WorldWideScience

Sample records for nonlinearities classically observed

  1. Classical BRST charge for nonlinear algebras

    CERN Document Server

    Buchbinder, I L

    2007-01-01

    We study the construction of the classical nilpotent canonical BRST charge for the nonlinear gauge algebras where a commutator (in terms of Poisson brackets) of the constraints is a finite order polynomial of the constraints. Such a polynomial is characterized by the coefficients forming a set of higher order structure constants. Assuming the set of constraints to be linearly independent, we find the restrictions on the structure constants when the nilpotent BRST charge can be written in a simple and universal form. In the case of quadratically nonlinear algebras we find the expression for third order contribution in the ghost fields to the BRST charge without the use of any additional restrictions on the structure constants.

  2. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  3. Nonlinear Observers for Gyro Calibration

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  4. Observable Signatures of a Classical Transition

    CERN Document Server

    Johnson, Matthew C

    2015-01-01

    Eternal inflation arising from a potential landscape predicts that our universe is one realization of many possible cosmological histories. One way to access different cosmological histories is via the nucleation of bubble universes from a metastable false vacuum. Another way to sample different cosmological histories is via classical transitions, the creation of pocket universes through the collision between bubbles. Using relativistic numerical simulations, we examine the possibility of observationally determining if our observable universe resulted from a classical transition. We find that classical transitions produce spatially infinite, approximately open Friedman-Robertson-Walker universes. The leading set of observables in the aftermath of a classical transition are negative spatial curvature and a contribution to the Cosmic Microwave Background temperature quadrupole. The level of curvature and magnitude of the quadrupole are dependent on the position of the observer, and we determine the possible ran...

  5. Nonlinear wave mechanics from classical dynamics and scale covariance

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr

    2007-10-29

    Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.

  6. From Classical Nonlinear Integrable Systems to Quantum Shortcuts to Adiabaticity

    Science.gov (United States)

    Okuyama, Manaka; Takahashi, Kazutaka

    2016-08-01

    Using shortcuts to adiabaticity, we solve the time-dependent Schrödinger equation that is reduced to a classical nonlinear integrable equation. For a given time-dependent Hamiltonian, the counterdiabatic term is introduced to prevent nonadiabatic transitions. Using the fact that the equation for the dynamical invariant is equivalent to the Lax equation in nonlinear integrable systems, we obtain the counterdiabatic term exactly. The counterdiabatic term is available when the corresponding Lax pair exists and the solvable systems are classified in a unified and systematic way. Multisoliton potentials obtained from the Korteweg-de Vries equation and isotropic X Y spin chains from the Toda equations are studied in detail.

  7. Observables in classical canonical gravity: folklore demystified

    CERN Document Server

    Pons, J M; Sundermeyer, K A

    2010-01-01

    We give an overview of some conceptual difficulties, sometimes called paradoxes, that have puzzled for years the physical interpetation of classical canonical gravity and, by extension, the canonical formulation of generally covariant theories. We identify these difficulties as stemming form some terminological misunderstandings as to what is meant by "gauge invariance", or what is understood classically by a "physical state". We make a thorough analysis of the issue and show that all purported paradoxes disappear when the right terminology is in place. Since this issue is connected with the search of observables - gauge invariant quantities - for these theories, we formally show that time evolving observables can be constructed for every observer. This construction relies on the fixation of the gauge freedom of diffeomorphism invariance by means of a scalar coordinatization. We stress the condition that the coordinatization must be made with scalars. As an example of our method for obtaining observables we d...

  8. Superradiance of a subwavelength array of independent classical nonlinear emitters

    CERN Document Server

    Nefedkin, N E; Zyablovsky, A A; Pukhov, A A; Vinogradov, A P; Lisyansky, A A

    2015-01-01

    We suggest a mechanism for the emergence of a superradiance burst in a subwavelength array of nonlinear classical emitters. We assume that the emitters interact via their common field of radiative response and that they may have an arbitrary distribution of initially phases. We show that only if this distribution is not uniform, a non-zero field of radiative response arises leading to a superradiance burst. Although this field cannot synchronize the emitters, it forces fast oscillations of a classical nonlinear emitter to have long-period envelopes. Constructive interference in the envelopes creates a large dipole moment of the array which results in a superradiance pulse. The intensity of the superradiance is proportional to the squared number of the emitters, which envelopes participate in the fluctuation.

  9. Observation of Nonlinear Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  10. Interpreting nonlinear vibrational spectroscopy with the classical mechanical analogs of double-sided Feynman diagrams.

    Science.gov (United States)

    Noid, W G; Loring, Roger F

    2004-10-15

    Observables in coherent, multiple-pulse infrared spectroscopy may be computed from a vibrational nonlinear response function. This response function is conventionally calculated quantum-mechanically, but the challenges in applying quantum mechanics to large, anharmonic systems motivate the examination of classical mechanical vibrational nonlinear response functions. We present an approximate formulation of the classical mechanical third-order vibrational response function for an anharmonic solute oscillator interacting with a harmonic solvent, which establishes a clear connection between classical and quantum mechanical treatments. This formalism permits the identification of the classical mechanical analog of the pure dephasing of a quantum mechanical degree of freedom, and suggests the construction of classical mechanical analogs of the double-sided Feynman diagrams of quantum mechanics, which are widely applied to nonlinear spectroscopy. Application of a rotating wave approximation permits the analytic extraction of signals obeying particular spatial phase matching conditions from a classical-mechanical response function. Calculations of the third-order response function for an anharmonic oscillator coupled to a harmonic solvent are compared to numerically correct classical mechanical results.

  11. Observables in classical canonical gravity: Folklore demystified

    Science.gov (United States)

    Pons, J. M.; Salisbury, D. C.; Sundermeyer, K. A.

    2010-04-01

    We give an overview of some conceptual difficulties, sometimes called paradoxes, that have puzzled for years the physical interpetation of classical canonical gravity and, by extension, the canonical formulation of generally covariant theories. We identify these difficulties as stemming form some terminological misunderstandings as to what is meant by "gauge invariance", or what is understood classically by a "physical state". We make a thorough analysis of the issue and show that all purported paradoxes disappear when the right terminology is in place. Since this issue is connected with the search of observables - gauge invariant quantities - for these theories, we formally show that time evolving observables can be constructed for every observer. This construction relies on the fixation of the gauge freedom of diffeomorphism invariance by means of a scalar coordinatization. We stress the condition that the coordinatization must be made with scalars. As an example of our method for obtaining observables we discuss the case of the massive particle in AdS spacetime.

  12. Observables in classical canonical gravity: Folklore demystified

    Energy Technology Data Exchange (ETDEWEB)

    Pons, J M [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Catalonia (Spain); Salisbury, D C [Department of Physics, Austin College, Sherman, Texas 75090-4440, USA, and Max-Planck-Institut fuer Wissenschaftsgeschichte, Boltzmannstrasse 22, 14195 Berlin (Germany); Sundermeyer, K A, E-mail: pons@ecm.ub.e, E-mail: dsalisbury@austincollege.ed, E-mail: ksun@gmx.d [Freie Universitaet Berlin, Fachbereich Physik, Institute for Theoretical Physics, Arnimallee 14, 14195 Berlin (Germany)

    2010-04-01

    We give an overview of some conceptual difficulties, sometimes called paradoxes, that have puzzled for years the physical interpetation of classical canonical gravity and, by extension, the canonical formulation of generally covariant theories. We identify these difficulties as stemming form some terminological misunderstandings as to what is meant by 'gauge invariance', or what is understood classically by a 'physical state'. We make a thorough analysis of the issue and show that all purported paradoxes disappear when the right terminology is in place. Since this issue is connected with the search of observables - gauge invariant quantities - for these theories, we formally show that time evolving observables can be constructed for every observer. This construction relies on the fixation of the gauge freedom of diffeomorphism invariance by means of a scalar coordinatization. We stress the condition that the coordinatization must be made with scalars. As an example of our method for obtaining observables we discuss the case of the massive particle in AdS spacetime.

  13. Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems

    CERN Document Server

    Moncrief, Vincent; Maitra, Rachel

    2012-01-01

    We develop a modified semi-classical approach to the approximate solution of Schrodinger's equation for certain nonlinear quantum oscillations problems. At lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. Under smoothness, convexity and coercivity hypotheses on its potential energy function, we prove, using the calculus of variations together with the Banach space implicit function theorem, the existence of a global, smooth `fundamental solution'. Higher order quantum corrections, for ground and excited states, are computed through the integration of associated systems of linear transport equations, and formal expansions for the corresponding energy eigenvalues obtained by imposing smoothness on the quantum corrections to the eigenfunctions. For linear oscillators our expansions naturally truncate, reproducing the well-known solutions for the energy eigenfunctions and eigenvalues. As an application, w...

  14. Observability and Controllability for Smooth Nonlinear Systems

    OpenAIRE

    Schaft, A.J. van der

    1982-01-01

    The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

  15. Observations of Nonlinear Phenomena in Rotordynamics

    Science.gov (United States)

    Ehrich, Fredric F.

    Observations, analysis and understanding of nonlinear rotordynamic phenomena observed in aircraft gas turbine engines and other high-speed rotating machinery over the course of the author's career are described. Included are observations of sum-and-difference frequency response; effects of roller bearing clearance; relaxation oscillations; subharmonic response; chaotic response; and other generic nonlinear responses such as superharmonic and ultra-subharmonic response.

  16. Nonlinear Saturation Amplitude in Classical Planar Richtmyer-Meshkov Instability

    Science.gov (United States)

    Liu, Wan-Hai; Wang, Xiang; Jiang, Hong-Bin; Ma, Wen-Fang

    2016-04-01

    The classical planar Richtmyer-Meshkov instability (RMI) at a fluid interface supported by a constant pressure is investigated by a formal perturbation expansion up to the third order, and then according to definition of nonlinear saturation amplitude (NSA) in Rayleigh-Taylor instability (RTI), the NSA in planar RMI is obtained explicitly. It is found that the NSA in planar RMI is affected by the initial perturbation wavelength and the initial amplitude of the interface, while the effect of the initial amplitude of the interface on the NSA is less than that of the initial perturbation wavelength. Without marginal influence of the initial amplitude, the NSA increases linearly with wavelength. The NSA normalized by the wavelength in planar RMI is about 0.11, larger than that corresponding to RTI. Supported by the National Natural Science Foundation of China under Grant Nos. 11472278 and 11372330, the Scientific Research Foundation of Education Department of Sichuan Province under Grant No. 15ZA0296, the Scientific Research Foundation of Mianyang Normal University under Grant Nos. QD2014A009 and 2014A02, and the National High-Tech ICF Committee

  17. Classical black holes: the nonlinear dynamics of curved spacetime.

    Science.gov (United States)

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  18. Nonlinear time reversal of classical waves: experiment and model.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M

    2013-12-01

    We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.

  19. Proliferation of observables and measurement in quantum-classical hybrids

    CERN Document Server

    Elze, Hans-Thomas

    2012-01-01

    Following a review of quantum-classical hybrid dynamics, we discuss the ensuing proliferation of observables and relate it to measurements of (would-be) quantum mechanical degrees of freedom performed by (would-be) classical ones (if they were separable). -- Hybrids consist in coupled classical ("CL") and quantum mechanical ("QM") objects. Numerous consistency requirements for their description have been discussed and are fulfilled here. We summarize a representation of quantum mechanics in terms of classical analytical mechanics which is naturally extended to QM-CL hybrids. This framework allows for superposition, separable, and entangled states originating in the QM sector, admits experimenter's "Free Will", and is local and non-signalling. -- Presently, we study the set of hybrid observables, which is larger than the Cartesian product of QM and CL observables of its components; yet it is smaller than a corresponding product of all-classical observables. Thus, quantumness and classicality infect each other.

  20. Non-linear classical dynamics in a superconducting circuit containing a cavity and a Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2015-07-01

    Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.

  1. Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems

    CERN Document Server

    Blumensath, Thomas

    2012-01-01

    Non-convex constraints have recently proven a valuable tool in many optimisation problems. In particular sparsity constraints have had a significant impact on sampling theory, where they are used in Compressed Sensing and allow structured signals to be sampled far below the rate traditionally prescribed. Nearly all of the theory developed for Compressed Sensing signal recovery assumes that samples are taken using linear measurements. In this paper we instead address the Compressed Sensing recovery problem in a setting where the observations are non-linear. We show that, under conditions similar to those required in the linear setting, the Iterative Hard Thresholding algorithm can be used to accurately recover sparse or structured signals from few non-linear observations. Similar ideas can also be developed in a more general non-linear optimisation framework. In the second part of this paper we therefore present related result that show how this can be done under sparsity and union of subspaces constraints, wh...

  2. Observation of nondispersing classical-like molecular rotation

    CERN Document Server

    Korobenko, Aleksey; Milner, Valery

    2014-01-01

    Using the technique of an optical centrifuge, we produce rotational wave packets which evolve in time along either classical-like or non-classical trajectories. After releasing O2 and D2 molecules from the centrifuge, we track their field-free rotation by monitoring the molecular angular distribution with velocity map imaging. Due to the dispersion of the created rotational wave packets in oxygen, we observe a gradual transition between "dumbbell"-shaped and "cross"-shaped distributions, both rotating with a classical rotation frequency. In deuterium, a much narrower rotational wave packet is produced and shown to evolve in a truly classical non-dispersing fashion.

  3. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari

    2016-01-01

    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  4. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  5. Hybrid simulation theory for a classical nonlinear dynamical system

    Science.gov (United States)

    Drazin, Paul L.; Govindjee, Sanjay

    2017-03-01

    Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.

  6. Observation of Anti-correlation of Classical Chaotic Light

    CERN Document Server

    Chen, Hui; Xie, Zhenda; Shih, Yanhua

    2009-01-01

    We wish to report an experimental observation of anti-correlation from first-order incoherent classical chaotic light. We explain why the classical statistical theory does not apply and provide a quantum interpretation. In quantum theory, either correlation or anti-correlation is a two-photon interference phenomenon, which involves the superposition of two-photon amplitudes, a nonclassical entity corresponding to different yet indistinguishable alternative ways of producing a joint-photodetection event.

  7. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Tomasz [Department of Mathematics, University of Wales Swansea (United Kingdom)

    2003-12-12

    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  8. Classical and quantum signatures of competing $X^{2}$ nonlinearities

    CERN Document Server

    White, A G; Taubman, M S; Marte, M A M; Schiller, S; McClelland, D E; Bachor, H A

    1997-01-01

    We report the first observation of the quantum effects of competing competition, namely clamping of the second harmonic power and production of nondegenerate frequencies in the visible. Theory is presented that describes the observations as resulting from competition between various $\\chi^{(2)}$ upconversion and downconversion processes. We show that competition imposes hitherto unsuspected limits to both power generation and squeezing. The observed signatures are expected to be significant effects in practical systems.

  9. Classical integrability of the O(N) nonlinear $\\sigma$ model on a half-line

    CERN Document Server

    Corrigan, E

    1996-01-01

    The classical integrability the O(N) nonlinear sigma model on a half-line is examined, and the existence of an infinity of conserved charges in involution is established for the free boundary condition. For the case N=3 other possible boundary conditions are considered briefly.

  10. Observability and Information Structure of Nonlinear Systems,

    Science.gov (United States)

    1985-10-01

    defined by Shannon and used as a measure of mut.:al infor-mation between event x. and y4. If p(x.l IY.) I I(x., y.) xil -in (1/p(x.)) =- JInp (x.) (2...entropy H(x,y) in a similar way as H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY, = -E[ JInp (x,y)]. (3-13) With the above definitions, mutual information between x...Observabiity of Nonlinear Systems, Eng. Cybernetics, Volume 1, pp 338-345, 1972. 18. Sen , P., Chidambara, M.R., Observability of a Class of Nonli-.ear

  11. Observational evidence for mass loss from classical Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.P.

    1988-04-01

    This paper examines the evidence for mass loss from classical Cepheid variables in the light of recent observational studies of infrared and ultraviolet emission from these objects. Mass-loss rates derived for several stars range between 10/sup -10/ of the solar mass yr/sup -1/ and 10/sup -6/ of the solar mass yr/sup -1/. The lower end of this range probably corresponds to the majority of classical Cepheids. Non-variable supergiants show, on average, a somewhat lower rate of infrared excess, but have mass-loss rates of the same order of magnitude as the Cepheids. On the basis of the observations to date, mass loss alone is insufficient in explaining the Cepheid mass discrepancy, indicating that adjustments to the evolutionary or pulsation models present a better prospect of resolving this discrepancy.

  12. Observational evidence for mass loss from classical Cepheids

    Science.gov (United States)

    Deasy, H. P.

    1988-04-01

    This paper examines the evidence for mass loss from classical Cepheid variables in the light of recent observational studies of infrared and ultraviolet emission from these objects. Mass-loss rates derived for several stars range between 10-10M_sun;yr-1 and 10-6M_sun;yr-1. The lower end of this range probably corresponds to the majority of classical Cepheids. Non-variable supergiants show, on average, a somewhat lower rate of infrared excess, but have mass-loss rates of the same order of magnitude as the Cepheids. On the basis of the observations to date, mass loss alone is insufficient in explaining the Cepheid mass discrepancy, indicating that adjustments to the evolutionary or pulsation models present a better prospect of resolving this discrepancy.

  13. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...

  14. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...

  15. Beables/Observables in Classical and Quantum Gravity

    CERN Document Server

    Anderson, Edward

    2013-01-01

    Observables `are observed' whereas beables just `are'. Beables have more scope in the cosmological and quantum domains. Both are entities that form `brackets' with `the constraints' that are `equal to' zero. Moreover, a variety of notions of brackets, constraints and equalities are to be considered. I.e. Poisson, Dirac, commutator, histories, Schouten-Nijenhuis, double and Nambu brackets; first-class, gauge, linear and effective constraints; plain alias strong, weak and weak-effective equalities. The Dirac-Bergmann distinction in notions of gauge leads to further notions of beable, and is tied to some diffeomorphism-specific subtleties. Thus we cover a wide range of notions of beables/observables: Dirac, Kuchar, effective, Bergmann, histories, multisymplectic, master, Nambu and bi-. We also cover a wide range of classical and quantum theories of gravity: general relativity, loop quantum gravity, histories theory, supergravity and M-theory.

  16. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  17. Observation of the Quantum-Classical Transition via Electron Diffraction

    Science.gov (United States)

    Beierle, Peter; Batelaan, Herman

    2016-05-01

    A collimated electron beam with an energy ranging from .5 keV- 5 keV is passed over a 1 cm long conducting surface. The electrons are diffracted from a 100 nm periodic SiN free-standing grating. The surface is place within the electron near-field diffraction distance. The loss of visibility of the far-field diffraction pattern is measured, which indicates the amount of decoherence that the electrons experienced as they passed over the surface. It has been determined through the visibility as a function of the height with respect to the surface that a) one can observe the transition of the electron's behavior between classical and quantum mechanics, b) that our experiment can be used to rule out a classical theoretical model of the surface decohering mechanism (consistent with Hasselbach's work), and c) this experimental setup is simpler than the use of an interferometer. Comparing a silicon to a gold surface, we are in the process of testing a wider array of theoretical models for the mechanism of decoherence. This work is supported by the National Science Foundation under award number 1306565.

  18. Concrete damage diagnosed using the non-classical nonlinear acoustic method

    Institute of Scientific and Technical Information of China (English)

    Zhou Dao; Liu Xiao-Zhou; Gong Xiu-Fen; Nazarov V E; Ma Li

    2009-01-01

    It is known that the strength of concrete is seriously affected by damage and cracking. In this paper, six concrete samples under different damage levels are studied. The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency, and approximate quadratic dependence of the am-plitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well. In addition, the amplitude of the third harmonics is shown to increase with the increase of damage level, which is even higher than that of the second harmonics in samples with higher damage levels. These are three properties of non-classical nonlinear acoustics. The nonlinear parameters increase from 106 to 108 with damage level, and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods. So, this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing (NDT) of concrete and other porous materials.

  19. Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  20. Analysis and design for the second order nonlinear continuous extended states observer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The extended state observer (ESO) is a novel observer for a class of uncertain systems. Since ESO adopts the continuous non-smooth structure, the classical observer design theory is hard to use for ESO analysis. In this note, the self-stable region (SSR) approach, which is a nonlinear synthesis method for nonlinear uncertain systems, will be used for ESO design and its stability analysis. The advantages of the non-smooth structure in ESO for improving the convergence properties and the estimation precision will be shown.

  1. Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD

    CERN Document Server

    Kim, Youngman; Tsukioka, Takuya; Zhang, P M

    2016-01-01

    We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.

  2. The transition from the classical to the quantum regime in nonlinear Landau damping

    CERN Document Server

    Brodin, G; Mendonca, J T

    2015-01-01

    Starting from the Wigner-Moyal equation coupled to Poisson's equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from the classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.

  3. Quantum-Classical correspondence in nonlinear multidimensional systems: enhanced di usion through soliton wave-particles

    KAUST Repository

    Brambila, Danilo

    2012-05-01

    Quantum chaos has emerged in the half of the last century with the notorious problem of scattering of heavy nuclei. Since then, theoreticians have developed powerful techniques to approach disordered quantum systems. In the late 70\\'s, Casati and Chirikov initiated a new field of research by studying the quantum counterpart of classical problems that are known to exhibit chaos. Among the several quantum-classical chaotic systems studied, the kicked rotor stimulated a lot of enthusiasm in the scientific community due to its equivalence to the Anderson tight binding model. This equivalence allows one to map the random Anderson model into a set of fully deterministic equations, making the theoretical analysis of Anderson localization considerably simpler. In the one-dimensional linear regime, it is known that Anderson localization always prevents the diffusion of the momentum. On the other hand, for higher dimensions it was demonstrated that for certain conditions of the disorder parameter, Anderson localized modes can be inhibited, allowing then a phase transition from localized (insulating) to delocalized (metallic) states. In this thesis we will numerically and theoretically investigate the properties of a multidimensional quantum kicked rotor in a nonlinear medium. The presence of nonlinearity is particularly interesting as it raises the possibility of having soliton waves as eigenfunctions of the systems. We keep the generality of our approach by using an adjustable diffusive nonlinearity, which can describe several physical phenomena. By means of Variational Calculus we develop a chaotic map which fully describes the soliton dynamics. The analysis of such a map shows a rich physical scenario that evidences the wave-particle behavior of a soliton. Through the nonlinearity, we trace a correspondence between quantum and classical mechanics, which has no equivalent in linearized systems. Matter waves experiments provide an ideal environment for studying Anderson

  4. Observational Report of the Classical Nova KT Eridani

    CERN Document Server

    Imamura, Kazuyoshi

    2012-01-01

    A report on the spectroscopic and multi-color photometric observations of high galactic latitude classical nova KT Eridani (Nova Eridani 2009) is presented. After 12.2 days from maximum light, broad and prominent emission lines of Balmer series, He I, He II, N II, N III and O I can be seen on the spectra. The FWHM of H${\\alpha}$ line yields an expansion velocity of approximately 3400 km s$^{-1}$. After 279.4 days from maximum light, we can see prominent emission lines of He II and [O III] on the spectrum. Among them, [O III] (4959, 5007) lines show multiple peaks. From the obtained light curve, KT Eri is classified to be a very fast nova, with a decline rate by two magnitude of $6.2 \\pm 0.3$ days and three of $14.3 \\pm 0.7$ days. We tried to estimate the absolute magnitude ($M_V$) using the Maximum Magnitude versus Rate of Decline relationship and distance of KT Eri. The calculated $M_V$ is approximately -9. Accordingly, the distance and galactic height are approximately 7 kpc and 4 kpc, respectively. Hence, ...

  5. The quench map in an integrable classical field theory: nonlinear Schrödinger equation

    Science.gov (United States)

    Caudrelier, Vincent; Doyon, Benjamin

    2016-11-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a quench) in the parameters of an integrable classical field theory, the nonlinear Schrödinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the quench map which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux–Bäcklund transformations, Gelfand–Levitan–Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the quantization of our classical approach to the quantum quench problem.

  6. Observability analysis of nonlinear systems using pseudo-linear transformation

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2013-01-01

    In the linear control theory, the observability Popov-Belevitch-Hautus (PBH) test plays an important role in studying observability along with the observability rank condition and observability Gramian. The observability rank condition and observability Gramian have been extended to nonlinear system

  7. Non-linear dynamics, entanglement and the quantum-classical crossover of two coupled SQUID rings

    CERN Document Server

    Everitt, M J

    2009-01-01

    We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. We note that the motivation for this work is based on a study of a similar system comprising two coupled Duffing oscillators. In that work we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy model. Motivated by a wish to explore more experimentally realisable systems we now extend our work to an analysis of two coupled SQUID rings. We observe some differences in behaviour between the system that is based on SQUID rings rather than on Duffing oscillators. However, we show that the two systems share a common feature. That is, even when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists.

  8. The Quench Map in an Integrable Classical Field Theory: Nonlinear Schr\\"odinger Equation

    CERN Document Server

    Caudrelier, Vincent

    2016-01-01

    We study the non-equilibrium dynamics obtained by an abrupt change (a {\\em quench}) in the parameters of an integrable classical field theory, the nonlinear Schr\\"odinger equation. We first consider explicit one-soliton examples, which we fully describe by solving the direct part of the inverse scattering problem. We then develop some aspects of the general theory using elements of the inverse scattering method. For this purpose, we introduce the {\\em quench map} which acts on the space of scattering data and represents the change of parameter with fixed field configuration (initial condition). We describe some of its analytic properties by implementing a higher level version of the inverse scattering method, and we discuss the applications of Darboux-B\\"acklund transformations, Gelfand-Levitan-Marchenko equations and the Rosales series solution to a related, dual quench problem. Finally, we comment on the interplay between quantum and classical tools around the theme of quenches and on the usefulness of the ...

  9. Nonlinear evolution of multi-helicity neo-classical tearing modes in rotating tokamak plasmas

    Science.gov (United States)

    Wei, Lai; Wang, Zheng-Xiong; Wang, Jialei; Yang, Xuefeng

    2016-10-01

    Plasma perturbations from the core and/or boundary regions of tokamaks can provide seed islands for the excitation of neo-classical tearing modes (NTMs) with negative {{ Δ }\\prime} , where {{ Δ }\\prime} is the linear instability parameter of the classical tearing mode. In this work, by means of reduced magnetohydrodynamic simulations, we numerically investigate the nonlinear evolution of multi-helicity NTMs in rotating tokamak plasmas with these two types of plasma perturbations with different boundary conditions. In the first case of initial plasma perturbations from the core region with a zero boundary condition, the meta-stable property of seed-island triggered NTM with negative {{ Δ }\\prime} is verified in the single helicity simulation. Nevertheless in the multiple helicity simulation, this seed-island triggered NTM with negative {{ Δ }\\prime} can be suppressed by a spontaneous NTM with positive {{ Δ }\\prime} through the competitive interaction between NTMs with different helicities. If a fixed poloidal rotation is taken into account in the first case, two different helicity NTMs could coexist in the saturation stage, which is different qualitatively from the process without plasma rotation. In the second case of initial plasma perturbations from the boundary region with a nonzero boundary condition, as the amplitude of plasma perturbations on the boundary increases, the mode with negative {{ Δ }\\prime} gradually changes from the driven-reconnection state to the NTM state, accompanied by an enhancement of magnetic island width in the single helicity simulation. Nevertheless in the multi-helicity simulation, the spontaneous NTM with positive {{ Δ }\\prime} can make the driven-reconnection triggered NTM with negative {{ Δ }\\prime} transfer from the NTM state back to the driven-reconnection state again. The underlying mechanism behind these transitions is analyzed step by step. Effects of fixed and unfixed poloidal rotations on the nonlinear

  10. Quantum-Classical Correspondence of Dynamical Observables, Quantization and the Time of Arrival Correspondence Problem

    CERN Document Server

    Galapon, E A

    2001-01-01

    We raise the problem of constructing quantum observables that have classical counterparts without quantization. Specifically we seek to define and motivate a solution to the quantum-classical correspondence problem independent from quantization and discuss the general insufficiency of prescriptive quantization, particularly the Weyl quantization. We demonstrate our points by constructing time of arrival operators without quantization and from these recover their classical counterparts.

  11. Observation of Quantum Fingerprinting Beating the Classical Limit.

    Science.gov (United States)

    Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2016-06-17

    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

  12. Observation of Quantum Fingerprinting Beating the Classical Limit

    Science.gov (United States)

    Guan, Jian-Yu; Xu, Feihu; Yin, Hua-Lei; Li, Yuan; Zhang, Wei-Jun; Chen, Si-Jing; Yang, Xiao-Yan; Li, Li; You, Li-Xing; Chen, Teng-Yun; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2016-06-01

    Quantum communication has historically been at the forefront of advancements, from fundamental tests of quantum physics to utilizing the quantum-mechanical properties of physical systems for practical applications. In the field of communication complexity, quantum communication allows the advantage of an exponential reduction in the transmitted information over classical communication to accomplish distributed computational tasks. However, to date, demonstrating this advantage in a practical setting continues to be a central challenge. Here, we report a proof-of-principle experimental demonstration of a quantum fingerprinting protocol that for the first time surpasses the ultimate classical limit to transmitted information. Ultralow noise superconducting single-photon detectors and a stable fiber-based Sagnac interferometer are used to implement a quantum fingerprinting system that is capable of transmitting less information than the classical proven lower bound over 20 km standard telecom fiber for input sizes of up to 2 Gbits. The results pave the way for experimentally exploring the advanced features of quantum communication and open a new window of opportunity for research in communication complexity and testing the foundations of physics.

  13. Killing scalar of non-linear σ-model on G/H realizing the classical exchange algebra

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shogo, E-mail: spsaoya@ipc.shizuoka.ac.jp

    2014-10-07

    The Poisson brackets for non-linear σ-models on G/H are set up on the light-like plane. A quantity which transforms irreducibly by the Killing vectors, called Killing scalar, is constructed in an arbitrary representation of G. It is shown to satisfy the classical exchange algebra.

  14. A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design

    OpenAIRE

    Gong, Qi; Ross, I. Michael; Kang,Wei

    2007-01-01

    Proceedings of the 2007 American Control Conference Marriott Marquis Hotel at Times Square New York City, USA, July 11-13, 2007 As a result of significant progress in pseudospectral methods for real-time dynamic optimization, it has become apparent in recent years that it is possible to present a unified framework for both controller and observer design. In this paper, we present such an approach for nonlinear systems. The method can be applied to a wide variety of nonlinear systems....

  15. Evidence for mass loss from IRAS observations of classical Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.; Butler, C.J.

    1986-04-24

    In order to test hypotheses concerning mass loss from classical Cepheid variables, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids, and that of nonvariable supergiants, in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) catalogue found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their non-pulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10/sup -7/ M solar masses yr/sup -1/ were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  16. Adaptive Observer-Based Fault Estimate for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    ZONG Qun; LIU Wenjing; LIU Li

    2006-01-01

    An approach for adaptive observer-based fault estimate for nonlinear system is proposed.H-infinity theory is applied to analyzing the design method and stable conditions of the adaptive observer,from which both system state and fault can be estimated.It is proved that the fault estimate error is related to the given H-infinity track performance indexes,as well as to the changing rate of the fault and the Lipschitz constant of the nonlinear item.The design steps of the adaptive observer are proposed.The simulation results show that the observer has good performance for fault estimate even when the system includes nonlinear terms,which confirms the effectiveness of the method.

  17. Nonlinear Passive Control and Observer Design for Ships

    Directory of Open Access Journals (Sweden)

    Thor Inge Fossen

    2000-07-01

    Full Text Available Starting with passivity of the ambient water-ship system this article proceeds with nonlinear observer design, design of dynamic ship positioning systems and weather optimal positioning control systems exploiting the passivity properties of the vessel and the surrounding water. The article gives an overview of methods for passive ship control and observer design.

  18. Nonlinear Control and Robust Observer Design for Marine Vehicles

    OpenAIRE

    Kim, Myung-Hyun

    2000-01-01

    A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from the slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertaint...

  19. Evidence for mass loss from IRAS observations of classical Cepheids

    Science.gov (United States)

    Deasy, H.; Butler, C. J.

    1986-04-01

    Hypotheses and evidence regarding mass loss from classical Cepheid variable are considered. Mass loss from such stars is suspected on two grounds. First, it may provide an explanation of the persistent discrepancy between estimates of Cepheid masses based on the theories of stellar pulsation and of stellar evolution (Cox, 1980). Second, theoretical models of pulsating atmospheres (Willson and Bowen, 1985) suggest that a pulsation mechanism may be responsible for causing, or enhancing, mass loss from Cepheids. In order to test these hypotheses, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids and that of nonvariable supergiants in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) Point Source Catalog (1985) found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their nonpulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10 to the -7th solar mass per year were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  20. Observer-based Fault Detection and Isolation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Lootsma, T.F.

    . Then the geometric approach is applied to a nonlinear ship propulsion system benchmark. The calculations and application results are presented in detail to give an illustrative example. The obtained subsystems are considered for the design of nonlinear observers in order to obtain FDI. Additionally, an adaptive...... for the observers designed for the ship propulsion system. Furthermore, it stresses the importance of the time-variant character of the linearization along a trajectory. It leads to a different stability analysis than for linearization at one operation point. Finally, the preliminary concept of (actuator) fault...

  1. Optical nonlinear response function with linear and diagonal quadratic electron-vibration coupling in mixed quantum-classical systems.

    Science.gov (United States)

    Toutounji, Mohamad

    2005-03-22

    While an optical linear response function of linearly and quadratically coupled mixed quantum-classical condensed-phase systems was derived by Toutounji [J. Chem. Phys. 121, 2228 (2004)], the corresponding analytical optical line shape is derived. The respective nonlinear correlation functions are also derived. Model calculations involving photon-echo, pump-probe, and hole-burning signals of model systems with both linear and quadratic coupling are provided. Hole-burning formula of Hayes-Small is compared to that of Mukamel in mixed quantum-classical systems.

  2. Observabilities and reachabilities of nonlinear DEDS and coloring graphs

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From nonlinear discrete event dynamic systems with the applicablebackground of a large-scale digital integrated circuit, a new conception of coloring graphs on the system is advanced, the necessary and sufficient condition of upper-level observability is given, and the necessary and sufficient condition of respective reachability is simplified and improved.

  3. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  4. Induction Motor Flux Estimation using Nonlinear Sliding Observers

    Directory of Open Access Journals (Sweden)

    Hakiki Khalid

    2007-01-01

    Full Text Available A nonlinear sliding flux was proposed for an induction motor. Its dynamic observation errors converge asymptotically to zero, independently from the inputs. The aim of this work was to study the robustness of this observer with respect to the variation of the rotor resistance known to be a crucial parameter for the control. The dynamic performance of this sliding observer was compared to that of Verghese observer via a simulation of an IM driven by U/F control in open loop.

  5. Experimental observations of nonlinear effects of the Lamb waves

    Institute of Scientific and Technical Information of China (English)

    DENG Mingxi; D.C. Price; D.A.Scott

    2004-01-01

    The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.

  6. Switched-Observer-Based Adaptive Neural Control of MIMO Switched Nonlinear Systems With Unknown Control Gains.

    Science.gov (United States)

    Long, Lijun; Zhao, Jun

    2016-05-02

    In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.

  7. Likelihood inference for discretely observed non-linear diffusions

    OpenAIRE

    1998-01-01

    This paper is concerned with the Bayesian estimation of non-linear stochastic differential equations when observations are discretely sampled. The estimation framework relies on the introduction of latent auxiliary data to complete the missing diffusion between each pair of measurements. Tuned Markov chain Monte Carlo (MCMC) methods based on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama discretization scheme, are used to sample the posterior distribution of the lat...

  8. Parameter estimation of a nonlinear magnetic universe from observations

    CERN Document Server

    Montiel, Ariadna; Salzano, Vincenzo

    2014-01-01

    The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian L= \\gamma F^{\\alpha}, F being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance $\\Omega_B$, gives as best fit from the combination of all observational data sets \\Omega_B=0.562^{+0.037}_{-0.038} for the scenario in which \\alpha=-1, \\Omega_B=0.654^{+0.040}_{-0.040} for the scenario with \\alpha=-1/4 and \\Omega_B=0.683^{+0.039}_{-0.043} for the one with \\alpha=-1/8. These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.

  9. Classical Field-Theoretical approach to the non-linear q-Klein-Gordon Equation

    CERN Document Server

    Plastino, A

    2016-01-01

    In the wake of efforts made in [EPL {\\bf 97}, 41001 (2012)], we extend them here by developing a classical field theory (FT)to the q-Klein-Gordon equation advanced in [Phys. Rev. Lett. {\\bf 106}, 140601 (2011)]. This makes it possible to generate a hipotetical conjecture regarding black matter. We also develop the classical field theory for a q-Schrodinger equation, different from the one in [EPL {\\bf 97}, 41001 (2012)], that was deduced in [Phys. Lett. A {\\bf 379}, 2690 (2015)] from the hypergeometric differential equation. Our two classical theories reduce to the usual quantum FT for $q\\rightarrow 1$.

  10. Relation between observability and differential embeddings for nonlinear dynamics

    Science.gov (United States)

    Letellier, Christophe; Aguirre, Luis A.; Maquet, Jean

    2005-06-01

    In the analysis of a scalar time series, which lies on an m -dimensional object, a great number of techniques will start by embedding such a time series in a d -dimensional space, with d>m . Therefore there is a coordinate transformation Φs from the original phase space to the embedded one. The embedding space depends on the observable s(t) . In theory, the main results reached are valid regardless of s(t) . In a number of practical situations, however, the choice of the observable does influence our ability to extract dynamical information from the embedded attractor. This may arise in problems in nonlinear dynamics such as model building, control and synchronization. To some degree, ease of success will depend on the choice of the observable simply because it is related to the observability of the dynamics. In this paper the observability matrix for nonlinear systems, which uses Lie derivatives, is revisited. It is shown that such a matrix can be interpreted as the Jacobian matrix of Φs —the map between the original phase space and the differential embedding induced by the observable—thus establishing a link between observability and embedding theory.

  11. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    Science.gov (United States)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory.

  12. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    Science.gov (United States)

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  13. Quantum-classical correspondence in multimensional nonlinear systems: Anderson localization and "superdiffusive" solitons

    KAUST Repository

    Brambila, Danilo

    2012-01-01

    We have theoretically studied Anderson localization in a 2D+1 nonlinear kicked rotor model. The system shows a very rich dynamical behavior, where the Anderson localization is suppressed and soliton wave-particles undergo a superdiffusive motion.

  14. Multisynchronization of Chaotic Oscillators via Nonlinear Observer Approach

    Directory of Open Access Journals (Sweden)

    Ricardo Aguilar-López

    2014-01-01

    Full Text Available The goal of this work is to synchronize a class of chaotic oscillators in a master-slave scheme, under different initial conditions, considering several slaves systems. The Chen oscillator is employed as a benchmark model and a nonlinear observer is proposed to reach synchronicity between the master and the slaves’ oscillators. The proposed observer contains a proportional and integral form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Numerical experiments were carried out to show the operation of the considered methodology.

  15. Classical Completely Integrable System Generated through Nonlinearization of an Eigenvalue Problem

    Institute of Scientific and Technical Information of China (English)

    LUOMant; LIXiu-li; XIANGMing-sen

    2004-01-01

    Under the Bargmann constrained condition, the spatial part of a new Lax pairof the higher order MkdV equation is nonlinearized to be a completely integrable system(R2N,dp∧dq, H0=1/2F0)(F0=〈Aq,p〉+〈Ap, p〉+〈p,q〉2). While the nonlinearization of the time part leads to its N-involutive system (Fm).

  16. On the geometry of classically integrable two-dimensional non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Mohammedi, N., E-mail: nouri@lmpt.univ-tours.f [Laboratoire de Mathematiques et Physique Theorique (CNRS - UMR 6083), Universite Francois Rabelais de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2010-11-11

    A master equation expressing the zero curvature representation of the equations of motion of a two-dimensional non-linear sigma models is found. The geometrical properties of this equation are outlined. Special attention is paid to those representations possessing a spectral parameter. Furthermore, a closer connection between integrability and T-duality transformations is emphasised. Finally, new integrable non-linear sigma models are found and all their corresponding Lax pairs depend on a spectral parameter.

  17. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  18. A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Jensen, P. B.; Olsen, M. B.; Poulsen, J.;

    1997-01-01

    The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control.......The paper treats a newly developed set of nonlinear observers for advanced spark ignition engine control....

  19. The classical r-matrix method for nonlinear sigma-model

    OpenAIRE

    Sevostyanov, Alexey

    1995-01-01

    The canonical Poisson structure of nonlinear sigma-model is presented as a Lie-Poisson r-matrix bracket on coadjoint orbits. It is shown that the Poisson structure of this model is determined by some `hidden singularities' of the Lax matrix.

  20. Observer-Based Stabilization of Spacecraft Rendezvous with Variable Sampling and Sensor Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhuoshi Li

    2013-01-01

    Full Text Available This paper addresses the observer-based control problem of spacecraft rendezvous with nonuniform sampling period. The relative dynamic model is based on the classical Clohessy-Wiltshire equation, and sensor nonlinearity and sampling are considered together in a unified framework. The purpose of this paper is to perform an observer-based controller synthesis by using sampled and saturated output measurements, such that the resulting closed-loop system is exponentially stable. A time-dependent Lyapunov functional is developed which depends on time and the upper bound of the sampling period and also does not grow along the input update times. The controller design problem is solved in terms of the linear matrix inequality method, and the obtained results are less conservative than using the traditional Lyapunov functionals. Finally, a numerical simulation example is built to show the validity of the developed sampled-data control strategy.

  1. Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Z2n Grading

    Institute of Scientific and Technical Information of China (English)

    KE San-Min; LI Xin-Ying; WANG Chun; YUE Rui-Hong

    2011-01-01

    The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).%The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints.This enables us to show that the conserved charges of the theory are in involution.When n =2,our results coincide with the results given by Magro for the pure spinor description of AdS5 × S5 string theory (when the ghost terms are omitted).Bena,Polchinski and Roiban[1] found an infinite number of non-local classically conserved charges for the Grecn-Schwarz superstring in AdS5 × S5 background.[2] Similar results were obtained for some other strings[3-9] that propagate in AdS space-time,as discussed in Refs.[7 9].Vallilo[10] showed that such charges also exist in the pure-spinor formalism of the superstring in AdS5 × S5.Bianchi and Klǔson[11] gave the current algebra of the pure-spinor superstring.Berkovits[12] proved that the nonlocal charges in the string theory are BRST-invariant and physical.

  2. Investigating observability properties from data in nonlinear dynamics

    Science.gov (United States)

    Aguirre, Luis A.; Letellier, Christophe

    2011-06-01

    Investigation of observability properties of nonlinear dynamical systems aims at giving a hint on how much dynamical information can be retrieved from a system using a certain measuring function. Such an investigation usually requires knowledge of the system equations. This paper addresses the challenging problem of investigating observability properties of a system only from recorded data. From previous studies it is known that phase spaces reconstructed from poor observables are characterized by local sharp pleatings, local strong squeezing of trajectories, and global inhomogeneity. A statistic is then proposed to quantify such properties of poor observability. Such a statistic was computed for a number of bench models for which observability studies had been previously performed. It was found that the statistic proposed in this paper, estimated exclusively from data, correlates generally well with observability results obtained using the system equations. It is possible to arrive at the same order of observability among the state variables using the proposed statistic even in the presence of noise with a standard deviation as high as 10% of the data. The paper includes the application of the proposed statistic to sunspot time series.

  3. Observation of nonlinear resonances in the advanced light source

    Science.gov (United States)

    Robin, D.; Collins, H.; Decking, W.; Portmann, G.; Schachinger, L.; Zholents, A.

    1995-09-01

    Observations of nonlinear resonances in the Advanced Light Source have been made by scanning betatron tunes and observing count rates in a beam-loss radiation monitor placed down stream of a beam scraper. We have found that it is possible to see structural resonances which are unallowed as well as those which are allowed by the ring's natural 12-fold symmetry. By systematically breaking the amount of symmetry we see that the widths of the unallowed resonances grow while the widths of the allowed resonances do not. In this paper we briefly discuss the importance of symmetry and its effect on resonances in the design of the ALS. Next we describe our experimental setup and discuss the performance of the beam loss monitor which we used to view the resonances. We then present scans of the tune space where one can see the presence of the structural resonances and their evolution when the lattice symmetry is systematically broken.

  4. On integration of multidimensional generalizations of classical C- and S-integrable nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zenchuk, A I, E-mail: zenchuk@itp.ac.r [Institute of Problems of Chemical Physics, RAS Acad. Semenov av., 1 Chernogolovka, Moscow region 142432 (Russian Federation)

    2010-06-18

    We develop a new integration technique allowing one to construct a rich manifold of particular solutions to multidimensional generalizations of classical C- and S-integrable partial differential equations (PDEs). Generalizations of (1+1)-dimensional C-integrable and (2+1)-dimensional S-integrable N-wave equations are derived among examples. Examples of multidimensional second-order PDEs are represented as well.

  5. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    Science.gov (United States)

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  6. Observations of Shoaling Nonlinear Internal Waves: Formation of Trapped Cores

    Science.gov (United States)

    Lien, R.; D'Asaro, E. A.; Chang, M.; Tang, T.; Yang, Y.

    2006-12-01

    Large-amplitude nonlinear internal waves (NLIWs) shoaling on the continental slope in the northern South China Sea are observed. Observed NLIWs often reach the breaking limit, the maximum horizontal current velocity exceeding the wave speed, and trapped cores are formed with recirculating fluid. The conjugate flow does not form. The vertical position of the maximum horizontal velocity is displaced from surface to subsurface, via the formation of the trapped core. Trapped-core NLIWs are strongly dissipative and evolve rapidly into trains of NLIWs. The vertical overturning is as large as 75 m, and the turbulence kinetic energy dissipation rate is estimated as O(10^{-5}) W kg-1. We propose that the formation and the evolution of trapped cores catalyze the generation of the trains of NLIWs on the Dongsha plateau often captured by satellite images and by recent field observations. The generation, evolution, fission, dissipation, and energetics of observed trapped-core NLIWs will be discussed and compared with results of numerical models and laboratory experiments.

  7. Classical fluid aspects of nonlinear Schrödinger equations and solitons

    Directory of Open Access Journals (Sweden)

    James G. Gilson

    1987-01-01

    Full Text Available The author extends his alternative theory for Schrödinger quantum mechanics by introducing the idea of energy reference strata over configuration space. It is then shown that the view from various such strata defines, the content of the system of interest and enables a variety of different descriptions of events in the same space time region. Thus according to “the point of view” or energy stratum chosen so the type of Schrödinger equation, linear or otherwise, appropriate to describe the system is determined. A nonlinear information channel between two dimensional fluid action in hyperspace into two dimensional energy hyperspace is shown to exist generally as a background to nonlinear Schrödinger structures. In addition it is shown how soliton solutions of the one dimensional Schrödinger equation are related to two dimensional vortex fields in hyperspace.

  8. Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Martin, Corless

    2004-01-01

    We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.

  9. Non-equilibrium statistical field theory for classical particles: Non-linear structure evolution with first-order interaction

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We calculate the power spectrum of density fluctuations in the statistical non-equilibrium field theory for classical, microscopic degrees of freedom to first order in the interaction potential. We specialise our result to cosmology by choosing appropriate initial conditions and propagators and show that the non-linear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers. The main difference of our approach to ordinary cosmological perturbation theory is that we do not perturb a dynamical equation for the density contrast. Rather, we transport the initial phase-space distribution of a canonical particle ensemble forward in time and extract any collective information from it at the time needed. Since even small perturbations of particle trajectories can lead to large fluctuations in density, our approach allows to reach high density contrast already at first order in the perturbations of the particle...

  10. General classical solutions of nonlinear $\\sigma$-model and pion charge distribution of disoriented chiral condensate

    CERN Document Server

    Huang, Z; Huang, Zheng; Suzuki, Mahiko

    1996-01-01

    We obtain the general analytic solutions of the nonlinear \\sigma-model in 3+1 dimensions as the candidates for the disoriented chiral condensate (DCC). The nonuniformly isospin-orientated solutions are shown to be related to the uniformly oriented ones through the chiral (axial) rotations. We discuss the pion charge distribution arising from these solutions. The distribution dP/df=1/(2\\sqrt{f}) holds for the uniform solutions in general and the nonuniform solutions in the 1+1 boost invariant case. For the nonuniform solution in 1+1 without a boost-invariance and in higher dimensions, the distribution does not hold in the integrated form. However, it is applicable to the pions selected from a small segment in the momentum phase space. We suggest that the nonuniform DCC's may correspond to the mini-Centauro events.

  11. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    Science.gov (United States)

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.

  12. Nonlinear observer to estimate polarization phenomenon in membrane distillation

    Directory of Open Access Journals (Sweden)

    Khoukhi Billal

    2015-01-01

    Full Text Available This paper presents a bi-dimensional dynamic model of Direct Contact Membrane Desalination (DCMD process. Most of the MD configuration processes have been modeled as steady-state one-dimensional systems. Stationary two-dimensional MD models have been considered only in very few studies. In this work, a dynamic model of a DCMD process is developed. The model is implemented using Matlab/Simulink environment. Numerical simulations are conducted for different operational parameters at the module inlets such as the feed and permeate temperature or feed and permeate flow rate. The results are compared with experimental data published in the literature. The work presents also a feed forward control that compensates the possible decrease of the temperature gradient by increasing the flow rate. This work also deals with a development of nonlinear observer to estimate temperature polarization inside the membrane. The observer gives a good profile and longitudinal temperature estimations and shows a good prediction of pure water flux production.

  13. Classical density-functional theory of inhomogeneous water including explicit molecular structure and nonlinear dielectric response.

    Science.gov (United States)

    Lischner, Johannes; Arias, T A

    2010-02-11

    We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.

  14. Classical FEM-BEM coupling methods: nonlinearities, well-posedness, and adaptivity

    Science.gov (United States)

    Aurada, Markus; Feischl, Michael; Führer, Thomas; Karkulik, Michael; Melenk, Jens Markus; Praetorius, Dirk

    2013-04-01

    We consider a (possibly) nonlinear interface problem in 2D and 3D, which is solved by use of various adaptive FEM-BEM coupling strategies, namely the Johnson-Nédélec coupling, the Bielak-MacCamy coupling, and Costabel's symmetric coupling. We provide a framework to prove that the continuous as well as the discrete Galerkin solutions of these coupling methods additionally solve an appropriate operator equation with a Lipschitz continuous and strongly monotone operator. Therefore, the original coupling formulations are well-defined, and the Galerkin solutions are quasi-optimal in the sense of a Céa-type lemma. For the respective Galerkin discretizations with lowest-order polynomials, we provide reliable residual-based error estimators. Together with an estimator reduction property, we prove convergence of the adaptive FEM-BEM coupling methods. A key point for the proof of the estimator reduction are novel inverse-type estimates for the involved boundary integral operators which are advertized. Numerical experiments conclude the work and compare performance and effectivity of the three adaptive coupling procedures in the presence of generic singularities.

  15. Classical defects in higher-dimensional Einstein gravity coupled to nonlinear σ -models

    Science.gov (United States)

    Prasetyo, Ilham; Ramadhan, Handhika S.

    2017-09-01

    We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear σ -model with cosmological constant. The σ -model can be perceived as exterior configuration of a spontaneously-broken SO(D-1) global higher-codimensional "monopole". Here we allow the kinetic term of the σ -model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola-Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For Λ >0 in 4 d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For Λ <0 we only have black hole solutions with one horizon, save for the 4 d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (M_2, dS_2, or AdS_2) with (D-2)-sphere. We study all possible factorized channels.

  16. In situ nonlinear elastic behavior of soil observed by DAET

    Energy Technology Data Exchange (ETDEWEB)

    Larmat, Carene [Los Alamos National Laboratory; Renaud, Guillaume [Eramus Medical Center, Rotterdam, The Netherlands; Rutledge, James T. [EES-17: GEOPHYSICS; Lee, Richard C. [Los Alamos National Laboratory; Guyer, Robert A. [Los Alamos National Laboratory; Johnson, Paul A. [Los Alamos National Laboratory

    2012-07-05

    The key to safe design of critical facilities (strong ground motion in low velocity materials such as soils). Current approaches are predictions from measurements of the elastic non-linear properties of boreholes samples. Need for in-situ, local and complete determination of non-linear properties of soil, rock in response to high-strain motion.

  17. Classic (Nonquantic Algorithm for Observations and Measurements Based on Statistical Strategies of Particles Fields

    Directory of Open Access Journals (Sweden)

    D. Savastru

    2013-01-01

    Full Text Available Our knowledge about surroundings can be achieved by observations and measurements but both are influenced by errors (noise. Therefore one of the first tasks is to try to eliminate the noise by constructing instruments with high accuracy. But any real observed and measured system is characterized by natural limits due to the deterministic nature of the measured information. The present work is dedicated to the identification of these limits. We have analyzed some algorithms for selection and estimation based on statistical hypothesis and we have developed a theoretical method for their validation. A classic (non-quantic algorithm for observations and measurements based on statistical strategies of optical field is presented in detail. A generalized statistical strategy for observations and measurements on the nuclear particles, is based on these results, taking into account the particular type of statistics resulting from the measuring process also.

  18. Adaptive Feedback Linearization Control for Asynchronous Machine with Nonlinear for Natural Dynamic Complete Observer

    Science.gov (United States)

    Bentaallah, Abderrahim; Massoum, Ahmed; Benhamida, Farid; Meroufel, Abdelkader

    2012-03-01

    This paper studies the nonlinear adaptive control of an induction motor with natural dynamic complete nonlinear observer. The aim of this work is to develop a nonlinear control law and adaptive performance for an asynchronous motor with two main objectives: to improve the continuation of trajectories and the stability, robustness to parametric variations and disturbances rejection. This control law will independently control the speed and flux into the machine by restricting supply. A complete nonlinear observer for dynamic nature ensuring closed loop stability of the entire control and observer has been developed. Several simulations have also been carried out to demonstrate system performance.

  19. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    OpenAIRE

    2013-01-01

    A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropria...

  20. Finite size effects in the presence of a chemical potential: A study in the classical nonlinear O(2) sigma model

    Science.gov (United States)

    Banerjee, Debasish; Chandrasekharan, Shailesh

    2010-06-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the “worm algorithm.” Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane.

  1. Stabilization and relative phase effects in a dichromatically driven diatomic Morse molecule: interpretation based on nonlinear classical dynamics.

    Science.gov (United States)

    Constantoudis, Vassilios; Nicolaides, Cleanthes A

    2005-02-22

    The dissociation dynamics of a dichromatically laser-driven diatomic Morse molecule vibrating in the ground state is investigated by applying tools of the nonlinear theory of classical Hamiltonian systems. Emphasis is placed on the role of the relative phase of the two fields, phi. First, it is found that, just like in quantum mechanics, there is dependence of the dissociation probability on phi. Then, it is demonstrated that addition of the second laser leads to suppression of probability (stabilization), when the intensity of the first laser is kept constant just above or below the single laser dissociation threshold. This "chemical bond hardening" diminishes as phi increases. These effects are investigated and interpreted in terms of modifications in phase space topology. Variations of phi as well as of the intensity of the second laser may cause (i) appearance/disappearance of the stability island corresponding to the common resonance with the lowest energy and (ii) deformation and movement of the region of Kolmogorov-Arnold-Moser tori that survive from the undriven system. The latter is the main origin in phase space of stabilization and phi dependence. Finally, it is shown that the use of short laser pulses enhances both effects.

  2. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.

    Science.gov (United States)

    Fink, J M; Göppl, M; Baur, M; Bianchetti, R; Leek, P J; Blais, A; Wallraff, A

    2008-07-17

    The field of cavity quantum electrodynamics (QED), traditionally studied in atomic systems, has gained new momentum by recent reports of quantum optical experiments with solid-state semiconducting and superconducting systems. In cavity QED, the observation of the vacuum Rabi mode splitting is used to investigate the nature of matter-light interaction at a quantum-mechanical level. However, this effect can, at least in principle, be explained classically as the normal mode splitting of two coupled linear oscillators. It has been suggested that an observation of the scaling of the resonant atom-photon coupling strength in the Jaynes-Cummings energy ladder with the square root of photon number n is sufficient to prove that the system is quantum mechanical in nature. Here we report a direct spectroscopic observation of this characteristic quantum nonlinearity. Measuring the photonic degree of freedom of the coupled system, our measurements provide unambiguous spectroscopic evidence for the quantum nature of the resonant atom-field interaction in cavity QED. We explore atom-photon superposition states involving up to two photons, using a spectroscopic pump and probe technique. The experiments have been performed in a circuit QED set-up, in which very strong coupling is realized by the large dipole coupling strength and the long coherence time of a superconducting qubit embedded in a high-quality on-chip microwave cavity. Circuit QED systems also provide a natural quantum interface between flying qubits (photons) and stationary qubits for applications in quantum information processing and communication.

  3. Chains of Quasi-Classical Informations for Bipartite Correlations and the Role of Twin Observables

    CERN Document Server

    Herbut, F

    2002-01-01

    Having the quantum correlations in a general bipartite state in mind, the information accessible by simultaneous measurement on both subsystems is shown never to exceed the information accessible by measurement on one subsystem, which, in turn is proved not to exceed the von Neumann mutual information. A particular pair of (opposite- subsystem) observables are shown to be responsible both for the amount of quasi-classical correlations and for that of the purely quantum entanglement in the pure-state case: the former via simultaneous subsystem measurements, and the latter through the entropy of coherence or of incompatibility, which is defined for the general case. The observables at issue are so-called twin observables. A general definition of the latter is given in terms of their detailed properties.

  4. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation

    CERN Document Server

    Moon, Songky; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2015-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of $0.41\\dot{6}\\eta^2$ for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of $\\eta$ much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained...

  5. Observer Design for a Class of MIMO Nonlinear Systems (Preprint)

    Science.gov (United States)

    2006-06-01

    without control), because it covers an important class of dynamic systems such as the Van der Pol equation and Duffing oscillator [5], [13] — both of...1992. [5] J. Guckenheimer and P. Holmes, Nonlinear oscillations , dynamical systems, and bifurcations of vector fields, Springer, NY, 1983. [6] A

  6. Observation of an octave-spanning supercontinuum in the mid-infrared using ultrafast cascaded nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014....

  7. Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity

    CERN Document Server

    Reyna, Albert S

    2014-01-01

    We present a procedure for nonlinearity management of metal-dielectric composites. Varying the volume fraction occupied by silver nanoparticles suspended in acetone we could cancel the refractive index related to the third-order susceptibility, $\\chi_{eff}^{(3)}$, and the nonlinear refraction behavior was due to the fifth-order susceptibility, $\\chi_{eff}^{(5)}$. Hence, in a cross-phase modulation experiment, we demonstrated for the first time the effect of spatial-modulation- instability due to $\\chi_{eff}^{(5)}$. The results are corroborated with numerical calculations based on a generalized Maxwell-Garnet model.

  8. Classical and relativistic long-term time variations of some observables for transiting exoplanets

    CERN Document Server

    Iorio, Lorenzo

    2010-01-01

    We analytically work out the long-term, i.e. averaged over one orbital revolution, time variations of some direct observable quantities Y induced by classical and general relativistic dynamical perturbations of the two-body pointlike Newtonian acceleration in the case of transiting exoplanets moving along elliptic orbits. More specifically, the observables $Y$ with which we deal are the transit duration, the radial velocity and the time interval between primary and secondary eclipses. The dynamical effects considered are the centrifugal oblateness of both the star and the planet, their tidal bulges mutually raised on each other, a distant third body X, and general relativity (both Schwarzschild and Lense-Thirring). We take into account the effects due to the perturbations of all the Keplerian orbital elements involved in a consistent and uniform way. First, we explicitly compute their instantaneous time variations due to the dynamical effects considered and plug them in the general expression for the instanta...

  9. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Observation of Classical-Quantum Crossover of 1 /f Flux Noise and Its Paramagnetic Temperature Dependence

    Science.gov (United States)

    Quintana, C. M.; Chen, Yu; Sank, D.; Petukhov, A. G.; White, T. C.; Kafri, Dvir; Chiaro, B.; Megrant, A.; Barends, R.; Campbell, B.; Chen, Z.; Dunsworth, A.; Fowler, A. G.; Graff, R.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Shabani, A.; Smelyanskiy, V. N.; Vainsencher, A.; Wenner, J.; Neven, H.; Martinis, John M.

    2017-02-01

    By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around 2 kBT /h ≈1 GHz , allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a 1 /f power law that matches the magnitude of the 1 /f noise near 1 Hz. The antisymmetric component displays a 1 /T dependence below 100 mK, providing dynamical evidence for a paramagnetic environment. Extrapolating the two-sided spectrum predicts the linewidth and reorganization energy of incoherent resonant tunneling between flux qubit wells.

  11. Observer-Based Nonlinear Control of A Torque Motor with Perturbation Estimation

    Institute of Scientific and Technical Information of China (English)

    J Chen; E Prempain; Q H Wu

    2006-01-01

    This paper presents an observer-based nonlinear control method that was developed and implemented to provide accurate tracking control of a limited angle torque motor following a 50Hz reference waveform. The method is based on a robust nonlinear observer, which is used to estimate system states and perturbations and then employ input-output feedback linearization to compensate for the system nonlinearities and uncertainties. The estimation of system states and perturbations allows input-output linearization of the nonlinear system without an accurate mathematical model of nominal plant. The simulation results show that the observer-based nonlinear control method is superior in comparison with the conventional model-based state feedback linearizing controller.

  12. Explanation of the inverse Doppler effect observed in nonlinear transmission lines.

    Science.gov (United States)

    Kozyrev, Alexander B; van der Weide, Daniel W

    2005-05-27

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator.

  13. Primarily nonlinear effects observed in a driven asymmetrical vibrating wire

    Science.gov (United States)

    Hanson, Roger J.; Macomber, H. Kent; Morrison, Andrew C.; Boucher, Matthew A.

    2005-01-01

    The purpose of the work reported here is to further experimentally explore the wide variety of behaviors exhibited by driven vibrating wires, primarily in the nonlinear regime. When the wire is driven near a resonant frequency, it is found that most such behaviors are significantly affected by the splitting of the resonant frequency and by the existence of a ``characteristic'' axis associated with each split frequency. It is shown that frequency splitting decreases with increasing wire tension and can be altered by twisting. Two methods are described for determining the orientation of characteristic axes. Evidence is provided, with a possible explanation, that each axis has the same orientation everywhere along the wire. Frequency response data exhibiting nonlinear generation of transverse motion perpendicular to the driving direction, hysteresis, linear generation of perpendicular motion (sometimes tubular), and generation of motion at harmonics of the driving frequency are exhibited and discussed. Also reported under seemingly unchanging conditions are abrupt large changes in the harmonic content of the motion that sometimes involve large subharmonics and harmonics thereof. Slow transitions from one stable state of vibration to another and quasiperiodic motions are also exhibited. Possible musical significance is discussed. .

  14. Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime

    Directory of Open Access Journals (Sweden)

    Kurosawa Ryuichi

    2014-01-01

    Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.

  15. Classical integrability

    Science.gov (United States)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  16. Swift observations of the 2015 outburst of AG Peg - from slow nova to classical symbiotic outburst

    Science.gov (United States)

    Ramsay, Gavin; Sokoloski, J. L.; Luna, G. J. M.; Nuñez, N. E.

    2016-10-01

    Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In 2015 June, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks - like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between 2015 June and 2016 January. The X-ray flux was markedly variable on a time-scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that accretion discs around white dwarfs with shell burning do not generally produce detectable X-rays (due to Compton-cooling of the boundary layer), the X-rays probably originated via shocks in the ejecta. As the X-ray photoelectric absorption did not vary significantly, the X-ray variability may directly link to the properties of the shocked material. AG Peg's transition from a slow symbiotic nova (which drove the 1850 outburst) to a classical symbiotic star suggests that shell burning in at least some symbiotic stars is residual burning from prior novae.

  17. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H.; Czaplewski, David A.; Shaw, Steven; López, Daniel

    2017-05-01

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  18. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  19. Backstepping design of a Nonlinear Observer for the Rotor Field of an Induction Motor

    DEFF Research Database (Denmark)

    Rasmussen, Henrik

    2000-01-01

    Using backstepping, which is a recursive nonlinear design method, a new approach for the design of flux observers is developed. The resulting scheme leads to a nonlinear full order observer for the amplitude and angle of the field. Assuming motor parameters known the design achieves stability...... with guaranteed region of attraction. Rubustness due to variation of motor parameters is analysed by simulation. The result is compared to the flux estimate used in a conventional field oriented controller Using backstepping, which is a recursive nonlinear design method, a new approach for the design of flux...... observers is developed. The resulting scheme leads to a nonlinear full order observer for the amplitude and angle of the field. Assuming motor parameters known the design achieves stability with guaranteed region of attraction. Rubustness due to variation of motor parameters is analysed by simulation...

  20. Report from LHC MD 1399: Effect of linear coupling on nonlinear observables in the LHC.

    CERN Document Server

    Maclean, Ewen Hamish; Giovannozzi, Massimo; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Simulation work during Run 1 established that linear coupling had a large impact on nonlinear observables such as detuning with amplitude and dynamic aperture. Linear coupling is generally taken to be the largest single source of uncertainty in the modelling of the LHC’s nonlinear single particle dynamics. ThisMD sought to verify that such behaviour, to this point only observed in simulation, translated into the real machine.

  1. Observer-Based Robust Tracking Control for a Class of Switched Nonlinear Cascade Systems

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2013-01-01

    Full Text Available This paper is devoted to robust output feedback tracking control design for a class of switched nonlinear cascade systems. The main goal is to ensure the global input-to-state stable (ISS property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. First, a nonlinear observer is constructed through state transformation to reconstruct the unavailable states, where only one parameter should be determined. Then, by virtue of the nonlinear sliding mode control (SMC, a discontinuous nonlinear output feedback controller is designed using a backstepping like design procedure to ensure the ISS property. Finally, an example is provided to show the effectiveness of the proposed approach.

  2. Observer-based robust control of one-sided Lipschitz nonlinear systems.

    Science.gov (United States)

    Ahmad, Sohaira; Rehan, Muhammad; Hong, Keum-Shik

    2016-11-01

    This paper presents an observer-based controller design for the class of nonlinear systems with time-varying parametric uncertainties and norm-bounded disturbances. The design methodology, for the less conservative one-sided Lipschitz nonlinear systems, involves astute utilization of Young's inequality and several matrix decompositions. A sufficient condition for simultaneous extraction of observer and controller gains is stipulated by a numerically tractable set of convex optimization conditions. The constraints are handled by a nonlinear iterative cone-complementary linearization method in obtaining gain matrices. Further, an observer-based control technique for one-sided Lipschitz nonlinear systems, robust against L2-norm-bounded perturbations, is contrived. The proposed methodology ensures robustness against parametric uncertainties and external perturbations. Simulation examples demonstrating the effectiveness of the proposed methodologies are presented.

  3. Swift observations of the 2015 outburst of AG Peg -- from slow nova to classical symbiotic outburst

    CERN Document Server

    Ramsay, Gavin; Luna, G J M; Nunez, N E

    2016-01-01

    Symbiotic stars often contain white dwarfs with quasi-steady shell burning on their surfaces. However, in most symbiotics, the origin of this burning is unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its second optical outburst since 1850. This recent outburst was of much shorter duration and lower amplitude than the earlier eruption, and it contained multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We report Swift X-ray and UV observations of AG Peg made between June 2015 and January 2016. The X-ray flux was markedly variable on a time scale of days, particularly during four days near optical maximum, when the X-rays became bright and soft. This strong X-ray variability continued for another month, after which the X-rays hardened as the optical flux declined. The UV flux was high throughout the outburst, consistent with quasi-steady shell burning on the white dwarf. Given that a...

  4. Non-Linear Fusion of Observations Provided by Two Sensors

    Directory of Open Access Journals (Sweden)

    Monir Azmani

    2013-07-01

    Full Text Available When we try to make the best estimate of some quantity, the problem of combining results from different experiments is encountered. In multi-sensor data fusion, the problem is seen as combining observations provided by different sensors. Sensors provide observations and information on an unknown quantity, which can differ in precision. We propose a combined estimate that uses prior information. We consider the simpler aspects of the problem, so that two sensors provide an observation of the same quantity. The standard error of the observations is supposed to be known. The prior information is an interval that bounds the parameter of the estimate. We derive the proposed combined estimate methodology, and we show its efficiency in the minimum mean square sense. The proposed combined estimate is assessed using synthetic data, and an application is presented.

  5. ℋ∞ Adaptive observer for nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima

    2016-06-23

    In this paper, an adaptive observer is proposed for the joint estimation of states and parameters of a fractional nonlinear system with external perturbations. The convergence of the proposed observer is derived in terms of linear matrix inequalities (LMIs) by using an indirect Lyapunov method.The proposed ℋ∞ adaptive observer is also robust against Lipschitz additive nonlinear uncertainty. The performance of the observer is illustrated through some examples including the chaotic Lorenz and Lü\\'s systems. © 2016 John Wiley & Sons, Ltd.

  6. STOCHASTIC OPTIMAL VIBRATION CONTROL OF PARTIALLY OBSERVABLE NONLINEAR QUASI HAMILTONIAN SYSTEMS WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Ronghua Huan; Lincong Chen; Weiliang Jin; Weiqiu Zhu

    2009-01-01

    An optimal vibration control strategy for partially observable nonlinear quasi Hamil-tonian systems with actuator saturation is proposed. First, a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged Ito stochas-tic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle, respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control efficiency.

  7. Solution model of nonlinear integral adjustment including different kinds of observing data with different precisions

    Institute of Scientific and Technical Information of China (English)

    郭金运; 陶华学

    2003-01-01

    In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.

  8. Decentralized observers for optimal stabilization of large class of nonlinear interconnected systems

    OpenAIRE

    BEL HAJ FREJ, GHAZI; Thabet, Assem; Boutayeb, Mohamed; Aoun, Mohamed

    2016-01-01

    International audience; This paper focuses on the design of decentralized state observers based on optimal guaranteed cost control for a class of systems which are composed of linear subsystems coupled by non-linear time-varying interconnections. One of the main contributions lies in the use of the differential mean value theorem (DMVT) to simplify the design of estimation and control matrices gains. This has the advantage of introducing a general condition on the nonlinear time-varying inter...

  9. Solving geometrically nonlinear tasks of the statics of hinged-rod systems basing on finite element method in the form of classical mixed method

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2016-02-01

    Full Text Available The most widely used numerical method used in linear calculation of building structures is finite element method in traditional form of displacements. Different software is developed on its basis. Though it is only possible to check the certainty of these numerical solutions, especially of non-linear tasks of engineering structures’ deformation by the coincidence of the results obtained by two different methods. The authors solved geometrically nonlinear task of the static deformation of a flat hinged-rod system consisting of five linear elastic rods undergoing great tension-compression strains. The solution was obtained basing on the finite element method in the form of classical mixed method developed by the authors. The set of all equilibrium states of the system, both stable and unstable, and all the limit points were found. The certainty of the solution was approved by the coincidence of the results obtained by other authors basing on traditional finite element method in displacements.

  10. Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

    Directory of Open Access Journals (Sweden)

    Kyo-Beum Lee

    2009-01-01

    Full Text Available This paper presents a new method to compensate the nonlinearity for matrix converter drives using disturbance observer. The nonlinearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modeled by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for high-performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show that the proposed method using disturbance observer provides good compensating characteristics.

  11. Dynamic neural network-based robust observers for uncertain nonlinear systems.

    Science.gov (United States)

    Dinh, H T; Kamalapurkar, R; Bhasin, S; Dixon, W E

    2014-12-01

    A dynamic neural network (DNN) based robust observer for uncertain nonlinear systems is developed. The observer structure consists of a DNN to estimate the system dynamics on-line, a dynamic filter to estimate the unmeasurable state and a sliding mode feedback term to account for modeling errors and exogenous disturbances. The observed states are proven to asymptotically converge to the system states of high-order uncertain nonlinear systems through Lyapunov-based analysis. Simulations and experiments on a two-link robot manipulator are performed to show the effectiveness of the proposed method in comparison to several other state estimation methods.

  12. Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2009-01-01

    This paper presents a new method to compensate the nonlinearity for matrix converter drives using disturbance observer. The nonlinearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modeled...... by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for highperformance induction motor drives using a 3kW matrix converter system without a speed sensor. Simulation and experimental...... results show that the proposed method using disturbance observer provides good compensating characteristics....

  13. Delay-Dependent Observers for Uncertain Nonlinear Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Dongmei Yan

    2013-05-01

    Full Text Available This paper is concerned with the observer design problem for a class of discrete-time uncertain nonlinear systems with time-varying delay. The nonlinearities are assumed to satisfy global Lipschitz conditions which appear in both the state and measurement equations. The uncertainties are assumed to be time-varying but norm-bounded. Two Luenberger-like observers are proposed. One is delay observer and the other is delay-free observer. The delay observer which has an internal time delay is applicable when the time delay is known. The delay-free observer which does not use delayed information is especially applicable when the time delay is not known explicitly. Delay-dependent conditions for the existences of these two observers are derived based on Lyapunpv functional approach. Based on these conditions, the observer gains are obtained using the cone complementarity linearization algorithm. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

  14. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  15. Nonlinear Site Response Due to Large Ground Acceleration: Observation and Computer Simulation

    Science.gov (United States)

    Noguchi, S.; Furumura, T.; Sasatani, T.

    2009-12-01

    We studied nonlinear site response due to large ground acceleration during the 2003 off-Miyagi Earthquake (Mw7.0) in Japan by means of horizontal-to-vertical spectral ratio analysis of S-wave motion. The results were then confirmed by finite-difference method (FDM) simulation of nonlinear seismic wave propagation. A nonlinear site response is often observed at soft sediment sites, and even at hard bedrock sites which are covered by thin soil layers. Nonlinear site response can be induced by strong ground motion whose peak ground acceleration (PGA) exceeds about 100 cm/s/s, and seriously affects the amplification of high frequency ground motion and PGA. Noguchi and Sasatani (2008) developed an efficient technique for quantitative evaluation of nonlinear site response using the horizontal-to-vertical spectral ratio of S-wave (S-H/V) derived from strong ground motion records, based on Wen et al. (2006). We applied this technique to perform a detailed analysis of the properties of nonlinear site response based on a large amount of data recorded at 132 K-NET and KiK-net strong motion stations in Northern Japan during the off-Miyagi Earthquake. We succeeded in demonstrating a relationship between ground motion level, nonlinear site response and surface soil characteristics. For example, the seismic data recorded at KiK-net IWTH26 showed obvious characteristics of nonlinear site response when the PGA exceeded 100 cm/s/s. As the ground motion level increased, the dominant peak of S-H/V shifted to lower frequency, the high frequency level of S-H/V dropped, and PGA amplification decreased. On the other hand, the records at MYGH03 seemed not to be affected by nonlinear site response even for high ground motion levels in which PGA exceeds 800 cm/s/s. The characteristics of such nonlinear site amplification can be modeled by evaluating Murnaghan constants (e.g. McCall, 1994), which are the third-order elastic constants. In order to explain the observed characteristics of

  16. Observability of nonlinear dynamics: Normalized results and a time-series approach

    Science.gov (United States)

    Aguirre, Luis A.; Bastos, Saulo B.; Alves, Marcela A.; Letellier, Christophe

    2008-03-01

    This paper investigates the observability of nonlinear dynamical systems. Two difficulties associated with previous studies are dealt with. First, a normalized degree observability is defined. This permits the comparison of different systems, which was not generally possible before. Second, a time-series approach is proposed based on omnidirectional nonlinear correlation functions to rank a set of time series of a system in terms of their potential use to reconstruct the original dynamics without requiring the knowledge of the system equations. The two approaches proposed in this paper and a former method were applied to five benchmark systems and an overall agreement of over 92% was found.

  17. Estimating nonlinear mixing effects for arid vegetation scenes with MISR channels and observation directions

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, P.V.; Gerstl, S.A. [Los Alamos National Lab., NM (United States); Asner, G.P. [Univ. of Colorado, Boulder, CO (United States)

    1998-12-01

    A Monte-Carlo ray-trace model has been applied to simulated sparse vegetation desert canopies in an effort to quantify the spectral mixing (both linear and nonlinear) occurring as a result of radiative interactions between vegetation and soil. This work is of interest as NASA is preparing to launch new instruments such as MISR and MODIS. MISR will observe each ground pixel from nine different directions in three visible channels and one near-infrared channel. It is desired to study angular variations in spectral mixing by quantifying the amount of nonlinear spectral mixing occurring in the MISR observing directions.

  18. Snapshot Observation for 2D Classical Lattice Models by Corner Transfer Matrix Renormalization Group

    OpenAIRE

    Ueda, K.; Otani, R.; Nishio, Y; Gendiar, A.; Nishino, T

    2004-01-01

    We report a way of obtaining a spin configuration snapshot, which is one of the representative spin configurations in canonical ensemble, in a finite area of infinite size two-dimensional (2D) classical lattice models. The corner transfer matrix renormalization group (CTMRG), a variant of the density matrix renormalization group (DMRG), is used for the numerical calculation. The matrix product structure of the variational state in CTMRG makes it possible to stochastically fix spins each by ea...

  19. Nonlinear Wave Solutions for the Classical Drinfel′d?Sokolov?Wilson Equation%经典的Drinfel′d?Sokolov?Wilson方程的非线性波解

    Institute of Scientific and Technical Information of China (English)

    温振庶

    2016-01-01

    利用(G′/G)?展开法,构造经典的 Drinfel′d?Sokolov?Wilson方程的新的非线性波解。这些非线性波解分别以双曲函数、三角函数和分式函数的形式表达。结果表明:(G′/G)?展开法是研究数学物理方程的非线性波解的一种有效工具。%We constructed new nonlinear wave solutions for the classical Drinfel′d?Sokolov?Wilson Equation by exploiting (G′/G)?expansion method.These nonlinear wave solutions are expressed in the forms of the hy-perbolic functions,the trigonometric functions and the rational functions.The results show that (G′/G)?ex-pansion method is an efficient tool for studying nonlinear wave solutions of mathematical physics equations.

  20. Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays

    Institute of Scientific and Technical Information of China (English)

    Wei-Sheng Chen; Rui-Hong Li; Jing Li

    2010-01-01

    An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.

  1. On the combination of nonlinear contracting observers and UGES controllers for output feedback

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Fossen, Thor I.

    The paper presents a systematic method for design of observer-controllers in cascade. Uniform global exponential stability (UGES) of the resulting system is proven by assuming that the feedback control system is UGES and that the nonlinear observer can be designed using contracting analysis....... The relationship between a globally contracting and UGES observer is derived using Lyapunov analysis and a line integral which follows from Taylor's theorem....

  2. On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed.The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  3. Science Letters:On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  4. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1994-01-01

    In the existing `direct¿ white noise theory of nonlinear filtering, the state process is still modelled as a Markov process satisfying an Itô stochastic differential equation, while a `finitely additive¿ white noise is used to model the observation noise. We remove this asymmetry by modelling the st

  5. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1992-01-01

    In the direct white noise theory of nonlinear filtering, the state process is still modeled as a Markov process satisfying an Ito stochastic differential equation, while a finitely additive white noise is used to model the observation noise. In the present work, this asymmetry is removed by modeling

  6. A Nonlinear Observer for Estimating Transverse Stability Parameters of Marine Surface Vessels

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Perez, Tristan

    2011-01-01

    This paper presents a nonlinear observer for estimating parameters associated with the restoring term of a roll motion model of a marine vessel in longitudinal waves. Changes in restoring, also referred to as transverse stability, can be the result of changes in the vessel’s centre of gravity due...

  7. Equivalence between different classical treatments of the O(N) nonlinear sigma model and their functional Schrodinger equations

    OpenAIRE

    Deriglazov, A. A.; Oliveira, W.; Oliveira-Neto,G.

    2002-01-01

    In this work we derive the Hamiltonian formalism of the O(N) non-linear sigma model in its original version as a second-class constrained field theory and then as a first-class constrained field theory. We treat the model as a second-class constrained field theory by two different methods: the unconstrained and the Dirac second-class formalisms. We show that the Hamiltonians for all these versions of the model are equivalent. Then, for a particular factor-ordering choice, we write the functio...

  8. How the choice of the observable may influence the analysis of nonlinear dynamical systems

    Science.gov (United States)

    Letellier, Christophe; Aguirre, Luis; Maquet, Jean

    2006-08-01

    A great number of techniques developed for studying nonlinear dynamical systems start with the embedding, in a d-dimensional space, of a scalar time series, lying on an m-dimensional object, d > m. In general, the main results reached at are valid regardless of the observable chosen. In a number of practical situations, however, the choice of the observable does influence our ability to extract dynamical information from the embedded attractor. This may arise in standard problems in nonlinear dynamics such as model building, control theory and synchronization. To some degree, ease of success will thus depend on the choice of observable simply because it is related to the observability of the dynamics. Investigating the Rössler system, we show that the observability matrix is related to the map between the original phase space and the differential embedding induced by the observable. This paper investigates a form for the observability matrix for nonlinear system which is more general than the previous one used. The problem of controllability is also mentioned.

  9. Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities

    CERN Document Server

    Puckett, Matthew W; Lin, Hung-Hsi; Yang, Muhan; Vallini, Felipe; Fainman, Yeshaiahu

    2016-01-01

    We present experimental results on the observation of a bulk second-order nonlinear susceptibility derived from both free-space and integrated measurements in silicon nitride. Phase-matching is achieved through dispersion engineering of the waveguide cross-section, independently revealing multiple components of the nonlinear susceptibility, namely X(2)yyy and X(2)xxy. Additionally, we show how the generated second-harmonic signal may be actively tuned through the application of bias voltages across silicon nitride. The nonlinear material properties measured here are anticipated to allow for the practical realization of new nanophotonic devices in CMOS-compatible silicon nitride waveguides, adding to their viability for telecommunication, data communication, and optical signal processing applications.

  10. Observed-Based Adaptive Fuzzy Tracking Control for Switched Nonlinear Systems With Dead-Zone.

    Science.gov (United States)

    Tong, Shaocheng; Sui, Shuai; Li, Yongming

    2015-12-01

    In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

  11. Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics

    Institute of Scientific and Technical Information of China (English)

    潘子刚; 刘允刚; 施颂椒

    2001-01-01

    In this paper, we study the problem of output feedback stabilization for stochastic nonlinear systems. We consider a class of stochastic nonlinear systems in observer canonical form with stable zero-dynamics. We introduce a sequence of state transformations that transform the system into a lower triangular structure that is amenable for integrator backstepping design. Then we design the output-feedback controller and prove that the closed-loop system is bounded in probability. Furthermore, when the disturbance vector field vanishes at the origin, the closed-loop system is asymptotically stable in the large. With special care, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.

  12. A new method for observing the running states of a single-variable nonlinear system.

    Science.gov (United States)

    Meng, Yu; Chen, Hong; Chen, Cheng

    2015-03-01

    In order to timely grasp a single variable nonlinear system running states, a new method called Scatter Point method is put forward in this paper. It can be used to observe or monitor the running states of a single variable nonlinear system in real-time. In this paper, the definition of the method is given at first, and then its working principle is expounded theoretically, after this, some physical experiments based on Chua's nonlinear system are conducted. At the same time, many scatter point graphs are measured by a general analog oscilloscope. The motion, number, and distribution of these scatter points shown on the oscilloscope screen can directly reflect the current states of the tested system. The experimental results further confirm that the method is effective and practical, in which the system running states are not easily lost. In addition, this method is not only suitable for single variable systems but also for multivariable systems.

  13. Performance comparison of attitude determination, attitude estimation, and nonlinear observers algorithms

    Science.gov (United States)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents a brief synthesis and useful performance analysis of different attitude filtering algorithms (attitude determination algorithms, attitude estimation algorithms, and nonlinear observers) applied to Low Earth Orbit Satellite in terms of accuracy, convergence time, amount of memory, and computation time. This latter is calculated in two ways, using a personal computer and also using On-board computer 750 (OBC 750) that is being used in many SSTL Earth observation missions. The use of this comparative study could be an aided design tool to the designer to choose from an attitude determination or attitude estimation or attitude observer algorithms. The simulation results clearly indicate that the nonlinear Observer is the more logical choice.

  14. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.

  15. A nonlinear updated gain observer for MIMO systems: Design, analysis and application to marine surface vessels.

    Science.gov (United States)

    Yi, Bowen; Zhang, Weidong

    2016-09-01

    In this paper, the state estimation problem of a class of multi-input-multi-output nonlinear systems with measurement noise is studied. We develop an extended updated-gain high gain observer to make a tradeoff between reconstruction speed and measurement noise attenuation. The designed observer, whose gains are driven by nonlinear functions of the available output estimation errors, has the ability to reconstruct system states quickly and reduce the effect of measurement noise. We establish that, if there exists a state feedback law exponentially stabilizing the system with respect to an invariant set, the estimations and estimation errors are bounded. Besides, the trajectories of state- and output-feedback (based on the proposed observer) are sufficiently close, namely performance recovery. The observer performance is illustrated by various examples in marine control, including a case of transformation into the predefined structure.

  16. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  17. Classical mechanics without determinism

    OpenAIRE

    Nikolic, H.

    2005-01-01

    Classical statistical particle mechanics in the configuration space can be represented by a nonlinear Schrodinger equation. Even without assuming the existence of deterministic particle trajectories, the resulting quantum-like statistical interpretation is sufficient to predict all measurable results of classical mechanics. In the classical case, the wave function that satisfies a linear equation is positive, which is the main source of the fundamental difference between classical and quantum...

  18. Interconnected delay and state observer for nonlinear systems with time-varying input delay

    OpenAIRE

    Léchappé, V; Moulay, Emmanuel; Plestan, F; Glumineau, A.

    2016-01-01

    International audience; This work presents a general framework to estimate both state and delay thanks to two interconnected observers. This scheme can be applied to a large class of nonlinear systems with time-varying input delay. In order to illustrate this approach, a new delay observer based on an optimization technique is proposed. Theoretical results are illustrated and compared with existing works in simulation.

  19. Nonlinear Observer Design of the Generalized Rössler Hyperchaotic Systems via DIL Methodology

    Directory of Open Access Journals (Sweden)

    Yeong-Jeu Sun

    2012-01-01

    Full Text Available The generalized Rössler hyperchaotic systems are presented, and the state observation problem of such systems is investigated. Based on the differential inequality with Lyapunov methodology (DIL methodology, a nonlinear observer design for the generalized Rössler hyperchaotic systems is developed to guarantee the global exponential stability of the resulting error system. Meanwhile, the guaranteed exponential decay rate can be accurately estimated. Finally, numerical simulations are provided to illustrate the feasibility and effectiveness of proposed approach.

  20. From Continuous-Time Design to Sampled-Data Design of Nonlinear Observers

    OpenAIRE

    Karafyllis, Iasson; Kravaris, Costas

    2008-01-01

    In this work, a sampled-data nonlinear observer is designed using a continuous-time design coupled with an inter-sample output predictor. The proposed sampled-data observer is a hybrid system. It is shown that under certain conditions, the robustness properties of the continuous-time design are inherited by the sampled-data design, as long as the sampling period is not too large. The approach is applied to linear systems and to triangular globally Lipschitz systems.

  1. Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators

    KAUST Repository

    Luo, Xiaodong

    2014-10-01

    The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.

  2. Non-equilibrium statistical field theory for classical particles: Linear and mildly non-linear evolution of cosmological density power spectra

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...

  3. Observer-based fault-tolerant control for a class of nonlinear networked control systems

    Science.gov (United States)

    Mahmoud, M. S.; Memon, A. M.; Shi, Peng

    2014-08-01

    This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.

  4. Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle

    Directory of Open Access Journals (Sweden)

    Teresa D'Aprile

    2000-11-01

    Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.

  5. General classical solutions of the nonlinear {sigma} model and the pion charge distribution of disoriented chiral condensate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z. [Department of Physics, University of Arizona, Tucson, Arizona 85741 (United States); Suzuki, M. [Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)

    1996-01-01

    We obtain the general solutions of the nonlinear {sigma} model in 3+1 dimensions as the candidates for the disoriented chiral condensate (DCC). The nonuniformly isospin-oriented solutions are shown to be related to the uniformly oriented ones through the chiral (axial) rotations. We discuss the pion charge distribution arising from these solutions. The distribution {ital dP}/{ital d}{ital f}=1/(2 {radical}{ital f} ) holds for the uniform solutions in general and the nonuniform solutions in the 1+1 boost-invariant case. For the nonuniform solution in 1+1 without boost invariance and in higher dimensions, the distribution does not hold in the integrated form. However, it is applicable to the pions selected from a small segment in the momentum phase space. We suggest that the nonuniform DCC{close_quote}s may correspond to the mini-Centauro events. {copyright} {ital 1996 The American Physical Society.}

  6. Soft Sensor for Inputs and Parameters Using Nonlinear Singular State Observer in Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    许锋; 汪晔晔; 罗雄麟

    2013-01-01

    Chemical processes are usually nonlinear singular systems. In this study, a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes, which are augmented as state variables. Based on the observability of the singular system, this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters. When the observability is satisfied, the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer. The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation. With the catalyst circulation rate as the only unknown input without model error, one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst cir-culation rate. However, when uncertain model parameters also exist, additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.

  7. Observations on non-classical behavior of solid 4He with compound torsional oscillator

    Science.gov (United States)

    Keiderling, M. C.; Aoki, Y.; Kojima, H.

    2009-02-01

    The response of oscillating hcp solid 4He samples was studied with a unique compound torsional oscillator a dummy mass and a sample (cylindrical or annular) container connected by two torsion rods. Identical solid sample could be probed within the same apparatus at two different frequencies (~ 0.5 and 1.2 kHz) separately or simultaneously. The apparent onset of the non-classical rotational inertia (NCRI) occurred at a higher temperature in the higher frequency mode. The peak in dissipation of the higher mode also occurred at higher temperature. Surprisingly, the mechanical dissipation was significantly greater in the lower mode. When the lower mode was driven at high levels to induce "critical state" in the sample and the higher mode was simultaneously driven at a low level for probing, the critical state seen in the lower mode did not entirely appear. Conversely, if a critical state was induced by the higher mode, it also did not appear in the lower mode. These preliminary results are contrary to the simple expectation from identifying the critical state as indication of suppressed superfluid density.

  8. 分子高激发振动态的经典非线性性质%The classical nonlinear properties of molecular highly excited vibration

    Institute of Scientific and Technical Information of China (English)

    吴国祯

    2011-01-01

    The concepts of classical nonlinear dynamics are employed to interpret the spectroscopic properties of the molecular highly excited vibration. These concepts include the Morse oscillator, the pendulum dynamics, chaos and the overlapping of resonances leading to chaos. The relations of resonance, constant of motion and the basic dynamical unit to the pendulum dynamics are stressed. An algebraic Hamiltonian in the coset space is employed for the dynamical analysis from which the dynamical potential can be easily obtained. The dynamical potential is closely related to the classical fixed points in which the quantized levels are embedded in various quantal environments.Localized modes are easily identified in various systems which share similar dynamical potentials. The dissociation of DCO radical is finally interpreted by these concepts from the classical nonlinear dynamics.%该文阐述如何运用经典非线性力学的概念,来理解分子高激发振动态的谱学性质.内容包括:莫尔斯振子,单摆的动力学和共振的关系,力学体系的构成单元是单摆,一个共振对应于一个守恒量,混沌,共振的重叠导致混沌的产生等.我们的出发点是运用二次量子化算子构成的代数哈密顿量,经由海森伯对应而得到的陪集空间上的动力学体系.从此哈密顿量,可以得到动力学势.而动力学势和经典的不动点关系密切,并且量子态就处在由动力学势所包围,分成的几个量子环境中.从动力学势,可以依据它的对称性,方便推得局域模式的存在,最后我们利用这些非线性力学的概念,来分析DCO分子高激发振动态的解离问题.

  9. Nonlinear Reduced-Order Observer-Based Predictive Control for Diving of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Xuliang Yao

    2017-01-01

    Full Text Available The attitude control and depth tracking issue of autonomous underwater vehicle (AUV are addressed in this paper. By introducing a nonsingular coordinate transformation, a novel nonlinear reduced-order observer (NROO is presented to achieve an accurate estimation of AUV’s state variables. A discrete-time model predictive control with nonlinear model online linearization (MPC-NMOL is applied to enhance the attitude control and depth tracking performance of AUV considering the wave disturbance near surface. In AUV longitudinal control simulation, the comparisons have been presented between NROO and full-order observer (FOO and also between MPC-NMOL and traditional NMPC. Simulation results show the effectiveness of the proposed method.

  10. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    Science.gov (United States)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  11. Nonlinear Robust Control of a Hypersonic Flight Vehicle Using Fuzzy Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Lei Zhengdong

    2013-01-01

    Full Text Available This paper is concerned with a novel tracking controller design for a hypersonic flight vehicle in complex and volatile environment. The attitude control model is challengingly constructed with multivariate uncertainties and external disturbances, such as structure dynamic and stochastic wind disturbance. In order to resist the influence of uncertainties and disturbances on the flight control system, nonlinear disturbance observer is introduced to estimate them. Moreover, for the sake of high accuracy and sensitivity, fuzzy theory is adopted to improve the performance of the nonlinear disturbance observer. After the total disturbance is eliminated by dynamic inversion method, a cascade system is obtained and then stabilized by a sliding-mode controller. Finally, simulation results show that the strong robust controller achieves excellent performance when the closed-loop control system is influenced by mass uncertainties and external disturbances.

  12. Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    LIU Yungang; ZHANG Jifeng

    2004-01-01

    A minimal-order observer and output-feedback stabilization control are given for single-input multi-output stochastic nonlinear systems with unobservable states, unmodelled dynamics and stochastic disturbances. Based on the observer designed, the estimates of all observable states of the system are given, and the convergence of the estimation errors are analyzed. In addition, by using the integrator backstepping approach,an output-feedback stabilization control is constructively designed, and sufficient conditions are obtained under which the closed-loop system is asymptotically stable in the large or bounded in probability, respectively.

  13. Nonlinear observer for synchronization of chaotic systems with application to secure data transmission

    Science.gov (United States)

    Aguilar-López, Ricardo; Martínez-Guerra, Rafael; Perez-Pinacho, Claudia A.

    2014-06-01

    The main issue of this work is related with the design of a class of nonlinear observer in order to synchronize chaotic dynamical systems in a master-slave scheme, considering different initial conditions. The oscillator of Chen is proposed as a benchmark model and a bounded-type observer is proposed to reach synchronicity between both two chaotic systems. The proposed observer contains a proportional and sigmoid form of a bounded function of the synchronization error in order to provide asymptotic synchronization with a satisfactory performance. Some numerical simulations were carrying out in order to show the operation of the proposed methodology, with possible applications to secure data communications issues.

  14. Science-Grade Observing Systems as Process Observatories: Mapping and Understanding Nonlinearity and Multiscale Memory with Models and Observations

    Science.gov (United States)

    Barros, A. P.; Wilson, A. M.; Miller, D. K.; Tao, J.; Genereux, D. P.; Prat, O.; Petersen, W. A.; Brunsell, N. A.; Petters, M. D.; Duan, Y.

    2015-12-01

    Using the planet as a study domain and collecting observations over unprecedented ranges of spatial and temporal scales, NASA's EOS (Earth Observing System) program was an agent of transformational change in Earth Sciences over the last thirty years. The remarkable space-time organization and variability of atmospheric and terrestrial moist processes that emerged from the analysis of comprehensive satellite observations provided much impetus to expand the scope of land-atmosphere interaction studies in Hydrology and Hydrometeorology. Consequently, input and output terms in the mass and energy balance equations evolved from being treated as fluxes that can be used as boundary conditions, or forcing, to being viewed as dynamic processes of a coupled system interacting at multiple scales. Measurements of states or fluxes are most useful if together they map, reveal and/or constrain the underlying physical processes and their interactions. This can only be accomplished through an integrated observing system designed to capture the coupled physics, including nonlinear feedbacks and tipping points. Here, we first review and synthesize lessons learned from hydrometeorology studies in the Southern Appalachians and in the Southern Great Plains using both ground-based and satellite observations, physical models and data-assimilation systems. We will specifically focus on mapping and understanding nonlinearity and multiscale memory of rainfall-runoff processes in mountainous regions. It will be shown that beyond technical rigor, variety, quantity and duration of measurements, the utility of observing systems is determined by their interpretive value in the context of physical models to describe the linkages among different observations. Second, we propose a framework for designing science-grade and science-minded process-oriented integrated observing and modeling platforms for hydrometeorological studies.

  15. Energetics of high-speed running: integrating classical theory and contemporary observations.

    Science.gov (United States)

    Weyand, Peter G; Bundle, Matthew W

    2005-04-01

    We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.

  16. Runge-Kutta model-based nonlinear observer for synchronization and control of chaotic systems.

    Science.gov (United States)

    Beyhan, Selami

    2013-07-01

    This paper proposes a novel nonlinear gradient-based observer for synchronization and observer-based control of chaotic systems. The model is based on a Runge-Kutta model of the chaotic system where the evolution of the states or parameters is derived based on the error-square minimization. The stability and convergence conditions of observer and control methods are analyzed using a Lyapunov stability approach. In numerical simulations, the proposed observer and well-known sliding-mode observer are compared for the synchronization of a Lü chaotic system and observer-based stabilization of a Chen chaotic system. The noisy case for synchronization and parameter uncertainty case for stabilization are also considered for both observer-based methods. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Observation of Anticorrelation with Classical Light in a Linear Optical System

    CERN Document Server

    Liu, Jianbin; Li, Fu-Li; Xu, Zhuo

    2013-01-01

    Two-photon anticorrelation is observed when laser and pseudothermal light beams are incident to the two input ports of a Hong-Ou-Mandel interferometer, respectively. The spatial second-order interference pattern of laser and pseudothermal light beams is reported. Temporal Hong-Ou-Mandel dip is also observed when these two detectors are at the symmetrical positions. These results are helpful to understand the physics behind the second-order interference of light.

  18. Swift X-Ray Observations of Classical Novae. II. The Super Soft Source sample

    CERN Document Server

    Schwarz, Greg J; Osborne, J P; Page, K L; Evans, P A; Beardmore, A P; Walter, Frederick M; Helton, L Andrew; Woodward, Charles E; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J

    2011-01-01

    The Swift GRB satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the XRT (0.3-10 keV) X-ray instrument count rates and the UVOT (1700-8000 Angstroms) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with super soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly v...

  19. Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yinhui Zhang

    2015-01-01

    Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.

  20. Nonlinear Adaptive Descriptor Observer for the Joint States and Parameters Estimation

    KAUST Repository

    2016-08-29

    In this note, the joint state and parameters estimation problem for nonlinear multi-input multi-output descriptor systems is considered. Asymptotic convergence of the adaptive descriptor observer is established by a sufficient set of linear matrix inequalities for the noise-free systems. The noise corrupted systems are also considered and it is shown that the state and parameters estimation errors are bounded for bounded noises. In addition, if the noises are bounded and have zero mean, then the estimation errors asymptotically converge to zero in the mean. The performance of the proposed adaptive observer is illustrated by a numerical example.

  1. Impulsive observers with variable update intervals for Lipschitz nonlinear time-delay systems

    Science.gov (United States)

    Chen, Wu-Hua; Li, Dan-Xia; Lu, Xiaomei

    2013-10-01

    This article is concerned with the design of impulsive observers with variable update intervals for Lipschitz nonlinear systems with delays in state. Discontinuous Lyapunov function/funtional approaches are developed to analyse the stability of error dynamics. Delay-independent sufficient conditions for uniform exponential stability of the error dynamics over variable update intervals are derived in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, the observer gain matrix can be solved numerically with an LMI-based optimisation algorithm. Numerical examples are provided to show the efficiency of the proposed approach.

  2. Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models

    Science.gov (United States)

    Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.

    1997-01-01

    Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.

  3. Understanding EROS2 observations toward the spiral arms within a classical Galactic model framework

    Science.gov (United States)

    Moniez, M.; Sajadian, S.; Karami, M.; Rahvar, S.; Ansari, R.

    2017-08-01

    Aims: EROS (Expérience de Recherche d'Objets Sombres) has searched for microlensing toward four directions in the Galactic plane away from the Galactic center. The interpretation of the catalog optical depth is complicated by the spread of the source distance distribution. We compare the EROS microlensing observations with Galactic models (including the Besançon model), tuned to fit the EROS source catalogs, and take into account all observational data such as the microlensing optical depth, the Einstein crossing durations, and the color and magnitude distributions of the catalogued stars. Methods: We simulated EROS-like source catalogs using the HIgh-Precision PARallax COllecting Satellite (Hipparcos) database, the Galactic mass distribution, and an interstellar extinction table. Taking into account the EROS star detection efficiency, we were able to produce simulated color-magnitude diagrams that fit the observed diagrams. This allows us to estimate average microlensing optical depths and event durations that are directly comparable with the measured values. Results: Both the Besançon model and our Galactic model allow us to fully understand the EROS color-magnitude data. The average optical depths and mean event durations calculated from these models are in reasonable agreement with the observations. Varying the Galactic structure parameters through simulation, we were also able to deduce contraints on the kinematics of the disk, the disk stellar mass function (at a few kpc distance from the Sun), and the maximum contribution of a thick disk of compact objects in the Galactic plane (Mthickcompetitive constraints. Conclusions: Our simulation gives a better understanding of the lens and source spatial distributions in the microlensing events. The goodness of a global fit taking into account all the observables (from the color-magnitude diagrams and microlensing observations) shows the validity of the Galactic models. Our tests with the parameters excursions

  4. Observation of optical-fiber Kerr nonlinearity at the single-photon level

    CERN Document Server

    Matsuda, Nobuyuki; Mitsumori, Yasuyoshi; Kosaka, Hideo; Edamatsu, Keiichi; 10.1038/nphoton.2008.292

    2012-01-01

    Optical fibers have been enabling numerous distinguished applications involving the operation and generation of light, such as soliton transmission, light amplification, all-optical switching and supercontinuum generation. The active function of optical fibers in the quantum regime is expected to be applicable to ultralow-power all-optical signal processing and quantum information processing. Here we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fiber. Taking advantage of large nonlinearity and managed dispersion of a photonic crystal fiber, we have successfully measured very small (10^(-7) ~ 10^(-8)) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. In spite of its tininess, the phase shift was measurable using much (~10^6 times) stronger coherent probe pulses than the pump pulses. We discuss the feasibility of quantum information processing using optical fibers, taking into...

  5. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths.

    Science.gov (United States)

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng; Wang, Zheng; Subbaraman, Harish; Wang, Yaguo; Jia, Baohua; Chen, Ray T

    2017-08-29

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here we report the observation of ultrahigh third-order nonlinearity about 0.45 cm(2)/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantly advance the performance of all-optical switches.

  6. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009-1231 (United States); Ness, Jan-Uwe [XMM-Newton Science Operations Centre, ESAC, Apartado 78, 28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Walter, Frederick M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Andrew Helton, L. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N211-3, Moffett Field, CA 94035 (United States); Woodward, Charles E. [Minnesota Institute of Astrophysics, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Bode, Mike [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Starrfield, Sumner [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Drake, Jeremy J., E-mail: Greg.Schwarz@aas.org [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 3, Cambridge, MA 02138 (United States)

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  7. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold rydberg atoms

    DEFF Research Database (Denmark)

    Parigi, V.; Bimbard, E.; Stanojevic, J.

    2012-01-01

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within ...

  8. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold Rydberg atoms.

    Science.gov (United States)

    Parigi, Valentina; Bimbard, Erwan; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe

    2012-12-07

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.

  9. Mid-infrared Spectroscopic Observations of the Dust-forming Classical Nova V2676 Oph

    Science.gov (United States)

    Kawakita, Hideyo; Ootsubo, Takafumi; Arai, Akira; Shinnaka, Yoshiharu; Nagashima, Masayoshi

    2017-02-01

    The dust-forming nova V2676 Oph is unique in that it was the first nova to provide evidence of C2 and CN molecules during its near-maximum phase and evidence of CO molecules during its early decline phase. Observations of this nova have revealed the slow evolution of its lightcurves and have also shown low isotopic ratios of carbon (12C/13C) and nitrogen (14N/15N) in its envelope. These behaviors indicate that the white dwarf (WD) star hosting V2676 Oph is a CO-rich WD rather than an ONe-rich WD (typically larger in mass than the former). We performed mid-infrared spectroscopic and photometric observations of V2676 Oph in 2013 and 2014 (respectively 452 and 782 days after its discovery). No significant [Ne ii] emission at 12.8 μm was detected at either epoch. These provided evidence for a CO-rich WD star hosting V2676 Oph. Both carbon-rich and oxygen-rich grains were detected in addition to an unidentified infrared feature at 11.4 μm originating from polycyclic aromatic hydrocarbon molecules or hydrogenated amorphous carbon grains in the envelope of V2676 Oph. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. Design of a Polynomial Fuzzy Observer Controller With Sampled-Output Measurements for Nonlinear Systems Considering Unmeasurable Premise Variables

    OpenAIRE

    Liu, Chuang; Lam, H. K.

    2015-01-01

    In this paper, we propose a polynomial fuzzy observer controller for nonlinear systems, where the design is achieved through the stability analysis of polynomial-fuzzy-model-based (PFMB) observer-control system. The polynomial fuzzy observer estimates the system states using estimated premise variables. The estimated states are then employed by the polynomial fuzzy controller for the feedback control of nonlinear systems represented by the polynomial fuzzy model. The system stability of the P...

  11. An approach to design semi-global finite-time observers for a class of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    DENG XiuCheng; SHEN YanJun

    2009-01-01

    In this paper, the problem of designing semi-global finite-time observers for a class of nonlinear systems is investigated. Based on the theories of finite-time stability, an approach to designing semi-global finite-time observers for the nonlinear systems is presented. It has been shown that, after the finite time, the designed finite-time observer realizes the accurate reconstruction of the states of the nonlinear system. A numerical example is given to illustrate the effectiveness and validity of the method.

  12. ℋ− adaptive observer design and parameter identification for a class of nonlinear fractional-order systems

    KAUST Repository

    Ndoye, Ibrahima

    2014-12-01

    In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown parameters are also adapted to their values. Sufficient conditions for the stability of the adaptive observer error dynamics are derived in terms of linear matrix inequalities. Simulation results for chaotic Lorenz systems with unknown parameters in the presence of external perturbations are given to illustrate the effectiveness of our proposed approach. © 2014 IEEE.

  13. On understanding the relationship between structure in the potential surface and observables in classical dynamics: A functional sensitivity analysis approach

    Science.gov (United States)

    Judson, Richard S.; Rabitz, Herschel

    1987-04-01

    The relationship between structure in the potential surface and classical mechanical observables is examined by means of functional sensitivity analysis. Functional sensitivities provide maps of the potential surface, highlighting those regions that play the greatest role in determining the behavior of observables. A set of differential equations for the sensitivities of the trajectory components are derived. These are then solved using a Green's function method. It is found that the sensitivities become singular at the trajectory turning points with the singularities going as η-3/2, with η being the distance from the nearest turning point. The sensitivities are zero outside of the energetically and dynamically allowed region of phase space. A second set of equations is derived from which the sensitivities of observables can be directly calculated. An adjoint Green's function technique is employed, providing an efficient method for numerically calculating these quantities. Sensitivity maps are presented for a simple collinear atom-diatom inelastic scattering problem and for two Henon-Heiles type Hamiltonians modeling intramolecular processes. It is found that the positions of the trajectory caustics in the bound state problem determine regions of the highest potential surface sensitivities. In the scattering problem (which is impulsive, so that ``sticky'' collisions did not occur), the positions of the turning points of the individual trajectory components determine the regions of high sensitivity. In both cases, these lines of singularities are superimposed on a rich background structure. Most interesting is the appearance of classical interference effects. The interference features in the sensitivity maps occur most noticeably where two or more lines of turning points cross. The important practical motivation for calculating the sensitivities derives from the fact that the potential is a function, implying that any direct attempt to understand how local

  14. Observation of Motion Dependent Nonlinear Dispersion with Narrow Linewidth Atoms in an Optical Cavity

    CERN Document Server

    Westergaard, Philip G; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W

    2014-01-01

    As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow atomic transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity transmission significantly while leaving the phase signature relatively unaffected. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple sys...

  15. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective.

    Science.gov (United States)

    Krycer, James Robert; Brown, Andrew John

    2013-04-01

    Prostate cancer (PCa) is the most common cancer in men in developed countries. Epidemiological studies have associated high blood-cholesterol levels with an increased risk of PCa, whilst cholesterol-lowering drugs (statins) reduce the risk of advanced PCa. Furthermore, normal prostate epithelial cells have an abnormally high cholesterol content, with cholesterol levels increasing further during progression to PCa. In this review, we explore why and how this occurs. Concurrent to this observation, intense efforts have been expended in cardiovascular research to better understand the regulators of cholesterol homeostasis. Here, we apply this knowledge to elucidate the molecular mechanisms driving the accumulation of cholesterol in PCa. For instance, recent evidence from our group and others shows that major signalling players in prostate growth and differentiation, such as androgens and Akt, modulate the key transcriptional regulators of cholesterol homeostasis to enhance cholesterol levels. This includes adjusting central carbon metabolism to sustain greater lipid synthesis. Perturbations in cholesterol homeostasis appear to be maintained even when PCa approaches the advanced, 'castration-resistant' state. Overall, this provides a link between cholesterol accumulation and PCa cell growth. Given there is currently no cure for castration-resistant PCa, could cholesterol metabolism be a novel target for PCa therapy? Overall, this review presents a picture that cholesterol metabolism is important for PCa development: growth-promoting factors stimulate cholesterol accumulation, which in turn presents a possible target for chemotherapy. Consequently, we recommend future investigations, both to better elucidate the mechanisms driving this accumulation and applying it in novel chemotherapeutic strategies.

  16. Observations of Classical and Recurrent Novae with X-ray Gratings

    CERN Document Server

    Orio, Marina

    2012-01-01

    X-ray grating spectra have opened a new window on the nova physics. High signal-to-noise spectra have been obtained for 12 novae after the outburst in the last 13 years with the Chandra and XMM-Newton gratings. They offer the only way to probe the temperature, effective gravity and chemical composition of the hydrogen burning white dwarf before it turns off. These spectra also allow an analysis of the ejecta, which can be photoionized by the hot white dwarf, but more often seem to undergo collisional ionization. The long observations required for the gratings have revealed semi-regular and irregular variability in X-ray flux and spectra. Large short term variability is especially evident in the first weeks after the ejecta have become transparent to the central supersoft X-ray source. Thanks to Chandra and XMM-Newton, we have discovered violent phenomena in the ejecta, discrete shell ejection, and clumpy emission regions. As expected, we have also unveiled the white dwarf characteristics. The peak white dwarf...

  17. Disturbance Observer-Based Fuzzy Control of Uncertain MIMO Mechanical Systems With Input Nonlinearities and its Application to Robotic Exoskeleton.

    Science.gov (United States)

    Chen, Ziting; Li, Zhijun; Chen, C L Philip

    2017-04-01

    We develop a novel disturbance observer-based adaptive fuzzy control approach in this paper for a class of uncertain multi-input-multi-output mechanical systems possessing unknown input nonlinearities, i.e., deadzone and saturation and time-varying external disturbance. It is shown that the input nonlinearities can be represented by a nominal part and a nonlinear disturbance term. High-dimensional integral-type Lyapunov function is used to construct the controller. Fuzzy logic system is employed to cancel model uncertainties, and disturbance observer is also integrated into control design to compensate the fuzzy approximation error, external disturbance, and nonlinear disturbance caused by the unknown input nonlinearities. Semiglobally uniformly ultimately boundness of the closed-loop control system is guaranteed with tracking errors keeping bounded. Experimental studies on a robotic exoskeleton using the proposed control demonstrate the effectiveness of the approach.

  18. Finite size effects in the presence of a chemical potential: A study in the classical non-linear O(2) sigma-model

    CERN Document Server

    Banerjee, Debasish

    2010-01-01

    In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind non-trivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical non-linear O(2) sigma model with a coupling $\\beta$ and chemical potential $\\mu$ on a 2+1 dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at non-zero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of world-line of particles, the sign problem is absent and the model can be studied efficiently with the "worm algorithm". Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum ...

  19. Chaotic synchronization based on nonlinear state-observer and its application in secure communication

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming-jie; LI Dian-pu; ZHANG Ai-jun

    2004-01-01

    Chaotic synchronization is a branch of chaotic control. Nowadays, the research and application of chaotic synchronization have become a hot topic and one of the development directions is for the research on chaos. In this paper, a universal nonlinear stateobserver is presented for a class of universal chaotic systems to realize the chaotic synchronization, according to the theory of state-observer in the modern control theory. And theoretic analysis and simulation results have illustrated the validity of the approach. Moreover, the approach of synchronization proposed in this paper is very easy, flexible and universal with high synchronization precision.When the approach is applied to secure communication, the results are satisfying.

  20. Nonlinear observer-based Lyapunov boundary control of distributed heat transfer mechanisms for membrane distillation plant

    KAUST Repository

    Eleiwi, Fadi

    2016-09-19

    This paper presents a nonlinear observer-based Lyapunov control for a membrane distillation (MD) process. The control considers the inlet temperatures of the feed and the permeate solutions as inputs, transforming it to boundary control process, and seeks to maintain the temperature difference along the membrane boundaries around a sufficient level to promote water production. MD process is modeled with advection diffusion equation model in two dimensions, where the diffusion and convection heat transfer mechanisms are best described. Model analysis, effective order reduction and parameters physical interpretation, are provided. Moreover, a nonlinear observer has been designed to provide the control with estimates of the temperature evolution at each time instant. In addition, physical constraints are imposed on the control to have an acceptable range of feasible inputs, and consequently, better energy consumption. Numerical simulations for the complete process with real membrane parameter values are provided, in addition to detailed explanations for the role of the controller and the observer. (C) 2016 Elsevier Ltd. All rights reserved.

  1. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    CERN Document Server

    Siwak, Michal; Rucinski, Slavek M; Moffat, Anthony F J; Matthews, Jaymie M; Cameron, Chris; Guenther, David B; Kuschnig, Rainer; Rowe, Jason F; Sasselov, Dimitar; Weiss, Werner W

    2015-01-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilised: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the SAAO in April - May of 2013, (3) archival V-filter ASAS data for nine seasons, 2001 - 2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 UVES spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hot spots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19 - 7.58 d, which is in accord with ASAS observations showing a well defined 7.247+/-0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hot spots created near the ste...

  2. Distributed Adaptive Fuzzy Control for Nonlinear Multiagent Systems Via Sliding Mode Observers.

    Science.gov (United States)

    Shen, Qikun; Shi, Peng; Shi, Yan

    2016-12-01

    In this paper, the problem of distributed adaptive fuzzy control is investigated for high-order uncertain nonlinear multiagent systems on directed graph with a fixed topology. It is assumed that only the outputs of each follower and its neighbors are available in the design of its distributed controllers. Equivalent output injection sliding mode observers are proposed for each follower to estimate the states of itself and its neighbors, and an observer-based distributed adaptive controller is designed for each follower to guarantee that it asymptotically synchronizes to a leader with tracking errors being semi-globally uniform ultimate bounded, in which fuzzy logic systems are utilized to approximate unknown functions. Based on algebraic graph theory and Lyapunov function approach, using Filippov-framework, the closed-loop system stability analysis is conducted. Finally, numerical simulations are provided to illustrate the effectiveness and potential of the developed design techniques.

  3. Improving the ensemble transform Kalman filter using a second-order Taylor approximation of the nonlinear observation operator

    Directory of Open Access Journals (Sweden)

    G. Wu

    2014-04-01

    Full Text Available The Ensemble Transform Kalman Filter (ETKF assimilation scheme has recently seen rapid development and wide application. As a specific implementation of the Ensemble Kalman Filter (EnKF, the ETKF is computationally more efficient than the conventional EnKF. However, the current implementation of the ETKF still has some limitations when the observation operator is strongly nonlinear. One problem is that the nonlinear operator and its tangent-linear operator are iteratively calculated in the minimization of a nonlinear objective function similar to 4DVAR, which may be computationally expensive. Another problem is that it uses the tangent-linear approximation of the observation operator to estimate the multiplicative inflation factor of the forecast errors, which may not be sufficiently accurate. This study seeks a way to avoid these problems. First, we apply the second-order Taylor approximation of the nonlinear observation operator to avoid iteratively calculating the operator and its tangent-linear operator. The related computational cost is also discussed. Second, we propose a scheme to estimate the inflation factor when the observation operator is strongly nonlinear. Experimentation with the Lorenz-96 model shows that using the second-order Taylor approximation of the nonlinear observation operator leads to a reduction of the analysis error compared with the traditional linear approximation. Similarly, the proposed inflation scheme leads to a reduction of the analysis error compared with the procedure using the traditional inflation scheme.

  4. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    Science.gov (United States)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  5. Nonlinear magneto-optical resonances for systems with J~100 observed in K2 molecules

    CERN Document Server

    Auzinsh, M; Fescenko, I; Kalvans, L; Tamanis, M

    2012-01-01

    We present the results of an experimental as well as theoretical study of nonlinear magneto-optical resonances in diatomic potassium molecules in the electronic ground state with large values of the angular momentum quantum number J~100. At zero magnetic field, the absorption transitions are suppressed because of population trapping in the ground state due to Zeeman coherences between magnetic sublevels of this state along with depopulation pumping. The destruction of such coherences in an external magnetic field was used to study the resonances in this work. K2 molecules were formed in a glass cell filled with potassium metal at a temperature above 150^{\\circ}C. The cell was placed in an oven and was located in a homogeneous magnetic field B, which was scanned from zero to 0.7 T. Q-type and R-type transitions were excited with a tunable, single-mode diode laser at a wavelength of 661 nm. Well pronounced nonlinear Hanle effect signals were observed in the intensities of the linearly polarized components of th...

  6. Classical method of coherence estimation based on mutual wavelet-spectra of time variations of studied processes observed in the Earth atmosphere

    Science.gov (United States)

    Fahrutdinova, Antonina; Rizhov, Dmitriy; Magdeev, Konstantin

    In the present article the authors offer to conduct a research into influence exerted by solar effects (Wolf number) on time variations of average monthly values of the zonal wind, obtained in Kazan Federal University with the help of a meteoric radar complex KGU-M5 within the mesosphere - lower thermosphere during the period from 1978 to 2007. There exists a wide variety of signal processing methods that can be used to identify connection between two processes. A classical method of coherence calculation based on a mutual wavelet-spectrum has become widely used. Due to limited duration of the studied time series of dynamic parameters we have found coherent structures of time variations in solar activity (Wolf number) and zonal wind within the mesosphere-lower thermosphere for the scales of about 0.5, 1, 1.5, 2, 3, and 4-5 years. SCM values have been calculated for the most pronounced periodicities observed for scales of about 3 years during the period from 1986 to 1997. The average SCM value was equal to 0.75. Confidence interval of obtained SCM values was in the range of [0.54, 0.88] for the significance level As the atmosphere is a non-linear medium, this can lead to shifting and broadening of spectral components. In addition to the above mentioned periodicities (0.5 - 5 years), a wavelet spectrum calculated in the zonal wind field indicates possible presence of time periodicities in the range of 11-20 years.

  7. Design of Nonlinear Robust Rotor Current Controller for DFIG Based on Terminal Sliding Mode Control and Extended State Observer

    Directory of Open Access Journals (Sweden)

    Guowei Cai

    2014-01-01

    Full Text Available As to strong nonlinearity of doubly fed induction generators (DFIG and uncertainty of its model, a novel rotor current controller with nonlinearity and robustness is proposed to enhance fault ride-though (FRT capacities of grid-connected DFIG. Firstly, the model error, external disturbances, and the uncertain factors were estimated by constructing extended state observer (ESO so as to achieve linearization model, which is compensated dynamically from nonlinear model. And then rotor current controller of DFIG is designed by using terminal sliding mode variable structure control theory (TSMC. The controller has superior dynamic performance and strong robustness. The simulation results show that the proposed control approach is effective.

  8. Stable and unstable accretion in the classical T Tauri stars IM Lup and RU Lup as observed by MOST

    Science.gov (United States)

    Siwak, Michal; Ogloza, Waldemar; Rucinski, Slavek M.; Moffat, Anthony F. J.; Matthews, Jaymie M.; Cameron, Chris; Guenther, David B.; Kuschnig, Rainer; Rowe, Jason F.; Sasselov, Dimitar; Weiss, Werner W.

    2016-03-01

    Results of the time variability monitoring of the two classical T Tauri stars, RU Lup and IM Lup, are presented. Three photometric data sets were utilized: (1) simultaneous (same field) MOST satellite observations over four weeks in each of the years 2012 and 2013, (2) multicolour observations at the South African Astronomical Observatory in April-May of 2013, (3) archival V-filter All Sky Automated Survey (ASAS) data for nine seasons, 2001-2009. They were augmented by an analysis of high-resolution, public-domain VLT-UT2 Ultraviolet Visual Echelle Spectrograph spectra from the years 2000 to 2012. From the MOST observations, we infer that irregular light variations of RU Lup are caused by stochastic variability of hotspots induced by unstable accretion. In contrast, the MOST light curves of IM Lup are fairly regular and modulated with a period of about 7.19-7.58 d, which is in accord with ASAS observations showing a well-defined 7.247 ± 0.026 d periodicity. We propose that this is the rotational period of IM Lup and is due to the changing visibility of two antipodal hotspots created near the stellar magnetic poles during the stable process of accretion. Re-analysis of RU Lup high-resolution spectra with the broadening function approach reveals signs of a large polar coldspot, which is fairly stable over 13 years. As the star rotates, the spot-induced depression of intensity in the broadening function profiles changes cyclically with period 3.710 58 d, which was previously found by the spectral cross-correlation method.

  9. Observation and measurement of "giant" dispersive optical non-linearities in an ensemble of cold Rydberg atoms

    CERN Document Server

    Parigi, Valentina; Stanojevic, Jovica; Hilliard, Andrew J; Nogrette, Florence; Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Grangier, Philippe

    2012-01-01

    We observe and measure dispersive optical non-linearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical non-linearities are due to the progressive appearance of a Rydberg blockaded volume within the medium. The measurements allow a direct estimation of the "blockaded fraction" of atoms within the atomic ensemble.

  10. Discrete-time filtering for nonlinear polynomial systems over linear observations

    Science.gov (United States)

    Hernandez-Gonzalez, M.; Basin, M. V.

    2014-07-01

    This paper designs a discrete-time filter for nonlinear polynomial systems driven by additive white Gaussian noises over linear observations. The solution is obtained by computing the time-update and measurement-update equations for the state estimate and the error covariance matrix. A closed form of this filter is obtained by expressing the conditional expectations of polynomial terms as functions of the estimate and the error covariance. As a particular case, a third-degree polynomial is considered to obtain the finite-dimensional filtering equations. Numerical simulations are performed for a third-degree polynomial system and an induction motor model. Performance of the designed filter is compared with the extended Kalman one to verify its effectiveness.

  11. Observation and output adaptive tracking for a class of nonlinear non-minimum phase systems

    Science.gov (United States)

    Bartolini, G.; Estrada, A.; Punta, E.

    2016-09-01

    In this paper, the output tracking problem for a class of systems with unstable zero dynamics is addressed. The state is assumed not measurable. The output of the dynamical system to be controlled has to track a signal, which is the sum of a known number of sinusoids with unknown frequencies, amplitudes and phases. The non-minimum phase nature of the considered systems prevents the direct tracking by standard sliding mode methods, which are known to generate unstable behaviours of the internal dynamics. The proposed method relies on the availability of a flat output and its time derivatives which are functions of the unavailable state; therefore, a nonlinear observer is needed. Due to the uncertainty in the frequencies and in the parameters defining the relationship between the output of the system and the flat states, adaptive indirect methods are applied.

  12. Nonlinear disturbance observer based spacecraft attitude control subject to disturbances and actuator faults

    Science.gov (United States)

    Yan, Ruidong; Wu, Zhong

    2017-04-01

    To achieve high-accuracy spacecraft attitude stabiliztion subject to complex disturbances and actuator faults, a composite controller is proposed by combining a nonlinear disturbance observer (NDO) with an adaptive integral sliding mode controller. The effects of complex disturbances and actuator faults on the spacecraft are treated as a lumped disturbance. The lumped disturbance is estimated by NDO and the estimated result is used as a feedforward compensator. The switching gain is only required to be no less than the upper bound of disturbance estimation error rather than the disturbance, and the over estimation of switching gain, caused by the initial error, is eliminated due to the global feature of the integral sliding mode item. Finally, simulations are conducted to verify the effectiveness of the proposed method.

  13. Generalized projective synchronization in time-delayed systems: nonlinear observer approach.

    Science.gov (United States)

    Ghosh, Dibakar

    2009-03-01

    In this paper, we consider the projective-anticipating, projective, and projective-lag synchronization in a unified coupled time-delay system via nonlinear observer design. A new sufficient condition for generalized projective synchronization is derived analytically with the help of Krasovskii-Lyapunov theory for constant and variable time-delay systems. The analytical treatment can give stable synchronization (anticipatory and lag) for a large class of time-delayed systems in which the response system's trajectory is forced to have an amplitude proportional to the drive system. The constant of proportionality is determined by the control law, not by the initial conditions. The proposed technique has been applied to synchronize Ikeda and prototype models by numerical simulation.

  14. Nonlinear Predictive Control of Wind Energy Conversion System Using Dfig with Aerodynamic Torque Observer

    Science.gov (United States)

    Kamel, Ouari; Mohand, Ouhrouche; Toufik, Rekioua; Taib, Nabil

    2015-01-01

    In order to improvement of the performances for wind energy conversions systems (WECS), an advanced control techniques must be used. In this paper, as an alternative to conventional PI-type control methods, a nonlinear predictive control (NPC) approach is developed for DFIG-based wind turbine. To enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. An explicitly analytical form of the optimal predictive controller is given consequently on-line optimization is not necessary The DFIG is fed through the rotor windings by a back-to-back converter controlled by Pulse Width Modulation (PWM), where the stator winding is directly connected to the grid. The presented simulation results show a good performance in trajectory tracking of the proposed strategy and rejection of disturbances is successfully achieved.

  15. Identification of nonlinear noisy dynamics of an ecosystem from observations of one of its trajectory components

    CERN Document Server

    Smelyanskiy, V N; Millons, M

    2006-01-01

    The problem of determining dynamical models and trajectories that describe observed time-series data allowing for the understanding, prediction and possibly control of complex systems in nature is of a great interest in a wide variety of fields. Often, however, only part of the system's dynamical variables can be measured, the measurements are corrupted by noise and the dynamics is complicated by an interplay of nonlinearity and random perturbations. The problem of dynamical inference in these general settings is challenging researchers for decades. We solve this problem by applying a path-integral approach to fluctuational dynamics, and show that, given the measurements, the system trajectory can be obtained from the solution of the certain auxiliary Hamiltonian problem in which measured data act effectively as a control force driving the estimated trajectory toward the most probable one that provides a minimum to certain mechanical action. The dependance of the minimum action on the model parameters determi...

  16. Investigating nonlinear dynamics from time series: The influence of symmetries and the choice of observables

    Science.gov (United States)

    Letellier, Christophe; Aguirre, Luis A.

    2002-09-01

    When a dynamical system is investigated from a time series, one of the most challenging problems is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to this problem but very few have considered the influence of symmetries in the original system and the choice of the observable. Indeed, it is well known that there are usually some variables that provide a better representation of the underlying dynamics and, consequently, a global model can be obtained with less difficulties starting from such variables. This is connected to the problem of observing the dynamical system from a single time series. The roots of the nonequivalence between the dynamical variables will be investigated in a more systematic way using previously defined observability indices. It turns out that there are two important ingredients which are the complexity of the coupling between the dynamical variables and the symmetry properties of the original system. As will be mentioned, symmetries and the choice of observables also has important consequences in other problems such as synchronization of nonlinear oscillators.

  17. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl.

    Science.gov (United States)

    Almaraz, Pablo; Green, Andy J; Aguilera, Eduardo; Rendón, Miguel A; Bustamante, Javier

    2012-09-01

    1. Understanding the impact of environmental variability on migrating species requires the estimation of sequential abiotic effects in different geographic areas across the life cycle. For instance, waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge on the effects of the sequential environmental conditions experienced by migrating birds on the long-term community dynamics at their wintering sites. 2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadalquivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions, local environmental forcing during winter and large-scale climate during breeding and migration on wintering multispecies abundance fluctuations, while accounting for partial observability (observation error and missing data) in both population and environmental data. 3. The joint effect of local weather and large-scale climate explained 31·6% of variance at the community level, while the variability explained by interspecific interactions was negligible (observations through data augmentation increased the estimated magnitude of environmental forcing by an average 30·1% and reduced the impact of stochasticity by 39·3% when accounting for observation error. Interestingly however, the impact of environmental forcing on community dynamics was underestimated by an average 15·3% and environmental stochasticity overestimated by 14·1% when ignoring both observation error and data augmentation. 5. These results provide a salient example of sequential multiscale environmental forcing in a major migratory bird community, which suggests a demographic link between the breeding and wintering grounds operating through nonlinear environmental effects

  18. Classical enhancement of quantum vacuum fluctuations

    CERN Document Server

    De Lorenci, V A

    2016-01-01

    We propose a mechanism for the enhancement of vacuum fluctuations by means of a classical field. The basic idea is that if an observable quantity depends quadratically upon a quantum field, such as the electric field, then the application of a classical field produces a cross term between the classical and quantum fields. This cross term may be significantly larger than the purely quantum part, but also undergoes fluctuations driven by the quantum field. We illustrate this effect in a model for lightcone fluctuations involving pulses in a nonlinear dielectric. Vacuum electric field fluctuations produce fluctuations in the speed of a probe pulse, and form an analog model for quantum gravity effects. If the material has a nonzero third-order susceptibility, then the fractional light speed fluctuations are proportional to the square of the fluctuating electric field. Hence the application of a classical electric field can enhance the speed fluctuations. We give an example where this enhancement can be an increas...

  19. Nonlinear imaging techniques for the observation of cell membrane perturbation due to pulsed electric field exposure

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.

    2014-03-01

    Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.

  20. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...... matrix converter model. Regulated Order Extended Luenberger Observer (ROELO) is employed to bring better response in the whole speed operation range and a method to select the observer gain is presented. Experimental results are shown to illustrate the performance of the proposed system...

  1. Performance Improvement of Sensorless Vector Control for Induction Motor Drives Fed by Matrix Converter Using Nonlinear Model and Disturbance Observer

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with a non-linearity compensation and disturbance observer. The nonlinear voltage distortion that is caused by communication delay and on-state voltage drop in switching...... device is corrected by a new matrix converter modeling. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by the radial basis function network (RBFN). An adaptive observer is also employed to bring better responses at the low speed operation...

  2. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  3. Lectures on Classical Integrability

    CERN Document Server

    Torrielli, Alessandro

    2016-01-01

    We review some essential aspects of classically integrable systems. The detailed outline of the lectures consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schroedinger model, principal chiral field); 4. Features of classical r-matrices: Belavin-Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel'fand-Levitan-Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  4. A single-ion nonlinear mechanical oscillator

    CERN Document Server

    Akerman, Nitzan; Glickamn, Yinnon; Dallal, Yehonatan; Keselman, Anna; Ozeri, Roee

    2010-01-01

    We study the steady state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser-cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate a unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the cooling laser parameters. Our observations open a way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  5. Mobile robot nonlinear feedback control based on Elman neural network observer

    Directory of Open Access Journals (Sweden)

    Khaled Al-Mutib

    2015-12-01

    Full Text Available This article presents a new approach to control a wheeled mobile robot without velocity measurement. The controller developed is based on kinematic model as well as dynamics model to take into account parameters of dynamics. These parameters related to dynamic equations are identified using a proposed methodology. Input–output feedback linearization is considered with a slight modification in the mathematical expressions to implement the dynamic controller and analyze the nonlinear internal behavior. The developed controllers require sensors to obtain the states needed for the closed-loop system. However, some states may not be available due to the absence of the sensors because of the cost, the weight limitation, reliability, induction of errors, failure, and so on. Particularly, for the velocity measurements, the required accuracy may not be achieved in practical applications due to the existence of significant errors induced by stochastic or cyclical noise. In this article, Elman neural network is proposed to work as an observer to estimate the velocity needed to complete the full state required for the closed-loop control and account for all the disturbances and model parameter uncertainties. Different simulations are carried out to demonstrate the feasibility of the approach in tracking different reference trajectories in comparison with other paradigms.

  6. Observation of nonlinear thermal optical dynamics in a chalcogenide nanobeam cavity

    CERN Document Server

    Sun, Yue; Choi, Duk-Yong; Sukhorukov, Andrey A

    2016-01-01

    We present a theoretical and experimental analysis of nonlinear thermo-optic effects in suspended chalcogenide glass nanobeam cavities. We measure the power dependent resonance peaks and characterise the dynamic nonlinear thermo-optic response of the cavity under modulated light input. Several distinct nonlinear characteristics are identified, including a modified spectral response containing periodic fringes, a critical wavelength jump and saturated time delay for modulation frequency faster than the thermal characteristic time. We reveal that the coupling to a parasitic Fabry-Perot cavity enables isolated thermal equilibrium states resulting in the discontinuous thermo-optic critical point.

  7. Analysis of classical Kuiper-belt objects and Haumea collisional family from the Herschel and Spitzer observations

    NARCIS (Netherlands)

    Vilenius, E.; Stansberry, J.; Müller, T.; Kiss, C.; Mommert, M.; Mueller, M.; Santos-Sanz, P.; Thirouin, A.; Lellouch, E.; Pal, A.; Peixinho, N.; Fornasier, S.

    2014-01-01

    We have analyzed space-based data at far-IR wavelengths in order to determine physical properties of Kuiper-belt objects (KBOs), also known as transneptunian objects (TNO), in the dynamical class of classical Kuiper-belt objects (CKBO). This dynamical class also contains most of the Haumea family me

  8. NONLINEAR FORCE-FREE MODELING OF A THREE-DIMENSIONAL SIGMOID OBSERVED ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S.; Watari, S. [National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Magara, T.; Choe, G. S., E-mail: inosato@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-03-01

    In this work, we analyze the characteristics of the three-dimensional magnetic structure of a sigmoid observed over an active region (AR 10930) and followed by X-class flares. This is accomplished by combining a nonlinear force-free field (NLFFF) model of a coronal magnetic field and the high-resolution vector-field measurement of a photospheric magnetic field by Hinode. The key findings of our analysis reveal that the value of the X-ray intensity associated with the sigmoid is more sensitive to the strength of the electric current rather than the twist of the field lines. The strong electric current flows along the magnetic field lines and composes the central part of the sigmoid, even though the twist of the field lines is weak in that region. On the other hand, the outer region (i.e., the elbow part) of the sigmoid is basically occupied by field lines of strong twist and weak current density. Consequently, weak X-ray emission is observed. As the initial Ca II illumination basically occurs from the central part of the sigmoid, this region plays an important role in determining the onset mechanism of the flare despite its weak twisted field-line configuration. We also compare our results with the magnetohydrodynamic simulation for the formation of a sigmoid. Although the estimated values of the twist from the simulation are found to be a little higher than the values obtained from the NLFFF, we find that the field-line configurations generated by the simulation and NLFFF are remarkably analogous as long as we deal with the lower coronal region.

  9. Nonlinear observer based fault detection and isolation for a momentum wheel

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...... toachieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithm are discussed....

  10. Do liquid-based preparations of urinary cytology perform differently than classically prepared cases? Observations from the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology.

    Science.gov (United States)

    Laucirica, Rodolfo; Bentz, Joel S; Souers, Rhona J; Wasserman, Patricia G; Crothers, Barbara A; Clayton, Amy C; Henry, Michael R; Chmara, Beth Anne; Clary, Karen M; Fraig, Mostafa M; Moriarty, Ann T

    2010-01-01

    The cytomorphology of liquid-based preparations in urine cytology is different than classic slide preparations. To compare the performance of liquid-based preparation specimens to classically prepared urine specimens with a malignant diagnosis in the College of American Pathologists Interlaboratory Comparison Program in Nongynecologic Cytology. Participant responses between 2000 and 2007 for urine specimens with a reference diagnosis of high-grade urothelial carcinoma/carcinoma in situ/dysplasia (HGUCA), squamous cell carcinoma, or adenocarcinoma were evaluated. ThinPrep and SurePath challenges were compared with classic preparations (smears, cytospins) for discordant responses. There were 18 288 pathologist, 11 957 cytotechnologist, and 8086 "laboratory" responses available. Classic preparations comprised 90% (n = 34 551) of urine challenges; 9% (n = 3295) were ThinPrep and 1% (n = 485) were SurePath. Concordance to the general category of "positive-malignant" was seen in 92% of classic preparations, 96.5% of ThinPrep, and 94.6% of SurePath challenges (P Liquid-based preparations performed significantly better in urinary cytology challenges when evaluating malignant categories in the College of American Pathologists interlaboratory comparison program. The liquid-based preparation challenges also performed better for the exact reference interpretation of HGUCA, but no difference was observed for adenocarcinoma challenges. Cytotechnologists perform better than pathologists for all slide types, as well as those demonstrating HGUCA. These results suggest that liquid-based preparations facilitate a more accurate diagnosis than conventional preparations.

  11. "TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations

    CERN Document Server

    Vilenius, E; Müller, T; Mommert, M; Santos-Sanz, P; Pál, A; Stansberry, J; Mueller, M; Peixinho, N; Lellouch, E; Fornasier, S; Delsanti, A; Thirouin, A; Ortiz, J L; Duffard, R; Perna, D; Henry, F

    2014-01-01

    The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we determine radiometric sizes, geometric albedos and thermal beaming factors as well as study sample properties of dynamically hot and cold classicals. Observations near the thermal peak of TNOs using infra-red space telescopes are combined with optical magnitudes using the radiometric technique with near-Earth asteroid thermal model (NEATM). We have determined three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and 160.0 $\\mu$m and Spitzer/MIPS at 23.68 and 71.42 $\\mu$m when available. We have analysed 18 classical TNOs with previously unpublished data and re-analysed previously published targets with updated data reduction to determine their sizes and geometric albedos as well as beaming factors when data quality allows. We have combined these s...

  12. A Review of Nonlinear Low Frequency (LF) Wave Observations in Space Plasmas: On the Development of Plasma Turbulence

    Science.gov (United States)

    Tsurutani, Bruce T.

    1995-01-01

    As the lead-off presentation for the topic of nonlinear waves and their evolution, we will illustrate some prominent examples of waves in space plasmas. We will describe recent observations detected within planetary foreshocks, near comets and in interplanetary space. It is believed that the nonlinear LF plasma wave features discussed here are part of and may be basic to the development of plasma turbulence. In this sense, this is one area of space plasma physics that is fundamental, with applications to fusion physics and astrophysics as well. It is hoped that the reader(s) will be stimulated to study nonlinear wave development themselves, if he/she is not already involved.

  13. Einstein observations and the internal dynamics of compact stars: further evidence against non-linear regimes of vortex creep

    Energy Technology Data Exchange (ETDEWEB)

    Horvath, J.E. (Sao Paulo Univ., SP (Brazil). Inst. Astronomico e Geofisico); Benvenuto, O.G. (La Plata Univ. Nacional (Argentina))

    1991-08-15

    We present structural constraints on the Crab and Vela pulsars imposed by the simultaneous assumptions of (a) surface temperatures close to those observed by the Einstein Observatory satellite, and (b) validity of the vortex creep theory in the non-linear regime for interpreting glitch observations and internal features predicted by it. The disagreement between both studies is quantified, thus pointing strongly to the need for linear regimes of creep, as recently suggested, or some alternative picture. (author).

  14. 经方治疗荨麻疹浅见%Clinical Observation of Classical Prescriptions in the Treatment of Urticaria

    Institute of Scientific and Technical Information of China (English)

    孙治安; 李相中

    2013-01-01

    Objective:To investigate the curative effect of classical prescriptions in the treatment of urticaria. Methods:Classical prescriptions in the treatment of urticaria has extensive application in clinical. Results: Urticaria is divided into six type: fenghanfanbiao using guizhi soup,yangxuganhan using mahuang fuzi xixin soup,biaohan neire using daqinglong soup,xuexuhanning using danggui sini soup, biaohan neiyin using xiaoqinglong soup, piweixuhan using huangqijianzhong soup. Conclusion: The curative effect of classical prescriptions in the treatment of urticaria is distinct.%目的:探讨经方治疗荨麻疹的用药规律.方法:通过辨证分型结合验案举例,探讨运用经方治疗荨麻疹的用药规律.结果:将荨麻诊辨证分为六证:风寒犯表用桂枝汤、阳虚感寒用麻黄附子细辛汤、表寒内热用大青龙汤、血虚寒凝用当归四逆汤、表寒内饮用小青龙汤、脾胃虚寒黄芪建中汤,随证加减治疗,均取得良好疗效.结论:经方治疗荨麻疹疗效显著.

  15. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  16. Classical antiparticles

    CERN Document Server

    Costella, J P; Rawlinson, A A; Costella, John P.; Kellar, Bruce H. J. Mc; Rawlinson, Andrew A.

    1997-01-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain.

  17. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid

    2016-02-01

    In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.

  18. Observation of spectral self-imaging by nonlinear parabolic cross-phase modulation.

    Science.gov (United States)

    Lei, Lei; Huh, Jeonghyun; Cortés, Luis Romero; Maram, Reza; Wetzel, Benjamin; Duchesne, David; Morandotti, Roberto; Azaña, José

    2015-11-15

    We report an experimental demonstration of spectral self-imaging on a periodic frequency comb induced by a nonlinear all-optical process, i.e., parabolic cross-phase modulation in a highly nonlinear fiber. The comb free spectral range is reconfigured by simply tuning the temporal period of the pump parabolic pulse train. In particular, undistorted FSR divisions by factors of 2 and 3 are successfully performed on a 10 GHz frequency comb, realizing new frequency combs with an FSR of 5 and 3.3 GHz, respectively. The pump power requirement associated to the SSI phenomena is also shown to be significantly relaxed by the use of dark parabolic pulses.

  19. Advanced classical field theory

    CERN Document Server

    Giachetta, Giovanni; Sardanashvily, Gennadi

    2009-01-01

    Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory

  20. Real-Time Fault Detection Approach for Nonlinear Systems and its Asynchronous T-S Fuzzy Observer-Based Implementation.

    Science.gov (United States)

    Li, Linlin; Ding, Steven X; Qiu, Jianbin; Yang, Ying

    2017-02-01

    This paper is concerned with a real-time observer-based fault detection (FD) approach for a general type of nonlinear systems in the presence of external disturbances. To this end, in the first part of this paper, we deal with the definition and the design condition for an L ∞ / L 2 type of nonlinear observer-based FD systems. This analytical framework is fundamental for the development of real-time nonlinear FD systems with the aid of some well-established techniques. In the second part, we address the integrated design of the L ∞ / L 2 observer-based FD systems by applying Takagi-Sugeno (T-S) fuzzy dynamic modeling technique as the solution tool. This fuzzy observer-based FD approach is developed via piecewise Lyapunov functions, and can be applied to the case that the premise variables of the FD system is nonsynchronous with the premise variables of the fuzzy model of the plant. In the end, a case study on the laboratory setup of three-tank system is given to show the efficiency of the proposed results.

  1. Nonlinear observer based fault detection and isolation for a momentum wheel

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This article realizes nonlinear Fault Detection and Isolation for a momentum wheel. The Fault Detection and Isolation is based on a Failure Mode and Effect Analysis, which states which faults might occur and can be detected. The algorithms presented in this paper are based on a geometric approach...

  2. Experimental observations of the characteristics of hot electron and nonlinear processes produced in special material

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.

  3. Adaptive current compensation with nonlinear disturbance observer for single-sided linear induction motor considering dynamic eddy-effect

    Institute of Scientific and Technical Information of China (English)

    DENG Jiang-ming; CHEN Te-fang; CHEN Chun-yang

    2015-01-01

    An adaptive current compensation control for a single-sided linear induction motor (SLIM) with nonlinear disturbance observer was developed. First, to maintaint-axis secondary component flux constant with consideration of the specially dynamic eddy-effect (DEE) of the SLIM, a instantaneously tracing compensation ofm-axis current component was analyzed. Second, adaptive current compensation based on Taylor-discretization algorithm was proposed. Third, an effective kind of nonlinear disturbance observer (NDOB) was employed to estimate and compensate the undesired load vibrations, then the robustness of the control system could be guaranteed. Experimental verification of the feasibility of the proposed method for an SLIM control system was performed, and it showed that the proposed adaptive compensation scheme with NDOB could significantly promote speed dynamical response and minimize speed ripple under the conditions of external load coupled vibrations and unavoidable feedback control variables measured errors, i.e., current and speed.

  4. Observer-Based Adaptive Backstepping Consensus Tracking Control for High-Order Nonlinear Semi-Strict-Feedback Multiagent Systems.

    Science.gov (United States)

    Chen, C L Philip; Wen, Guo-Xing; Liu, Yan-Jun; Liu, Zhi

    2016-07-01

    Combined with backstepping techniques, an observer-based adaptive consensus tracking control strategy is developed for a class of high-order nonlinear multiagent systems, of which each follower agent is modeled in a semi-strict-feedback form. By constructing the neural network-based state observer for each follower, the proposed consensus control method solves the unmeasurable state problem of high-order nonlinear multiagent systems. The control algorithm can guarantee that all signals of the multiagent system are semi-globally uniformly ultimately bounded and all outputs can synchronously track a reference signal to a desired accuracy. A simulation example is carried out to further demonstrate the effectiveness of the proposed consensus control method.

  5. A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com [Universidad Politécnica de Tlaxcala Av. Universidad Politecnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico); Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx [Departamento de Control Automático CINVESTAV-IPN, A.P. 14-740, D.F., México C.P. 07360 (Mexico); Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx [Universidad Politécnica de Tlaxcala Av. Universidad Politécnica de Tlaxcala No.1, San Pedro Xalcaltzinco, Tepeyanco, Tlaxcala, C.P. 90180 (Mexico)

    2015-10-15

    This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.

  6. Nonlinear pulsation masses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1990-01-01

    The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.

  7. Improved Sliding Mode Nonlinear Extended State Observer based Active Disturbance Rejection Control for Uncertain Systems with Unknown Total Disturbance

    Directory of Open Access Journals (Sweden)

    Wameedh Riyadh Abdul-Adheem

    2016-12-01

    Full Text Available This paper presents a new strategy for the active disturbance rejection control (ADRC of a general uncertain system with unknown bounded disturbance based on a nonlinear sliding mode extended state observer (SMESO. Firstly, a nonlinear extended state observer is synthesized using sliding mode technique for a general uncertain system assuming asymptotic stability. Then the convergence characteristics of the estimation error are analyzed by Lyapunov strategy. It revealed that the proposed SMESO is asymptotically stable and accurately estimates the states of the system in addition to estimating the total disturbance. Then, an ADRC is implemented by using a nonlinear state error feedback (NLSEF controller; that is suggested by J. Han and the proposed SMESO to control and actively reject the total disturbance of a permanent magnet DC (PMDC motor. These disturbances caused by the unknown exogenous disturbances and the matched uncertainties of the controlled model. The proposed SMESO is compared with the linear extended state observer (LESO. Through digital simulations using MATLAB / SIMULINK, the chattering phenomenon has been reduced dramatically on the control input channel compared to LESO. Finally, the closed-loop system exhibits a high immunity to torque disturbance and quite robustness to matched uncertainties in the system.

  8. Characterization by a time-frequency method of classical waves propagation in one-dimensional lattice : effects of the dispersion and localized nonlinearities

    CERN Document Server

    Richoux, Olivier; Hardy, Jean

    2009-01-01

    This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral content of the transient signal ; (3) to show the role of the localized nonlinearities on the propagation .i.e the emergence of higher harmonics. The main result of this paper is that the time-frequency methods point out how the nonlinearities break the localization of the waves and/or the filter effects of the lattice.

  9. Volterra methods for constructing structural dynamic observables for nonlinear systems: An extended calculation

    Energy Technology Data Exchange (ETDEWEB)

    Manson, G; Worden, K, E-mail: graeme.manson@sheffield.ac.u, E-mail: k.worden@sheffield.ac.u [Dynamics Research Group, Department of Mechanical Engineering, University of Sheffield, Mappin St, Sheffield S1 3JD (United Kingdom)

    2009-08-01

    Although a great deal of work has been carried out on structural dynamic systems under random excitation, there has been a comparatively small amount of this work concentrating on the calculation of the quantities commonly measured in structural dynamic tests. Among the existing work, the Volterra series, a means of predicting nonlinear system response for weakly nonlinear systems, has allowed the computation of various measurable quantities of interest for structural dynamics, including: auto- and cross-spectra, FRFs, coherences and higher-order spectra. These calculations are quite intensive and are typically only possible using computer algebra. A previous calculation by the authors for the coherence for a Duffing oscillator yielded results which showed some qualitatitive disagreement with numerical simulation; the object of the current paper is simply to extend the calculation in order to see if better agreement can be achieved.

  10. Full-order and reduced-order observers for one-sided Lipschitz nonlinear systems using Riccati equations

    Science.gov (United States)

    Zhang, Wei; Su, Housheng; Wang, Hongwei; Han, Zhengzhi

    2012-12-01

    This paper aims to design full-order and reduced-order observers for one-sided Lipschitz nonlinear systems. The system under consideration is an extension of its known Lipschitz counterpart and possesses inherent advantages with respect to conservativeness. For such system, we first develop a novel Riccati equation approach to design a full-order observer, for which rigorous mathematical analysis is performed. Consequently, we show that the conditions under which a full-order observer exists also guarantee the existence of a reduced-order observer. A design method for the reduced-order observer that is dependent on the solution of the Riccati equation is then presented. The proposed conditions are easily and numerically tractable via standard numerical software. Furthermore, it is theoretically proven that the obtained conditions are less conservative than some existing ones in recent literature. The effectiveness of the proposed observers is illustrated via a simulative example.

  11. Averaged state model based design of nonlinear observer for the on/off solenoid valve pneumatic actuators

    OpenAIRE

    Laib, Khaled; Megnous, Ahmed Rhéda; Pham, Minh Tu; Lin-Shi, Xuefang

    2016-01-01

    This report presents an averaged model and nonlinear observer for an on/off pneumatic actuator. The actuator is composed of two chambers and four on/off solenoid valves. The averaged model is elaborated which has the advantage of using only one continuous input instead of four binary inputs. Based on this new model, a sliding mode observer is designed using the piston's position and the pressure measurements in one of the chambers to estimate the piston velocity and the pressure in the other ...

  12. A New Finite-Time Observer for Nonlinear Systems: Applications to Synchronization of Lorenz-Like Systems

    Directory of Open Access Journals (Sweden)

    Ricardo Aguilar-López

    2016-01-01

    Full Text Available This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.

  13. A New Finite-Time Observer for Nonlinear Systems: Applications to Synchronization of Lorenz-Like Systems

    Science.gov (United States)

    Aguilar-López, Ricardo

    2016-01-01

    This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme. PMID:27738651

  14. Experimental observation of long-wavelength dispersive wave generation induced by self-defocusing nonlinearity in BBO crystal

    CERN Document Server

    Zhou, Binbin

    2015-01-01

    We experimentally observe long-wavelength dispersive waves generation in a BBO crystal. A soliton was formed in normal GVD regime of the crystal by a self-defocusing and negative nonlinearity through phase-mismatched quatradic interaction. Strong temporal pulse compression confirmed the formation of soliton during the pulse propagation inside the crystal. Significant dispersive wave radiation was measured in the anomalous GVD regime of the BBO crystal. With the pump wavelengths from 1.24 to 1.4 $\\mu$m, tunable dispersive waves are generated around 1.9 to 2.2 $\\mu$m. The observed dispersive wave generation is well understood by simulations.

  15. A Sensitive Scheme to Observe Weak Photo-Refraction Effects in Some Nonlinear Optical Crystals Pumped by Ultrashort Optical Pulses

    Institute of Scientific and Technical Information of China (English)

    XU Shi-Xiang; GAO Yan-Xia; CAI Hua; LI Jing-Zhen

    2009-01-01

    We present a sensitive scheme, for the first time to our knowledge, to observe photo-refraction (PR) effects in some nonlinear optical crystals, e.g.β-BBO, LBO and BIBO, pumped by an intense ultrashort laser pulse chain. These quite weak effects are "amplified" by sensitive cw intracavity loss modulation. Our results show that they are repeatable and are dependent on pumping power and wavelength, and their response time ranges from tens of seconds to several minutes. The recorded dynamical transitions between the self-focusing to the self-defocusing (or vice versa) induced by the PR effect may be critically important for us to give more insight into the stability of some cascade nonlinear frequency conversions, e.g. multi-stage optical parametric amplifiers.

  16. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    Science.gov (United States)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  17. Classics Online.

    Science.gov (United States)

    Clayman, Dee L.

    1995-01-01

    Appraises several databases devoted to classical literature. Thesaurus Linguae Graecae (TLG) contains the entire extant corpus of ancient Greek literature, including works on lexicography and historiography, extending into the 15th century. Other works awaiting completion are the Database of Classical Bibliography and a CD-ROM pictorial dictionary…

  18. Nonlinear observation of internal states of fuel cell cathode utilizing a high-order sliding-mode algorithm

    Science.gov (United States)

    Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner

    2017-07-01

    A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.

  19. Observation of the nonlinear meissner effect in YBCO thin films: evidence for a D-wave order parameter in the bulk of the cuprate superconductors.

    Science.gov (United States)

    Oates, D E; Park, S-H; Koren, G

    2004-11-05

    We present experimental evidence for the observation of the nonlinear Meissner effect in high-quality epitaxial yttrium barium copper oxide thin films by measuring their intermodulation distortion at microwave frequencies versus temperature. Most of the films measured show a characteristic increase in nonlinearity at low temperatures as predicted by the nonlinear Meissner effect. We could measure the nonlinear Meissner effect because intermodulation distortion measurements are an extremely sensitive method that can detect changes in the penetration depth of the order of 1 part in 10(5).

  20. Neural adaptive observer-based sensor and actuator fault detection in nonlinear systems: Application in UAV.

    Science.gov (United States)

    Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman

    2017-03-01

    A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies.

  1. Detection and classication of resolved multiplet members of the solar 5 minute oscillations through solar diameter-type observations

    Science.gov (United States)

    Hill, H. A.

    1985-03-01

    After Hill and Stebbins (1975) provided the first evidence of global oscillations in solar diameter observations, numerous attempts have been made to obtain similar evidence of these modes of oscillation in other types of observations, taking into account Doppler shifts of Fraunhofer lines. Unfortunately, efforts to detect the considered global solar oscillations by other types of observations have so far not been successful. The relative utility of the observational techniques currently in use could be evaluated on the basis of a direct comparison of various results regarding the five minute oscillations. New information obtained on five minute oscillations provides confirmation of the existence and detection of resolved members of multiplets through observed symmetry properties of the eigenfunctions. It is pointed out that the existence of such resolved multiplets is a pivotal issue at this time. The importance of this point is related to the implications for the internal rotation of the sun.

  2. Quantum interferences and their classical limit in laser driven coherent control scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Ignacio, E-mail: ifranco@chem.northwestern.edu [Chemical Physics Theory Group, Department of Chemistry, Center for Quantum Information and Quantum Control, University of Toronto, Toronto, ON, M5S 3H6 (Canada); Spanner, Michael; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, Center for Quantum Information and Quantum Control, University of Toronto, Toronto, ON, M5S 3H6 (Canada)

    2010-05-12

    Graphical abstract: The analogy between Young's double-slit experiment with matter and laser driven coherent control schemes is investigated, and shown to be limited. To do so, a general decomposition of observables in the Heisenberg picture into direct terms and interference contributions is introduced, and formal quantum-classical correspondence arguments in the Heisenberg picture are employed to define classical analogs of quantum interference terms. While the classical interference contributions in the double-slit experiment are shown to be zero, they can be nonzero in laser driven coherent control schemes and lead to laser control in the classical limit. This classical limit is interpreted in terms of nonlinear response theory arguments. - Abstract: The analogy between Young's double-slit experiment with matter and laser driven coherent control schemes is investigated, and shown to be limited. To do so, a general decomposition of observables in the Heisenberg picture into direct terms and interference contributions is introduced, and formal quantum-classical correspondence arguments in the Heisenberg picture are employed to define classical analogs of quantum interference terms. While the classical interference contributions in the double-slit experiment are shown to be zero, they can be nonzero in laser driven coherent control schemes and lead to laser control in the classical limit. This classical limit is interpreted in terms of nonlinear response theory arguments.

  3. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    Science.gov (United States)

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.

    2015-03-01

    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  4. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  5. Observation of electromagnetically induced Talbot effect in an atomic system with nonlinearity

    CERN Document Server

    Zhang, Zhaoyang; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2016-01-01

    We experimentally demonstrate the Talbot effect resulting from the repeatedly self-reconstruction of a spatially intensity-modulated probe field under the Fresnel near-field regime. By launching the probe beam into an optically induced atomic lattice (established by interfering two coupling fields) inside a thermal rubidium vapor cell, we can obtain an electromagnetically induced grating (EIG) on probe beam in a coherent three-level $\\Lambda$-type Doppler-free atomic configuration with the assistance of electromagnetically induced transparency (EIT) window, which can modify and greatly enhance the Kerr nonlinearity near atomic resonance. The EIG patterns out of the cell can repeat the image at the output plane of the cell at integer multiples of Talbot length, which agree well with the theoretical prediction [Appl. Phys. Lett., 98, 081108 (2011)]. Such first demonstrated EIT Talbot effect in a coherent atomic system may pave a lensless and nondestructive way for imaging ultracold atoms or molecules.

  6. Disturbance observer-based control for nonlinear systems subject to mismatched disturbances with application to hypersonic flight vehicles

    Directory of Open Access Journals (Sweden)

    Yunling Li

    2017-03-01

    Full Text Available For a class of multi-input multi-output nonlinear systems, a disturbance observer-based control is proposed to solve the tracking problem in the presence of mismatched disturbances. By designing a novel compensation gain matrix, the disturbances can be removed from the output channel completely as well as retaining the nominal performance. Compared with the state of the art, the gain matrix reduces to be constant; therefore, the complexity of the controller is simplified greatly. This method is applied to the control of hypersonic flight vehicles to demonstrate its effectiveness.

  7. Comment on "Generalized projective synchronization in time-delayed systems: nonlinear observer approach" [Chaos 19, 013102 (2009); 20, 029902 (2010)].

    Science.gov (United States)

    Theesar, S Jeeva Sathya; Balasubramaniam, P; Banerjee, Santo

    2012-09-01

    In Chaos 19, 013102 (2009), the author proposed generalized projective synchronization for time delay systems using nonlinear observer and obtained sufficient condition to ensure projective synchronization for modulated time varying delay. There are concerns with the obtained conditions as the result was applicable only to trivial case of time varying delay τ[over dot](1)(t)=dτ(1)(t)/dt<1. In this paper, we note the drawbacks of the proposed sufficient condition. The new improved sufficient condition for ensuring the projective synchronization of time varying delayed systems is presented. The proposed new criteria have been verified by adopting the Ikeda system.

  8. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  9. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhaoguo [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Qiugang, E-mail: qgzong@gmail.com; Wang, Yongfu [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Liu, Siqing; Lin, Ruilin; Shi, Liqin [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  10. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    Science.gov (United States)

    He, Zhaoguo; Zong, Qiugang; Liu, Siqing; Wang, Yongfu; Lin, Ruilin; Shi, Liqin

    2014-12-01

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = -9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  11. Probability representation of classical states

    NARCIS (Netherlands)

    Man'ko, OV; Man'ko, [No Value; Pilyavets, OV

    2005-01-01

    Probability representation of classical states described by symplectic tomograms is discussed. Tomographic symbols of classical observables which are functions on phase-space are studied. Explicit form of kernel of commutative star-product of the tomographic symbols is obtained.

  12. Observer-Based Adaptive Iterative Learning Control for a Class of Nonlinear Time Delay Systems with Input Saturation

    Directory of Open Access Journals (Sweden)

    Jian-ming Wei

    2015-01-01

    Full Text Available This paper presents an adaptive iterative learning control scheme for the output tracking of a class of nonlinear systems with unknown time-varying delays and input saturation nonlinearity. An observer is presented to estimate the states and linear matrix inequality (LMI method is employed for observer design. The assumption of identical initial condition for ILC is relaxed by introducing boundary layer function. The possible singularity problem is avoided by introducing hyperbolic tangent function. The uncertainties with time-varying delays are compensated for by the combination of appropriate Lyapunov-Krasovskii functional and Young’s inequality. Both time-varying and time-invariant radial basis function neural networks are employed to deal with system uncertainties. On the basis of a property of hyperbolic tangent function, the system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapunov-like composite energy function in two cases, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach.

  13. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  14. Full-Order Sliding Mode Control for High-Order Nonlinear System Based on Extended State Observer

    Institute of Scientific and Technical Information of China (English)

    CHEN Qiang; TAO Liang; NAN Yurong

    2016-01-01

    In this paper,a full-order sliding mode control based on extended state observer (FSMC+ESO) is proposed for high-order nonlinear system with unknown system states and uncertainties.The extended state observer (ESO) is employed to estimate both the unknown system states and uncertainties so that the restriction that the system states should be completely measurable is relaxed,and a full-order sliding mode controller is designed based on the ESO estimation to overcome the chattering problem existing in ordinary reduced-order sliding mode control.Simulation results show that the proposed method facilitates the practical application with respect to good tracking performance and chattering elimination.

  15. Graphene on C-terminated face of 4H-SiC observed by noncontact scanning nonlinear dielectric potentiometry

    Science.gov (United States)

    Yamasue, Kohei; Fukidome, Hirokazu; Tashima, Keiichiro; Suemitsu, Maki; Cho, Yasuo

    2016-08-01

    We studied graphene synthesized on the C-terminated face (C-face) of a 4H-SiC substrate by noncontact scanning nonlinear dielectric potentiometry. As already reported by other researchers, multilayer graphene sheets with moiré patterns were observed in our sample, which indicates the existence of rotational disorder between adjacent layers. We found that the potentials of graphene on the C-face are almost neutral and significantly smaller than those observed on the Si-terminated face (Si-face). In addition, the neutrality of potentials is not affected by various topographic features underlying the multilayer graphene sheets. These results indicate that graphene on the C-face of SiC is decoupled or screened from the underlying structures and substrate, unlike graphene on the Si-face.

  16. Observation of nonlinear optical phenomena in fused silica and air using a 100 GW, 1.54 um source.

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, James Van; Law, R. J.; Luk, Ting Shan; Naudeau, Madeline L.; Nelson, Thomas Robert; Cameron, Stewart M.

    2006-02-01

    A 100-GW optical parametric chirped-pulse amplifier system is used to study nonlinear effects in the 1.54 {micro}m regime. When focusing this beam in air, strong third-harmonic generation (THG) is observed, and both the spectra and efficiency are measured. Broadening is observed on only the blue side of the third-harmonic signal and an energy conversion efficiency of 0.2% is achieved. When propagated through a 10-cm block of fused silica, a collimated beam is seen to collapse and form multiple filaments. The measured spectral features span 400-2100 nm. The spectrum is dominated by previously unobserved Stokes emissions and broad emissions in the visible.

  17. Observation of nonlinear bands in near-field scanning optical microscopy of a photonic-crystal waveguide

    CERN Document Server

    Singh, Amandev; Huisman, Simon R; Korterik, Jeroen P; Mosk, Allard P; Herek, Jennifer L; Pinkse, Pepijn W H

    2014-01-01

    We have measured the photonic bandstructure of GaAs photonic-crystal waveguides with high energy and momentum resolution using near-field scanning optical microscopy. Intriguingly, we observe additional bands that are not predicted by eigenmode solvers, as was recently demonstrated by Huisman et al. [Phys. Rev. B 86, 155154 (2012)]. We study the presence of these additional bands by performing measurements of these bands while varying the incident light power, revealing a non-linear power dependence. Here, we demonstrate experimentally and theoretically that the observed additional bands are caused by a waveguide-specific near- field tip effect not previously reported, which can significantly phase-modulate the detected field.

  18. Observations of spatiotemporal instabilities in the strong-driving regime of an AC-driven nonlinear Schr\\"odinger system

    CERN Document Server

    Anderson, Miles; Coen, Stéphane; Erkintalo, Miro; Murdoch, Stuart G

    2016-01-01

    Localized dissipative structures (LDS) have been predicted to display a rich array of instabilities, yet systematic experimental studies have remained scarce. We have used a synchronously-driven optical fiber ring resonator to experimentally study LDS instabilities in the strong-driving regime of the AC-driven nonlinear Schr\\"odinger equation (also known as the Lugiato-Lefever model). Through continuous variation of a single control parameter, we have observed a string of theoretically predicted instability modes, including irregular oscillations and chaotic collapses. Beyond a critical point, we observe behaviour reminiscent of a phase transition: LDSs trigger localized domains of spatiotemporal chaos that invade the surrounding homogeneous state. Our findings directly confirm a number of theoretical predictions, and they highlight that complex LDS instabilities can play a role in experimental systems.

  19. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-10-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  20. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  1. On the use of contraction theory for the design of nonlinear observers for ocean vehicles

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Lottin, Jacques

    and practice. This paper addresses the question of the applicability of contraction theory to the design of UGES observers for ocean vehicles. A relation between the concept of exponential convergence of a contracting system and uniform global exponential stability (UGES) is rst given. Then two contraction......-based GES observers, respectively for unmanned underwater vehicles (UUV) and a class of ships, are constructed, and simulation results are provided....

  2. Identification of Nonlinear Spatiotemporal Dynamical Systems With Nonuniform Observations Using Reproducing-Kernel-Based Integral Least Square Regulation.

    Science.gov (United States)

    Ning, Hanwen; Qing, Guangyan; Jing, Xingjian

    2016-11-01

    The identification of nonlinear spatiotemporal dynamical systems given by partial differential equations has attracted a lot of attention in the past decades. Several methods, such as searching principle-based algorithms, partially linear kernel methods, and coupled lattice methods, have been developed to address the identification problems. However, most existing methods have some restrictions on sampling processes in that the sampling intervals should usually be very small and uniformly distributed in spatiotemporal domains. These are actually not applicable for some practical applications. In this paper, to tackle this issue, a novel kernel-based learning algorithm named integral least square regularization regression (ILSRR) is proposed, which can be used to effectively achieve accurate derivative estimation for nonlinear functions in the time domain. With this technique, a discretization method named inverse meshless collocation is then developed to realize the dimensional reduction of the system to be identified. Thereafter, with this novel inverse meshless collocation model, the ILSRR, and a multiple-kernel-based learning algorithm, a multistep identification method is systematically proposed to address the identification problem of spatiotemporal systems with pointwise nonuniform observations. Numerical studies for benchmark systems with necessary discussions are presented to illustrate the effectiveness and the advantages of the proposed method.

  3. Fermions from classical statistics

    OpenAIRE

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states $\\tau$ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities $p_\\tau$ amounts to a rotation of the wave function $q_\\tau(t)=\\pm \\sqrt{p_\\tau(t)}$, we infer the unitary time evolution of a quantum system of fe...

  4. Classical Mechanics

    OpenAIRE

    Gallavotti, Giovanni

    2012-01-01

    This is the English version of a friendly graduate course on Classical Mechanics, containing about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. For the Spanish version, see physics/9906066

  5. Robust observer-based fault diagnosis for nonlinear systems using Matlab

    CERN Document Server

    Zhang, Jian; Nguang, Sing Kiong

    2016-01-01

    This book introduces several observer-based methods, including: • the sliding-mode observer • the adaptive observer • the unknown-input observer and • the descriptor observer method for the problem of fault detection, isolation and estimation, allowing readers to compare and contrast the different approaches. The authors present basic material on Lyapunov stability theory, H¥ control theory, sliding-mode control theory and linear matrix inequality problems in a self-contained and step-by-step manner. Detailed and rigorous mathematical proofs are provided for all the results developed in the text so that readers can quickly gain a good understanding of the material. MATLAB® and Simulink® codes for all the examples, which can be downloaded from http://extras.springer.com, enable students to follow the methods and illustrative examples easily. The systems used in the examples make the book highly relevant to real-world problems in industrial control engineering and include a seventh-order aircraft mod...

  6. Nonlinear optical observation of coherent acoustic Dirac plasmons in thin-film topological insulators

    Science.gov (United States)

    Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David

    2016-09-01

    Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

  7. On Noncommutative Classical Mechanics

    CERN Document Server

    Djemai, A E F

    2003-01-01

    In this work, I investigate the noncommutative Poisson algebra of classical observables corresponding to a proposed general Noncommutative Quantum Mechanics, \\cite{1}. I treat some classical systems with various potentials and some Physical interpretations are given concerning the presence of noncommutativity at large scales (Celeste Mechanics) directly tied to the one present at small scales (Quantum Mechanics) and its possible relation with UV/IR mixing.

  8. Mean angular diameters, distances, and pulsation modes of the classical Cepheids FF Aquilae and T Vulpeculae. CHARA/FLUOR near-infrared interferometric observations

    Science.gov (United States)

    Gallenne, A.; Kervella, P.; Mérand, A.; McAlister, H.; ten Brummelaar, T.; Coudé du Foresto, V.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-05-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we obtain using observations with the FLUOR instrument installed at the CHARA interferometric array. We derive average limb-darkened angular diameters of θLD = 0.878 ± 0.013 mas and θLD = 0.629 ± 0.013 mas, respectively, for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 ± 2.2 R⊙ and R = 35.6 ± 4.4 R⊙, respectively. The comparison with empirical and theoretical period-radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of this pulsation mode is of prime importance to calibrating the period-luminosity relation with a uniform sample of fundamental mode Cepheids.

  9. Local observability of state variables and parameters in nonlinear modeling quantified by delay reconstruction

    CERN Document Server

    Parlitz, Ulrich; Luther, Stefan

    2015-01-01

    Features of the Jacobian matrix of the delay coordinates map are exploited for quantifying the robustness and reliability of state and parameter estimations for a given dynamical model using an observed time series. Relevant concepts of this approach are introduced and illustrated for discrete and continuous time systems employing a filtered H\\'enon map and a R\\"ossler system.

  10. Observations of enhanced nonlinear instability in the surface reflection of internal tides

    NARCIS (Netherlands)

    Xie, X.; Shang, X.; van Haren, H.; Chen, G.

    2013-01-01

    Enhanced vertically standing waves formed by the superposition of two upward and downward going near-diurnal (D1) waves are observed during one semidiurnal (D2) spring tide in an approximately 75day long velocity record from the northeastern South China Sea. Bicoherence estimates suggest that the

  11. Global Asymptotic Stability of the Classical PID Controller by Considering Saturation Effects in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Antonio Yarza

    2011-09-01

    Full Text Available An unsolved ancient problem in position control of robot manipulators is to find a stability analysis that proves global asymptotic stability of the classical PID control in closed loop with robot manipulators. The practical evidence suggests that in fact the classical PID in industrial robots is a global regulator. The main goal of the present paper is theoretically to show why in the practice such a fact is achieved. We show that considering the natural saturations of every control stage in practical robots, the classical PID becomes a type of saturated nonlinear PID controller. In this work such a nonlinear PID controller with bounded torques for robot manipulators is proposed. This controller, unlike other saturated nonlinear PID controllers previously proposed, uses a single saturation for the three terms of the controller. Global asymptotical stability is proved via Lyapunov stability theory. Experimental results are presented in order to observe the performance of the proposed controller.

  12. Perspective: Quantum or classical coherence?

    Science.gov (United States)

    Miller, William H

    2012-06-07

    Some coherence effects in chemical dynamics are described correctly by classical mechanics, while others only appear in a quantum treatment--and when these are observed experimentally it is not always immediately obvious whether their origin is classical or quantum. Semiclassical theory provides a systematic way of adding quantum coherence to classical molecular dynamics and thus provides a useful way to distinguish between classical and quantum coherence. Several examples are discussed which illustrate both cases. Particularly interesting is the situation with electronically non-adiabatic processes, where sometimes whether the coherence effects are classical or quantum depends on what specific aspects of the process are observed.

  13. Reduced-order observer-based output feedback control of nonlinear time-delay systems with prescribed performance

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2016-04-01

    This paper studies the problem of output feedback control for a class of nonlinear time-delay systems with prescribed performance. The system is in the form of triangular structure with unmodelled dynamics. First, we introduce a reduced-order observer to provide the estimate of the unmeasured states. Then, by setting a new condition with the performance function, we design the state transformation with prescribed performance control. By employing backstepping method, we construct the output feedback controller. It is proved that the resulting closed-loop system is asymptotically stable and both transient and steady-state performance of the output are preserved with the changing supply function idea. Finally, a simulation example is conducted to show the effectiveness of the main results.

  14. Observer-Based Adaptive NN Control for a Class of Uncertain Nonlinear Systems With Nonsymmetric Input Saturation.

    Science.gov (United States)

    Gao, Yong-Feng; Sun, Xi-Ming; Wen, Changyun; Wang, Wei

    2016-03-08

    This paper is concerned with the problem of adaptive tracking control for a class of uncertain nonlinear systems with nonsymmetric input saturation and immeasurable states. The radial basis function of neural network (NN) is employed to approximate unknown functions, and an NN state observer is designed to estimate the immeasurable states. To analyze the effect of input saturation, an auxiliary system is employed. By the aid of adaptive backstepping technique, an adaptive tracking control approach is developed. Under the proposed adaptive tracking controller, the boundedness of all the signals in the closed-loop system is achieved. Moreover, distinct from most of the existing references, the tracking error can be bounded by an explicit function of design parameters and saturation input error. Finally, an example is given to show the effectiveness of the proposed method.

  15. Direct observation of nonlinear coupling in wave turbulence at the surface of water and relevance of approximate resonances

    Science.gov (United States)

    Aubourg, Quentin; Mordant, Nicolas

    2016-04-01

    energy cascade is clearly observed consistently with previous measurements. A large amount of data permits us to use higher order statistical tools to investigate directly the resonant interactions. We observe a strong presence of triadic interactions in our system, confirming the foundations of the weak wave turbulence theory. A significant part of these interactions are non-local and enable coupling between capillary and gravity waves. We also emphasize the role of approximate resonances that are made possible by the nonlinear spectral widening. The quasi-resonances increase significantly the number of wave interactions and in particular open the possibility of observing 3-wave coupling among gravity waves although 3-wave exact resonances are prohibited. These effects are being currently investigated in a larger size experiment using a 13m in diameter wave flume. Our observation raise the question of the importance of these approximate resonances of gravity waves in energy transfers both in the theory and in the ocean.

  16. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    Science.gov (United States)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  17. A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors

    Science.gov (United States)

    Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul

    2013-01-01

    This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316

  18. Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.

    Science.gov (United States)

    Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M

    2007-10-01

    We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.

  19. Intramolecular and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J. [Argonne National Laboratory, IL (United States)

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  20. Current and Density Observations of Packets of Nonlinear Internal Waves on the Outer New Jersey Shelf

    Science.gov (United States)

    2011-05-01

    continental shelf 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 17. LIMITATION OF... decimal day. The number of events observed at each location is shown. Case/day Al A2 A3 A4 SI S2 Level tow 1/170.3 2 2 2 II/170.7 3 3 3 3 II1...Klymak and Mourn 2003: Dewey and Crawford 1988). Richardson number Ri calculations based on the den- sity profiles from the siring moorings (SI, S2) and

  1. OBSERVERS DESIGN FOR A CLASS OF QUASI-ONE-SIDED LIPSCHITZ UNCERTAIN NONLINEAR SYSTEMS%一类不确定性拟单边Lipschitz非线性系统观测器设计

    Institute of Scientific and Technical Information of China (English)

    赵岩斌; 张红钰

    2013-01-01

    本文研究了一类不确定性拟单边Lipschitz非线性系统观测器设计问题.利用拟单边Lipschitz条件代替通常的Lipschitz条件,得到了这类不确定性非线性系统观测器设计的线性矩阵小等式判据.结果推广了该类系统鲁棒H∞观测器问题.文末,给出了几个仿真算例以验证所给方法的正确性.%In this paper, the problem of observer design for a class of uncertain nonlinear systems is investigated. Using quasi-one-sided Lipschitz condition instead of the classical Lipschitz condition, a linear matrix inequality criterion to observer design for a class of uncertain nonlinear systems is given, which generalize H∞ filter design. Some numerical examples are given to illustrate the proposed approach.

  2. Nonlinear features of equatorial baroclinic Rossby waves detected in Topex altimeter observations

    Directory of Open Access Journals (Sweden)

    R. E. Glazman

    1996-01-01

    Full Text Available Using a recently proposed technique for statistical analysis of non-gridded satellite altimeter data, regime of long equatorially-trapped baroclinic Rossby waves is studied. One-dimensional spatial and spatiotemporal autocorrelation functions of sea surface height (SSH variations yield a broad spectrum of baroclinic Rossby waves and permit determination of their propagation speed. The 1-d wavenumber spectrum of zonal variations is given by a power-law k-2 on scales from about 103 km to 104 km. We demonstrate that the observed wave regime exhibits features of soliton turbulence developing in the long baroclinic Rossby waves. However, being limited to second statistical moments, the present analysis does not allow us to rule out a possibility of weak wave turbulence.

  3. Observer-Based Control Design for Nonlinear Networked Control Systems with Limited Information

    Directory of Open Access Journals (Sweden)

    Yilin Wang

    2013-01-01

    Full Text Available This paper is concerned with the problem of designing a robust observer-based controller for discrete-time networked systems with limited information. An improved networked control system model is proposed and the effects of random packet dropout, time-varying delay, and quantization are considered simultaneously. Based on the obtained model, a stability criterion is developed by constructing an appropriate Lyapunov-Krasovskii functional and sufficient conditions for the existence of a dynamic quantized output feedback controller which are given in terms of linear matrix inequalities (LMIs such that the augmented error system is stochastically stable with an performance level. An example is presented to illustrate the effectiveness of the proposed method.

  4. Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators.

    Science.gov (United States)

    In, Visarath; Kho, Andy; Neff, Joseph D; Palacios, Antonio; Longhini, Patrick; Meadows, Brian K

    2003-12-12

    Frequency-related oscillations in coupled oscillator systems, in which one or more oscillators oscillate at different frequencies than the other oscillators, have been studied using group theoretical methods by Armbruster and Chossat [Phys. Lett. A 254, 269 (1999)] and more recently by Golubitsky and Stewart [in Geometry, Mechanics, and Dynamics, edited by P. Newton, P. Holmes, and A. Weinstein (Springer, New York, 2002), p. 243]. We demonstrate, experimentally, via electronic circuits, the existence of frequency-related oscillations in a network of two arrays of N oscillators, per array, coupled to one another. Under certain conditions, one of the arrays can be induced to oscillate at N times the frequency of the other array. This type of behavior is different from the one observed in a driven system because it is dictated mainly by the symmetry of the coupled system.

  5. Nonlinear Gulf Stream Interaction with the Deep Western Boundary Current System: Observations and a Numerical Simulation

    Science.gov (United States)

    Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng

    2003-01-01

    Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.

  6. Generalized Schr\\"odinger cat states and their classical emulation

    CERN Document Server

    Perez-Leija, Armando; Szameit, Alexander; Christodoulides, Demetrios N; Moya-Cessa, Hector

    2015-01-01

    We demonstrate that superpositions of coherent and displaced Fock states, also referred to as generalized Schr\\"odinger cats cats, can be created by application of a nonlinear displacement operator which is a deformed version of the Glauber displacement operator. Consequently, such generalized cat states can be formally considered as nonlinear coherent states. We then show that Glauber-Fock photonic lattices endowed with alternating positive and negative coupling coefficients give rise to classical analogs of such cat states. In addition, it is pointed out that the analytic propagator of these deformed Glauber-Fock arrays explicitly contains the Wigner operator opening the possibility to observe Wigner functions of the quantum harmonic oscillator in the classical domain.

  7. [Classical taxomomies].

    Science.gov (United States)

    Liubarskiĭ, G Iu

    2006-01-01

    The sequence of classic paradigms in taxonomy that partly replaced each other and partly co-exist is given as follows: the theory of "organ and organism similarity", the naturalistic theory, the descriptive theory, and the phylogenetic theory. The naturalistic classics accepted the notion of "the plan of creation". The rejection of appealing to this plan brought forth certain problems in the formulation of the purpose of taxonomy; these problems were differently solved by the descriptive and the phylogenetic classic traditions. The difficulties of the current paradigms arising from the loss of a "strong purpose", a problem to be solved by taxonomists that is to be clear and interesting to a wide range of non-professionals. The paradox of formalization led to the losing of content of the methods due to their formalization. To attract attention to taxonomy, a new "image of the results" of its work that would be interesting to the non-professionals is necessary. The co-existence of different methods of reseach applied to different groups of facts leads to the loss of integrity of the research. It is not only that the taxon becomes a hypothesis and such hypotheses multiply. The comparison of these hypotheses is problematic, because each of them is supported by its own independent scope of facts. Because of the existence of a fundamental meronotaxonomic discrepancy, taxonomic systems based on different groups of characters appear to be incomparable, being rather systems of characters than systems of taxa. Systems of characters are not directly comparable with each other; they can be compared only through appealing to taxa, but taxa themselves exist only in the form of a number of hypotheses. Consequently, each separate taxonomic approach creates its own nature, its own subject of research. Therefore, it is necessary to describe the subject of research correctly (and indicate the purpose of research), as well as to distinguish clearly between results achieved through

  8. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  9. Fault Diagnosis for Actuators in a Class of Nonlinear Systems Based on an Adaptive Fault Detection Observer

    Directory of Open Access Journals (Sweden)

    Runxia Guo

    2016-01-01

    Full Text Available The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability has been given. Under the condition that random measurement noise generated by the sensors of control systems and external disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

  10. Simulations and observation of nonlinear internal waves on the continental shelf: Korteweg–de Vries and extended Korteweg–de Vries solutions

    Directory of Open Access Journals (Sweden)

    K. O'Driscoll

    2017-09-01

    Full Text Available Numerical solutions of the Korteweg–de Vries (KdV and extended Korteweg–de Vries (eKdV equations are used to model the transformation of a sinusoidal internal tide as it propagates across the continental shelf. The ocean is idealized as being a two-layer fluid, justified by the fact that most of the oceanic internal wave signal is contained in the gravest mode. The model accounts for nonlinear and dispersive effects but neglects friction, rotation and mean shear. The KdV model is run for a number of idealized stratifications and unique realistic topographies to study the role of the nonlinear and dispersive effects. In all model solutions the internal tide steepens forming a sharp front from which a packet of nonlinear solitary-like waves evolve. Comparisons between KdV and eKdV solutions are made. The model results for realistic topography and stratification are compared with observations made at moorings off Massachusetts in the Middle Atlantic Bight. Some features of the observations compare well with the model. The leading face of the internal tide steepens to form a shock-like front, while nonlinear high-frequency waves evolve shortly after the appearance of the jump. Although not rank ordered, the wave of maximum amplitude is always close to the jump. Some features of the observations are not found in the model. Nonlinear waves can be very widely spaced and persist over a tidal period.

  11. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances.

    Science.gov (United States)

    Pashaei, Shabnam; Badamchizadeh, Mohammadali

    2016-07-01

    This paper investigates the stabilization and disturbance rejection for a class of fractional-order nonlinear dynamical systems with mismatched disturbances. To fulfill this purpose a new fractional-order sliding mode control (FOSMC) based on a nonlinear disturbance observer is proposed. In order to design the suitable fractional-order sliding mode controller, a proper switching surface is introduced. Afterward, by using the sliding mode theory and Lyapunov stability theory, a robust fractional-order control law via a nonlinear disturbance observer is proposed to assure the existence of the sliding motion in finite time. The proposed fractional-order sliding mode controller exposes better control performance, ensures fast and robust stability of the closed-loop system, eliminates the disturbances and diminishes the chattering problem. Finally, the effectiveness of the proposed fractional-order controller is depicted via numerical simulation results of practical example and is compared with some other controllers.

  12. Nonlinear optomechanical measurement of mechanical motion

    DEFF Research Database (Denmark)

    Brawley, G.A.; Vanner, M R; Larsen, Peter Emil

    2016-01-01

    Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing...... with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator...... by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can...

  13. Airship Observations of Formaldehyde in the Po Valley as a Probe of Boundary Layer Development and Non-Classical Radical Chemistry

    Science.gov (United States)

    Kaiser, J.; Wolfe, G. M.; Keutsch, F. N.

    2012-12-01

    Stagnant meteorological conditions and high anthropogenic emissions make the Po Valley in Northern Italy one of Europe's most polluted regions. Understanding the processes controlling ozone production in this environment is essential for developing effective mitigation strategies. As both a source of HO2 radicals and an intermediate in the oxidation of most volatile organic compounds (VOCs), formaldehyde (HCHO) is a useful tracer for the oxidative processing of hydrocarbons that leads to ozone production. During the Pan-European Gas-AeroSOls Climate Interaction Study (PEGASOS), HCHO measurements were acquired via a Fiber Laser-Induced Fluorescence (FiLIF) instrument onboard a Zeppelin airship. This mission represents the first successful airborne deployment of the FiLIF instrument. With low flight speeds and vertical profiling capabilities, these Zeppelin-based observations in conjunction with other measurements may offer new insights into the spatial and temporal variability of atmospheric composition within the Po Valley region. Preliminary comparisons of modeled and measured HCHO concentrations at various altitudes and VOC/NOx regimes will be presented. Analysis will focus on 1) the transition from nocturnal to daytime boundary layers, and 2) the potential role of "non-classical" radical chemistry in ozone production.

  14. ISO far infrared observations of the high latitude cloud L1642. II. Correlated variations of far-infrared emissivity and temperature of "classical large" dust particles

    CERN Document Server

    Lehtinen, K; Mattila, K; Lemke, D; Russeil, D

    2007-01-01

    Our aim is to compare the infrared properties of big, ``classical'' dust grains with visual extinction in the cloud L1642. In particular, we study the differences of grain emissivity between diffuse and dense regions in the cloud. The far-infrared properties of dust are based on large-scale 100um and 200um maps. Extinction through the cloud has been derived by using the star count method at B- and I-bands, and color excess method at J, H and Ks bands. Radiative transfer calculations have been used to study the effects of increasing absorption cross-section on the far-infrared emission and dust temperature. Dust emissivity, measured by the ratio of far-infrared optical depth to visual extinction, tau(far-IR)/A(V), increases with decreasing dust temperature in L1642. There is about two-fold increase of emissivity over the dust temperature range of 19K-14K. Radiative transfer calculations show that in order to explain the observed decrease of dust temperature towards the centre of L1642 an increase of absorption...

  15. Optimal Parametric Feedback Excitation of Nonlinear Oscillators

    Science.gov (United States)

    Braun, David J.

    2016-01-01

    An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.

  16. Nonsingular Fast Terminal Sliding Mode Control with Extended State Observer and Tracking Differentiator for Uncertain Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Zhenxin He

    2014-01-01

    Full Text Available A continuous nonsingular fast terminal sliding mode (NFTSM control scheme with the extended state observer (ESO and the tracking differentiator (TD is proposed for second-order uncertain SISO nonlinear systems. The system’s disturbances and states can be estimated by introducing the ESO, then the disturbances are compensated effectively, and the ideal transient process of the system can be arranged based on TD to provide the target tracking signal and its high-order derivatives. The proposed controller obtains finite-time convergence property and keeps good robustness of sliding mode control (SMC for disturbances. Moreover, compared with conventional SMC, the proposed control law is continuous and no chattering phenomenon exists. The property of system stability is guaranteed by Lyapunov stability theory. The simulation results show that the proposed method can be employed to shorten the system reaching time, improve the system tracking precision, and suppress the system chattering and the input noise. The proposed control method is finally applied for the rotating control problem of theodolite servo system.

  17. Between classical and quantum

    CERN Document Server

    Landsman, N P

    2005-01-01

    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. On the assumption that quantum mechanics is universal and complete, we discuss three ways in which classical physics has so far been believed to emerge from quantum physics, namely in the limit h -> 0 of small Planck's constant (in a finite system), in the limit of a large system, and through decoherence and consistent histores. The first limit is closely related to modern quantization theory and microlocal analysis, whereas the second involves methods of C*-algebras and the concepts of superselection sectors and macroscopic observables. In these limits, the classical world does not emerge as a sharply defined objective reality, but rather as an approximate appearance relative to certain "...

  18. Full non-linear treatment of the global thermospheric wind system. I - Mathematical method and analysis of forces. II - Results and comparison with observations

    Science.gov (United States)

    Blum, P. W.; Harris, I.

    1975-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.

  19. Nonlinear Michelson interferometer for improved quantum metrology

    Science.gov (United States)

    Luis, Alfredo; Rivas, Ángel

    2015-08-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.

  20. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis Aina, Alfredo; Rivas Vargas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  1. The Wigner representation of classical mechanics, quantization and classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, A.O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2{pi} {yields} 0. (author)

  2. A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system

    Directory of Open Access Journals (Sweden)

    A. Fournier

    2007-01-01

    Full Text Available Secular variations of the geomagnetic field have been measured with a continuously improving accuracy during the last few hundred years, culminating nowadays with satellite data. It is however well known that the dynamics of the magnetic field is linked to that of the velocity field in the core and any attempt to model secular variations will involve a coupled dynamical system for magnetic field and core velocity. Unfortunately, there is no direct observation of the velocity. Independently of the exact nature of the above-mentioned coupled system – some version being currently under construction – the question is debated in this paper whether good knowledge of the magnetic field can be translated into good knowledge of core dynamics. Furthermore, what will be the impact of the most recent and precise geomagnetic data on our knowledge of the geomagnetic field of the past and future? These questions are cast into the language of variational data assimilation, while the dynamical system considered in this paper consists in a set of two oversimplified one-dimensional equations for magnetic and velocity fields. This toy model retains important features inherited from the induction and Navier-Stokes equations: non-linear magnetic and momentum terms are present and its linear response to small disturbances contains Alfvén waves. It is concluded that variational data assimilation is indeed appropriate in principle, even though the velocity field remains hidden at all times; it allows us to recover the entire evolution of both fields from partial and irregularly distributed information on the magnetic field. This work constitutes a first step on the way toward the reassimilation of historical geomagnetic data and geomagnetic forecast.

  3. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  4. A nonlinear Schroedinger wave equation with linear quantum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)

    2014-07-01

    We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.

  5. Semiquantum versus semiclassical mechanics for simple nonlinear systems

    CERN Document Server

    Bracken, A J

    2005-01-01

    Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behaviour of expectation values of simple observables and of eigenvalues of the Groenewold operator, are calculated numerically and compared for the various semiclassical and semiquantum approximations.

  6. Nonlinear Observer Design for Ship Dynamic Positioning System%船舶动力定位系统非线性观测器设计

    Institute of Scientific and Technical Information of China (English)

    杜佳璐; 汪思源; 张显库; 李广强

    2012-01-01

    For surface ships with dynamic position,a nonlinear observer for ship dynamic positioning systems is constructed based on Luenberger observer structural principle and Lyapunov stability theory.Comparing to Kalman filter,the main advantage of the nonlinear observer is that the motion equations of ships need not be linearized and the global exponential stability is guaranteed.Finally,the simulation research is done on a supply ship,which shows that the designed nonlinear observer has good performances of filtering and state estimation.All estimations of ship movement states converge exponentially to their actual values.The effectiveness of the nonlinear observer for dynamic positioning system of ships is verified.%针对动力定位水面船舶,基于Luenberger观测器构造原理及Lyapunov稳定性理论,构造一个船舶动力定位系统的非线性状态观测器.所设计观测器较卡尔曼滤波器的主要优越性在于不需要对船舶的运动方程进行线性化处理,且具有全局的指数稳定性.最后,用一艘供给船对所设计观测器进行数值仿真研究,仿真结果表明所设计非线性观测器具有良好的滤波及状态估计性能,船舶运动状态估计值指数收敛于其实际值,验证了所设计船舶动力定位系统非线性观测器的有效性.

  7. BRST charge for nonlinear algebras

    CERN Document Server

    Buchbinder, I L

    2007-01-01

    We study the construction of the classical nilpotent canonical BRST charge for the nonlinear gauge algebras where a commutator (in terms of Poisson brackets) of the constraints is a finite order polynomial of the constraints.

  8. Nonlinear dynamics in atom optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics

    1996-12-31

    In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.

  9. Soundscape of classical Chinese garden

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With deep humanized connotation,the classical Chinese garden uses human intuitive sensation and personal poetic observation to express natural sound phenomena.It differs from the rational modern soundscape in western countries.

  10. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles

    Science.gov (United States)

    Fonseca, P. Z. G.; Aranas, E. B.; Millen, J.; Monteiro, T. S.; Barker, P. F.

    2016-10-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of macroscopic matter. A nonlinear coupling offers rich new physics, in both quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising a nanosphere levitated in a hybrid electro-optical trap. The cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, while simultaneously cooling the nanosphere, for indefinite periods of time and in high vacuum. We observe the cooling dynamics via both linear and nonlinear coupling. As the background gas pressure was lowered, we observed a greater than 1000-fold reduction in temperature before temperatures fell below readout sensitivity in the present setup. This Letter opens the way to strongly coupled quantum dynamics between a cavity and a nanoparticle largely decoupled from its environment.

  11. Observation of large nonlinear responses in a graphene-Bi2Te3 heterostructure at a telecommunication wavelength

    Science.gov (United States)

    Wang, Yingwei; Mu, Haoran; Li, Xiaohong; Yuan, Jian; Chen, Jiazhang; Xiao, Si; Bao, Qiaoliang; Gao, Yongli; He, Jun

    2016-05-01

    We report the large nonlinear response and ultrafast carrier relaxation dynamics of a graphene-Bi2Te3 heterostructure produced by two-step chemical vapour deposition. The nonlinear refractive index reaches n2 = 0.2 × 10-7 cm2/W at the telecommunication wavelength of 1550 nm, which is almost seven orders of magnitude larger than that of the bulk Si material. Additionally, a pump-probe experiment is performed to investigate the ultrafast dynamic process (intraband relaxation time τ1 = 270 ± 20 fs; interband relaxation time τ2 = 3.6 ± 0.2 ps) of the graphene-Bi2Te3 heterostructure. Then, based on the donor-acceptor structure model, we propose a theoretical model to explain the dynamic relaxation process. Our results show that the graphene-Bi2Te3 heterostructure is a promising saturable absorber for ultrafast pulse laser applications at telecommunication wavelengths.

  12. Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid.

    Science.gov (United States)

    Herbert, Eric; Mordant, Nicolas; Falcon, Eric

    2010-10-01

    We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave amplitudes are measured simultaneously in time and space by using an optical method. The full space-time power spectrum shows that the wave energy is localized on several branches in the wave-vector-frequency space. The number of branches depends on the power injected within the waves. The measurement of the nonlinear dispersion relation is found to be well described by a law suggesting that the energy transfer mechanisms involved in wave turbulence are restricted not only to purely resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and the probability distribution of the wave amplitudes at a given wave number are also measured and compared to the theoretical predictions.

  13. Theory and design of nonlinear metamaterials

    Science.gov (United States)

    Rose, Alec Daniel

    and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and

  14. The Dynamics of Nonlinear Inference

    Science.gov (United States)

    Kadakia, Nirag

    The determination of the hidden states of coupled nonlinear systems is frustrated by the presence of high-dimensionality, chaos, and sparse observability. This problem resides naturally in a Bayesian context: an underlying physical process produces a data stream, which - though noisy and incomplete - can in principle be inverted to express the likelihood of the underlying process itself. A large class of well-developed methods treat this problem in a sequential predict-and-correct manner that alternates information from the presumed dynamical model with information from the data. One might instead formulate this problem in a temporally global, non-sequential manner, which suggests new avenues of approach within an optimization context, but also poses new challenges in numerical implementation. The variational annealing (VA) technique is proposed to address these problems by leveraging an inherent separability between the convex and nonconvex contributions of the resulting functional forms. VA is shown to reliably track unobservable states in sparsely observed chaotic systems, as well as in minimally-observed biophysical neural models. Second, this problem can be formally cast in continuous time as a Wiener path integral, which then suggests classical solutions derived from Hamilton's principle. These solutions come with their own difficulties in that they comprise an unstable boundary-value problem. Accordingly, a further technique called Hamiltonian variational annealing is proposed, which again exploits an existing separability of convexity and nonlinearity, this time in a an enlarged manifold constrained by underlying symmetries. A running theme in this thesis is that the optimal estimate of a nonlinear system is itself a dynamical system that lives in an unstable, symplectic manifold. When this system is recast in a variational context, instability is manifested as nonconvexity, the central idea being that when this nonconvexity is incorporated in a systematic

  15. Space curves, anholonomy and nonlinearity

    Indian Academy of Sciences (India)

    Radha Balakrishnan

    2005-04-01

    Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.

  16. Data Assimilation of Lightning using 1D+3D/4D WRF Var Assimilation Schemes with Non-Linear Observation Operators

    Science.gov (United States)

    Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.

    2012-12-01

    NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function

  17. Simultaneous observation of collagen and elastin based on the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method

    Science.gov (United States)

    Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Liu, Dingzhong; Zhao, Jingjun

    2008-08-01

    Collagen and elastin are the most important proteins of the connective tissues in higher vertebrates. In this paper, we present a combined nonlinear optical imaging technique of second-harmonic generation and two-photon excited fluorescence to simultaneously observe the collagen and elastic fiber of dermis in a freshly excised human skin and rabbit aorta using a two-channel synchronized detection method. The obtained two-channel overlay image in the backward direction can clearly distinguish the morphological structure and distribution of collagen and elastic fibers. Tissue spectrum further confirms the obtained structural information. These results suggest that the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method can be an effective tool for detecting collage and elastic fibers without any invasive tissue procedure of slicing, embedding, fixation and staining when two structural proteins are simultaneously present in the biological tissue.

  18. A Bayes Formula for Nonlinear Filtering with Gaussian and Cox Noise

    Directory of Open Access Journals (Sweden)

    Vidyadhar Mandrekar

    2011-01-01

    Full Text Available A Bayes-type formula is derived for the nonlinear filter where the observation contains both general Gaussian noise as well as Cox noise whose jump intensity depends on the signal. This formula extends the well-known Kallianpur-Striebel formula in the classical non-linear filter setting. We also discuss Zakai-type equations for both the unnormalized conditional distribution as well as unnormalized conditional density in case the signal is a Markovian jump diffusion.

  19. AUV近水面运动非线性观测器设计%Nonlinear Observer Design for AUV in Shallow Water

    Institute of Scientific and Technical Information of China (English)

    葛晖; 高剑; 敬忠良; 徐德民

    2011-01-01

    In order to overcome the disturbance from the waves in AUV low speed motion in shallow water, a new type of nonlinear observer based on passivity principle is designed. The observer can estimate AUV' s low frequency motion signals and environmental disturbance force from the synthetical signals including the low frequency motion signals, high frequency motion signals and noise from the sensors. The nonlinear observer designed based on the nonlinear AUV dynamic equations overcomes the limitation of traditional Kalman filter based on linearization theory. The stability of the observer is proved by the Lyapunov methods and the simulation on a fully actuated AUV validities the observer.%针对AUV近水面低速运动中的波浪扰动问题,基于无源性原理设计了一种非线性状态观测器.观测器可以从包含高频运动信号、低频运动信号以及传感器噪声信号的AUV综合运动信号中估计出AUV的低频运动信号以及环境扰动作用力.该观测器克服了传统的线性化Kalman滤波器的缺陷,直接针对AUV的非线性模型进行观测器设计,用李亚普诺夫稳定性定理证明了观测器的全局收敛性,该非线性状态观测器的性能通过针对全驱动AUV的近水面运动进行仿真得到了验证.

  20. Observation of nonlinear wave decay processes in the solar wind by the AMPTE IRM plasma wave experiment

    Science.gov (United States)

    Koons, H. C.; Roeder, J. L.; Bauer, O. H.; Haerendel, G.; Treumann, R.

    1987-01-01

    Nonlinear wave decay processes have been detected in the solar wind by the plasma wave experiment aboard the Active Magnetospheric Particle Tracer Explorers (AMPTE) IRM spacecraft. The main process is the generation of ultralow-frequency ion acoustic waves from the decay of Langmuir waves near the electron plasma frequency. Frequently, this is accompanied by an enhancement of emissions near twice the plasma frequency. This enhancement is most likely due to the generation of electromagnetic waves from the coalescence of two Langmuir waves. These processes occur within the electron foreshock in front of the earth's bow shock.

  1. A new dispersion-relation preserving method for integrating the classical Boussinesq equation

    Science.gov (United States)

    Jang, T. S.

    2017-02-01

    In this paper, a dispersion-relation preserving method is proposed for nonlinear dispersive waves, starting from the oldest weakly nonlinear dispersive wave mathematical model in shallow water waves, i.e., the classical Boussinesq equation. It is a semi-analytic procedure, however, which preserves, as a distinctive feature, the dispersion-relation imbedded in the model equation without adding (unwelcome) numerical effects, i.e., the proposed method has the same dispersion-relation as the original classical Boussinesq equation. This remarkable (dispersion-relation) preserving property is proved mathematically for small wave motion in present study. The property is also numerically examined by observing both the local wave number and the local frequency of a slowly varying water-wave group. The dispersion-relation preserving method proposed here is powerful as well for observing nonlinear wave phenomena such as solitary waves and their collision. In fact, the main features of nonlinear wave characteristics are clearly seen through not only a single propagating solitary wave but counter-propagating (head-on) solitary wave collisions. They are compared with known (exact) nonlinear solutions, the results of which represent a major improvement over existing solution formulations in the literature.

  2. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control

    Institute of Scientific and Technical Information of China (English)

    Ahmed Awad; Wang Haoping

    2016-01-01

    The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of inte-grated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The pro-posed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters’ variation. Furthermore, the environmental conditions’ dynamics are mod-eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simula-tion is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.

  3. Roll-pitch-yaw autopilot design for nonlinear time-varying missile using partial state observer based global fast terminal sliding mode control

    Directory of Open Access Journals (Sweden)

    Awad Ahmed

    2016-10-01

    Full Text Available The acceleration autopilot design for skid-to-turn (STT missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of integrated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC with a partial state nonlinear observer (PSNLO for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The proposed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters’ variation. Furthermore, the environmental conditions’ dynamics are modeled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simulation is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.

  4. Nonlinear time series modelling: an introduction

    OpenAIRE

    Simon M. Potter

    1999-01-01

    Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.

  5. Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations

    CERN Document Server

    Gallenne, A; Mérand, A; McAlister, H; Brummelaar, T ten; Foresto, V Coudé du; Sturmann, J; Sturmann, L; Turner, N; Farrington, C; Goldfinger, P J

    2012-01-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at the CHARA interferometric array. We obtain average limb-darkened angular diameters of \\theta_LD = 0.878 +/- 0.013 mas and \\theta_LD = 0.629 +/- 0.013 mas, respectively for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2 Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and theoretical Period-Radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of the pulsation mode is of prime importance to calibrate the Period-Luminosity relation with a uniform sample of fundamental mode Cepheids.

  6. Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles

    CERN Document Server

    Fonseca, P Z G; Millen, J; Monteiro, T S; Barker, P F

    2015-01-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.

  7. Rayleigh-Lagrange formalism for classical dissipative systems.

    Science.gov (United States)

    Virga, Epifanio G

    2015-01-01

    It is often believed that the Rayleigh-Lagrange formalism for classical dissipative systems is unable to encompass forces described by nonlinear functions of the velocities. Here we show that this is indeed a misconception.

  8. What classicality? Decoherence and Bohr's classical concepts

    CERN Document Server

    Schlosshauer, Maximilian

    2010-01-01

    Niels Bohr famously insisted on the indispensability of what he termed "classical concepts." In the context of the decoherence program, on the other hand, it has become fashionable to talk about the "dynamical emergence of classicality" from the quantum formalism alone. Does this mean that decoherence challenges Bohr's dictum and signifies a break with the Copenhagen interpretation-for example, that classical concepts do not need to be assumed but can be derived? In this paper we'll try to shine some light down the murky waters where formalism and philosophy cohabitate. To begin, we'll clarify the notion of classicality in the decoherence description. We'll then discuss Bohr's and Heisenberg's take on the quantum-classical problem and reflect on different meanings of the terms "classicality" and "classical concepts" in the writings of Bohr and his followers. This analysis will allow us to put forward some tentative suggestions for how we may better understand the relation between decoherence-induced classical...

  9. Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD

    CERN Document Server

    Albrecht, Dylan; Wilcox, Ronald J

    2011-01-01

    In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.

  10. 一个特征值问题的非线性化及其生成的经典可积系统%Classical Completely Integrable System Generated through Nonlinearization of an Eigenvalue Problem

    Institute of Scientific and Technical Information of China (English)

    罗满; 李秀丽; 向明森

    2004-01-01

    Under the Bargmann constrained condition, the spatial part of a new Lax pair of the higher order MkdV equation is nonlinearized to be a completely integrable system (R2N,dp∧dq,H0+1/2F0)(F0=+2).While the nonlinearixation of the time part leads to its N-involutive system (Fm).

  11. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  12. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study.

    Science.gov (United States)

    Tagliabue, Anna; Ferraris, Cinzia; Uggeri, Francesca; Trentani, Claudia; Bertoli, Simona; de Giorgis, Valentina; Veggiotti, Pierangelo; Elli, Marina

    2017-02-01

    The classical ketogenic diet (KD) is a high-fat, very low-carbohydrate normocaloric diet used for drug-resistant epilepsy and Glucose Transporter 1 Deficiency Syndrome (GLUT1 DS). In animal models, high fat diet induces large alterations in microbiota producing deleterious effects on gut health. We carried out a pilot study on patients treated with KD comparing their microbiota composition before and after three months on the diet. Six patients affected by GLUT1 DS were asked to collect fecal samples before and after three months on the diet. RT - PCR analysis was performed in order to quantify Firmicutes, Bacteroidetes, Bifidobacterium spp., Lactobacillus spp., Clostridium perfringens, Enterobacteriaceae, Clostridium cluster XIV, Desulfovibrio spp. and Faecalibacterium prausnitzii. Compared with baseline, there were no statistically significant differences at 3 months in Firmicutes and Bacteroidetes. However fecal microbial profiles revealed a statistically significant increase in Desulfovibrio spp. (p = 0.025), a bacterial group supposed to be involved in the exacerbation of the inflammatory condition of the gut mucosa associated to the consumption of fats of animal origin. A future prospective study on the changes in gut microbiota of all children with epilepsy started on a KD is warranted. In patients with dysbiosis demonstrated by fecal samples, it my be reasonable to consider an empiric trial of pre or probiotics to potentially restore the «ecological balance» of intestinal microbiota. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  13. Experimental contextuality in classical light.

    Science.gov (United States)

    Li, Tao; Zeng, Qiang; Song, Xinbing; Zhang, Xiangdong

    2017-03-14

    The Klyachko, Can, Binicioglu, and Shumovsky (KCBS) inequality is an important contextuality inequality in three-level system, which has been demonstrated experimentally by using quantum states. Using the path and polarization degrees of freedom of classical optics fields, we have constructed the classical trit (cetrit), tested the KCBS inequality and its geometrical form (Wright's inequality) in this work. The projection measurement has been implemented, the clear violations of the KCBS inequality and its geometrical form have been observed. This means that the contextuality inequality, which is commonly used in test of the conflict between quantum theory and noncontextual realism, may be used as a quantitative tool in classical optical coherence to describe correlation characteristics of the classical fields.

  14. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    Science.gov (United States)

    Zhong, Jian; Dong, Gang; Sun, Yimei; Zhang, Zhaoyang; Wu, Yuqin

    2016-11-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. Project supported by the National Natural Science Foundation of China (Grant Nos. 41230421 and 41605075) and the National Basic Research Program of China (Grant No. 2013CB430101).

  15. Nonlinear dynamic acousto-elasticity measurement by Rayleigh wave in concrete cover evaluation

    Science.gov (United States)

    Vu, Quang Anh; Garnier, Vincent; Payan, Cédric; Chaix, Jean-François; Lott, Martin; Eiras, Jesús N.

    2015-10-01

    This paper presents local non-destructive evaluation of concrete cover by using surface Rayleigh wave in nonlinear Dynamic Acousto-Elasticity (DAE) measurement. Dynamic non classical nonlinear elastic behavior like modulus decrease under applied stress and slow dynamic process has been observed in many varieties of solid, also in concrete. The measurements conducted in laboratory, consist in qualitative evaluation of concrete thermal damage. Nonlinear elastic parameters especially conditioning offset are analyzed for the cover concrete by Rayleigh wave. The results of DAE method show enhanced sensitivity when compared to velocity measurement. Afterward, this technique broadens measurements to the field.

  16. Estimating Parallax Error Due to Orbital Motion for HST/WFC3 Spatial Scan Observations of 19 Long-period Classical Cepheids

    Science.gov (United States)

    Anderson, Richard I.; Casertano, Stefano; Riess, Adam G.

    2017-01-01

    We employ the Hubble Space Telescope's Wide Field Camera 3 (HST/WFC3) in spatial scanning mode to measure 30 - 40μas parallax of 19 classical Cepheids in the Milky Way with the aim of improving the calibration of the cosmic distance scale (Riess et al. 2014; Casertano et al. 2016). The measured parallaxes are an order of magnitude more precise than parallaxes from the first Gaia data release and thus furthermore provide important cross-checks for Gaia data processing.Here we present our work aimed at estimating the parallax error due to orbital motion caused by undetected companion stars (Anderson et al. 2016). We have secured more than 1600 high-precision radial velocity (RV) measurements of the 19 long-period (Ppuls > 9d) Cepheids in our sample using ground-based telescopes on both hemispheres to investigate the presence of spectroscopic companions. We model the RV variability together with orbital motion using a grid of input orbital periods, Porb. We determine upper limits on the (unsigned) projected parallax error induced by hypothetical companions using the orbital configuration upper limits determined by modeling RV data. We thus show that our HST/WFC3 parallax measurements are subject to an error of less than 2% in parallax (i.e., typically less than ±7μas) for 16 stars in the sample, and 10yr) orbital motion using literature data and RV templates based on our new data. We thus discover new evidence for RV signals due to long-term orbital motion for 4 Cepheids and critically assess putative evidence for spectroscopic binarity previously reported based on data of much lesser quality. We caution that astrometric measurements of binaries with Porb on the order of decades may be subject to a currently not quantified systematic error in the Tycho-Gaia Astrometric Solution.

  17. Design of Fuzzy Functional Observer-Controller via Higher Order Derivatives of Lyapunov Function for Nonlinear Systems.

    Science.gov (United States)

    Liu, Chuang; Lam, Hak-Keung; Fernando, Tyrone; Iu, Herbert Ho-Ching

    2016-05-02

    In this paper, we investigate the stability of Takagi-Sugeno fuzzy-model-based (FMB) functional observer-control system. When system states are not measurable for state-feedback control, a fuzzy functional observer is designed to directly estimate the control input instead of the system states. Although the fuzzy functional observer can reduce the order of the observer, it leads to a number of observer gains to be determined. Therefore, a new form of fuzzy functional observer is proposed to facilitate the stability analysis such that the observer gains can be numerically obtained and the stability can be guaranteed simultaneously. The proposed form is also in favor of applying separation principle to separately design the fuzzy controller and the fuzzy functional observer. To design the fuzzy controller with the consideration of system stability, higher order derivatives of Lyapunov function (HODLF) are employed to reduce the conservativeness of stability conditions. The HODLF generalizes the commonly used first-order derivative. By exploiting the properties of membership functions and the dynamics of the FMB control system, convex and relaxed stability conditions can be derived. Simulation examples are provided to show the relaxation of the proposed stability conditions and the feasibility of designed fuzzy functional observer-controller.

  18. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Painlevé Integrability of Nonlinear Schrödinger Equations with both Space- and Time-Dependent Coefficients

    Science.gov (United States)

    Kyoung, Ho Han; H. J., Shin

    2010-12-01

    We investigate the Painlevé integrability of nonautonomous nonlinear Schrödinger (NLS) equations with both space- and time-dependent dispersion, nonlinearity, and external potentials. The Painlevé analysis is carried out without using the Kruskal's simplification, which results in more generalized form of inhomogeneous equations. The obtained equations are shown to be reducible to the standard NLS equation by using a point transformation. We also construct the corresponding Lax pair and carry out its Kundu-type reduction to the standard Lax pair. Special cases of equations from choosing limited form of coefficients coincide with the equations from the previous Painlevé analyses and/or become unknown new equations.

  19. The quantum theory of nonlinear optics

    CERN Document Server

    Drummond, Peter D

    2014-01-01

    Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...

  20. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  1. Quantum computing classical physics.

    Science.gov (United States)

    Meyer, David A

    2002-03-15

    In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.

  2. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid delta Cep in the visible spectral range

    CERN Document Server

    Nardetto, N; Mourard, D; Storm, J; Gieren, W; Fouqué, P; Gallenne, A; Graczyk, D; Kervella, P; Neilson, H; Pietrzynski, G; Pilecki, B; Breitfelder, J; Berio, P; Challouf, M; Clausse, J -M; Ligi, R; Mathias, P; Meilland, A; Perraut, K; Poretti, E; Rainer, M; Spang, A; Stee, P; Tallon-Bosc, I; Brummelaar, T ten

    2016-01-01

    The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Observations of delta Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of theta_cse=8.9 +/- 3.0 mas and a relative flux contribution of f_cse=0.07+/-0.01. A model of visible nebula (a background source filling the field o...

  3. Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts

    Indian Academy of Sciences (India)

    G. Thejappa; R. J. MacDowall

    2000-09-01

    The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50-300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.

  4. Entanglement in Classical Optics

    CERN Document Server

    Ghose, Partha

    2013-01-01

    The emerging field of entanglement or nonseparability in classical optics is reviewed, and its similarities with and differences from quantum entanglement clearly pointed out through a recapitulation of Hilbert spaces in general, the special restrictions on Hilbert spaces imposed in quantum mechanics and the role of Hilbert spaces in classical polarization optics. The production of Bell-like states in classical polarization optics is discussed, and new theorems are proved to discriminate between separable and nonseparable states in classical wave optics where no discreteness is involved. The influence of the Pancharatnam phase on a classical Bell-like state is deived. Finally, to what extent classical polarization optics can be used to simulate quantum information processing tasks is also discussed. This should be of great practical importance because coherence and entanglement are robust in classical optics but not in quantum systems.

  5. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  6. Classically Isospinning Hopf Solitons

    CERN Document Server

    Battye, Richard A

    2013-01-01

    We perform full 3-dimensional numerical relaxations of isospinning Hopf solitons with Hopf charge up to 8 in the Skyrme-Faddeev model with mass terms included. We explicitly allow the soliton solution to deform and to break the symmetries of the static configuration. It turns out that the model with its rich spectrum of soliton solutions, often of similiar energy, allows for transmutations, formation of new solution types and the rearrangement of the spectrum of minimal-energy solitons in a given topological sector when isospin is added. We observe that the shape of isospinning Hopf solitons can differ qualitatively from that of the static solution. In particular the solution type of the lowest energy soliton can change. Our numerical results are of relevance for the quantization of the classical soliton solutions.

  7. Non-Pauli observables for CWS codes

    Science.gov (United States)

    Santiago, Douglas F. G.; Portugal, Renato; Melo, Nolmar

    2013-05-01

    It is known that nonadditive quantum codes can have higher code dimensions than stabilizer codes for the same length and minimum distance. The class of codeword stabilized codes (CWS) provides tools to obtain new nonadditive quantum codes by reducing the problem to finding nonlinear classical codes. In this work, we establish some results on the kind of non-Pauli operators that can be used as observables in the decoding scheme of CWS codes and propose a procedure to obtain those observables.

  8. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    RAJAGOPAL A K; GHOSE PARTHA

    2016-06-01

    Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  9. Etudes Asymptotiques en Filtrage Non Lineaire Avec Petit Bruit D’Observation (Asymptotic Studies in Nonlinear Time Filtering with Small Observation Noise)

    Science.gov (United States)

    1990-09-26

    reste dans ixne r’gion oi la, fonc- tion d’obervation est injective (voir line’aire),,on peut appliquer ijn filtre classique, type Kalman -Bucy. Le...un test sur les; observations et un test sur les; sorties des filtres de. Kalman -Bucy. Le premier de ces tests a d~jit 6t6 6tudi6 dans [10], sous...d’adapter le detu 4ime. Nous d~crivons un nouveau test de rapport de vraisemblance, sur les sortei 4 des filtres de Kalman -Bucy (cf. Roubaud [28], pour le

  10. 1D+4D-VAR data assimilation of lightning with WRFDA system using nonlinear observation operators

    CERN Document Server

    Stefanescu, Razvan; Fuelberg, Henry; Marchand, Max

    2013-01-01

    This paper addresses the impact of assimilating data from the Earth Networks Total Lightning Network (ENTLN) during two cases of severe weather. Data from the ENTLN serve as a substitute for those from the upcoming launch of the GOES Lightning Mapper (GLM). We use the Weather Research and Forecast (WRF) model and variational data assimilation techniques at 9 km spatial resolution. The main goal is to examine the potential impact of lightning observations from the future GLM. Previous efforts to assimilate lightning observations mainly utilized nudging approaches. We develop three more sophisticated approaches, 3D-VAR WRFDA and 1D+nD-VAR (n=3,4) WRFDA schemes that currently are being considered for operational implementation by the National Centers for Environmental Prediction (NCEP) and the Naval Research Laboratory (NRL). This research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test the performance of the aforementioned schemes, we assess the q...

  11. Advanced embedded nonlinear observer design and HIL validation using a Takagi-Sugeno approach with unmeasurable premise variables

    Science.gov (United States)

    Olteanu, S. C.; Aitouche, A.; Belkoura, L.

    2014-12-01

    The article's goals are to illustrate the feasibility of implementing a Takagi Sugeno state observer on an embedded microcontroller based platform and secondly to present a methodology for validating a physical embedded system using a Hardware In The Loop architecture, where a simulation software replaces the process. As an application, a three water tank system was chosen. For the validation part, LMS AMESim software is employed to reproduce the process behaviour. The interface to the embedded platform is assured by Simulink on a Windows operating system, chosen as it is the most commonly used operating system. The lack of real time behaviour of the operating system is compensated by a real time kernel that manages to offer deterministic response times. The Takagi-Sugeno observer in the case of this process has the complex form that considers the premise variables to be unmeasurable. The embedded system consists of two Arduino boards connected in parallel, thus offering distributed resources.

  12. Observed Gravitational Wave Effects: Amaldi 1980 Frascati-Rome Classical Bar Detectors, 2013 Perth-London Zener-Diode Quantum Detectors, Earth Oscillation Mode Frequencies

    CERN Document Server

    Cahill, Reginald T

    2013-01-01

    Amaldi et al. in 1981 reported two key discoveries from the Frascati and Rome gravitational wave cryogenic bar detectors: (a) Rome events delayed by within a few seconds to tens of seconds from the Frascati events, and (b) the Frascati Fourier-analysed data frequency peaks being the same as the earth oscillation frequencies from seismology. The time delay effects have been dismissed as being inconsistent with gravitational waves having speed c. However using data from zener diode quantum detectors, from Perth and London, for January 1-3, 2013, we report the same effects, and in excellent agreement with the Amaldi results. The time delay effects appear to be gravitational wave reverberations, recently observed, and for gravitational wave speeds of some 500km/s, as detected in numerous experiments. We conclude that the Amaldi et al. discoveries were very significant.

  13. Classical issues in electroweak baryogenesis

    CERN Document Server

    Smit, J; Smit, Jan; Tranberg, Anders

    2004-01-01

    In one scenario of baryogenesis, the matter-antimatter asymmetry was generated in the early universe during a cold electroweak transition. We model this transition by changing the sign of the effective mass-squared parameter of the Higgs field from positive to negative. The resulting `tachyonic' instability leads to a rapid growth of occupation numbers, such that a classical approximation can be made in computing subsequent developments in real time. We solve the classical equations of motion in the SU(2)-Higgs model under the influence of effective CP-violation. The resulting baryon asymmetry follows from the generated Chern-Simons number using the anomaly equation. The `classical' difficulties with lattice implementations of these observables are avoided here because the fields are smooth on the lattice scale.

  14. A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system

    CERN Document Server

    Fournier, Alexandre; Alboussière, Thierry

    2007-01-01

    Secular variations of the geomagnetic field have been measured with a continuously improving accuracy during the last few hundred years, culminating nowadays with satellite data. It is however well known that the dynamics of the magnetic field is linked to that of the velocity field in the core and any attempt to model secular variations will involve a coupled dynamical system for magnetic field and core velocity. Unfortunately, there is no direct observation of the velocity. Independently of the exact nature of the above-mentioned coupled system -- some version being currently under construction -- the question is debated in this paper whether good knowledge of the magnetic field can be translated into good knowledge of core dynamics. Furthermore, what will be the impact of the most recent and precise geomagnetic data on our knowledge of the geomagnetic field of the past and future? These questions are cast into the language of variational data assimilation, while the dynamical system considered in this pape...

  15. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  16. The jovian anticyclone BA. I. Motions and interaction with the GRS from observations and non-linear simulations

    Science.gov (United States)

    García-Melendo, E.; Legarreta, J.; Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.; González, J.; Gómez-Forrellad, J. M.; IOPW Team

    2009-10-01

    A study of the dynamics of the second largest anticyclone in Jupiter, Oval BA, and its red colour change that occurred in late 2005 is presented in a three part study. The first part, this paper, deals with its long-term kinematical and dynamical behaviour monitored since its formation in 2000 to September 2008 using ground-based observations archived at the public International Outer Planet Watch (IOPW) database. The vortex changed its zonal drift velocity from 1.8 m s -1 in the period 2000-2002 to 0.8 m s -1 in 2002-2003, and to 2.5 m s -1 since late 2003. It also migrated southwards by 1.0 ± 0.5° in latitude between 2000 and 2004, remaining afterwards at an almost fixed latitude position. During the period 2000-2007, the oval also changed its triangular-like shape to a more symmetrical one. No latitudinal change was found in the months before the development of a red annulus in its interior. The colour change took place in less than 5 months in 2005-2006 and no red colour feature was observed to have been present or entrained by BA months before the annulus development. After detailed examination of the four encounters between BA and GRS that took place during this 9 year period, we did not detect any noticeable change in its drift rate or in apparent structure associated with the encounters at cloud level. Also, the area of BA did not significantly change in this period. Additionally, we found that BA displays a long-term oscillation of ˜160 days in its longitude position with peak to peak amplitude of 1.2°. Numerical experiments using the global circulation model EPIC reproduce accurately the shape, connecting it to its latitude migration, and morphology of the oval and confirm that no strong interaction between BA and the GRS is possible at least in the current situation.

  17. Nonlinear propagation of Alfven waves driven by observed photospheric motions: Application to the coronal heating and spicule formation

    CERN Document Server

    Matsumoto, Takuma

    2010-01-01

    We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy flux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explai...

  18. Nonlinear elasticity in rocks: A comprehensive three-dimensional description

    Science.gov (United States)

    Lott, Martin; Remillieux, Marcel C.; Garnier, Vincent; Le Bas, Pierre-Yves; Ulrich, T. J.; Payan, Cédric

    2017-07-01

    We study theoretically and experimentally the mechanisms of nonlinear and nonequilibrium dynamics in geomaterials through dynamic acoustoelasticity testing. In the proposed theoretical formulation, the classical theory of nonlinear elasticity is extended to include the effects of conditioning. This formulation is adapted to the context of dynamic acoustoelasticity testing in which a low-frequency "pump" wave induces a strain field in the sample and modulates the propagation of a high-frequency "probe" wave. Experiments are conducted to validate the formulation in a long thin bar of Berea sandstone. Several configurations of the pump and probe are examined: the pump successively consists of the first longitudinal and first torsional mode of vibration of the sample while the probe is successively based on (pressure) P and (shear) S waves. The theoretical predictions reproduce many features of the elastic response observed experimentally, in particular, the coupling between nonlinear and nonequilibrium dynamics and the three-dimensional effects resulting from the tensorial nature of elasticity.

  19. 基于PSO优化的船舶动力定位观测器%Nonlinear Observer for Dynamic Positioning Ships Based on PSO

    Institute of Scientific and Technical Information of China (English)

    谢业海; 徐慧璇

    2015-01-01

    Observer is important for dynamic positioning (DP) ship, and appropriate parameters of observer can improve the performance of DP. The parameters of the observer are optimized off-line using particle swarm optimization (PSO) in this paper, in order to obtain the accurate parameters of the nonlinear passive observer. The estimated error of observer is changed as the object function of PSO. Finally, the method is verified effective and can improve the performance of DP by the computer simulation.%观测器设计是船舶动力系统至关重要的一个环节,而观测器的参数选取是否合适对动力定位系统的性能将产生很大的影响。建立了船舶非线性无源观测器,为了快速获得精确的观测器参数,提出利用粒子群算法对观测器参数进行寻优,寻优过程中利用观测器的估计偏差作为粒子群的适应度函数。文章最后对参数优化的观测器进行了仿真验证,仿真结果表明优化后的观测器具有较小的估计偏差且能改善动力定位系统的性能。

  20. Quantum Arnol'd Diffusion in a Simple Nonlinear System

    CERN Document Server

    Demikhovskii, V Y; Malyshev, A I

    2002-01-01

    We study the fingerprint of the Arnol'd diffusion in a quantum system of two coupled nonlinear oscillators with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the classical data. However, the quantum diffusion happens to be slower that the classical one. Another result is the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show that this effect has the same nature as for the studied earlier dynamical localization in the presence of global chaos. The quantum Arnol'd diffusion represents a new type of quantum dynamics and can be observed, for example, in 2D semiconductor structures (quantum billiards) perturbed by time-periodic external fields.

  1. Evading Quantum Mechanics: Engineering a Classical Subsystem within a Quantum Environment

    Directory of Open Access Journals (Sweden)

    Mankei Tsang

    2012-09-01

    Full Text Available Quantum mechanics is potentially advantageous for certain information-processing tasks, but its probabilistic nature and requirement of measurement backaction often limit the precision of conventional classical information-processing devices, such as sensors and atomic clocks. Here we show that, by engineering the dynamics of coupled quantum systems, it is possible to construct a subsystem that evades the measurement backaction of quantum mechanics, at all times of interest, and obeys any classical dynamics, linear or nonlinear, that we choose. We call such a system a quantum-mechanics-free subsystem (QMFS. All of the observables of a QMFS are quantum-nondemolition (QND observables; moreover, they are dynamical QND observables, thus demolishing the widely held belief that QND observables are constants of motion. QMFSs point to a new strategy for designing classical information-processing devices in regimes where quantum noise is detrimental, unifying previous approaches that employ QND observables, backaction evasion, and quantum noise cancellation. Potential applications include gravitational-wave detection, optomechanical-force sensing, atomic magnetometry, and classical computing. Demonstrations of dynamical QMFSs include the generation of broadband squeezed light for use in interferometric gravitational-wave detection, experiments using entangled atomic-spin ensembles, and implementations of the quantum Toffoli gate.

  2. Classical Geometry and Target Space Duality

    OpenAIRE

    1995-01-01

    This is the written version of lectures presented at Cargese 95. A new formulation for a ``restricted'' type of target space duality in classical two dimensional nonlinear sigma models is presented. The main idea is summarized by the analogy: euclidean geometry is to riemannian geometry as toroidal target space duality is to ``restricted'' target space duality. The target space is not required to possess symmetry. These lectures only discuss the local theory. The restricted target space duali...

  3. Different anaesthesia method in classical-like Caesarean birth technique in the formula opplication contrast observation%不同麻醉方法在古典式剖腹产术式中应用的对比观察

    Institute of Scientific and Technical Information of China (English)

    苏国友; 李国良; 包长顺; 包文奎; 宋伟奇; 许永慧; 吴非; 宏杰; 王新; 包文朝

    2013-01-01

      Objiective Discusses the different anaesthesia method to anaesthetize the effect in the classical-like influence. Methods Choose the classical-like Caesarean birth technique type 120 examples,60 cases with epidural anesthesia(EPS) , 60 cases of combined spinal-epidural anesthesia ( CESA ),the contrast observes two anaesthesia menthods in classical-like Caesarean birth technique in the formula to the parent substance,the embryo and the anesthesia effect influence.Results The anaesthesia effect difference CESA group is short obviously in the EPS group,the group the comparison difference has statistics significance(P 0.05).Conclusion CESA and implements EPS to compare purely application contrast observation obtains in the classical-like Caesarean birth technique,CESA in classical-like Caesarean birth technique in the formula application,can improve the surgery doctor,s operating condition obviously,moreover can enhance the parturient woman and family member,s satisfaction rate,is one anaesthesia method which on clinical is worth promoting vigorously.%  目的探讨不同麻醉方法在古典式剖腹产术中对母体、胎儿麻醉效果的影响,为古典式剖宫产术式采取何种麻醉方法更为优越提供理论依据。方法选择古典式剖宫产术式120例,其中60例采用硬膜外麻醉(EPS),60例采用腰-硬联合麻醉(CESA),对比观察两种麻醉方法在古典式剖宫产术式中对母体、胎儿及麻醉效果的影响。结果麻醉效果差者CESA组明显少于EPS组,组间比较差异具有统计学意义(P <0.01),CESA组的麻醉时间,取胎时间,手术时间均短于EPS组,组间比较差异具有统计学意义(P <0.01),术中产妇、胎儿情况两组均无显著性差异,无统计学意义(P >0.05)。结论腰-硬联合麻醉与单纯实施硬膜外麻醉相比在古典式剖宫产术中的应用对比观察得出,腰-硬联合麻醉在古典式剖宫术式中的应用

  4. Nonlinear effects in Thomson backscattering

    Science.gov (United States)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  5. Nonlinearities in Josephson-photonics

    Energy Technology Data Exchange (ETDEWEB)

    Kubala, Bjoern; Ankerhold, Joachim [Institute for Complex Quantum Systems and IQST, Ulm University, Ulm (Germany)

    2016-07-01

    Embedding a voltage-biased Josephson junction within a high-Q superconducting microwave cavity provides a new way to explore the interplay of the tunneling transfer of charges and the emission and absorption of light. While for weak driving the system can be reduced to simple cases, such as a (damped) harmonic or parametric oscillator, the inherent nonlinearity of the Josephson junction allows to access regimes of strongly non-linear quantum dynamics. Classically, dynamical phenomena such as thresholds for higher-order resonances, other bifurcations, and up- and down-conversion have been found. Here, we will investigate how and to which extent these features appear in the deep quantum regime, where charge quantization effects are crucial. Theory allows to employ phase-space quantities, such as the Wigner-density of the cavity mode(s), but also observables amenable to more immediate experimental access, such as correlations in light emission and charge transport, to probe these novel non-equilibrium transitions.

  6. Nonlinear observer design for a first order hyperbolic PDE: application to the estimation of the temperature in parabolic solar collectors**Research reported in this publication has been supported by the King Abdullah University of Science and Technology

    KAUST Repository

    Elmetennani, Shahrazed

    2016-08-09

    In this paper, the problem of estimating the distributed profile of the temperature along the tube of a concentrated distributed solar collector from boundary measurements is addressed. A nonlinear observer is proposed based on a nonlinear integral transformation. The objective is to force the estimation error to follow some stable transport dynamics. Convergence conditions are derived in order to determine the observer gain ensuring the stabilization of the estimation error in a finite time. Numerical simulations are given to show the effectiveness of the proposed algorithm under different working conditions. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

  7. Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction

    Science.gov (United States)

    Lee, Mark D.; Ruostekoski, Janne

    2014-08-01

    We formulate computationally efficient classical stochastic measurement trajectories for a multimode quantum system under continuous observation. Specifically, we consider the nonlinear dynamics of an atomic Bose-Einstein condensate contained within an optical cavity subject to continuous monitoring of the light leaking out of the cavity. The classical trajectories encode within a classical phase-space representation a continuous quantum measurement process conditioned on a given detection record. We derive a Fokker-Planck equation for the quasiprobability distribution of the combined condensate-cavity system. We unravel the dynamics into stochastic classical trajectories that are conditioned on the quantum measurement process of the continuously monitored system. Since the dynamics of a continuously measured observable in a many-atom system can be closely approximated by classical dynamics, the method provides a numerically efficient and accurate approach to calculate the measurement record of a large multimode quantum system. Numerical simulations of the continuously monitored dynamics of a large atom cloud reveal considerably fluctuating phase profiles between different measurement trajectories, while ensemble averages exhibit local spatially varying phase decoherence. Individual measurement trajectories lead to spatial pattern formation and optomechanical motion that solely result from the measurement backaction. The backaction of the continuous quantum measurement process, conditioned on the detection record of the photons, spontaneously breaks the symmetry of the spatial profile of the condensate and can be tailored to selectively excite collective modes.

  8. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  9. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  10. GENERATION OF COMPLEX NONLINEAR BENCHMARK FUNCTIONS FOR OPTIMIZATION USING FUZZY SETS AND CLASSICAL TEST FUNCTIONS GENERACIÓN DE FUNCIONES BENCHMARK COMPLEJAS NO LINEALES PARA OPTIMIZACIÓN USANDO CONJUNTOS DIFUSOS Y FUNCIONES DE PRUEBA CLÁSICAS

    Directory of Open Access Journals (Sweden)

    Eddy Mesa

    2011-12-01

    Full Text Available In this paper, we present a novel methodology to generate complex functions using two-dimensional fuzzy sets as weights for combining classical benchmark functions. These new functions have different characteristics from original ones, but the minimum, borders and geometry characteristics of the functions are still known. Three different combinations of two functions (Rosenbrock and Bukin's F4 are used to exemplify the method and its potential to generate specific test functions to study and improve optimization methods.En este artículo se presenta una metodología novedosa para generar funciones complejas usando conjuntos borrosos bidimensionales como pesos para combinar funciones clásicas de prueba. Estas nuevas funciones tienen características diferentes pero el mínimo, los bordes y la geometría de las nuevas funciones se conoce. Tres combinaciones diferentes de dos funciones (Rosenbrock y F4 de Bukin se utilizan para ejemplificar el método y su potencial como generador de funciones de prueba para estudiar y mejorar métodos de optimización.

  11. Observation

    Science.gov (United States)

    Patell, Hilla

    2016-01-01

    In order to achieve the goal of observation, preparation of the adult, the observer, is necessary. This preparation, says Hilla Patell, requires us to "have an appreciation of the significance of the child's spontaneous activities and a more thorough understanding of the child's needs." She discusses the growth of both the desire to…

  12. Observation

    Science.gov (United States)

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  13. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  14. Non-classical dispersive shock waves in shallow water

    Science.gov (United States)

    Sprenger, Patrick; Hoefer, Mark

    2016-11-01

    A classical model for shallow water waves with strong surface tension is the Kawahara equation, which is the Korteweg-de Vries (KdV) including a fifth order derivative term. A particular problem of interest to these types of equations is step initial data, known as the Riemann problem, which results in a shock in finite time. Unlike classical shock waves, where a discontinuity is resolved by dissipation, the dispersive regularization results in the discontinuity resolved as a dispersive shock wave (DSW). When parameter choices result in non-convex dispersion, three distinct dynamic regimes are observed that can be characterized solely by the amplitude of the initial step. For small jumps, a perturbed KdV DSW with positive polarity and orientation is generated, accompanied by small amplitude radiation from an embedded solitary wave leading edge, termed a radiating DSW. For moderate jumps, a crossover regime is observed with waves propagating forward and backward from the sharp transition region. For sufficiently large jumps, a new type of DSW is observed we term a translating DSW were a partial, non-monotonic, negative solitary wave at the trailing edge is connected to an interior nonlinear periodic wave and exhibits features common to both dissipative and dispersive shock waves.

  15. Classical Optics and its Applications

    Science.gov (United States)

    Mansuripur, Masud

    2009-02-01

    Preface; Introduction; 1. Abbe's sine condition; 2. Fourier optics; 3. Effect of polarization on diffraction in systems of high numerical aperture; 4. Gaussian beam optics; 5. Coherent and incoherent imaging; 6. First-order temporal coherence in classical optics; 7. The Van Cittert-Zernike theorem; 8. Partial polarization, Stokes parameters, and the Poincarè Sphere; 9. Second-order coherence and the Hanbury Brown - Twiss experiment; 10. What in the world are surface plasmons?; 11. Surface plasmon polaritons on metallic surfaces; 12. The Faraday effecy; 13. The magneto-optical Kerr effect; 14. The Sagnac interferometer; 15. Fabry-Perot etalons in polarized light; 16. The Ewald-Oseen extinction theorem; 17. Reciprocity in classical Linear optics; 18. Optical pulse compression; 19. The uncertainty principle in classical optics; 20. Omni-directional dielectric mirrors; 21. Optical vortices; 22. Geometric-optical rays, Poynting's vector, and field momenta; 23. Doppler shift, stellar aberration, and convection of light by moving Media; 24. Diffraction gratings; 25. Diffractive optical elements; 26. The talbot effect; 27. Some quirks of total internal reflection; 28. Evanescent coupling; 29. Internal and external conical refraction; 30. Transmission of light through small elliptical apertures; 31. The method of Fox and Li; 32. The beam propagation method; 33. Launching light into a Fiber; 34. The optics of demiconductor fiode Laser; 35. Michelson's dtellar interferometer; 36. Bracewell's interferometric telescope; 37. Scanning optical microscopy; 38. Zernike's method of phase contrast; 39. Polarization microscopy; 40. Nomarski's differential interference contrast microscope; 41. The Van Leeuwenhoek microscope; 42. Projection photolithography; 43. Interaction of light with subwavelength structures; 44 The Ronchi test; 45. The Shack-Hartmann Wavefront sensor; 46. Ellipsometry; 47. Holography and holographic interferometry; 48. Self-focusing in non-linear optical media; 49

  16. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  17. On the Classical String Solutions and String/Field Theory Duality

    OpenAIRE

    Aleksandrova, D.; Bozhilov, P.

    2003-01-01

    We classify almost all classical string configurations, considered in the framework of the semi-classical limit of the string/gauge theory duality. Then, we describe a procedure for obtaining the conserved quantities and the exact classical string solutions in general string theory backgrounds, when the string embedding coordinates depend non-linearly on the worldsheet time parameter.

  18. Observability of Nonlinear Discrete Control Systems%非线性离散控制系统的可观测性

    Institute of Scientific and Technical Information of China (English)

    谭学利; 田华

    2015-01-01

    The authors mainly studied the observability of autonomous discrete control systems and nonautonomous discrete control systems using Brouwer’s fixed point theorem.We found that if the nonlinear part f is continuous in x and bounded and moreover r(M)=n,then the autonomous discrete control system is locally observable.If there exists positive integer N ,such that matrix 췍M has column full rank,and f (i ,x (i ))is continuous in x for each i ∈[h ,h +N - 2 ],i is a positive integer and bounded,then the nonautonomous discrete control system is locally observable in step h .%用 Brouwer 不动点定理研究非线性自治离散控制系统和非自治离散控制系统的可观测性。结果表明:当非线性项 f 关于 x 连续、有界,且 r(M)=n 时,自治离散控制系统是局部可观测的;若存在正整数 N 使得矩阵췍M 列满秩,且对每个 i ∈[h ,h +N -2](i 为正整数), f (i ,x(i))关于 x(i)连续且有界,则非自治离散控制系统在第 h 阶段是局部可观测的。

  19. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  20. The Nonlinear Theory of FEL

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The nonlinear theory of relyativistic strophotron is developed. Classical equations of motion are averaged over fast oscillations. The slow motion phase and saturation parameter are found different from usual undulator oscillation parameters. In the strong field approximation the analytical expression of gain is found on higher harmonics of main resonance frequency.

  1. Nonlinear manifold representations for functional data

    OpenAIRE

    Chen, Dong; Müller, Hans-Georg

    2012-01-01

    For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which...

  2. Time, classical and quantum

    Science.gov (United States)

    Aniello, P.; Ciaglia, F. M.; Di Cosmo, F.; Marmo, G.; Pérez-Pardo, J. M.

    2016-10-01

    We propose a new point of view regarding the problem of time in quantum mechanics, based on the idea of replacing the usual time operator T with a suitable real-valued function T on the space of physical states. The proper characterization of the function T relies on a particular relation with the dynamical evolution of the system rather than with the infinitesimal generator of the dynamics (Hamiltonian). We first consider the case of classical hamiltonian mechanics, where observables are functions on phase space and the tools of differential geometry can be applied. The idea is then extended to the case of the unitary evolution of pure states of finite-level quantum systems by means of the geometric formulation of quantum mechanics. It is found that T is a function on the space of pure states which is not associated with any self-adjoint operator. The link between T and the dynamical evolution is interpreted as defining a simultaneity relation for the states of the system with respect to the dynamical evolution itself. It turns out that different dynamical evolutions lead to different notions of simultaneity, i.e., the notion of simultaneity is a dynamical notion.

  3. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  4. Davidson and classical pragmatism

    Directory of Open Access Journals (Sweden)

    Paula Rossi

    2007-06-01

    Full Text Available In this paper I wish to trace some connections between Donald Davidson's work (1917-2003 and two major representatives of the classical pragmatist movement: Charles S. Peirce (1839-1914 and William James (1842-1910. I will start with a basic characterization of classical pragmatism; then, I shall examine certain conceptions in Peirce's and James' pragmatism, in order to establish affinities with Davidson´s thought. Finally, and bearing in mind the previous con-nections, I will reflect briefly on the relevance –often unrecognized- of classical pragmatist ideas in the context of contemporary philosophi-cal discussions.

  5. Bispectrum Analysis of Non-linear wave-wave Interaction between VLF Transmitter signal and ELF emission on the Basis of DEMETER satellite observations

    Science.gov (United States)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    Symmetric sidebands are observed in the ionosphere by the DEMETER (Detection of Electromagnetic Radiation Transmitted through Earthquake Region) satellite, when it passes above the Indian VLF transmitter, named VTX (18.2 kHz), located near Kanyakumari, India. The spectral boarding phenomena may be divided into two types: (1) spectrally broadened components occurring without any association with ELF/VLF emissions under disturbed ionospheric condition, (2) Spectrally broadened components with predominant side band structure in association with ELF emission. Generally spectral analysis at second order (Power spectrum) is used to analyze the frequency component of signal, but it losses the phase information among the different Fourier components. To retain this information the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are used. Results suggest a non-linear mode coupling between the transmitter signal and ELF emission which produces sidebands that are quasi-electrostatic in nature. However, faint spectral broadened components in both types 1 and 2 may be connected with Doppler shift of quasi-electrostatic, whistler mode waves with a broad spectrum near resonance cone, due to scattering of the transmitter signals from ionospheric irregularities in the F-region. Keywords: spectral boarding, wave-wave Interaction, whistler mode waves and Doppler shift

  6. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Kariyappa, R. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Van Ballegooijen, A. A.; DeLuca, E. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-58, Cambridge, MA 02138 (United States); Solanki, S. K. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.

  7. Buchert coarse-graining and the classical energy conditions

    CERN Document Server

    Visser, Matt

    2015-01-01

    So-called "Buchert averaging" is actually a coarse-graining procedure, where fine detail is "smeared out" due to limited spatio-temporal resolution. For technical reasons, (to be explained herein), "averaging" is not really an appropriate term, and I shall consistently describe the process as a "coarse-graining". Because Einstein gravity is nonlinear the coarse-grained Einstein tensor is typically not equal to the Einstein tensor of the coarse-grained spacetime geometry. The discrepancy can be viewed as an "effective" stress-energy, and this "effective" stress-energy often violates the classical energy conditions. To keep otherwise messy technical issues firmly under control, I shall work with conformal-FLRW (CFLRW) cosmologies. These CFLRW-based models are particularly tractable, and are also particularly attractive observationally: the CMB is not distorted. In this CFLRW context one can prove some rigorous theorems regarding the interplay between Buchert coarse-graining, tracelessness of the effective stres...

  8. Between classical and quantum

    OpenAIRE

    2007-01-01

    The relationship between classical and quantum theory is of central importance to the philosophy of physics, and any interpretation of quantum mechanics has to clarify it. Our discussion of this relationship is partly historical and conceptual, but mostly technical and mathematically rigorous, including over 500 references. On the assumption that quantum mechanics is universal and complete, we discuss three ways in which classical physics has so far been believed to emerge from quantum physic...

  9. Learning for Classical Planning

    OpenAIRE

    Chrpa, Lukáš

    2009-01-01

    This thesis is mainly about classical planning for articial intelligence (AI). In planning, we deal with searching for a sequence of actions that changes the environment from a given initial state to a goal state. Planning problems in general are ones of the hardest problems not only in the area of AI, but in the whole computer science. Even though classical planning problems do not consider many aspects from the real world, their complexity reaches EXPSPACE-completeness. Nevertheless, there ...

  10. Quantum and Classic Brackets

    OpenAIRE

    Kisil, Vladimir V.

    2000-01-01

    We describe an $p$-mechanical (see funct-an/9405002 and quant-ph/9610016) brackets which generate quantum (commutator) and classic (Poisson) brackets in corresponding representations of the Heisenberg group. We \\emph{do not} use any kind of semiclassic approximation or limiting procedures for $\\hbar \\to 0$. Harmonic oscillator considered within the approach. Keywords: Classic and quantum mechanics, Hamilton and Heisenberg equations, Poisson brackets, commutator, Heisenberg group.

  11. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  12. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  13. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  14. Optothermal nonlinearity of silica aerogel

    CERN Document Server

    Braidotti, Maria Chiara; Fleming, Adam; Samuels, Michiel C; Di Falco, Andrea; Conti, Claudio

    2016-01-01

    We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(\\simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non\\-li\\-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.

  15. Innovation: the classic traps.

    Science.gov (United States)

    Kanter, Rosabeth Moss

    2006-11-01

    Never a fad, but always in or out of fashion, innovation gets rediscovered as a growth enabler every half dozen years. Too often, though, grand declarations about innovation are followed by mediocre execution that produces anemic results, and innovation groups are quietly disbanded in cost-cutting drives. Each managerial generation embarks on the same enthusiastic quest for the next new thing. And each generation faces the same vexing challenges- most of which stem from the tensions between protecting existing revenue streams critical to current success and supporting new concepts that may be crucial to future success. In this article, Harvard Business School professor Rosabeth Moss Kanter reflects on the four major waves of innovation enthusiasm she's observed over the past 25 years. She describes the classic mistakes companies make in innovation strategy, process, structure, and skills assessment, illustrating her points with a plethora of real-world examples--including AT&T Worldnet, Timberland, and Ocean Spray. A typical strategic blunder is when managers set their hurdles too high or limit the scope of their innovation efforts. Quaker Oats, for instance, was so busy in the 1990s making minor tweaks to its product formulas that it missed larger opportunities in distribution. A common process mistake is when managers strangle innovation efforts with the same rigid planning, budgeting, and reviewing approaches they use in their existing businesses--thereby discouraging people from adapting as circumstances warrant. Companies must be careful how they structure fledgling entities alongside existing ones, Kanter says, to avoid a clash of cultures and agendas--which Arrow Electronics experienced in its attempts to create an online venture. Finally, companies commonly undervalue and underinvest in the human side of innovation--for instance, promoting individuals out of innovation teams long before their efforts can pay off. Kanter offers practical advice for avoiding

  16. Rindler Photons and Classical Radiation

    CERN Document Server

    Díaz, D E

    2001-01-01

    We describe the quantum and classical radiation by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer.To this end we compute the emission rate by a DeWitt detector of a Minkowski scalar field particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler photons from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of zero gap energy. As suggested by DeWitt, we identify in this limit the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behavior of the emission rate in D space-time dimensions in connection with the so called apparent statistics inversion.

  17. Classical glueballs in non-Abelian Born-Infeld theory

    CERN Document Server

    Galtsov, D V; Gal'tsov, Dmitri; Kerner, Richard

    2000-01-01

    It is shown that the Born-Infeld-type modification of the quadratic Yang-Mills action suggested by the superstring theory gives rise to classical particle-like solutions prohibited in the standard Yang-Mills theory. This becomes possible due to the scale invariance breaking by the Born-Infeld non-linearity. New classical glueballs are sphaleronic in nature and exhibit a striking similarity with the Bartnik-McKinnon solutions of the Yang-Mills theory coupled to gravity.

  18. Classical Corrections in String Cosmology

    CERN Document Server

    Brustein, Ram; Brustein, Ram; Madden, Richard

    1999-01-01

    An important element in a model of non-singular string cosmology is a phase in which classical corrections saturate the growth of curvature in a deSitter-like phase with a linearly growing dilaton (an `algebraic fixed point'). As the form of the classical corrections is not well known, here we look for evidence, based on a suggested symmetry of the action, scale factor duality and on conformal field theory considerations, that they can produce this saturation. It has previously been observed that imposing scale factor duality on the $O(\\alpha')$ corrections is not compatible with fixed point behavior. Here we present arguments that these problems persist to all orders in $\\alpha'$. We also present evidence for the form of a solution to the equations of motion using conformal perturbation theory, examine its implications for the form of the effective action and find novel fixed point structure.

  19. Classical corrections in string cosmology

    Science.gov (United States)

    Brustein, Ram; Madden, Richard

    1999-07-01

    An important element in a model of non-singular string cosmology is a phase in which classical corrections saturate the growth of curvature in a deSitter-like phase with a linearly growing dilaton (an `algebraic fixed point'). As the form of the classical corrections is not well known, here we look for evidence, based on a suggested symmetry of the action, scale factor duality and on conformal field theory considerations, that they can produce this saturation. It has previously been observed that imposing scale factor duality on the O(alpha') corrections is not compatible with fixed point behavior. Here we present arguments that these problems persist to all orders in alpha'. We also present evidence for the form of a solution to the equations of motion using conformal perturbation theory, examine its implications for the form of the effective action and find novel fixed point structure.

  20. Quantum Models of Classical World

    Directory of Open Access Journals (Sweden)

    Petr Hájíček

    2013-02-01

    Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.

  1. Nonlinear phased array imaging

    Science.gov (United States)

    Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.

    2016-04-01

    A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.

  2. Nonlinear dynamical characteristics of bed load motion

    Institute of Scientific and Technical Information of China (English)

    BAI; Yuchuan; XU; Haijue; XU; Dong

    2006-01-01

    Bed forms of various kinds that evolve naturally on the bottom of sandy coasts and rivers are a result of the kinematics of bed load transport. Based on the group motion of particles in the bed load within the bottom layer, a study on the nonlinear dynamics of bed load transport is presented in this paper. It is found that some development stages, such as the initiation, the equilibrium sediment transport, and the transition from a smooth bed to sand dunes, can be accounted for by different states in the nonlinear system of the bed load transport. It is verified by comparison with experimental data reported by Laboratoire Nationae D'Hydraulique, Chatou, France, that the evolution from a smooth bed to sand dunes is determined by mutation in the bed load transport. This paper presents results that may offer theoretical explanations to the experimental observations. It is also an attempt to apply the state-of-the-art nonlinear science to the classical sediment transport mechanics.

  3. An analysis of non-classical austenite-martensite interfaces in CuAlNi

    CERN Document Server

    Ball, J M; Seiner, H

    2011-01-01

    Ball and Carstensen theoretically investigated the possibility of the occurrence of non-classical austenite-martensite interfaces and studied the cubic-to-tetragonal case extensively. Here, we aim to present an analysis of such interfaces recently observed by Seiner et al. in CuAlNi single crystals, undergoing a cubic-to-orthorhombic transition. We show that they can be described by the non-linear elasticity model for martensitic transformations and we make some predictions regarding the volume fractions of the martensitic variants involved, as well as the habit plane normals.

  4. Nonlinear quantum mechanics, the superposition principle, and the quantum measurement problem

    Indian Academy of Sciences (India)

    Kinjalk Lochan; T P Singh

    2011-01-01

    There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr ¨odinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the finite superposition lifetime for mesoscopic objects in the near future.

  5. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos

    Science.gov (United States)

    Lee, B. H. K.; Price, S. J.; Wong, Y. S.

    1999-04-01

    Different types of structural and aerodynamic nonlinearities commonly encountered in aeronautical engineering are discussed. The equations of motion of a two-dimensional airfoil oscillating in pitch and plunge are derived for a structural nonlinearity using subsonic aerodynamics theory. Three classical nonlinearities, namely, cubic, freeplay and hysteresis are investigated in some detail. The governing equations are reduced to a set of ordinary differential equations suitable for numerical simulations and analytical investigation of the system stability. The onset of Hopf-bifurcation, and amplitudes and frequencies of limit cycle oscillations are investigated, with examples given for a cubic hardening spring. For various geometries of the freeplay, bifurcations and chaos are discussed via the phase plane, Poincaré maps, and Lyapunov spectrum. The route to chaos is investigated from bifurcation diagrams, and for the freeplay nonlinearity it is shown that frequency doubling is the most commonly observed route. Examples of aerodynamic nonlinearities arising from transonic flow and dynamic stall are discussed, and special attention is paid to numerical simulation results for dynamic stall using a time-synthesized method for the unsteady aerodynamics. The assumption of uniform flow is usually not met in practice since perturbations in velocities are encountered in flight. Longitudinal atmospheric turbulence is introduced to show its effect on both the flutter boundary and the onset of Hopf-bifurcation for a cubic restoring force.

  6. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  7. Discrete Classical Electromagnetic Fields

    CERN Document Server

    De Souza, M M

    1997-01-01

    The classical electromagnetic field of a spinless point electron is described in a formalism with extended causality by discrete finite transverse point-vector fields with discrete and localized point interactions. These fields are taken as a classical representation of photons, ``classical photons". They are all transversal photons; there are no scalar nor longitudinal photons as these are definitely eliminated by the gauge condition. The angular distribution of emitted photons coincides with the directions of maximum emission in the standard formalism. The Maxwell formalism and its standard field are retrieved by the replacement of these discrete fields by their space-time averages, and in this process scalar and longitudinal photons are necessarily created and added. Divergences and singularities are by-products of this averaging process. This formalism enlighten the meaning and the origin of the non-physical photons, the ones that violate the Lorentz condition in manifestly covariant quantization methods.

  8. Randomness: Quantum versus classical

    Science.gov (United States)

    Khrennikov, Andrei

    2016-05-01

    Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).

  9. Covariantizing Classical Field Theories

    CERN Document Server

    López, Marco Castrillón

    2010-01-01

    We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.

  10. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  11. Problems in classical mechanics

    CERN Document Server

    Katkar, L N

    2014-01-01

    Problems in classical mechanics presents a lucid treatment of the formulations of Lagrangian, Hamiltonian, and the Principles of Calculus of Variations etc. important for the study of modern physics. The study of classical mechanics prepares students to apply the principles and the mathematical tools to solve real life problems. The book also incorporates and discusses in detail topics such as Central Force Motion, Rigid Body Motion and Canonical Transformations. KEY FEATURES: Around 200 solved examples with complete mathematical theory Around 70 examples given as an exercise to test and develop students understanding The physical interpretation of the Hamiltonian is highlighted

  12. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  13. Classical Holographic Codes

    CERN Document Server

    Brehm, Enrico M

    2016-01-01

    In this work, we introduce classical holographic codes. These can be understood as concatenated probabilistic codes and can be represented as networks uniformly covering hyperbolic space. In particular, classical holographic codes can be interpreted as maps from bulk degrees of freedom to boundary degrees of freedom. Interestingly, they are shown to exhibit features similar to those expected from the AdS/CFT correspondence. Among these are a version of the Ryu-Takayanagi formula and intriguing properties regarding bulk reconstruction and boundary representations of bulk operations. We discuss the relation of our findings with expectations from AdS/CFT and, in particular, with recent results from quantum error correction.

  14. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  15. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  16. Nonlinear plasmonic antennas

    Directory of Open Access Journals (Sweden)

    Shakeeb Bin Hasan

    2014-12-01

    Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.

  17. The effects of nonlinear wave propagation on the stability of inertial cavitation

    OpenAIRE

    2009-01-01

    In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...

  18. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  19. Fluctuations of wavefunctions about their classical average

    Energy Technology Data Exchange (ETDEWEB)

    Benet, L [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Flores, J [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Hernandez-Saldana, H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Izrailev, F M [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Leyvraz, F [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico); Seligman, T H [Centro Internacional de Ciencias, Ciudad Universitaria, Chamilpa, Cuernavaca (Mexico)

    2003-02-07

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  20. On the Classical Limit of Quantum Mechanics

    CERN Document Server

    Allori, V; Allori, Valia; Zangh\\`{\\i}, Nino

    2001-01-01

    Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the $\\h \\to 0$ asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing real objects in an observer-independent way.

  1. Fluctuations of wavefunctions about their classical average

    CERN Document Server

    Bénet, L; Hernandez-Saldana, H; Izrailev, F M; Leyvraz, F; Seligman, T H

    2003-01-01

    Quantum-classical correspondence for the average shape of eigenfunctions and the local spectral density of states are well-known facts. In this paper, the fluctuations of the quantum wavefunctions around the classical value are discussed. A simple random matrix model leads to a Gaussian distribution of the amplitudes whose width is determined by the classical shape of the eigenfunction. To compare this prediction with numerical calculations in chaotic models of coupled quartic oscillators, we develop a rescaling method for the components. The expectations are broadly confirmed, but deviations due to scars are observed. This effect is much reduced when both Hamiltonians have chaotic dynamics.

  2. Mecanica Clasica (Classical Mechanics)

    CERN Document Server

    Rosu, H C

    1999-01-01

    First Internet undergraduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  3. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  4. Mecanica Clasica (Classical Mechanics)

    OpenAIRE

    Rosu, H. C.

    1999-01-01

    First Internet graduate course on Classical Mechanics in Spanish (Castellano). This is about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. English and Romanian versions are in (slow) progress and hopefully will be arXived. For a similar course on Quantum Mechanics, see physics/9808031

  5. Strong Coupling and Classicalization

    CERN Document Server

    Dvali, Gia

    2016-01-01

    Classicalization is a phenomenon in which a theory prevents itself from entering into a strong-coupling regime, by redistributing the energy among many weakly-interacting soft quanta. In this way, the scattering process of some initial hard quanta splits into a large number of soft elementary processes. In short, the theory trades the strong coupling for a high-multiplicity of quanta. At very high energies, the outcome of such a scattering experiment is a production of soft states of high occupation number that are approximately classical. It is evident that black hole creation in particle collision at super-Planckian energies is a result of classicalization, but there is no a priory reason why this phenomenon must be limited to gravity. If the hierarchy problem is solved by classicalization, the LHC has a chance of detecting a tower of new resonances. The lowest-lying resonances must appear right at the strong coupling scale in form of short-lived elementary particles. The heavier members of the tower must b...

  6. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  7. Classical Mythology. Fourth Edition.

    Science.gov (United States)

    Morford, Mark P. O.; Lenardon, Robert J.

    Designed for students with little or no background in classical literature, this book introduces the Greek and Roman myths of creation, myths of the gods, Greek sagas and local legends, and presents contemporary theories about the myths. Drawing on Homer, Hesiod, Pindar, Vergil, and others, the book provides many translations and paraphrases of…

  8. Classical galactosaemia revisited

    NARCIS (Netherlands)

    A.M. Bosch

    2006-01-01

    Classical galactosaemia (McKusick 230400) is an: autosomal recessive disorder of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712). Most patients present in the neonatal period, after ingestion of galactose, with jaundice, hepatospl

  9. Nuclear motion is classical

    CERN Document Server

    Frank, Irmgard

    2016-01-01

    The notion from ab-initio molecular dynamics simulations that nuclear motion is best described by classical Newton dynamics instead of the time-dependent Schr{\\"o}dinger equation is substantiated. In principle a single experiment should bring clarity. Caution is however necessary, as temperature dependent effects must be eliminated when trying to determine the existence of a zero-point energy.

  10. Children's Classics. Fifth Edition.

    Science.gov (United States)

    Jordan, Alice M.

    "Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…

  11. Children's Classics. Fifth Edition.

    Science.gov (United States)

    Jordan, Alice M.

    "Children's Classics," a 1947 article by Alice M. Jordan reprinted from "The Horn Book Magazine," examines the dynamics and appeal of some of the most famous books for young readers, including "Alice in Wonderland,""The Wind in the Willows,""Robinson Crusoe," and "Andersen's Fairy Tales." Paul Hein's annotated bibliography, a revision of Jordan's…

  12. A modern approach to classical mechanics

    CERN Document Server

    Iro, Harald

    2002-01-01

    The approach to classical mechanics adopted in this book includes and stresses recent developments in nonlinear dynamical systems. The concepts necessary to formulate and understand chaotic behavior are presented. Besides the conventional topics (such as oscillators, the Kepler problem, spinning tops and the two centers problem) studied in the frame of Newtonian, Lagrangian, and Hamiltonian mechanics, nonintegrable systems (the Hénon-Heiles system, motion in a Coulomb force field together with a homogeneous magnetic field, the restricted three-body problem) are also discussed. The question of the integrability (of planetary motion, for example) leads finally to the KAM-theorem. This book is the result of lectures on 'Classical Mechanics' as the first part of a basic course in Theoretical Physics. These lectures were given by the author to undergraduate students in their second year at the Johannes Kepler University Linz, Austria. The book is also addressed to lecturers in this field and to physicists who wa...

  13. Classical Theories and the Will to Fight

    Science.gov (United States)

    2007-11-02

    of Freudian or Jungian theories will be avoided. The most important psychological considerations are those observed in combat conditions. The...CLASSICAL THEORIES OF THE WILL TO FIGHT A thesis presented to the Faculty of the U.S. Army Command and General Staff College in partial Fulfillment...PAGE Name of Candidate: Major Kurt P. VanderSteen Thesis Title: Classical Theories and the Will to Fight Approved by

  14. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.

    Science.gov (United States)

    Kim, Joon-Yeon; Kang, Bong Joo; Park, Joohyun; Bahk, Young-Mi; Kim, Won Tae; Rhie, Jiyeah; Jeon, Hyeongtag; Rotermund, Fabian; Kim, Dai-Sik

    2015-10-14

    Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.

  15. Classical and Quantum Limits in Bohmian Quantum Cosmology

    OpenAIRE

    Shojai, F.; Shirinifard, A.

    2005-01-01

    In this paper we have investigated the classical limit in Bohmian quantum cosmology. It is observed that in the quantum regime where the quantum potential is greater than the classical one, one has an expansion in terms of negative powers of the Planck constant. But in the classical limit there are regions having positive powers of the Planck constant, and regions having negative powers and also regions having both. The conclusion is that the Bohmian classical limit cannot be obtained by lett...

  16. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  17. Solar Activity and Classical Physics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This review of solar physics emphasizes several of the more conspicuous scientific puzzles posed by contemporary observational knowledge of the magnetic activity of the Sun. The puzzles emphasize how much classical physics we have yet to learn from the Sun. The physics of solar activity is based on the principles of Newton, Maxwell, Lorentz, Boltzmann, et. al., along with the principles of radiative transfer. In the large, these principles are expressed by magnetohydrodynamics. A brief derivation of the magnetohydrodynamic induction and momentum equations is provided, with a discussion of popular misconceptions.

  18. New Approach to Find Exact Solutions to Classical Boussinesq System

    Institute of Scientific and Technical Information of China (English)

    ZHI Hong-Yan; ZHAO Xue-Qin; ZHANG Hong-Qing

    2005-01-01

    In this paper, based on a new system of three Riccati equations, we give a new method to construct more new exact solutions of nonlinear differential equations in mathematical physics. The classical Boussinesq system is chosen to illustrate our method. As a consequence, more families of new exact solutions are obtained, which include solitary wave solutions and periodic solutions.

  19. General explicit solutions of a classical Boussinesq system

    Institute of Scientific and Technical Information of China (English)

    张善卿; 徐桂琼; 李志斌

    2002-01-01

    Seeking a travelling wave solution of the classical Boussinesq system and making an ansatz for the solution, we obtain a nonlinear system of algebraic equations. We solve the system using an effective algorithm and then two general explicit solutions are obtained which are of physical interest.

  20. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  1. Hamiltonian Realizations of Nonlinear Adjoint Operators

    NARCIS (Netherlands)

    Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven

    2000-01-01

    This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope

  2. Citation classics in trauma.

    Science.gov (United States)

    Ollerton, Joanne Emma; Sugrue, Michael

    2005-02-01

    The evolution of trauma may be analyzed by review of articles most frequently cited by scientific articles worldwide. This study identified the "trauma classics" by reviewing the most-cited articles ever published in The Journal of Trauma. The Science Citation Index of the Institute for Scientific Information was searched for the 50 most-cited articles in The Journal of Trauma. Of the 12,672 articles published since 1961, 80 were cited over 100 times and 17 over 200 times. The most-cited article was by Baker, a hallmark publication on injury scoring published in 1974. Feeding postinjury, bacterial translocation, and multiple organ failure were common themes. Overall, 32% involved gastrointestinal topics and 18% involved injury scoring, with institutions in the United States publishing 80% of the articles. This study identified the trauma classics from the last 42 years of The Journal of Trauma. Citation analysis has recognized limitations but gives a fascinating insight into the evolution of trauma care.

  3. Classical and statistical thermodynamics

    CERN Document Server

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  4. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  5. Injuries in classical ballet

    Directory of Open Access Journals (Sweden)

    Adriana Coutinho de Azevedo Guimarães

    2008-06-01

    Full Text Available This study aimed to elucidate what injuries are most likely to occur due to classical ballet practice. The research used national and international bibliography. The bibliography analysis indicated that technical and esthetical demands lead to a practice of non-anatomical movements, causing the ballet dancer to suffer from a number of associated lesions. Most of the injuries are caused by technical mistakes and wrong training. Troubles in children are usually due to trying to force external rotation at hip level and to undue use of point ballet slippers. The commonest lesions are in feet and ankles, followed by knees and hips. The rarest ones are in the upper limbs. These injuries are caused by exercise excess, by repetitions always in the same side and by wrong and early use of point slippers. The study reached the conclusion that incorrect application of classical ballet technique predisposes the dancers to characteristic injuries.

  6. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  7. Electrodynamics classical inconsistencies

    CERN Document Server

    De Souza, M M

    1995-01-01

    The problems of Classical Electrodynamics with the electron equation of motion and with non-integrable singularity of its self-field stress tensor are well known. They are consequences, we show, of neglecting terms that are null off the charge world line but that gives a non null contribution on its world line. The self-field stress tensor of a point classical electron is integrable, there is no causality violation and no conflict with energy conservation in its equation of motion, and there is no need of any kind of renormalization nor of any change in the Maxwell's theory for this. (This is part of the paper hep-th/9510160, stripped , for simplicity, of its non-Minkowskian geometrization of causality and of its discussion about the physical meaning of the Maxwell-Faraday concept of field).

  8. Classical Weyl Transverse Gravity

    CERN Document Server

    Oda, Ichiro

    2016-01-01

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally-invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally-invariant scalar tensor gravity and the WTDiff gravity is a "fake" symmetry. We find it possible to extend this proof to all matter fields,...

  9. Randomness: quantum versus classical

    CERN Document Server

    Khrennikov, Andrei

    2015-01-01

    Recent tremendous development of quantum information theory led to a number of quantum technological projects, e.g., quantum random generators. This development stimulates a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is elaboration of a consistent and commonly accepted interpretation of quantum state. Closely related problem is clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. The second part of this review is devoted to the information interpretation of quantum mechanics (QM) in the spirit of Zeilinger and Brukner (and QBism of Fuchs et al.) and physics in general (e.g., Wheeler's "it from bit") as well as digital philosophy of Chaitin (with historical coupling to ideas of Leibnitz). Finally, w...

  10. Computation in Classical Mechanics

    CERN Document Server

    Timberlake, Todd

    2007-01-01

    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.

  11. Revisiting a Classic

    Science.gov (United States)

    Rogers, Ibram

    2008-01-01

    As a 26-year-old English teacher in 1958, Chinua Achebe had no idea that the book he was writing would become a literary classic, not only in Africa but also throughout the world. He could only try to articulate the feelings he had for his countrymen and women. Achebe had a burning desire to tell the true story of Africa and African humanity. The…

  12. Lectures on classical electrodynamics

    CERN Document Server

    Englert, Berthold-Georg

    2014-01-01

    These lecture notes cover classical electrodynamics at the level of advanced undergraduates or postgraduates. There is a strong emphasis on the general features of the electromagnetic field and, in particular, on the properties of electromagnetic radiation. It offers a comprehensive and detailed, as well as self-contained, account of material that can be covered in a one-semester course for students with a solid undergraduate knowledge of basic electricity and magnetism.

  13. Invitation to classical analysis

    CERN Document Server

    Duren, Peter

    2012-01-01

    This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differ

  14. Concepts of classical optics

    CERN Document Server

    Strong, John

    2004-01-01

    An intermediate course in optics, this volume explores both experimental and theoretical concepts, offering practical knowledge of geometrical optics that will enhance students' comprehension of any relevant applied science. Its exposition of the concepts of classical optics is presented with a minimum of mathematical detail but presumes some knowledge of calculus, vectors, and complex numbers.Subjects include light as wave motion; superposition of wave motions; electromagnetic waves; interaction of light and matter; velocities and scattering of light; polarized light and dielectric boundarie

  15. Classical Maxwellian polarization entanglement

    CERN Document Server

    Carroll, John E

    2015-01-01

    An explanation of polarization entanglement is presented using Maxwells classical electromagnetic theory.Two key features are required to understand these classical origins.The first is that all waves diffract and weakly diffracting waves,with a principal direction of propagation in the laboratory frame, travel along that direction at speeds ever so slightly less than c.This allows nontrivial Lorentz transformations that can act on selected forward F waves or selected waves R traveling in the opposite direction to show that both can arise from a single zero momentum frame where all the waves are transverse to the original principal direction.Such F and R waves then both belong to a single relativistic entity where correlations between the two are unremarkable.The second feature requires the avoidance of using the Coulomb gauge.Waves, tending to plane waves in the limit of zero diffraction,can then be shown to be composed of two coupled sets of E and B fields that demonstrate the classical entanglement of F an...

  16. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  17. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  18. 具有单调性非线性项的非线性系统降维观测器设计%The Design of Reduced-order Observer for Systems with Monotone Nonlinearities

    Institute of Scientific and Technical Information of China (English)

    朱芳来; 丁宣浩

    2007-01-01

    Baseed on the discussion about the existence and design method of full-order observer for systems with monotone nonlinearities, a reduced-order observer design method is developed under the assumption that a linear matrix inequality (LMI)has positive definite matrix solution and the reduced-order observer gain matrix is computed by the solution of LMI. By a linear transformation, a reduced-order observer which does not contain the information of the derivative of the system output is provided.A model is simulated and some conclusions are drawn based on the comparison of the results of reduced-order observer to that of full-order observer. The simulation shows that the design method developed by this paper has good performance.

  19. Equilibration properties of classical integrable field theories

    Science.gov (United States)

    De Luca, Andrea; Mussardo, Giuseppe

    2016-06-01

    We study the equilibration properties of classical integrable field theories at a finite energy density, with a time evolution that starts from initial conditions far from equilibrium. These classical field theories may be regarded as quantum field theories in the regime of high occupation numbers. This observation permits to recover the classical quantities from the quantum ones by taking a proper \\hslash \\to 0 limit. In particular, the time averages of the classical theories can be expressed in terms of a suitable version of the LeClair-Mussardo formula relative to the generalized Gibbs ensemble. For the purposes of handling time averages, our approach provides a solution of the problem of the infinite gap solutions of the inverse scattering method.

  20. Chaos in effective classical and quantum dynamics

    CERN Document Server

    Casetti, L; Modugno, M; Casetti, Lapo; Gatto, Raoul; Modugno, Michele

    1998-01-01

    We investigate the dynamics of classical and quantum N-component phi^4 oscillators in presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.

  1. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  2. Markovian Zero-Discord Classicality for Bipartite Quantum Systems

    CERN Document Server

    Arsenijevic, M; Dugic, M

    2012-01-01

    Recent observation that almost all quantum states bear nonclassical correlations [A. Ferraro et al, Phys. Rev. A 81, 052318 (2010)] distinguishes the zero-discord classicality essentially as a rareness of the Markovian bipartite systems realm. This seems to be in contrast with decoherence-theory established classicality where classical states are robust and unavoidable. Nevertheless, we formally construct such a classical model and its variant that represents a matter-of-principle formal proof, i.e. a sufficient condition for the, otherwise not obvious, existence of the Markovian zero-discord classicality. Rigorous analysis suggests there is no alternative to classical model, aside approximate model which follows from relaxing rigid quantum information constraints on classical model. A need for the more elaborate and more systematic search for the alternative such models (if there any) reveals we are still learning about the very meaning of "classicality" in the realm of open quantum systems.

  3. Nonlinear speed estimation of a GPS-free UAV

    Science.gov (United States)

    Santosuosso, Giovanni L.; Benzemrane, Khadidja; Damm, Gilney

    2011-11-01

    In this article, the problem of robust state observer design for a class of unmanned aerial vehicles (UAVs) is addressed. A prototype four-rotors helicopter robot for indoors and outdoors applications is considered: the drone is not equipped with GPS related devices, so we describe a strategy to estimate its translational velocity vector based on acceleration, angles and angular speeds measurements only. Since the linearised system is non-observable at the equilibrium point, a nonlinear observability verification is performed for persistently exciting trajectories. A global exponential solution to this open problem is provided in the framework of adaptive observation theory when exact measurements are available. A modified observer is presented to enhance velocity estimation robustness in the realistic case of noisy measurements. The results are compared with a classical estimation strategy based on the extended Kalman filter to test the algorithm's performance.

  4. Focus issue introduction: nonlinear optics.

    Science.gov (United States)

    Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori

    2011-11-07

    It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.

  5. Nonlinear Peltier effect in semiconductors

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali

    2007-09-01

    Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.

  6. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  7. Modal analysis of nonlinear mechanical systems

    CERN Document Server

    2014-01-01

    The book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification.

  8. Qualitative stability of nonlinear networked systems

    OpenAIRE

    Angulo, Marco Tulio; Slotine, Jean-Jacques

    2016-01-01

    In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70's, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.

  9. Mechanics classical and quantum

    CERN Document Server

    Taylor, T T

    2015-01-01

    Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e

  10. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  11. Semi-classical Electrodynamics

    Science.gov (United States)

    Lestone, John

    2016-03-01

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. We describe semi-classical approaches that can be used to obtain a more intuitive physical feel for several QED processes including electro-statics, Compton scattering, pair annihilation, the anomalous magnetic moment, and the Lamb shift, that could be taught easily to undergraduate students. Any physicist who brings their laptop to the talk will be able to build spread sheets in less than 10 minutes to calculate g/2 =1.001160 and a Lamb shift of 1057 MHz.

  12. Classical cytogenetics: karyotyping techniques.

    Science.gov (United States)

    Bates, Steven E

    2011-01-01

    Classical cytogenetics by karyotyping has been utilized in clinical research laboratories for more than 50 years and remains the key method used in the stem cell laboratory to assess the genetic stability of stem cell cultures. It is currently the most readily accessible method for detecting chromosomal abnormalities in pluripotent stem cell cultures. This chapter will describe (1) how to prepare a culture to maximize the number of metaphase cells, (2) how to prepare slides containing chromosome spreads (3) methods used to stain chromosomes, and (4) how to interpret the cytogenetic report.

  13. Classical Trace Anomaly

    OpenAIRE

    Farhoudi, M.

    1995-01-01

    We seek an analogy of the mathematical form of the alternative form of Einstein's field equations for Lovelock's field equations. We find that the price for this analogy is to accept the existence of the trace anomaly of the energy-momentum tensor even in classical treatments. As an example, we take this analogy to any generic second order Lagrangian and exactly derive the trace anomaly relation suggested by Duff. This indicates that an intrinsic reason for the existence of such a relation sh...

  14. A Classic Through Eternity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.

  15. Observador No Lineal para la Estimación de Concentraciones en un Proceso de Destilación Metanol/Etanol A Nonlinear Observer for Estimating Concentrations in a Methanol/Ethanol Distillation Process

    Directory of Open Access Journals (Sweden)

    Carlos M Astorga

    2006-01-01

    Full Text Available En este artículo se presenta el diseño de un observador no lineal de ganancia constante para la estimación de las composiciones en los platos de una columna de destilación a partir de las mediciones de las temperaturas en el hervidor y en el condensador. El observador se basa en un modelo no lineal de un proceso de destilación binaria metanol/etanol. Tanto el modelo, como el observador, son validados experimentalmente en una columna de destilación de laboratorio. La característica principal del observador es que las ganancias son constantes y no requieren la resolución de ningún sistema dinámico. La buena concordancia entre las variables estimadas y las mediciones experimentales permite concluir que este observador puede ser utilizado en aplicaciones de control no linealThis paper presents the design of a non-linear constant gain observer for the estimation of plate compositions in a distillation column based on measurements of the temperatures in the boiler and in the condenser. The observer is based on a non-linear model of the binary distillation process for ethanol/methanol. Both the model and the observer were validated experimentally using a laboratory distillation column. The main characteristic of the observer was that the gains were constant and did not require resolution of any dynamic systems. The good agreement between the variables estimated and the experimental measurements allowed concluding that this observer could be used in non-linear control applications.

  16. Nonlinear concentration gradients regulated by the width of channels for observation of half maximal inhibitory concentration (IC50) of transporter proteins.

    Science.gov (United States)

    Abe, Yuta; Kamiya, Koki; Osaki, Toshihisa; Sasaki, Hirotaka; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2015-08-21

    This paper describes a simple microfluidic device that can generate nonlinear concentration gradients. We changed the "width" of channels that can drastically shorten the total microfluidic channel length and simplify the microfluidic network design rather than the "length" of channels. The logarithmic concentration gradients generated by the device were in good agreement with those obtained by simulation. Using this device, we evaluated a probable IC50 value of the ABC transporter proteins by the competitive transport assays at five different logarithmic concentrations. This probable IC50 value was in good agreement with an IC50 value (0.92 μM) obtained at the diluted concentrations of seven points.

  17. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  18. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  19. From Quantum to Classical in the Sky

    CERN Document Server

    Singh, Suprit

    2016-01-01

    Inflation has by-far set itself as one of the prime ideas in the current cosmological models that seemingly has an answer for every observed phenomenon in cosmology. More importantly, it serves as a bridge between the early quantum fluctuations and the present-day classical structures. Although the transition from quantum to classical is still not completely understood till date, there are two assumptions made in the inflationary paradigm in this regard: (i) the modes (metric perturbations or fluctuations) behave classically once they are well outside the Hubble radius and, (ii) once they become classical they stay classical and hence can be described by standard perturbation theory after they re-enter the Hubble radius. We critically examine these assumptions for the tensor modes of (linear) metric perturbations in a toy three stage universe with (i) inflation, (ii) radiation-dominated and (iii) late-time accelerated phases. The quantum-to-classical transition for these modes is evident from the evolution of...

  20. Nonlinear optomechanical paddle nanocavities

    CERN Document Server

    Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E

    2014-01-01

    A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.