3D radiation-MHD simulation of the quiet solar atmosphere in non-LTE using the 3D radiative transfer code Multi3d. These populations were used to compute synthetic full-Stokes profiles in the Ca II 8542 line using 1.5D radiative transfer and the inversion code Nicole. The profiles were then spectrally degraded to ac...

  12. Water solvent effects using continuum and discrete models: The nitromethane molecule, CH3NO2.

    Science.gov (United States)

    Modesto-Costa, Lucas; Uhl, Elmar; Borges, Itamar

    2015-11-15

    The first three valence transitions of the two nitromethane conformers (CH3NO2) are two dark n → π* transitions and a very intense π → π* transition. In this work, these transitions in gas-phase and solvated in water of both conformers were investigated theoretically. The polarizable continuum model (PCM), two conductor-like screening (COSMO) models, and the discrete sequential quantum mechanics/molecular mechanics (S-QM/MM) method were used to describe the solvation effect on the electronic spectra. Time dependent density functional theory (TDDFT), configuration interaction including all single substitutions and perturbed double excitations (CIS(D)), the symmetry-adapted-cluster CI (SAC-CI), the multistate complete active space second order perturbation theory (CASPT2), and the algebraic-diagrammatic construction (ADC(2)) electronic structure methods were used. Gas-phase CASPT2, SAC-CI, and ADC(2) results are in very good agreement with published experimental and theoretical spectra. Among the continuum models, PCM combined either with CASPT2, SAC-CI, or B3LYP provided good agreement with available experimental data. COSMO combined with ADC(2) described the overall trends of the transition energy shifts. The effect of increasing the number of explicit water molecules in the S-QM/MM approach was discussed and the formation of hydrogen bonds was clearly established. By including explicitly 24 water molecules corresponding to the complete first solvation shell in the S-QM/MM approach, the ADC(2) method gives more accurate results as compared to the TDDFT approach and with similar computational demands. The ADC(2) with S-QM/MM model is, therefore, the best compromise for accurate solvent calculations in a polar environment.

  13. Nonlocal and quasi-local field theories

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasi-local (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasi-local kernels all acausal effects are confined within the compact support regi...

  14. Hyperbolic metamaterial lens with hydrodynamic nonlocal response

    DEFF Research Database (Denmark)

    Yan, Wei; Mortensen, N. Asger; Wubs, Martijn

    2013-01-01

    in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we......We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves...... of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens...

  15. Hyperbolic metamaterial lens with hydrodynamic nonlocal response.

    Science.gov (United States)

    Yan, Wei; Mortensen, N Asger; Wubs, Martijn

    2013-06-17

    We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.

  16. SU(2)-Invariant Continuum Theory for an Unconventional Phase Transition in a Three-Dimensional Classical Dimer Model

    Science.gov (United States)

    Powell, Stephen; Chalker, J. T.

    2008-10-01

    We derive a continuum theory for the phase transition in a classical dimer model on the cubic lattice, observed in recent Monte Carlo simulations. Our derivation relies on the mapping from a three-dimensional classical problem to a two-dimensional quantum problem, by which the dimer model is related to a model of hard-core bosons on the kagome lattice. The dimer-ordering transition becomes a superfluid Mott insulator quantum phase transition at fractional filling, described by an SU(2)-invariant continuum theory.

  17. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  18. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    Science.gov (United States)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  19. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects

    Science.gov (United States)

    Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood

    2017-09-01

    Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.

  20. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model

    Directory of Open Access Journals (Sweden)

    Y. B. Wang

    2016-08-01

    Full Text Available Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.