Nonlinear mixing of laser generated narrowband Rayleigh surface waves
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces
Jin, Boyuan
2016-01-01
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be...
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.
Jin, Boyuan; Argyropoulos, Christos
2016-06-27
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.
Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K
2014-11-03
Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.
DEFF Research Database (Denmark)
Pu, Minhao; Chen, Yaohui; Yvind, Kresten
2014-01-01
Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....
Nonlinear wave mixing and susceptibility properties of negative refractive index materials.
Chowdhury, Aref; Tataronis, John A
2007-01-01
We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...
Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.
Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B
2016-12-01
We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.
Slabko, Vitaly V; Popov, Alexander K; Tkachenko, Viktor A; Myslivets, Sergey A
2016-09-01
Three-wave mixing of ordinary and backward electromagnetic waves in a pulsed regime is investigated in the metamaterials that enable the coexistence and phase-matching of such waves. It is shown that the opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes due to greatly enhanced optical parametric amplification and frequency up- and down-shifting nonlinear reflectivity. The differences are illustrated through comparison with the counterparts in ordinary, co-propagating settings.
Detailed Characterization of Continuous-Wave and Pulsed-Pump Four-Wave Mixing in Nonlinear Fibers
DEFF Research Database (Denmark)
Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, Lars;
2016-01-01
We explore the parametric gain differences for continuous-wave and pulse-pumped four-wave mixing, using various highly nonlinear fibers. Detailed simulations support our findings that the dispersion slope determines the experimentally observed differences, limiting the pulsed-pump performance....
The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The 3rd-order nonlinear optical susceptibility X(3) and the response time of the light-transducing biomolecule bacteriorhodopsin were measured with the four-wave mixing technique and a picosecond frequency-doubled Nd:YAG laser(532nm).The X(3) and the response time measured are 10-9 esu and 20 ps,respectively.The possible mechanism for generating the 3rd-order nonlinear optical susceptibility X(3) and response time were discussed.
Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities
Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan
2015-01-01
The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.
Gregerson, Marc; Hetu, Marcel; Iwabuchi, Manna; Jimenez, Jorge; Warren, Ashley; Tong, William G.
2012-10-01
Nonlinear multi-photon laser wave mixing is presented as an ultrasensitive optical detection method for chem/bio agents in thin films and gas- and liquid-phase samples. Laser wave mixing is an unusually sensitive optical absorption-based detection method that offers significant inherent advantages including excellent sensitivity, small sample requirements, short optical path lengths, high spatial resolution, high spectral resolution and standoff remote detection capability. Wave mixing can detect trace amounts of chemicals even when using micrometer-thin samples, and hence, it can be conveniently interfaced to fibers, microarrays, microfluidic systems, lab-on-a-chip, capillary electrophoresis and other capillary- or fiber-based chemical separation systems. The wave-mixing signal is generated instantaneously as the two input laser beams intersect inside the analyte of interest. Laser excitation wavelengths can be tuned to detect multiple chemicals in their native form since wave mixing can detect both fluorescing and non-fluorescing samples at parts-pertrillion or better detection sensitivity levels. The wave-mixing signal is a laser-like coherent beam, and hence, it allows reliable and effective remote sensing of chemicals. Sensitive wave-mixing detectors offer many potential applications including sensitive detection of biomarkers, early detection of diseases, sensitive monitoring of environmental samples, and reliable detection of hazardous chem/bio agents with a standoff detection capability.
Four-wave mixing and nonlinear losses in thick silicon waveguides.
Morrison, Blair; Zhang, Yanbing; Pagani, Mattia; Eggleton, Benjamin; Marpaung, David
2016-06-01
We experimentally investigate four-wave mixing and nonlinear losses in low-loss 3 μm thick silicon strip waveguides. Adiabatic bends allow for single-mode operation in an ultra-compact 35 cm long spiral. The waveguides exhibited reduced nonlinear losses due to the large mode area of 2.75 μm2. The nonlinear coefficient γ was measured as 5.5 m-1 W-1. These features, along with the low propagation loss of 0.17 dB/cm, enable large idler power generation at 1550 nm.
A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations
DEFF Research Database (Denmark)
Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.
2011-01-01
We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave...... model is based on a potential flow formulation, which requires efficient solution of a Laplace problem at large-scales. We report recent results on a new mixed-precision strategy for efficient iterative high-order accurate and scalable solution of the Laplace problem using a multigrid......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...
Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers
DEFF Research Database (Denmark)
Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.
2016-01-01
We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....
Phase quadrature discrimination based on three-pump four-wave mixing in nonlinear optical fibers.
Baillot, Maxime; Gay, Mathilde; Peucheret, Christophe; Michel, Joindot; Chartier, Thierry
2016-11-14
We theoretically and experimentally study the principle of phase-sensitive frequency conversion in a highly-nonlinear fiber using three pump waves. This mechanism, originally demonstrated with four continuous-wave pumps and a signal wave, is based on four-wave mixing and enables to convert the two quadrature components of the signal to different frequencies. In this work, we derive a set of two simple equations to describe this mechanism and find analytic solutions. We show that only three pumps are required, instead of four as originally proposed. We give simple relations to determine the initial conditions for the power levels and the phases of the pumps. To validate this approach, we perform an experimental demonstration of the three-pump scheme and find excellent agreement with the theory.
Nonlinear Pulse-reshaping of Sub-picosecond Pulses by Non-degenerate Four-wave Mixing
DEFF Research Database (Denmark)
Christensen, Jesper; Andersen, Lasse Mejling; Rottwitt, Karsten
Four-wave mixing does according to various models allow for arbitrary pulse-reshaping of the generated idler. Using subpicosecond pulses, we investigate numerically whether nonlinear effects and dispersion broadening begin to prevent this ability.......Four-wave mixing does according to various models allow for arbitrary pulse-reshaping of the generated idler. Using subpicosecond pulses, we investigate numerically whether nonlinear effects and dispersion broadening begin to prevent this ability....
Metal-free flat lens using negative refraction by nonlinear four-wave mixing.
Cao, Jianjun; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Wan, Wenjie
2014-11-21
A perfect lens with unlimited resolution has always posed a challenge to both theoretical and experimental physicists. Recent developments in optical metamaterials promise an attractive approach towards perfect lenses using negative refraction to overcome the diffraction limit, improving resolution. However, those artificially engineered metamaterials are usually accompanied by high losses from metals and are extremely difficult to fabricate. An alternative proposal using negative refraction by four-wave mixing has attracted much interest recently, though most existing experiments still require metals and none of them have been implemented for an optical lens. Here, we experimentally demonstrate a metal-free flat lens for the first time using negative refraction by degenerate four-wave mixing with a thin glass slide. We realize an optical lensing effect utilizing a nonlinear refraction law, which may have potential applications in microscopy.
Metal-Free Flat Lens Using Negative Refraction by Nonlinear Four-wave Mixing
Cao, Jianjun; Feng, Yaming; Chen, Xianfeng; Wan, Wenjie
2014-01-01
A perfect lens with unlimited resolution has always posed a challenge to both theoretical and experimental physicists. Recent developments in optical meta-materials promise an attractive approach towards perfect lenses using negative refraction to overcome the diffraction limit, improving resolution. However, those artificially engineered meta-materials usually company by high losses from metals and are extremely difficult to fabricate. An alternative proposal on using negative refraction by four-wave mixing has attracted much interests recently, though most of existing experiments still require metals and none of them has been implemented for an optical lens. Here we experimentally demonstrate a metal-free flat lens for the first time using negative refraction by degenerate four-wave mixing with a simple thin glass slide. We realize optical lensing utilizing a nonlinear refraction law, which may have potential applications in infrared microscopy and super-resolution imaging.
Pseudo-Hermitian Transition in Degenerate Nonlinear Four-Wave Mixing
Ge, Li
2016-01-01
We show that degenerate four-wave mixing (FWM) in nonlinear optics can be described by an effective Hamiltonian that is pseudo-Hermitian, which enables a transition between a pseudo-Hermitian phase with real eigenvalues and a broken pseudo-Hermitian phase with complex conjugate eigenvalues. While bearing certain similarity to that in Parity-Time symmetric systems, this transition is in stark contrast because of the absence of gain and loss in the effective Hamiltonian. The latter is real after factoring out the system decay, and the onset of non-Hermiticity in degenerate FWM is due to the total phase change of the signal wave and the idler wave. This property underlines the intrinsic coherence in FWM, which opens the door to probe quantum implications of exceptional points.
DEFF Research Database (Denmark)
Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten
2017-01-01
We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....
Tombelaine, Vincent; Labruyère, Alexis; Kobelke, Jens; Schuster, Kay; Reichel, Volker; Leproux, Philippe; Couderc, Vincent; Jamier, Raphaël; Bartelt, Hartmut
2009-08-31
We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the generation of a wide supercontinuum spectrum extending over 1650 nm after 2.15 m of propagation length. The comparison with results obtained from germanium-doped holey fibers confirms the important role of the rod material properties regarding nonlinear process and dispersion.
Institute of Scientific and Technical Information of China (English)
ZHANG Shao-hua; YAO Jian-quan; ZHOU Rui; WEN Wu-qi; XU De-gang; WANG Peng
2011-01-01
Using nanosecond pulse near-infrared and mid-infrared laser pulses as the pump source,we obtain terahertz wave sources via four-wave difference frequency mixing.From the coupled wave theory,.we analyze the four-wave mixing process of GaSe crystal and alkali metal vapor in detail,get the analytical expression of terahertz wave output power,and discuss the conditions for achieving phase matching.By adjusting the pump frequency,the third-order nonlinear polarization of alkali metal vapor is resonance-enhanced.This program offers a new type of high-power terahertz radiation source.
Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps
Directory of Open Access Journals (Sweden)
Katarzyna Krupa
2012-01-01
Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.
Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers.
Lillieholm, M; Galili, M; Grüner-Nielsen, L; Oxenløwe, L K
2016-11-01
We present a quantitative comparison of continuous-wave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW- and pulsed-pump FWM bandwidths are limited in practice. The CW- and pulsed-pump parametric gain is characterized experimentally for several HNLFs with various dispersion properties, including zero-dispersion wavelength fluctuations, and the results are interpreted in conjunction with detailed numerical simulations. It is found that a low third-order dispersion (TOD) is essential for the pulsed-pump FWM bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations leads to different CW-optimized fibers, which depend only on the even dispersion orders.
Sasanpour, Pezhman; Shahmansouri, Afsaneh; Rashidian, Bizhan
2010-11-01
Third order nonlinear effects and its enhancement in gold nanostructures has been numerically studied. Analysis method is based on computationally solving nonlinear Maxwell's equations, considering dispersion behavior of permittivity described by Drude model and third order nonlinear susceptibility. Simulation is done by method of nonlinear finite difference time domain method, in which nonlinear equations of electric field are solved by Newton-Raphshon method. As the main outcomes of third order nonlinear susceptibility, four wave mixing and third harmonic generation terms are produced around gold nanostructures. Results of analysis on different geometries and structures show that third order nonlinearity products are more enhanced in places where electric field enhancement is occurred due to surface plasmons. Results indicates that enhancement of nonlinearities is strongly occurred in structures whose interface is dielectric. According to analysis results, nonlinear effects are highly concentrated in the vicinity of nanostructures. Hence this approach can be used in applications where localized ultraviolet light is required.
Zhang, Ya-Ni; Ren, Li-Yong; Gong, Yong-Kang; Li, Xiao-Hui; Wang, Lei-Ran; Sun, Chuan-Dong
2010-06-01
We have proposed a novel type of photonic crystal fiber (PCF) with low dispersion and high nonlinearity for four-wave mixing. This type of fiber is composed of a solid silica core and a cladding with a squeezed hexagonal lattice elliptical airhole along the fiber length. Its dispersion and nonlinearity coefficient are investigated simultaneously by using the full vectorial finite element method. Numerical results show that the proposed highly nonlinear low-dispersion fiber has a total dispersion as low as +/-2.5 ps nm(-1) km(-1) over an ultrabroad wavelength range from 1.43 to 1.8 microm, and the corresponding nonlinearity coefficient and birefringence are about 150 W(-1) km(-1) and 2.5x10(-3) at 1.55 microm, respectively. The proposed PCF with low ultraflattened dispersion, high nonlinearity, and high birefringence can have important application in four-wave mixing.
Zhang, Ailing; Demokan, M S
2005-09-15
We demonstrate a 10 Gbit/s nonreturn-to-zero wavelength converter based on four-wave mixing in a 20 m highly nonlinear photonic crystal fiber. The tunable wavelength conversion bandwidth (3 dB) is about 100 nm. The conversion efficiency is -16 dB when the pump power is 22.5 dBm. Phase modulation was not used to suppress the stimulated Brillouin scattering; thus the linewidth of the converted wavelength remained very narrow. The eye diagrams show that there is no additional noise during wavelength conversion. The measured power penalty at a 10(-9) bit-error-rate level is about 0.7 dB.
Nonlinear Sagnac interferometer based on the four-wave mixing process.
Xin, Jun; Liu, Jinming; Jing, Jietai
2017-01-23
A new nonlinear Sagnac interferometer (NSI) is proposed by replacing the beam-splitter in the traditional Sagnac interferometer (TSI) with a four-wave mixing process. Such a NSI has better angular velocity sensitivity than the one of the TSI. The standard quantum limit can be beaten and the Heisenberg Limit can even be reached for the ideal case by the NSI. We study the effect of the losses on the angular velocity sensitivity of the NSI and find that the optimal angular velocity, where the best angular velocity sensitivity can be obtained, of the NSI may be dependent on the losses inside the interferometer. Such a NSI has its advantages compared with the TSI and may find its potential applications in quantum metrology.
Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber.
Le, Sy Dat; Nguyen, Duc Minh; Thual, Monique; Bramerie, Laurent; Costa e Silva, Marcia; Lenglé, Kevin; Gay, Mathilde; Chartier, Thierry; Brilland, Laurent; Méchin, David; Toupin, Perrine; Troles, Johann
2011-12-12
We report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.13 µm, a record Kerr nonlinearity of 46,000 W(-1) km(-1) is demonstrated with attenuation loss of 0.9 dB/m. Four-wave mixing is experimented by using a 1m-long chalcogenide fiber for 10 GHz and 42.7 GHz signals. Four-wave mixing efficiencies of -5.6 dB at 10 GHz and -17.5 dB at 42.7 GHz are obtained. We also observed higher orders of four-wave mixing for both repetition rates. © 2011 Optical Society of America
DEFF Research Database (Denmark)
Lillieholm, Mads; Guan, Pengyu; Møller-kristensen, M. S.
2017-01-01
We propose a novel fiber characterization method that reveals the four-wave mixing bandwidth for chirped pump operation, using two tunable continuous-wave-lasers. The method accurately predicts the bandwidth for optical time lenses with broadband multi-carrier input......We propose a novel fiber characterization method that reveals the four-wave mixing bandwidth for chirped pump operation, using two tunable continuous-wave-lasers. The method accurately predicts the bandwidth for optical time lenses with broadband multi-carrier input...
Ganesh, R.; Gonella, S.
2017-02-01
The motive of this work is to understand the complex spatial characteristics of finite-amplitude elastic wave propagation in periodic structures and leverage the unique opportunities offered by nonlinearity to activate complementary functionalities and design adaptive spatial wave manipulators. The underlying assumption is that the magnitude of wave propagation is small with respect to the length scale of the structure under consideration, albeit large enough to elicit the effects of finite deformation. We demonstrate that the interplay of dispersion, nonlinearity and modal complexity involved in the generation and propagation of higher harmonics gives rise to secondary wave packets that feature multiple characteristics, one of which conforms to the dispersion relation of the corresponding linear structure. This provides an opportunity to engineer desired wave characteristics through a geometric and topological design of the unit cell, and results in the ability to activate complementary functionalities, typical of high frequency regimes, while operating at low frequencies of excitation - an effect seldom observed in linear periodic structures. The ability to design adaptive switches is demonstrated here using lattice configurations whose response is characterized by geometric and/or material nonlinearities.
Chow, K K; Shu, C; Lin, Chinlon; Bjarklev, A
2005-10-31
We demonstrate extinction ratio improvement by using pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber. A 6-dB improvement in the extinction ratio of a degraded return-to-zero signal has been achieved. A power penalty improvement of 3 dB at 10(-9) bit-error-rate level is obtained in the 10 Gb/s bit-error-rate measurements.
Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model
Wang, Lei; Jiang, Dong-Yang; Qi, Feng-Hua; Shi, Yu-Ying; Zhao, Yin-Chuan
2017-01-01
Under investigation in this paper is a generalized mixed nonlinear Schrödinger equation (GMNLSE) which arises in several physical areas including the quantum field theory, weakly nonlinear dispersive water waves, and nonlinear optics. The linear stability analysis is performed and the instability zones as well as the modulational instability gain are obtained and discussed. Higher-order rogue waves (RWs) in terms of the determinants for the GMNLSE model are constructed by the N-fold Darboux transformation. Several patterns of the RWs are illustrated, such as the fundamental pattern, triangular pattern, circular pattern, pentagon pattern, circular-triangular pattern, and circular-fundamental pattern. Effects of the nonlinear parameters on the RWs are discussed. It is found that the nonlinear terms affect the widths and velocities of the RWs, although the amplitudes of these waves remain unchanged. The semirational RW solution, which is a combination of rational and exponential functions, is derived to describe the interaction between the RW and multi-breather.
Ja, Y. H.
1984-12-01
Using a new seventh-order numerical method [the O(h 7) method] for solving two-point boundary value problems, numerical solutions of the first-order nonlinear coupledwave equations for degenerate two-wave and four-wave mixing in a reflection geometry have been obtained. A computer program employing the Gauss-Jordan elimination technique has also been adopted to effectively solve the resultant large, sparse and unsymmetric matrix, obtained from the O(h 7) method and the Newton-Raphson iteration method. Numerical results from the computer calculations are presented graphically. A comparison between this O(h 7) method and the shooting method, mainly from the viewpoint of computational efficiency, is also made.
DEFF Research Database (Denmark)
Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo
2016-01-01
We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...
Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities
DEFF Research Database (Denmark)
Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher
1996-01-01
We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...
Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC
Demcenko, A.; Akkerman, Remko; Nagy, P.B.; Loendersloot, Richard
2012-01-01
This work considers the characterization of linear PVC acoustic properties using a linear ultrasonic measurement technique and the non-collinear ultrasonic wave mixing technique for measurement of the physical ageing state in PVC. The immersion pulse-echo measurements were used to evaluate phase
Energy Technology Data Exchange (ETDEWEB)
Smith, R.W.
1980-08-01
Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.
Institute of Scientific and Technical Information of China (English)
Li Jiang(江丽); Shi'an Zhang(张诗按); Yufei Wang(王宇飞); Zhenrong Sun(孙真荣); Zugeng Wang(王祖赓); Jian Lin(林健); Wenhai Huang(黄文旵); Zhizhan Xu(徐至展); Ruxin Li(李儒新)
2004-01-01
We investigated nonlinear optical properties of ZnO-Nb2O5-TeO2 glass excited by a femtosecond laser with time-resolved four-wave mixing (FWM) technique. The unusual FWM signals were observed in samples with ZnO dopant. The mechanism for the optical nonlinearities was discussed.
Parniak, Michał
2014-01-01
We develop a model to calculate non-linear polarization in a non-degenerrate four-wave mixing in diamond configuration which includes the effects of hyperfine structure and Doppler broadening. We verify it against the experiment with $5^{2}S_{1/2}$, $5^{2}P_{3/2}$, $5^{2}D_{3/2}$ and $5^{2}P_{1/2}$ levels of rubidium 85. Uncomplicated algebra enables us to express the non-linear susceptibility of a thermal ensemble in low intensity regime in terms of Voight-like profiles and conforms precisely with the experiment. The agreement is also satisfactory at high intensity and the analytical model correctly predicts the position and shape of resonances. Our intelligible results elucidate the physics of coherent interaction of light with atoms involving higher excited levels in vapors at room temperature, which is used in an increasing range of applications.
Nonlinear Optical Imaging of Individual Carbon Nanotubes with Four-Wave-Mixing Microscopy
Kim, Hyunmin; Sheps, Tatyana; Collins, Philip G.; Potma, Eric O.
2014-01-01
Dual color four-wave-mixing (FWM) microscopy is used to spatially resolve the third-order optical response from individual carbon nanotubes. Good signal-to-noise is obtained from single-walled carbon nanotubes (SWNT) sitting on substrates, when the excitation beams are resonant with electronic transitions of the nanotube, by detecting the FWM response at the anti-Stokes frequency. Whereas the coherent anti-Stokes (CAS) signal is sensitive to both electronic and vibrational resonances of the material, it is shown that the signal from individual SWNTs is dominated by the electronic response. The CAS signal is strongly polarization dependent, with the highest signals found parallel with the enhanced electronic polarizibility along the long axis of the SWNT. PMID:19637886
Zhang, Yanpeng
2009-01-01
"Multi-Wave Mixing Processes - From Ultrafast Polarization Beats to Electromagnetically Induced Transparency" discusses the interactions of efficient multi-wave mixing (MWM) processes enhanced by atomic coherence in multilevel atomic systems. It covers topics in five major areas: attosecond and femtosecond polarization beats of four-wave mixing (FWM) processes; heterodyne detection of FWM, six-wave mixing (SWM) and eight-wave mixing (EWM) processes; Raman and Rayleigh enhanced polarization beats; coexistence and interactions of MWM processes via electromagnetically induced transparency(EIT); multi-dressing MWM processes. The book is intended for researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University. Dr. Min Xiao is a professor of Physics at University of Arkansas, Fayetteville, U.S.A.
Directory of Open Access Journals (Sweden)
Nguyen Thanh Long
2005-12-01
Full Text Available In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig(u_{rr}+frac{1}{r}u_{r} =f(r,t,u,u_{r},quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,tig| less than infty, u_{r}(1,t+hu(1,t=0, u(r,0=widetilde{u}_0(r, u_{t}(r,0=widetilde{u}_1(r. }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2=b_0+|u|_0^2$ with $b_0$ greater than 0.
Three wave mixing test of hyperelasticity in highly nonlinear solids: sedimentary rocks.
D'Angelo, R M; Winkler, K W; Johnson, D L
2008-02-01
Measurements of three-wave mixing amplitudes on solids whose third order elastic constants have also been measured by means of the elasto-acoustic effect are reported. Because attenuation and diffraction are important aspects of the measurement technique results are analyzed using a frequency domain version of the KZK equation, modified to accommodate an arbitrary frequency dependence to the attenuation. It is found that the value of beta so deduced for poly(methylmethacrylate) (PMMA) agrees quite well with that predicted from the stress-dependent sound speed measurements, establishing that PMMA may be considered a hyperelastic solid, in this context. The beta values of sedimentary rocks, though they are typically two orders of magnitude larger than, e.g., PMMA's, are still a factor of 3-10 less than those predicted from the elasto-acoustic effect. Moreover, these samples exhibit significant heterogeneity on a centimeter scale, which heterogeneity is not apparent from a measurement of the position dependent sound speed.
Cui, Yue; Zhang, Min; Zhan, Yueying; Wang, Danshi; Huang, Shanguo
2016-08-01
A scheme for optical parallel encryption/decryption of quadrature phase shift keying (QPSK) signals is proposed, in which three QPSK signals at 10 Gb/s are encrypted and decrypted simultaneously in the optical domain through nondegenerate four-wave mixing in a highly nonlinear fiber. The results of theoretical analysis and simulations show that the scheme can perform high-speed wiretapping against the encryption of parallel signals and receiver sensitivities of encrypted signal and the decrypted signal are -25.9 and -23.8 dBm, respectively, at the forward error correction threshold. The results are useful for designing high-speed encryption/decryption of advanced modulated signals and thus enhancing the physical layer security of optical networks.
Measurements of the nonlinear refractive index of air, N2, and O2 at 10 μm using four-wave mixing.
Pigeon, J J; Tochitsky, S Ya; Welch, E C; Joshi, C
2016-09-01
We report on measurements of the nonlinear index of refraction of air, N2, and O2 at a wavelength close to 10 μm by collinear four-wave mixing of a 200 MW CO2 laser beat-wave. The use of a 200 ps long beat-wave comprising radiation amplified on the 10P20 and 10R16 lines of the CO2 laser provides a sensitive method to measure the small nonlinearities characteristic of the gas phase in a spectral region where no such data exists.
DEFF Research Database (Denmark)
Chow, K.K.; Shu, Chester; Lin, Chinlon;
2006-01-01
All optical wavelength multicasting at 4 x 10 Gb/s with extinction ratio enhancement has been demonstrated based on pump-modulated four-wave mixing in a nonlinear photonic crystal fiber. We show that the input signal wavelength can simultaneously convert to four different wavelengths, with a power...
Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...
Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter.
Liu, Shengshuai; Jing, Jietai
2017-07-10
Optical interferometer has played an important role in optics. Up to now, many kinds of interferometers have been realized and found their applications. In this letter, we experimentally construct an interferometer by using parametric amplifier as a wave splitter and beam splitter as a wave combiner. We make measurements of interference fringes and explore the relationships between the interference visibility of the interferometer and various system parameters, such as the gain of the parametric amplifier, the one-photon detuning and the temperature of the Rb-85 vapor cell.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
2013-01-01
Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...
Energy Technology Data Exchange (ETDEWEB)
Chen, L.X.Q.
1992-12-31
As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the {pi}-{pi} electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured {chi}({sup 3}) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced {chi}({sup 3}) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in {chi}({sup 3}). Thus, we believe that {chi}({sup 3}) is strongly related to the {pi}-{pi} electronic coupling between the two conjugated ring systems.
Energy Technology Data Exchange (ETDEWEB)
Chen, L.X.Q.
1992-01-01
As one of the important elements in natural and artificial electron transfer and energy transfer processes, porphyrin and its derivatives have received much attention in photoelectronics and photoelectronic materials. As our first attempt to relate the [pi]-[pi] electronic couplings between porphyrin macrocycles to apparent third order nonlinear susceptibilities, we measured [chi]([sup 3]) for several porphyrin and chlorophyll a derivatives, including dimers with different configurations. Our preliminary results show that the dimers have enhanced [chi]([sup 3]) compared to those of the monomer. This enhancement is related to the relative orientations between the two macrocycles in the dimers. The parallel dimers with close face-to-face distances seem to have the highest enhancement in [chi]([sup 3]). Thus, we believe that [chi]([sup 3]) is strongly related to the [pi]-[pi] electronic coupling between the two conjugated ring systems.
DEFF Research Database (Denmark)
Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei
2013-01-01
A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium....... The scheme is first optimized with respect to the power levels and phases of the four phase-coherent pumps. The successful modulation and wavelength conversion of the two complex quadratures of a quadrature phase-shift keying (QPSK) signal to two binary phase-shift keying (BPSK) signals is then demonstrated...
Pang, Yang; Prasad, Paras N.
1990-08-01
We have investigated the dynamics of resonant third-order optical nonlinearity of chemically prepared poly(3-dodecylthiophene) by the degenerate four wave mixing technique using 60 fs pulses at 620 nm. The measured effective value of χ(3) is 5.5×10-11 esu, sixfold smaller than that obtained with 400 fs pulses, emphasizing the pulse width dependence of effective χ(3) when the relaxation time of the photogenerated excitation responsible for the optical nonlinearity is comparable to the pulse width. Within the resolution of the optical pulse, the rise time of the nonlinear response is instantaneous and the dominant decay occurs within 200 fs, revealing that the short time, nonlinear response is derived from the initially photogenerated excitons. A detailed analysis of the total decay behavior is consistent with the polaron dynamics of the conformational deformation model proposed by Su, Schrieffer, and Heeger for a conjugated linear polymer with bond alternation.
Eltaif, Tawfig
2017-05-01
This work investigates the advantages of nonlinear optics of a cascaded intensity modulator (IM) and phase modulator (PM) to generate an initial optical frequency comb. The results show that when the direct current bias to amplitude ratio, α=0.1, and the IM and PM have the same modulation index and are equal 10, seed comb is achieved; it is generated by the modulation of two continuous wave lasers. Hence, based on these parameters, an intense four-wave mixing is created through 9 m of photonic crystal fiber. Moreover, a broadband spectrum was achieved, spaced by a 30-GHz microwave frequency.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Wang, Pinghe; Weng, Danmei; Li, Kun; Liu, Yong; Yu, Xuecai; Zhou, Xiaojun
2013-05-20
A multi-wavelength Erbium-doped fiber (EDF) laser based on four-wave-mixing is proposed and experimentally demonstrated. The 5 km single mode fiber in the cavity enhances the four-wave-mixing to suppress the homogenous broadening of the erbium-doped fiber and get the stable multi-wavelength comb. The lasing stability is investigated. When the pump power is 300 mW, the fiber laser has 5-lasing lines and the maximum fluctuation of the output power is about 3.18 dB. At the same time, a laser with 110 m high nonlinear fiber (HNFL) is demonstrated. When the pump power is 300 mW, it has 7-lasing lines (above -30 dBm) and the maximum fluctuation is 0.18dB.
Rolland, Antoine; Brunel, Marc; Alouini, Mehdi
2014-01-01
Optoelectronic down-conversion of a THz optical beatnote to a RF intermediate frequency is performed with a standard Mach-Zehnder modulator followed by a zero dispersion-slope fiber. The two interleaved optical spectra obtained by four-wave mixing are shown to contain more than 75 harmonics enabling to conveniently recover the phase noise of a beatnote at 770 GHz at around 500 MHz. This four-wave mixing down-conversion technique is implemented in a two-frequency solid-state laser in order to directly phase-lock its 168 GHz beatnote to a 10 MHz local oscillator.
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, J.-P.; Petersen, Paul Michael
2008-01-01
. The results show that the optical gain of the amplifier is affected by both the moving phase grating and the moving gain grating, and there is energy exchange between the pump and signal beams. Depending on the moving direction of the gratings and the anti-guiding parameter, the optical gain may increase......The two-wave mixing in a broad-area semiconductor amplifier with moving gratings is investigated theoretically, where a pump beam and a signal beam with different frequencies are considered, thus both a moving phase grating and a moving gain grating are induced in the amplifier. The coupled...
DEFF Research Database (Denmark)
Andersen, Peter Andreas; Tokle, Torger; Geng, Yan
2005-01-01
by the gain bandwidth of erbium-doped fiber amplifiers, are obtained in only 50-m dispersion-flattened HNL-PCF with nonlinear coefficient equal to 11 W-1·km-1. This experiment demonstrates the potential of four-wave mixing in HNL-PCF as a modulation format and bit rate transparent wavelength conversion......Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...
DEFF Research Database (Denmark)
Clausen, A. T.; Oxenlowe, L.; Peucheret, Christophe;
2001-01-01
In this letter, a novel scheme for a wavelength-tunable pulse source (WTPS) is proposed and characterized. It is based on four-wave mixing (FWM) in a newly developed highly nonlinear fiber between a return-to-zero (RZ) pulsed signal at a fixed wavelength and a continuous wave probe tunable...... the WTPS compared to the original RZ pulses is negligible....
Four-Wave Mixing in Silicon-Rich Nitride Waveguides
DEFF Research Database (Denmark)
Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua
2015-01-01
We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....
DEFF Research Database (Denmark)
Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa
2012-01-01
We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Zhang, Xianting; Mei, Chao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-08-23
Deep-ultraviolet (UV) second-harmonics (SHs) have important applications in basic physics and applied sciences. However, it still remains challenging to generate deep-UV SHs especially in optical fibers. Here, for the first time, we experimentally demonstrate the deep-UV SH generations (SHGs) by combined degenerate four-wave mixing (FWM) and surface nonlinearity polarization in an in-house designed and fabricated air-silica photonic crystal fiber (PCF). When femtosecond pump pulses with average input power P av of 650 mW and center wavelength λ p of 810, 820, 830, and 840 nm are coupled into the normal dispersion region close to the zero-dispersion wavelength of the fundamental mode of the PCF, the anti-Stokes waves induced by degenerate FWM process are tunable from 669 to 612 nm. Then, they serve as the secondary pump, and deep-UV SHs are generated within the wavelength range of 334.5 to 306 nm as a result of surface nonlinearity polarization at the core-cladding interface of the PCF. The physical mechanism of the SHGs is confirmed by studying the dependences of the output power P SH of the SHs on the PCF length and time. Finally, we also establish a theoretical model to analyze the SHGs.
Hui, Zhan-Qiang; Zhang, Jian-Guo
2012-05-01
We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s-1and OTDM demultiplexing from 80 to 10 Gbit s-1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10-9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. The work was supported in part by the CAS/SAFEA International Partnership Program for Creative Research Teams.
Quantum control of multi-wave mixing
Zhang, Yanpeng; Xiao, Min
2013-01-01
Multi-wave mixing gives rise to new frequency components due to the interaction of light signals with a suitable nonlinear medium. In this book a systematic framework for the control of these processes is used to lead readers through a plethora of related effects and techniques.
3-wave mixing Josephson dipole element
Frattini, N. E.; Vool, U.; Shankar, S.; Narla, A.; Sliwa, K. M.; Devoret, M. H.
2017-05-01
Parametric conversion and amplification based on three-wave mixing are powerful primitives for efficient quantum operations. For superconducting qubits, such operations can be realized with a quadrupole Josephson junction element, the Josephson Ring Modulator, which behaves as a loss-less three-wave mixer. However, combining multiple quadrupole elements is a difficult task so it would be advantageous to have a three-wave dipole element that could be tessellated for increased power handling and/or information throughput. Here, we present a dipole circuit element with third-order nonlinearity, which implements three-wave mixing. Experimental results for a non-degenerate amplifier based on the proposed third-order nonlinearity are reported.
Properties of Nonlinear Dynamo Waves
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Novikov, A; Odoulov, S; Jungen, R; Tschudi, T
1991-12-15
The development of a spatial subharmonic, i.e., of a light wave propagating at the bisector of two pump waves, with orthogonal polarizations incident upon a BaTiO(3) crystal in a plane normal to the optical axis is observed and studied. Parametric amplification of a seed wave meeting the phase-matching condition in the presence of two pump waves is shown to be the main reason for subharmonic generation in this crystal.
Kanka, Jiri
2008-12-08
A fully-vectorial mode solver based on the finite element method is employed in a combination with the downhill simplex method the dispersion optimization of photonic crystal fibers made from highly nonlinear glasses. The nonlinear fibers are designed for telecom applications such as parametric amplification, wavelength conversion, ultra-fast switching and regeneration of optical signals. The optimization is carried in terms of the zero dispersion wavelength, dispersion magnitude and nonlinear coefficient and confinement loss in the wavelength range around 1.55 microm. We restrict our work to the index-guiding fiber structures a small number of hexagonally arrayed air holes.
Directory of Open Access Journals (Sweden)
A. Zakery
2005-03-01
Full Text Available Chalcogenide glasses such as arseic sulfide(As2 S3 have attracted attention for applications such as all-optical switching in high speed communication. This is due to their high non-linear refractive-index. Z-scan and the Degenerate four wave mixing (DFWM techniques can be used to measure the non-linear refractive index n 2 and the two photon absorption coefficient β . A simaltanous closed-aperture and open-aperture Z-scan experimental set up was used to obtain the experimental results. The results were then fitted into a theoretical formula. Values of n2=3×10-17m2/W and β= 0.29 cm/GW have been obtained. DFWM measurements were made on arsenic sulfide films. A Box-cars forward geometry was used in these measurements. Experimental results based on non-phase matched signals were again fitted into a theoretical formula and a value of n2 =3.9×10-17 m2 /W was obtained .
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Paz, J. L.; Mastrodomenico, A.; Cardenas-Garcia, Jaime F.; Rodriguez, Luis G.; Vera, Cesar Costa
2016-07-01
The solvent effects over nonlinear optical properties of a two-level molecular system in presence of a classical electromagnetic field were modeled in this work. The collective effects proper of the thermal reservoir are modeled as a random Bohr frequency, whose manifestation is the broadening of the upper level according to a prescribed random function. A technique of work, based in the use of the cumulant expansions to obtain the average in the Fourier components associated with the coherence and populations, evaluated by the use of the Optical Stochastic Bloch Equations (OSBE), is employed. Analytical expressions for susceptibility, optical properties and non-degenerate Four-Wave Mixing (nd-FWM) signal intensity, were obtained. Numerical calculations were carried out to construct surfaces corresponding to these magnitudes as a function of the pump-probe frequency detuning, values of the permanent dipole moments (PDM), noise parameters and relationships between the longitudinal and transversal relaxation times. Our results show that it is necessary to neglect the Rotating-Wave approximation (RWA) in order to measure the effect of the permanent dipole moments and that the inclusion of these favors two-photon transitions over those with one-photon. In general, the effect of non-zero permanent dipole moments, are reflected in the appearance of new and more complex signals associated with new multiphoton processes.
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....
DEFF Research Database (Denmark)
Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko;
1997-01-01
of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of similar to 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange...... interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay....
Diffraction manipulation by four-wave mixing.
Katzir, Itay; Ron, Amiram; Firstenberg, Ofer
2015-03-09
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Λ-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 μm can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
Hopf Bifurcation in a Nonlinear Wave System
Institute of Scientific and Technical Information of China (English)
HE Kai-Fen
2004-01-01
@@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.
Wave equation with concentrated nonlinearities
Noja, Diego; Posilicano, Andrea
2004-01-01
In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...
Energy Technology Data Exchange (ETDEWEB)
Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines
2010-10-01
Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
Exact solitary wave solutions of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
Nonlinear numerical simulation on extreme-wave kinematics
Institute of Scientific and Technical Information of China (English)
NING Dezhi; TENG Bin; LIU Shuxue
2009-01-01
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.
Optical Vortex Solitons in Parametric Wave Mixing
Alexander, T J; Buryak, A V; Sammut, R A; Alexander, Tristram J.; Kivshar, Yuri S.; Buryak, Alexander V.; Sammut, Rowland A.
2000-01-01
We analyze two-component spatial optical vortex solitons supported by degenerate three- or four-wave mixing in a nonlinear bulk medium. We study two distinct cases of such solitons, namely, parametric vortex solitons due to phase-matched second-harmonic generation in a optical medium with competing quadratic and cubic nonlinear response, and vortex solitons in the presence of third-harmonic generation in a cubic medium. We find, analytically and numerically, the structure of two-component vortex solitons, and also investigate modulational instability of their plane-wave background. In particular, we predict and analyze in detail novel types of vortex solitons, a `halo-vortex', consisting of a two-component vortex core surrounded by a bright ring of its harmonic field, and a `ring-vortex' soliton which is a vortex in a harmonic field that guides a bright localized ring-like mode of a fundamental frequency field.
Standing waves for discrete nonlinear Schrodinger equations
Ming Jia
2016-01-01
The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Nonlinear wave propagation in a rapidly-spun fiber.
McKinstrie, C J; Kogelnik, H
2006-09-04
Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Iwabuchi, Manna; Hetu, Marcel; Maxwell, Eric; Pradel, Jean S.; Ramos, Sashary; Tong, William G.
2015-09-01
Multi-photon degenerate four-wave mixing is demonstrated as an ultrasensitive absorption-based optical method for detection, separation and identification of biomarker proteins in the development of early diagnostic methods for HIV- 1, cancer and neurodegenerative diseases using compact, portable microarrays and capillary- or microchip-based chemical separation systems that offer high chemical specificity levels. The wave-mixing signal has a quadratic dependence on concentration, and hence, it allows more reliable monitoring of smaller changes in analyte properties. Our wave-mixing detection sensitivity is comparable or better than those of current methods including enzyme-linked immunoassay for clinical diagnostic and screening. Detection sensitivity is excellent since the wave-mixing signal is a coherent laser-like beam that can be collected with virtually 100% collection efficiency with high S/N. Our analysis time is short (1-15 minutes) for molecular weight-based protein separation as compared to that of a conventional separation technique, e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When ultrasensitive wavemixing detection is paired with high-resolution capillary- or microchip-based separation systems, biomarkers can be separated and identified at the zepto- and yocto-mole levels for a wide range of analytes. Specific analytes can be captured in a microchannel through the use of antibody-antigen interactions that provide better chemical specificity as compared to size-based separation alone. The technique can also be combined with immune-precipitation and a multichannel capillary array for high-throughput analysis of more complex protein samples. Wave mixing allows the use of chromophores and absorption-modifying tags, in addition to conventional fluorophores, for online detection of immunecomplexes related to cancer.
Nonlinear Fourier analysis with cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Nonlinear evolution of whistler wave modulational instability
DEFF Research Database (Denmark)
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;
1995-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...
Standing waves for discrete nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Ming Jia
2016-07-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Tree-wave mixing of ordinary and backward electromagnetic waves: extraordinary transients
Slabko, Vitaly V; Tkachenko, Viktor A; Myslivets, Sergey A
2016-01-01
Three-wave mixing of ordinary and backward electromagnetic waves in pulsed regime is investigated in the metamaterials, which enable co-existence and phase matching of such waves. It is shown that opposite direction of phase velocity and energy flux in backward waves gives rise to extraordinary transient processes in greatly enhanced optical parametric amplification and in frequency up or down shifting nonlinear reflectivity. The discovered transients resemble slowed response of an oscillator on pulsed excitation in the vicinity of its resonance
Solving Nonlinear Wave Equations by Elliptic Equation
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2003-01-01
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
Nonlinear Dispersion Relation in Wave Transformation
Institute of Scientific and Technical Information of China (English)
李瑞杰; 严以新; 曹宏生
2003-01-01
A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over-prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1＜kh＜1.5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.
Statistical distribution of nonlinear random wave height
Institute of Scientific and Technical Information of China (English)
HOU; Yijun; GUO; Peifang; SONG; Guiting; SONG; Jinbao; YIN; Baoshu; ZHAO; Xixi
2006-01-01
A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.
Analysis of Mixing of Pollutants in Water Waves and Currents
Institute of Scientific and Technical Information of China (English)
YUAN Li-rong; SHEN Yong-ming; TANG Jun
2007-01-01
A vertical two-dimensional turbulence numerical model for the interaction of waves and currents is developed in the paper based on the nonlinear two-equation k-ε model with the VOF method.The one-dimensional equivalent advection velocity and equivalent mixing coefficient are defined and the solving process is introduced: The pollutant concentration field,generated by an instant source in waves and currents,is calculated with the model,and then the equivalent advection velocity and equivalent mixing coefficient are obtained by calculating the time derivative of the mean and variance of pollutant concentration probability distribution.The effects of wave period and wave height on the equivalent mixing coefficient for waves and wave-currents are also investigated.
Control methods for localization of nonlinear waves
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides
Zhou, Heng; Huang, Shu-Wei; Zhou, Linjie; Qiu, Kun; Wong, Chee Wei
2016-01-01
Nonlinear wave mixing in mesoscopic silicon structures is a fundamental nonlinear process with broad impact and applications. Silicon nanowire waveguides, in particular, have large third-order Kerr nonlinearity, enabling salient and abundant four-wave-mixing dynamics and functionalities. Besides the Kerr effect, in silicon waveguides two-photon absorption generates high free-carrier densities, with corresponding fifth-order nonlinearity in the forms of free-carrier dispersion and free-carrier absorption. However, whether these fifth-order free-carrier nonlinear effects can lead to six-wave-mixing dynamics still remains an open question until now. Here we report the demonstration of free-carrier-induced six-wave mixing in silicon nanowires. Unique features, including inverse detuning dependence of six-wave-mixing efficiency and its higher sensitivity to pump power, are originally observed and verfied by analytical prediction and numerical modeling. Additionally, asymmetric sideband generation is observed for d...
Strongly nonlinear steepening of long interfacial waves
Directory of Open Access Journals (Sweden)
N. Zahibo
2007-06-01
Full Text Available The transformation of nonlinear long internal waves in a two-layer fluid is studied in the Boussinesq and rigid-lid approximation. Explicit analytic formulation of the evolution equation in terms of the Riemann invariants allows us to obtain analytical results characterizing strongly nonlinear wave steepening, including the spectral evolution. Effects manifesting the action of high nonlinear corrections of the model are highlighted. It is shown, in particular, that the breaking points on the wave profile may shift from the zero-crossing level. The wave steepening happens in a different way if the density jump is placed near the middle of the water bulk: then the wave deformation is almost symmetrical and two phases appear where the wave breaks.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
On the polarization of nonlinear gravitational waves
Poplawski, Nikodem J.
2011-01-01
We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Nonlinear reflection of internal gravity wave onto a slope
Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis
2016-04-01
The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of
Nonlinear surface waves over topography
Janssen, T.T.
2006-01-01
As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong
2009-01-01
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Nonlinear surface waves in photonic hypercrystals
Ali, Munazza Zulfiqar
2017-08-01
Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.
Nonlinear water waves with soluble surfactant
Lapham, Gary; Dowling, David; Schultz, William
1998-11-01
The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Linghai ZHANG
2011-01-01
First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.
Non-Degenerate Four- Wave Mixing in Microstructure Fibres
Institute of Scientific and Technical Information of China (English)
ZHANG Xia; REN Xiao-Min; WANG Zi-Nan; XU Yong-Zhao; ZHANG Rui-Rui; HUANG Yong-Qing; CHEN Xue
2007-01-01
Non-degenerate four wave mixing based on third-order susceptibility χ3 in high nonlinearity microstructure fibres is experimentally demonstrated. The Stokes and anti-Stokes peaks are observed simultaneously by launching 10-fs pulses from an 800nm Ti:sapphire laser into the fibre.
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Nonlinear ship waves and computational fluid dynamics
National Research Council Canada - National Science Library
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
.... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...
The Nonlinear Talbot Effect of Rogue Waves
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-01-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
All Optical Signal-Processing Techniques Utilizing Four Wave Mixing
Directory of Open Access Journals (Sweden)
Refat Kibria
2015-02-01
Full Text Available Four Wave Mixing (FWM based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
coincidence of simulation outcomes with analytical ones is revealed and some examples of numerical simulations illustrating wave disintegration into solitons are given. The phenomenon of internal wave mixing is considered and is explained from the point of view of the results obtained. The numerical methods for internal wave simulation are examined. In particular, the influence of difference interval finiteness on a numerical solution is investigated. It is revealed that a numerical viscosity and numerical dispersion can play the role of regularizators to a nonlinear quasistatic problem. To avoid this effect, the grid steps should be taken less than some threshold values found theoretically.
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Quasi self-adjoint nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, N H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Torrisi, M; Tracina, R, E-mail: nib@bth.s, E-mail: torrisi@dmi.unict.i, E-mail: tracina@dmi.unict.i [Dipartimento di Matematica e Informatica, University of Catania (Italy)
2010-11-05
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates
Institute of Scientific and Technical Information of China (English)
CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui
2011-01-01
The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.
Explicit solutions of nonlinear wave equation systems
Institute of Scientific and Technical Information of China (English)
Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer
2013-01-01
We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.
Diffractive optics based four-wave, six-wave, ..., nu-wave nonlinear spectroscopy.
Miller, R J Dwayne; Paarmann, Alexander; Prokhorenko, Valentyn I
2009-09-15
A detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface. Dynamics are related to the anharmonicities in this potential that couple different minima and lead to changes in atomic positions (reactions) and correlations. Studies of molecular dynamics can be configured to directly access information on the anharmonic interactions that lead to chemical reactions and are as central to chemistry as structural information. In this regard, nonlinear spectroscopies have distinct advantages over more conventional linear spectroscopies. Because of this potential, nonlinear spectroscopies could eventually attain a comparable level of importance for studying dynamics on the relevant time scales to barrier crossings and reactive processes as NMR has for determining structure. Despite this potential, nonlinear spectroscopy has not attained the same degree of utility as linear spectroscopy largely because nonlinear studies are more technically challenging. For example, unlike the linear spectrometers that exist in almost all chemistry departments, there are no "black box" four-wave mixing spectrometers. This Account describes recent advances in the application of diffractive optics (DOs) to nonlinear spectroscopy, which reduces the complexity level of this technology to be closer to that of linear spectroscopy. The combination of recent advances in femtosecond laser technology and this single optic approach could bring this form of spectroscopy out of the exclusive realm of specialists and into the general user community. However, the real driving force for this research is the pursuit of higher sensitivity limits, which would enable new forms of nonlinear spectroscopy. This Account chronicles the research that has now extended nonlinear spectroscopy to six-wave
Nonlinear dynamics of hydrostatic internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)
2008-11-15
Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Cross-polarized wave generation by effective cubic nonlinear optical interaction.
Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M
2001-03-15
A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.
DEFF Research Database (Denmark)
Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris
2013-01-01
An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...
Microbubble cloud characterization by nonlinear frequency mixing.
Cavaro, M; Payan, C; Moysan, J; Baqué, F
2011-05-01
In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Evolution of Nonlinear Internal Waves in China Seas
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre.
Turitsyn, Sergei K; Bednyakova, Anastasia E; Fedoruk, Mikhail P; Papernyi, Serguei B; Clements, Wallace R L
2015-09-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
LIU Xiao; XU JiYao; MA RuiPing
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Reduced order prediction of rare events in unidirectional nonlinear water waves
Cousins, Will
2015-01-01
We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...
Hui, Zhan-Qiang; Zhang, Bo; Zhang, Jian-Guo
2016-04-01
All-optical NRZ-to-RZ format conversion with a function of wavelength multicasting is proposed in this paper, which is realized by exploiting cross-phase modulation (XPM) and four-wave-mixing (FWM) in a dispersion-flattened highly nonlinear photonic crystal fiber (DF-HNL-PCF). The designed format converter is experimentally demonstrated, for which the 1-to-4 wavelength multicasting is achieved simultaneously by filtering out two FWM idler waves and both blue-chirped and red-chirped components of the broadened NRZ spectrum induced by XPM. Moreover, the wavelength tunability and dynamic characteristics of the proposed NRZ-to-RZ format converter are also exploited using the different central wavelengths of an optical clock signal and varying the input optical power at a DF-HNL-PCF in our experiment. It is shown that the designed format converter can possess a wide range of operational wavelength over 17 nm, an optimal extinction ratio of 11.6 dB, and a Q-factor of 7.1, respectively. Since the proposed scheme uses an optical fiber-based configuration and is easy for implementation, it can be very useful for future applications in advanced fiber-optic communication networks.
320 Gbit/s DQPSK all-optical wavelength conversion using four wave mixing
DEFF Research Database (Denmark)
Galili, Michael; Huettl, B.; Schmidt-Langhorst, C.
2007-01-01
In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK......In this paper we demonstrate wavelength conversion of 320 Gbit/s DQPSK and 160 Gbit/s DPSK data signals by four wave mixing in highly nonlinear fibre. Error free operation is shown for conversion of both DPSK and DQPSK...
Phase matching in frequency mixing with internally generated waves
Rustagi, K. C.; Mehendale, S. C.; Gupta, P. K.
1983-11-01
The theory of frequency mixing is extended to situations where the growth rate of input waves is less than exponential as a consequence of saturation effects. It is shown that whereas Maker fringes may be washed out, the effect of phase matching on the conversion efficiency is important. Its manifestations in experimental data are analyzed. It is also found that with significant growth in the nonlinear source term over the interaction region. Maker fringes would be difficult to observe.
Entanglement in a four-wave mixing process.
Zheng, Zhan; Wang, Hailong; Cheng, Bing; Jing, Jietai
2017-07-15
We investigate different kinds of entanglement in a four-wave mixing process with a degenerate pump. After analyses on means and quantum fluctuations of the three output beams (Stokes, anti-Stokes, and pump), we verify the existence of genuine tripartite entanglement, and quantify bipartite, two-mode, as well as tripartite entanglement with the covariance matrix. We find out that the input pump power and the nonlinear coupling strength are the physical origins to enhance entanglement at a given photon loss.
Four wave mixing as a probe of the vacuum
Tennant, Daniel M.
2016-06-01
Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.
Triple-mode squeezing with dressed six-wave mixing.
Wen, Feng; Li, Zepei; Zhang, Yiqi; Gao, Hong; Che, Junling; Che, Junling; Abdulkhaleq, Hasan; Zhang, Yanpeng; Wang, Hongxing
2016-05-12
The theory of proof-of-principle triple-mode squeezing is proposed via spontaneous parametric six-wave mixing process in an atomic-cavity coupled system. Special attention is focused on the role of dressed state and nonlinear gain on triple-mode squeezing process. Using the dressed state theory, we find that optical squeezing and Autler-Towns splitting of cavity mode can be realized with nonlinear gain, while the efficiency and the location of maximum squeezing point can be effectively shaped by dressed state in atomic ensemble. Our proposal can find applications in multi-channel communication and multi-channel quantum imaging.
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Superresolution four-wave mixing microscopy.
Kim, Hyunmin; Bryant, Garnett W; Stranick, Stephan J
2012-03-12
We report on the development of a superresolution four-wave mixing microscope with spatial resolution approaching 130 nm which represents better than twice the diffraction limit at 800 nm while retaining the ability to acquire materials- and chemical- specific contrast. The resolution enhancement is achieved by narrowing the microscope's excitation volume in the focal plane through the combined use of a Toraldo-style pupil phase filter with the multiplicative nature of four-wave mixing.
Study of Linear and Nonlinear Wave Excitation
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Wave-kinetic description of nonlinear photons
Marklund, M; Brodin, G; Stenflo, L
2004-01-01
The nonlinear interaction, due to quantum electrodynamical (QED) effects, between photons is investigated using a wave-kinetic description. Starting from a coherent wave description, we use the Wigner transform technique to obtain a set of wave-kinetic equations, the so called Wigner-Moyal equations. These equations are coupled to a background radiation fluid, whose dynamics is determined by an acoustic wave equation. In the slowly varying acoustic limit, we analyse the resulting system of kinetic equations, and show that they describe instabilities, as well as Landau-like damping. The instabilities may lead to break-up and focusing of ultra-high intensity multi-beam systems, which in conjunction with the damping may result in stationary strong field structures. The results could be of relevance for the next generation of laser-plasma systems.
A nonlinear Schroedinger wave equation with linear quantum behavior
Energy Technology Data Exchange (ETDEWEB)
Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)
2014-07-01
We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
High-resolution inverse Raman and resonant-wave-mixing spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).
Nonlinear waves in waveguides with stratification
Leble, Sergei B
1991-01-01
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Nonlinear Dispersion Effect on Wave Transformation
Institute of Scientific and Technical Information of China (English)
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Spatial versus temporal deterministic wave breakup of nonlinearly coupled light waves.
Salerno, D; Minardi, S; Trull, J; Varanavicius, A; Tamosauskas, G; Valiulis, G; Dubietis, A; Caironi, D; Trillo, S; Piskarskas, A; Di Trapani, P
2003-10-01
We investigate experimentally the competition between spatial and temporal breakup due to modulational instability in chi((2)) nonlinear mixing. The modulation of the wave packets caused by the energy exchange between fundamental and second-harmonic components is found to be the prevailing trigger mechanism which, according to the relative weight of diffraction and dispersion, leads to the appearance of a multisoliton pattern in the low-dimensional spatial or temporal domain.
基于高非线性光纤中四波混频效应的全光取样系统%All-optical sampling system using four-wave mixing in highly nonlinear fiber
Institute of Scientific and Technical Information of China (English)
韩丙辰; 于晋龙; 王文睿; 郭精忠; 王菊; 杨恩泽
2013-01-01
为了克服高比特率光信号实时取样时所面临的高速模数转换(ADC)限制,构建了一套基于高非线性光纤(HNLF)中四波混频效应的全光等效取样系统.全光取样系统主要包括取样脉冲信号产生、全光取样门和信号处理3部分,其中全光取样门为本系统的核心部分.取样脉冲和信号共同注入到HNLF中,基于四波混频效应实现全光取样.实验中,分别以10 Gb/s、40 Gb/s非归零OOK信号进行了取样实验验证.实验结果表明该取样系统可以实现高速光信号的取样过程.本文取样系统结构简单,且不受光信号速率的限制,可应用于更高速率的信号测量.%To overcome the limit with high-speed analog to digital convertion (ADC) required for real time sampling of the high-bit-rate optical signal,in this paper,an all-optical equivalent-time sampling system based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF) is set up. The all-optical sampling system mainly consists of the sampling optical pulse signal unit,all-optical sampling gate unit and signal processing unit,where the all-optical sampling gate is the core of the sampling system which can complete the all-optical sampling of high-speed optical signal. The all-optical sampling is implemented based on four-wave mixing effect when the sampling pulse and the signal are injected into the highly nonlinear optical fiber. In order to verify the feasibility of the sampling system, 10 Gbit/s and 40 Gbit/s not-return-to-zero (NRZ) on-off keying (OOK) signals are used for the sampling experiments. Experimental results show that the sampling system can achieve high-speed optical signal sampling procedure. At the same time,the sampling system is simple,not subject to the limitations of the optical signal rate, and can be applied to higher-rate signal measurement.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
A method for generating highly nonlinear periodic waves in physical wave basins
DEFF Research Database (Denmark)
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
Institute of Scientific and Technical Information of China (English)
Yan Wang; Qing Wang; Wei Zhang; Xiaoming Liu; Jiangde Peng
2005-01-01
@@ A broadband multiwavelength Raman fiber ring laser (RFRL) covering the whole C-band at room temperature are presented. The effect of the intracavity highly nonlinear dispersion-shifted fiber on broadening and flattening the output spectrum envelope is discussed and experimentally demonstrated. More than 45-dB extinction-ratio multiwavelength output from 1527.76 to 1566.86 nm with 100-GHz channel spacing and 2.1-dB power ripple has been achieved by carefully controlling the individual powers of three pump lasers.
Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model.
Altmann, Yoann; Dobigeon, Nicolas; Tourneret, Jean-Yves
2013-04-01
This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.
Blind channel identication of nonlinear folding mixing model
Institute of Scientific and Technical Information of China (English)
Su Yong; Xu Shangzhi; Ye Zhongfu
2006-01-01
Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question: how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.
Abbasnia,Arash; Ghiasi,Mahmoud
2014-01-01
Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-l...
Nonlinear Mixing in Optical Multicarrier Systems
Hameed, Mahmood Abdul
Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
Hui, Zhan-Qiang; Zhang, Jian-Guo
2015-07-01
This paper reports a new design of optical time-division multiplexed (OTDM) systems that possess a functionality of simultaneous time demultiplexing and wavelength multicasting based on the cascaded four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber (DF-HNL-PCF). A module of OTDM demultiplexing and wavelength multicasting can be feasibly implemented by using a 3 dB optical coupler, a high-power erbium-doped fiber amplifier, a short-length DF-HNL-PCF, and a wavelength demultiplexer in the simple configuration. We also carry out an experiment on the proposed system to demonstrate the 100-10 Gbit s-1 OTDM demultiplexing with wavelength conversion simultaneously at 4 multicast wavelengths. It is shown that error-free wavelength multicasting is achieved on two wavelength channels with the minimum power penalty of 3.2 dB relative to the 10 Gbit s-1 back-to-back measurement, whereas the bit error rates of other two multicasting channels are measured to be about 10-6-10-5. Moreover, we propose the use of a proper error-correcting code to improve the multicasting performance of such an OTDM system, and our work reveals that the resulting system can theoretically support error-free multicasting of the OTDM-demultiplexed signal on four wavelength channels.
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD
Institute of Scientific and Technical Information of China (English)
Liu Zhifang; Zhang Shanyuan
2006-01-01
A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Coherent Control of Four-Wave Mixing
Zhang, Yanpeng; Xiao, Min
2011-01-01
"Coherent Control of Four-Wave Mixing" discusses the frequency, temporal and spatial domain interplays of four-wave mixing (FWM) processes induced by atomic coherence in multi-level atomic systems. It covers topics in five major areas: the ultrafast FWM polarization beats due to interactions between multi-color laser beams and multi-level media; coexisting Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking noisy field correlations; FWM processes with different kinds of dual-dressed schemes in ultra-thin, micrometer and long atomic cells; temporal and spatial interference between FWM and six-wave mixing (SWM) signals in multi-level electromagnetically induced transparency (EIT) media; spatial displacements and splitting of the probe and generated FWM beams, as well as the observations of gap soliton trains, vortex solitons, and stable multicomponent vector solitons in the FWM signals. The book is intended for scientists, researchers, advanced undergraduate and graduate students in Nonlin...
Characterizing Electron Trapping Nonlinearity in Langmuir Waves
Strozzi, D J; Rose, H A; Hinkel, D E; Langdon, A B; Banks, J W
2012-01-01
We assess when electron trapping nonlinearities are expected to be important in Langmuir waves. The basic criterion is that the effective lifetime, t_d, of resonant electrons in the trapping region of velocity space must exceed the period of trapped motion for deeply-trapped electrons, tau_B = (n_e/delta n)^{1/2} 2pi/omega_pe. A unitless figure of merit, the "bounce number" N_B = t_d/tau_B, encapsulates this condition and allows an effective threshold amplitude for which N_B=1 to be defined. The lifetime is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code Loki, show trapping nonlinearity increases continuously with N_B for side loss, and is significant for N_B ~ 1. The lifetime due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified way. A simple way to combine convec...
Nonlinear MHD waves in a Prominence Foot
Ofman, Leon; Kucera, Therese; Schmieder, Brigitte
2015-01-01
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
A NONLINEAR LAVRENTIEV-BITSADZE MIXED TYPE EQUATION
Institute of Scientific and Technical Information of China (English)
Chen Shuxing
2011-01-01
In this paper the Tricomi problem for a nonlinear mixed type equation is studied.The coefficients of the mixed type equation are discontinuous on the line,where the equation changes its type.The existence of solution to this problem is proved.The method developed in this paper can be applied to study more difficult problems for nonlinear mixed type equations arising in gas dynamics.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
Institute of Scientific and Technical Information of China (English)
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Diffraction manipulation by four-wave mixing
Katzir, Itay; Firstenberg, Ofer
2014-01-01
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced and compared to recent experimental data. We show that images with feature size as low as 10 micrometers can propagate with very little or even negative diffraction. The inherent gain prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force
Thurgood, J. O.; McLaughlin, J. A.
2013-07-01
Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.
Saturation process of nonlinear standing waves
Institute of Scientific and Technical Information of China (English)
马大猷; 刘克
1996-01-01
The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Nonlinear Mixed-Effects Models for Repairable Systems Reliability
Institute of Scientific and Technical Information of China (English)
TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE
2007-01-01
Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji
2015-01-01
The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...
Discussion of a “coherent artifact” in four-wave mixing experiments
Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.
1989-01-01
In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effe
Discussion of a “coherent artifact” in four-wave mixing experiments
Ferwerda, Hedzer A.; Terpstra, Jacob; Wiersma, Douwe A.
1989-01-01
In this paper, we discuss the nonlinear optical effects that arise when stochastic light waves, with different correlation times, interfere in an absorbing medium. It is shown that four-wave mixing signals are generated in several directions that spectrally track the incoming light fields. This effe
Nonlinear wave propagation in constrained solids subjected to thermal loads
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Nonlinear Mixing of Collective Modes in Harmonically Trapped Bose-Einstein Condensates
Mizoguchi, Takahiro; Watabe, Shohei; Nikuni, Tetsuro
2016-01-01
We study nonlinear mixing effects among quadrupole modes and scissors modes in a harmonically trapped Bose-Einstein condensate. Using a perturbative technique in conjunction with a variational approach with a Gaussian trial wave function for the Gross-Pitaevskii equation, we find that mode mixing selectively occurs. Our perturbative approach is useful in gaining qualitative understanding of the recent experiment [Yamazaki et al., J. Phys. Soc. Japan 84, 44001 (2015)], exhibiting a beating phe...
Parametric frequency fusion by inverse four-wave mixing
Sylvestre, Thibaut
2015-01-01
This work reports the experimental observation of a new type of four-wave mixing in which frequency-degenerate weak signal and idler waves are generated by mixing two pump waves of different frequencies in a normally dispersive birefringent optical fiber. This parametric frequency fusion is what we believed the first experimental evidence of inverse four-wave mixing.
Bifurcation methods of dynamical systems for handling nonlinear wave equations
Indian Academy of Sciences (India)
Dahe Feng; Jibin Li
2007-05-01
By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.
Extended models of nonlinear waves in liquid with gas bubbles
Kudryashov, Nikolay A
2016-01-01
In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.
Spontaneous four-wave mixing in lossy microring resonators
Vernon, Z
2015-01-01
We develop a general Hamiltonian treatement of spontaneous four-wave mixing in a microring resonator side-coupled to a channel waveguide. The effect of scattering losses in the ring is included, as well as parasitic nonlinear effects including self- and cross-phase modulation. A procedure for computing the output of such a system for arbitrary parameters and pump states is presented. For the limit of weak pumping an expression for the joint spectral intensity of generated photon pairs, as well as the singles-to-coincidences ratio, is derived.
The nonlinear standing wave inside the space of liquid
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.
Exact periodic wave solutions for some nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2006-08-15
The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.
Four Wave Mixing using Intermodal Nonlinearities
DEFF Research Database (Denmark)
Rishøj, Lars Søgaard
can be used as an additional degree of freedom to fulfill this phase matching requirement. The design of a specialty few moded fiber is discussed. This fiber allows for FWM between a pump in the Ytterbium gain region with a signal at telecommunication wavelengths, hereby generating a new wavelength...
Compactification of nonlinear patterns and waves.
Rosenau, Philip; Kashdan, Eugene
2008-12-31
We present a nonlinear mechanism(s) which may be an alternative to a missing wave speed: it induces patterns with a compact support and sharp fronts which propagate with a finite speed. Though such mechanism may emerge in a variety of physical contexts, its mathematical characterization is universal, very simple, and given via a sublinear substrate (site) force. Its utility is shown studying a Klein-Gordon -u(tt) + [phi/(u(x)]x = P'(u) equation, where phi'(sigma) = sigma + beta sigma3 and endowed with a subquadratic site potential P(u) approximately /1-u2/(alpha+1), 0 < or = alpha < 1, and the Schrödinger iZt + inverted delta2 Z = G(/Z/)Z equation in a plane with G(A) = gammaA(-delta) - sigmaA2, 0 < delta < or = 1.
Travelling waves in nonlinear diffusion-convection-reaction
Gilding, B.H.; Kersner, R.
2001-01-01
The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Four-Wave Mixing in Landau-Quantized Graphene.
König-Otto, Jacob C; Wang, Yongrui; Belyanin, Alexey; Berger, Claire; de Heer, Walter A; Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan
2017-04-12
For Landau-quantized graphene, featuring an energy spectrum consisting of nonequidistant Landau levels, theory predicts a giant resonantly enhanced optical nonlinearity. We verify the nonlinearity in a time-integrated degenerate four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL-1, LL0 and LL1. A rapid dephasing of the optically induced microscopic polarization on a time scale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with our theoretical calculations.
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Investigation of DWDM System Based on Cascaded Four-Wave Mixing
Spolītis, S; Lyashuk, I
2011-01-01
Four-wave mixing (FWM) in optical fibers refers to a nonlinear interaction among four different waves, in which the energy and wave-vector must be conserved. This requirement is often referred to as phase matching and depends strongly on the chromatic dispersion. FWM has received the attention in fiber optic parametric amplifiers due to the possibility to work in more optical regions than erbium doped fiber amplifier (EDFA) widely used in DWDM networks. This feature of FOPAs makes it poss...
Development of a Nonlinear Internal Wave Tactical Decision Aid
2016-06-07
of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...www.internalwaveatlas.com LONG-TERM GOALS The long term goal of the project is to develop a prediction methodology for the occurrence of nonlinear
High conversion efficiency in resonant four-wave mixing processes.
Lee, Chin-Yuan; Wu, Bo-Han; Wang, Gang; Chen, Yong-Fang; Chen, Ying-Cheng; Yu, Ite A
2016-01-25
We propose a new scheme of the resonant four-wave mixing (FWM) for the frequency up or down conversion, which is more efficient than the commonly-used scheme of the non-resonant FWM. In this new scheme, two control fields are spatially varied such that a probe field at the input can be converted to a signal field at the output. The efficiency of probe-to-signal energy conversion can be 90% at medium's optical depth of about 100. Our proposed scheme works for both the continuous-wave and pulse cases, and is flexible in choosing the control field intensity. This work provides a very useful tool in the nonlinear frequency conversion.
Distribution of the nonlinear random ocean wave period
Institute of Scientific and Technical Information of China (English)
HOU Yijun; LI Mingjie; SONG Guiting; SI Guangcheng; QI Peng; HU Po
2009-01-01
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37°27.6′ N, 122°15.1′ E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (υ=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
Energy Technology Data Exchange (ETDEWEB)
Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Sharma, Swati, E-mail: swati.sharma704@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.
Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures
Ferrera, M.; Razzari, L.; Duchesne, D.; Morandotti, R.; Yang, Z.; Liscidini, M.; Sipe, J. E.; Chu, S.; Little, B. E.; Moss, D. J.
2008-12-01
Photonic integrated circuits are a key component of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses and semiconductors, such as silicon and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits.
Nonlinear evolution of the modulational instability of whistler waves
DEFF Research Database (Denmark)
Karpman, V.I.; Hansen, F.R.; Huld, T.
1990-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...
Nonlinear physics of shear Alfvén waves
Energy Technology Data Exchange (ETDEWEB)
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Four-wave mixing instabilities in photonic-crystal and tapered fibers.
Biancalana, F; Skryabin, D V; Russell, P St J
2003-10-01
Four-wave mixing instabilities are theoretically studied for continuous wave propagation in ultrasmall core photonic-crystal and tapered fibers. The waveguide, or geometrical, contribution to the overall dispersion of these structures is much stronger than in conventional fibers. This leads to the appearance of unstable frequency bands that are qualitatively and quantitatively different from those seen in conventional fibers. The four-wave mixing theory developed here is based on the full wave equation, which allows rigorous study of the unstable bands even when the detunings are of the order of the pump frequency itself. Solutions obtained using the generalized nonlinear Schrödinger equation, which is an approximate version of the full wave equation, reveal that it suffers from several deficiencies when used to describe four-wave mixing processes.
Phase-locking in Multi-Frequency Brillouin Oscillator via Four Wave Mixing
Buettner, Thomas F S; Hudson, Darren D; Pant, Ravi; Poulton, Christopher G; Judge, Alexander C; Eggleton, Benjamin J
2014-01-01
Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.
The Peridic Wave Solutions for Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De
2003-01-01
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.
Negative group velocity and three-wave mixing in dielectric crystals
Slabko, Vitaly V; Shalaev, Mikhail I; Popov, Alexander K
2011-01-01
Extraordinary features of optical parametric amplification of Stokes electromagnetic waves are investigated, which originate from three-wave mixing of two ordinary electromagnetic and one backward phonon wave with negative group velocity. A similarity with the counterpart in the negative-index plasmonic metamaterials and differences with those utilizing contra-propagating ordinary electromagnetic waves as well as electromagnetic and acoustic phonon waves are shown. They stem from backwardness of optical phonons with negative dispersion. Nonlinear-optical photonic devices with the properties similar to those predicted for the negative-index metamaterials are proposed.
Experimental characterization of nonlinear processes of whistler branch waves
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Nonlinear time reversal of classical waves: experiment and model.
Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M
2013-12-01
We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.
Phase mixing and nonlinearity in geodesic acoustic modes
Energy Technology Data Exchange (ETDEWEB)
Hung, C. P.; Hassam, A. B. [University of Maryland at College Park, College Park, Maryland 20742 (United States)
2013-09-15
Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Rapid energization of radiation belt electrons by nonlinear wave trapping
Directory of Open Access Journals (Sweden)
Y. Katoh
2008-11-01
Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.
Nonlinear time reversal in a wave chaotic system.
Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M
2013-02-01
Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.
Analysis of Wave Nonlinear Dispersion Relation
Institute of Scientific and Technical Information of China (English)
LI Rui-jie; TAO Jian-fu
2005-01-01
The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1＜kh＜1.5 and has sufficient accuracy for practical purposes.
Lutocline Mixing and sediment wave interaction
Medina, P.; Gonzalez/Nieto, P. L.
2010-05-01
Coastal mixing induced by waves is modeled experimentally by means of an oscillating grid, [1,2]when the boundary layer is turbulent as when waves generated by a storm break and spill, or when wind interacts with wave stirring, then a strong turbulence lifts off bottom sediments and these often form a distinct sediment laden region capped by a sharp density interface called in this case a Lutocline. These particle layer may be transported to deeper regions by compensation or gravity currents[3,4]. Point velocity distributions created by wind, waves and sloping currents are dominated by breaker areas which act as strong attractors for the sediments in suspension, because at the same time there is a higher mean water level near the coast due to wave radiation[5]. The combination of offshore and onshore together with the longshore and crosshore strong currents due to wave radiation imbalance produce the strongest local shear induced morphological sediment transport. The use of a circular Couette flow to hold sediments in suspension using a vortex generator (producing shear) or an oscilating grid is used to investigate the parameter range of sediment lift off. [1] Crespo A. and Redondo J.M.(1989) A simple experiment on the interaction between gravity currents and sediment transport, Rev. de Geofisica 45, 203-210. [2] Redondo J.M. and Cantalapiedra I.R. (1993) Mixing in horizontally heterogeneous flows", Applied Scientific Research, 51, 217-222 [3] J.E. Simpson (1997) Gravity Currents: In the Environment and the Laboratory, 2nd Edition, Cambridge University Press, Cambridge, England. [4] R.S.J. Sparks, R.T. Bonnecaze, H.E. Huppert, J.R. Lister, M.A. Hallworth, H. Mader, J. Phillips (1993) Sediment-laden gravity currents with reversing buoyancy, Earth Planet. Sci. Lett. 114. 243-257. [5] Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) Study on the influence of waves on coastal diffusion using image analysis. Applied
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Experimental demonstration of optical switching and routing via four-wave mixing spatial shift.
Nie, Zhiqiang; Zheng, Huaibin; Zhang, Yanpeng; Zhao, Yan; Zuo, Cuicui; Li, Changbiao; Chang, Hong; Xiao, Min
2010-01-18
We demonstrate the shift characteristics of four-wave mixing (FWM) beam spots which are controlled by the strong laser fields via the large cross-Kerr nonlinearity. The shift distances and directions are determined by the nonlinear dispersions. Based on such spatial displacements of the FWM beams, as well as the probe beam, we experimentally demonstrate spatial optical switching for one beam or multiple optical beams, which can be used for all-optical switching, switching arrays and routers.
Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro
2013-02-11
In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).
Numerical analysis of multiwavelength erbium-doped fiber ring laser exploiting four-wave mixing.
Xu, Xiaochuan; Yao, Yong; Chen, Deying
2008-08-04
In this paper, a model is proposed to study the behavior of four-wave mixing assisted multiwavelength erbium doped fiber ring laser based on the theoretical model of the multiple FWM processes and Gile's theory of erbium-doped fiber. It is demonstrated that the mode competition can be effectively suppressed through FWM. The effect of phase matching, the nonlinear coefficient, the power in the cavity and the length of the nonlinear medium on output spectrum uniformity are also investigated.
Wu, Jian; Xiang, Dao; Gordon, Reuven
2016-06-13
We demonstrate continuous-wave four-wave mixing to probe the acoustic vibrations of gold nanorods in aqueous solution. The nonlinear optical response of gold nanorods, resonantly enhanced by electrostriction coupling to the acoustic vibration modes, shows an extensional vibration which combines an expansion along the long axis with a contraction along the short axis. We also observed the extensional vibration of gold nanospheres as byproducts of the gold nanorod synthesis. Theoretical calculation of the nanoparticle size and distribution based on the vibrational frequency agrees well with the experimental results obtained from the scanning electron microscopic examination, indicating the four-wave mixing technique can provide in situ nanoparticle characterization.
Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2004-01-01
In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Indian Academy of Sciences (India)
Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang
2010-01-01
The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.
GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
戴正德; 杜先云
2001-01-01
In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.
Nonlinear waves in the terrestrial quasi-parallel foreshock
Hnat, B; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-01-01
We study the applicability of the derivative nonlinear Schr\\"{o}dinger (DNLS) equation, for the evolution of high frequency nonlinear waves, observed at the foreshock region of the terrestrial quasi-parallel bow shock. The use of a pseudo-potential is elucidated and, in particular, the importance of canonical representation in the correct interpretation of solutions in this formulation is discussed. Numerical solutions of the DNLS equation are then compared directly with the wave forms observed by Cluster spacecraft. Non harmonic slow variations are filtered out by applying the empirical mode decomposition. We find large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency, followed in time by nearly harmonic low amplitude fluctuations. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfv\\'{e}n speed.
The periodic wave solutions for two systems of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
王明亮; 王跃明; 张金良
2003-01-01
The periodic wave solutions for the Zakharov system of nonlinear wave equations and a long-short-wave interaction system are obtained by using the F-expansion method, which can be regarded as an overall generalization of Jacobi elliptic function expansion proposed recently. In the limit cases, the solitary wave solutions for the systems are also obtained.
Numerical method of studying nonlinear interactions between long waves and multiple short waves
Institute of Scientific and Technical Information of China (English)
Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei
2009-01-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Nonlinear diffusion model for Rayleigh-Taylor mixing.
Boffetta, G; De Lillo, F; Musacchio, S
2010-01-22
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear diffusion model for Rayleigh-Taylor mixing
Boffetta, G; Musacchio, S
2010-01-01
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
Stimulated degenerate four-wave mixing in Si nanocrystal waveguides
Manna, Santanu; Bernard, Martino; Biasi, Stefano; Ramiro Manzano, Fernando; Mancinelli, Mattia; Ghulinyan, Mher; Pucker, George; Pavesi, Lorenzo
2016-07-01
Parametric frequency conversion via four-wave mixing (FWM) in silicon nanocrystal (Si NC) waveguides is observed at 1550 nm. To investigate the role of Si NC, different types of waveguides containing Si NC in a SiO2 matrix were fabricated. Owing to the increase of the dipole oscillator strength mediated by the quantum confinement effect, the non-linear refractive index ({n}2) of Si NCs is found to be more than one order of magnitude larger than the one of bulk Si. Coupled differential equations for the degenerate FWM process taking into account the role of Si NC were numerically solved to model the experimental data. The modeling yields an effective {n}2 for Si NCs in SiO2 waveguides which is similar to the one of Si waveguides. We also measured a large signal to idler conversion bandwidth of ∼22 nm. The large non-linear refractive index is joined with a large two photon absorption coefficient which makes the use of Si NC in non-linear optical devices mostly suitable for mid-infrared applications.
Time resolved four- and six-wave mixing in liquids .1. Theory
Steffen, T; Fourkas, J.T.; Duppen, K.
1996-01-01
Low-frequency intermolecular dynamics in liquids is studied by ultrafast four- and six-wave mixing. The theory of these nonlinear optical processes is given for electronically nonresonant optical interactions up to fifth order in the electric field. The Born-Oppenheimer approximation is used to sepa
Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing
DEFF Research Database (Denmark)
Christensen, Jesper Bjerge; McKinstrie, C. J.; Rottwitt, Karsten
2016-01-01
We study the preparation of heralded single-photon states using dual-pump spontaneous four-wave mixing. The dual-pump configuration, which in our case employs cross-polarized pumps, allows for a gradual variation of the nonlinear interaction strength enabled by a birefringence-induced walk...
NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS
Institute of Scientific and Technical Information of China (English)
冯绍继; 冯德兴
2003-01-01
The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
New travelling wave solutions for nonlinear stochastic evolution equations
Indian Academy of Sciences (India)
Hyunsoo Kim; Rathinasamy Sakthivel
2013-06-01
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Nonlinear spin-wave excitations at low magnetic bias fields
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Nonlinear electron acoustic waves in presence of shear magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Parametric interaction and intensification of nonlinear Kelvin waves
Novotryasov, Vadim
2008-01-01
Observational evidence is presented for nonlinear interaction between mesoscale internal Kelvin waves at the tidal -- $\\omega_t$ or the inertial -- $\\omega_i$ frequency and oscillations of synoptic -- $\\Omega $ frequency of the background coastal current of Japan/East Sea. Enhanced coastal currents at the sum -- $\\omega_+ $ and dif -- $\\omega_-$ frequencies: $\\omega_\\pm =\\omega_{t,i}\\pm \\Omega$ have properties of propagating Kelvin waves suggesting permanent energy exchange from the synoptic band to the mesoscale $\\omega_\\pm $ band. The interaction may be responsible for the greater than predicted intensification, steepen and break of boundary trapped and equatorially trapped Kelvin waves, which can affect El Ni\\~{n}o. The problem on the parametric interaction of the nonlinear Kelvin wave at the frequency $\\omega $ and the low-frequency narrow-band nose with representative frequency $\\Omega\\ll\\omega $ is investigated with the theory of nonlinear week dispersion waves.
Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations
Directory of Open Access Journals (Sweden)
H.L. Tidke
2010-12-01
Full Text Available The present paper investigates the existence and uniqueness of mild and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. The results obtained by using Schauder fixed point theorem and the theory of semigroups.
Statistical distribution of nonlinear random wave height in shallow water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.
Development of A Fully Nonlinear Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
陈永平; 李志伟; 张长宽
2004-01-01
A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.
Regenerative oscillation and four-wave mixing in graphene optoelectronics
Gu, Tingyi; Yang, Xiaodong; McMillian, James F; van der Zander, Arend; Yu, Min-bing; Lo, Guo-Qiang; Kwong, Dim-Lee; Hone, James; Wong, Chee-Wei
2012-01-01
The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-freque...
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Nonlinear volume holography for wave-front engineering.
Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2014-10-17
The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Exact travelling wave solutions for some important nonlinear physical models
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
A mixed finite element method for nonlinear diffusion equations
Burger, Martin
2010-01-01
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.
Exact Nonlinear Internal Equatorial Waves in the f-plane
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Experimental observations of nonlinear effects of the Lamb waves
Institute of Scientific and Technical Information of China (English)
DENG Mingxi; D.C. Price; D.A.Scott
2004-01-01
The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.
Elliptic Equation and New Solutions to Nonlinear Wave Equations
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2004-01-01
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.
Quantification and prediction of rare events in nonlinear waves
Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa
2014-11-01
The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.
Breathers and rogue waves: Demonstration with coupled nonlinear Schrödinger family of equations
Indian Academy of Sciences (India)
N Vishnu Priya; M Senthilvelan; M Lakshmanan
2015-03-01
Different types of breathers and rogue waves (RWs) are some of the important coherent structures which have been recently realized in several physical phenomena in hydrodynamics, nonlinear optics, Bose–Einstein condensates, etc. Mathematically, they have been deduced in non-linear Schrödinger (NLS) equations. Here we show the existence of general breathers, Akhmediev breathers, Ma soliton and rogue wave solutions in coupled Manakov-type NLS equations and coupled generalized NLS equations representing four-wave mixing. We deduce their explicit forms using Hirota bilinearization procedure and bring out their exact structures and important properties. We also show the method to deduce the various breather solutions from rogue wave solutions using factorization form and the so-called imbricate series.
Linear and nonlinear propagation of water wave groups
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
GEOMETRICAL NONLINEAR WAVES IN FINITE DEFORMATION ELASTIC RODS
Institute of Scientific and Technical Information of China (English)
GUO Jian-gang; ZHOU Li-jun; ZHANG Shan-yuan
2005-01-01
By using Hamilton-type variation principle in non-conservation system, the nonlinear equation of wave motion of a elastic thin rod was derived according to Lagrange description of finite deformation theory. The dissipation caused due to viscous effect and the dispersion introduced by transverse inertia were taken into consideration so that steady traveling wave solution can be obtained. Using multi-scale method the nonlinear equation is reduced to a KdV-Burgers equation which corresponds with saddle-spiral heteroclinic orbit on phase plane. Its solution is called the oscillating-solitary wave or saddle-spiral shock wave.If viscous effect or transverse inertia is neglected, the equation is degraded to classical KdV or Burgers equation. The former implies a propagating solitary wave with homoclinic on phase plane, the latter means shock wave and heteroclinic orbit.
Entangled State Representation for Four-Wave Mixing
Institute of Scientific and Technical Information of China (English)
MA Shan-Jun; LU Hai-Liang; FAN Hong-Yi
2008-01-01
We introduce the entangled state representation to describe the four-wave mixing. We find that the four-wave mixing operator, which engenders the correct input-output field transformation, has a natural representation in the entangled state representation. In this way, we see that the four-wave mixing process not only involves squeezing but also is an entanglement process. This analysis brings convenience to the calculation of quadrature-amplitude measurement for the output state of four-wave mixing process.
Entangled State Representation for Four-Wave Mixing
Ma, Shan-Jun; Lu, Hai-Liang; Fan, Hong-Yi
2008-08-01
We introduce the entangled state representation to describe the four-wave mixing. We find that the four-wave mixing operator, which engenders the correct input-output field transformation, has a natural representation in the entangled state representation. In this way, we see that the four-wave mixing process not only involves squeezing but also is an entanglement process. This analysis brings convenience to the calculation of quadrature-amplitude measurement for the output state of four-wave mixing process.
Wave Propagation In Strongly Nonlinear Two-Mass Chains
Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.
2010-05-01
We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
Sergej Flach; Mikhail Ivanchenko; Nianbei Li
2011-11-01
We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We ﬁnd indications for an asymptotic low-temperature ∼ 4 and intermediate temperature ∼ 2 laws. These ﬁndings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).
Three-wave mixing mediated femtosecond pulse compression in β-barium borate.
Grün, A; Austin, Dane R; Cousin, Seth L; Biegert, J
2015-10-15
Nonlinear pulse compression mediated by three-wave mixing is demonstrated for ultrashort Ti:sapphire pulses in a type II phase-matched β-barium borate (BBO) crystal using noncollinear geometry. 170 μJ pulses at 800 nm with a pulse duration of 74 fs are compressed at their sum frequency to 32 fs with 55 μJ of pulse energy. Experiments and computer simulations demonstrate the potential of sum-frequency pulse compression to match the group velocities of the interacting waves to crystals that were initially not considered in the context of nonlinear pulse compression.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.
A Spectral Element Method for Nonlinear and Dispersive Water Waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Energy Technology Data Exchange (ETDEWEB)
Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan
2015-11-15
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.
Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing
Zhang, Yu; Wen, Fangfang; Zhen, Yu-Rong; Nordlander, Peter; Halas, Naomi J.
2013-01-01
Plasmonic nanoclusters, an ordered assembly of coupled metallic nanoparticles, support unique spectral features known as Fano resonances due to the coupling between their subradiant and superradiant plasmon modes. Within the Fano resonance, absorption is significantly enhanced, giving rise to highly localized, intense near fields with the potential to enhance nonlinear optical processes. Here, we report a structure supporting the coherent oscillation of two distinct Fano resonances within an individual plasmonic nanocluster. We show how this coherence enhances the optical four-wave mixing process in comparison with other double-resonant plasmonic clusters that lack this property. A model that explains the observed four-wave mixing features is proposed, which is generally applicable to any third-order process in plasmonic nanostructures. With a larger effective susceptibility χ(3) relative to existing nonlinear optical materials, this coherent double-resonant nanocluster offers a strategy for designing high-performance third-order nonlinear optical media. PMID:23690571
Nonlinear Pressure Wave Analysis by Concentrated Mass Model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro
A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.
Nonlinear internal wave penetration via parametric subharmonic instability
Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T
2016-01-01
We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.
Sinha, Raju; Karabiyik, Mustafa; Ahmadivand, Arash; Al-Amin, Chowdhury; Vabbina, Phani Kiran; Shur, Michael; Pala, Nezih
2016-03-01
We propose and investigate in detail a novel tunable, compact, room temperature terahertz (THz) emitter using individual microdisk resonators for both optical and THz waves with the capability of radiating THz field in 0.5-10 THz range with tuning frequency resolution of 0.05 THz. Enhanced THz generation is achieved by employing a nonlinear optical disk resonator with a high value of second-order nonlinearity ( χ (2)) in order to facilitate the difference-frequency generation (DFG) via nonlinear mixing with the choice of two appropriate input infrared optical waves. Efficient coupling of infrared waves from bus to the nonlinear disk is ensured by satisfying critical coupling condition. Phase matching condition for efficient DFG process is also met by employing modal phase matching technique. Our simulations show that THz output power can be reached up to milliwatt (mW) level with high optical to THz conversion efficiency. The proposed source is Silicon on Insulator (SoI) technology compatible enabling the monolithic integration with Si complementary metal-oxide-semiconductor (CMOS) electronics including plasmonic THz detectors.
Analytical investigation of surface plasmon excitation on a graphene sheet using four-wave mixing.
Jamalpoor, Kamal; Zarifkar, Abbas
2017-01-20
In the present paper, the general conditions for exciting graphene surface plasmon polaritons (GSPPs) on a suspended graphene using nonlinear optics are investigated. The approach uses the Green's function analysis to derive GSPP fields generated under the basis of momentum conservation using four-wave mixing (FWM). Since the incident beam polarization is challenging in the nonlinear excitation of GSPPs, the significant target of this paper has been set to achieve the conditions for the third-order susceptibility tensor and the wave vectors so that the incident beams with varied polarizations are able to excite GSPPs. Nonlinear optics, in particular FWM, is utilized to compensate the mismatch between the free-space and GSPPs wave vectors. In addition, it avoids the need for applying any patterning or lithography on graphene or its substrate.
Observation of soliton-induced resonant radiation due to three-wave mixing
Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M
2016-01-01
We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Time-Reversal of Nonlinear Waves - Applicability and Limitations
Ducrozet, G; Chabchoub, A
2016-01-01
Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configu...
Nonlinear diffraction of water waves by offshore stuctures
Directory of Open Access Journals (Sweden)
Matiur Rahman
1986-01-01
Full Text Available This paper is concerned with a variational formulation of a nonaxisymmetric water wave problem. The full set of equations of motion for the problem in cylindrical polar coordinates is derived. This is followed by a review of the current knowledge on analytical theories and numerical treatments of nonlinear diffraction of water waves by offshore cylindrical structures. A brief discussion is made on water waves incident on a circular harbor with a narrow gap. Special emphasis is given to the resonance phenomenon associated with this problem. A new theoretical analysis is also presented to estimate the wave forces on large conical structures. Second-order (nonlinear effects are included in the calculation of the wave forces on the conical structures. A list of important references is also given.
Strong coupling between coherent gratings due to nonlinear spatial frequency mixing in Bi12SiO20
DEFF Research Database (Denmark)
Andersen, Peter E.; Buchhave, P.; Petersen, Paul Michael
1996-01-01
investigate the numerical calculations experimentally in a three-wave mixing setup and obtain good agreement between the experimental data and our predictions. Experimentally, we observe relative changes in the diffraction efficiency up to 500% due to nonlinear interactions between gratings...
[Study on phase-matching of four-wave mixing spectrum in photonic crystal fiber].
Liu, Xiao-xu; Wang, Shu-tao; Zhao, Xing-tao; Chen, Shuang; Zhou, Gui-yao; Wu, Xi-jun; Li, Shu-guang; Hou, Lan-Tian
2014-06-01
In the present paper, the four-wave mixing principle of fiber was analyzed, and the high-gain phase-matching conditions were shown. The nonlinear coefficient and dispersion characteristics of photonic crystal fibers were calculated by multipole method. The phase mismatch characteristics of fibers with multiple zero-dispersion wavelengths were analyzed for the first time. The changing rules of phase matching wavelength with the pump wavelength and the pump power were obtained, and the phase matching curves were shown. The characteristics of phase matching wavelengths for different dispersion curves were analyzed. There are four new excitation wavelengths of four-wave mixing spectrum in two zero-dispersion wavelength photonic crystal fiers. Four-wave mixing spectroscopy of photonic crystal fibers with two zero-dispersion wavelengths was obtained in the experi-ent, which is consistent with the theoretical analysis, and verified the reliability of the phase matching theory. The fiber with multiple zero-dispersion wavelengths can create a ricbhphase-matching topology, excite more four-wave mixing wavelengths, ena-ling enhanced control over the spectral locations of the four-wave mixing and resonant-radiation bands emitted by solitons and short pulses. These provide theoretical guidance for photonic crystal fiber wavelength conversion and supercontinoum generation based on four-wave mixing.
Directory of Open Access Journals (Sweden)
V. I. Vlasenko
Full Text Available For many lakes the nonlinear transfer of energy from basin-scale internal waves to short-period motions, such as solitary internal waves (SIW and wave trains, their successive interaction with lake boundaries, as well as over-turning and breaking are important mechanisms for an enhanced mixing of the turbulent benthic boundary layer. In the present paper, the evolution of plane SIWs in a variable depth channel, typical of a lake of variable depth, is considered, with the basis being the Reynolds equations. The vertical fluid stratification, wave amplitudes and bottom parameters are taken close to those observed in Lake Constance, a typical mountain lake. The problem is solved numerically. Three different scenarios of a wave evolution over variable bottom topography are examined. It is found that the basic parameter controlling the mechanism of wave evolution is the ratio of the wave amplitude to the distance from the metalimnion to the bottom d. At sites with a gentle sloping bottom, where d is small, propagating (weak or strong internal waves adjust to the local ambient conditions and preserve their form. No secondary waves or wave trains arise during wave propagation from the deep part to the shallow water. If the amplitude of the propagating waves is comparable with the distance between the metalimnion and the top of the underwater obstacle ( d ~ 1, nonlinear dispersion plays a key role. A wave approaching the bottom feature splits into a sequence of secondary waves (solitary internal waves and an attached oscillating wave tail. The energy of the SIWs above the underwater obstacle is transmitted in parts from the first baroclinic mode, to the higher modes. Most crucially, when the internal wave propagates from the deep part of a basin to the shallow boundary, a breaking event can arise. The cumulative effects of the nonlinearity lead to a steepening and
Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides
Energy Technology Data Exchange (ETDEWEB)
Zhou, Hao, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu [College of Electronic Information, Sichuan University, Chengdu 610064 (China); Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Gu, Tingyi, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu; McMillan, James F.; Wong, Chee Wei, E-mail: hz2299@columbia.edu, E-mail: tg2342@columbia.edu, E-mail: cww2104@columbia.edu [Optical Nanostructures Laboratory, Columbia University, New York, New York 10027 (United States); Petrone, Nicholas; Zande, Arend van der; Hone, James C. [Mechanical Engineering, Columbia University, New York, New York 10027 (United States); Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee [The Institute of Microelectronics, Singapore 117685 (Singapore); Feng, Guoying [College of Electronic Information, Sichuan University, Chengdu 610064 (China); Zhou, Shouhuan [College of Electronic Information, Sichuan University, Chengdu 610064 (China); North China Research Institute of Electro-Optics, Beijing 100015 (China)
2014-09-01
We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.
Wavelength multicasting through four-wave mixing with an optical comb source.
Ting, Hong-Fu; Wang, Ke-Yao; Stroud, Jasper R; Petrillo, Keith G; Sun, Hongcheng; Foster, Amy C; Foster, Mark A
2017-04-17
Based on four-wave mixing (FWM) with an optical comb source (OCS), we experimentally demonstrate 26-way or 15-way wavelength multicasting of 10-Gb/s differential phase-shift keying (DPSK) data in a highly-nonlinear fiber (HNLF) or a silicon waveguide, respectively. The OCS provides multiple spectrally equidistant pump waves leading to a multitude of FWM products after mixing with the signal. We achieve error-free operation with power penalties less than 5.7 dB for the HNLF and 4.2 dB for the silicon waveguide, respectively.
Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.
Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G
2014-05-05
Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Numerical treatments for solving nonlinear mixed integral equation
Directory of Open Access Journals (Sweden)
M.A. Abdou
2016-12-01
Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.
Symmetry-Breaking Zeeman-Coherence Parametric Wave Mixing Magnetometry
Zhou, Feng; Hagley, E W; Deng, L
2016-01-01
The nonlinear magneto-optical effect has significantly impacted modern society with prolific applications ranging from precision mapping of the Earth's magnetic field to bio-magnetic sensing. Pioneering works on collisional spin-exchange effects have led to ultra-high magnetic field detection sensitivities at the level of $fT/\\sqrt{Hz}$ using a single linearly-polarized probe light field. Here we demonstrate a nonlinear Zeeman-coherence parametric wave-mixing optical-atomic magnetometer using room temperature rubidium vapor that results in more than a three-order-of-magnitude optical signal-to-noise ratio (SNR) enhancement for extremely weak magnetic field sensing. This unprecedented enhancement was achieved with nearly a two-order-of-magnitude reduction in laser power while preserving the sensitivity of the widely-used single-probe beam optical-atomic magnetometry method. This new method opens a myriad of applications ranging from bio-magnetic imaging to precision measurement of the magnetic properties of su...
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Directory of Open Access Journals (Sweden)
Shi Jing
2014-01-01
Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
FOUR-WAVE MIXING STUDIES OF IONS IN SOLIDS
Powell, R.; Suchocki, A.; Durville, F.; Gilliland, G.; Behrens, E.; Quarles, G.; BOULON, G.
1987-01-01
The laser technique of four-wave mixing is useful in both optical device applications and for characterizing fundamental properties of optical materials. This paper gives an overview of the theory and experimental technique of four-wave mixing, and presents examples of using this technique as a spectroscopic tool and of forming optical devices.
Relaxation and decomposition methods for mixed integer nonlinear programming
Nowak, Ivo; Bank, RE
2005-01-01
This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.
On a mixed problem for a coupled nonlinear system
Directory of Open Access Journals (Sweden)
Marcondes R. Clark
1997-03-01
Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.
On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions
Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai
1993-01-01
Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Nonlinear scattering of radio waves by metal objects
Shteynshleyger, V. B.
1984-07-01
Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
Transverse effects in photorefractive two-wave mixing
Institute of Scientific and Technical Information of China (English)
Cai Xin; Liu Jin-Song; Wang Sheng-Lie; Liu Shi-Xiong
2009-01-01
In a biased photorefractive crystal, the process of two one-dimensional waves mixing, I.e., the dynamical evolution of both pump beam and signal beam, is traced by numerically solving the coupled-wave equation. Direct simulations show that the propagation and stability of the two beams are completely determined by the system parameters, such as the external bias field, the intensity and the beam waist of the pump beam. By adjusting these parameters, one can control the state of two Gaussian waves mixing. The numerical results are helpful for performing a two-wave mixing experiment.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Liu, Yang; Ding, Dongsheng; Shi, Baosen; Guo, Guangcan
2012-01-01
We demonstrate the double electromagnetically induced transparency (double-EIT) and double four-wave mixing (double-FWM) based on a new scheme of non-degenerate four-wave mixing (FWM) involving five levels of a cold 85Rb atomic ensemble, in which the double-EIT windows are used to transmit the probe field and enhance the third-order nonlinear susceptibility. The phase-matching conditions for both four-wave mixings could be satisfied simultaneously. The frequency of one component of the generated bichromatic field is less than the other by the ground-state hyperfine splitting (3GHz). This specially designed experimental scheme for simultaneously generating different nonlinear wave-mixing processes is expected to find applications in quantum information processing and cross phase modulation. Our results agree well with the theoretical simulation.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Energy Technology Data Exchange (ETDEWEB)
Alka, W.; Goyal, Amit [Department of Physics, Panjab University, Chandigarh-160014 (India); Nagaraja Kumar, C., E-mail: cnkumar@pu.ac.i [Department of Physics, Panjab University, Chandigarh-160014 (India)
2011-01-17
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Alka, W.; Goyal, Amit; Nagaraja Kumar, C.
2011-01-01
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Nonlinear Alfv\\'en waves in extended magnetohydrodynamics
Abdelhamid, Hamdi M
2015-01-01
Large-amplitude Alfv\\'en waves are observed in various systems in space and laboratories, demonstrating an interesting property that the wave shapes are stable even in the nonlinear regime. The ideal magnetohydrodynamics (MHD) model predicts that an Alfv\\'en wave keeps an arbitrary shape constant when it propagates on a homogeneous ambient magnetic field. However, such arbitrariness is an artifact of the idealized model that omits the dispersive effects. Only special wave forms, consisting of two component sinusoidal functions, can maintain the shape; we derive fully nonlinear Alfv\\'en waves by an extended MHD model that includes both the Hall and electron inertia effects. Interestingly, these \\small-scale effects" change the picture completely; the large-scale component of the wave cannot be independent of the small scale component, and the coexistence of them forbids the large scale component to have a free wave form. This is a manifestation of the nonlinearity-dispersion interplay, which is somewhat differ...
Josephson Traveling-Wave Parametric Amplifier with Three-Wave Mixing
Zorin, A. B.
2016-09-01
We develop a concept of the traveling-wave Josephson parametric amplifier exploiting quadratic nonlinearity of a serial array of one-junction superconducting quantum interference devices (SQUIDs) embedded in a superconducting transmission line. The external magnetic flux applied to the SQUIDs makes it possible to efficiently control the shape of their current-phase relation and, hence, the balance between quadratic and cubic (Kerr-like) nonlinearities. This property allows us to operate in the favorable three-wave-mixing mode with a minimal phase mismatch, an exponential dependence of the power gain on number of sections N , a large bandwidth, a high dynamic range, and substantially separated signal (ωs ) and pump (ωp) frequencies obeying the relation ωs+ωi=ωp, where ωi is the idler frequency. An estimation of the amplifier characteristics with typical experimental parameters, a pump frequency of 12 GHz, and N =300 yields a flat gain of 20 dB in the bandwidth of 5.6 GHz.
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....
New traveling wave solutions for nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-06-11
The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
Interpretation of nonlinearity in wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...
Nonlinear waves in a fluid-filled thin viscoelastic tube
Zhang, Shan-Yuan; Zhang, Tao
2010-11-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Time-reversal of nonlinear waves: Applicability and limitations
Ducrozet, G.; Fink, M.; Chabchoub, A.
2016-09-01
Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Institute of Scientific and Technical Information of China (English)
Zhang Shan-Yuan; Zhang Tao
2010-01-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves
Directory of Open Access Journals (Sweden)
Hongjuan Yan
2015-01-01
Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Shallow water modal evolution due to nonlinear internal waves
Badiey, Mohsen; Wan, Lin; Luo, Jing
2017-09-01
Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.
Doppler effect of nonlinear waves and superspirals in oscillatory media.
Brusch, Lutz; Torcini, Alessandro; Bär, Markus
2003-09-01
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.
Optical Multi-wave Mixing Process Based on Electromagnetically Induced Transparency
Institute of Scientific and Technical Information of China (English)
LI Jia-Hua; PENG Ju-Cun; CHEN Ai-Xi
2004-01-01
In this paper, we propose and analyze an optical multi-wave mixing scheme for the generation of coherent light in a five-level atomic system in the context of electromagnetically induced transparency. A detailed semiclassical study of the propagation of generated mixing and probe fields is demonstrated. The analytical dependence of the generated mixing field on the probe field and the respective detuning is predicted. Such a nonlinear optical process can be used for generating short-wavelength radiation at low pump intensities.
Efficient continuous-wave four-wave mixing in bandgap-engineered AlGaAs waveguides.
Wathen, Jeremiah J; Apiratikul, Paveen; Richardson, Christopher J K; Porkolab, Gyorgy A; Carter, Gary M; Murphy, Thomas E
2014-06-01
We present a side-by-side comparison of the nonlinear behavior of four passive AlGaAs ridge waveguides where the bandgap energy of the core layers ranges from 1.60 to 1.79 eV. By engineering the bandgap to suppress two-photon absorption, minimizing the linear loss, and minimizing the mode area, we achieve efficient wavelength conversion in the C-band via partially degenerate four-wave mixing with a continuous-wave pump. The observed conversion efficiency [Idler(OUT)/Signal(IN)=-6.8 dB] is among the highest reported in passive semiconductor or glass waveguides.
Quasi-phase-matched DC-induced three wave mixing versus four wave mixing: a simulated comparison.
Sapiano, Christopher A; Aitchison, J Stewart; Qian, Li
2012-04-01
A comparison is made between DC-induced three-wave mixing under an on-off quasi-phase-matching scheme and a perfectly phase-matched four wave mixing process. It is shown that the DC-induced process is capable of producing a significantly larger conversion efficiency than the four wave mixing process. Despite the fact that it suffers greater effects of dispersion, the enhanced growth rate of the DC-induced process provides a conversion efficiency roughly 300× larger than that of four wave mixing. Over a sample length of 20 cm the DC-induced process is able to generate idler power more than 270 times greater than that produced by the equivalent four wave mixing process.
2011-01-01
International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...
Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Institute of Scientific and Technical Information of China (English)
化存才; 刘延柱
2002-01-01
For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.
Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2010-10-01
In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.
Kumar, Naveen; Hatsagortsyan, Karen Z; Keitel, Christoph H
2013-09-06
Stimulated Raman scattering of an ultraintense laser pulse in plasmas is studied by perturbatively including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion for plasma electrons. In this approximation, the radiation reaction force causes a phase shift in nonlinear current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of the forward Raman scattering instability.
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Analysis of nonlinear internal waves in the New York Bight
Liu, Antony K.
1988-01-01
An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Linear and Nonlinear Surface Waves in Electrohydrodynamics
Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios
2015-01-01
The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.
Nehmetallah, George; Banerjee, Partha; Khoury, Jed
2015-11-10
This work comprises the theoretical and numerical validations of experimental work on pattern and defect detection of periodic amplitude and phase structures using four-wave mixing in photorefractive materials. The four-wave mixing optical processor uses intensity filtering in the Fourier domain. Specifically, the nonlinear transfer function describing four-wave mixing is modeled, and the theory for detection of amplitude and phase defects and dislocations are developed. Furthermore, numerical simulations are performed for these cases. The results show that this technique successfully detects the slightest defects clearly even with no prior enhancement. This technique should prove to be useful in quality control systems, production-line defect inspection, and e-beam lithography.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
A Numerical Wave Tank for Nonlinear Waves with Passive Absorption
Institute of Scientific and Technical Information of China (English)
周宗仁; 尹彰; 石瑞祥
2001-01-01
A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectralshapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of theflume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of aLagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the problem is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varyingthe values of the absorption coefficient μ, and studying the time histories of the surface elevations "recorded" on pre-se-lected locations.
Exposing the nonlinear viscoelastic behavior of asphalt-aggregate mixes
Levenberg, Eyal; Uzan, Jacob
2012-05-01
In this study asphalt-aggregate mixes are treated as both viscoelastic and viscoplastic. Following a damage mechanics approach, a nonlinear viscoelastic constitutive formulation is generated from a linear formulation by replacing `applied stresses' with `effective viscoelastic stresses'. A non-dimensional scalar entity called `relative viscoelastic stiffness' is introduced; it is defined as the ratio of applied to effective viscoelastic stress and encapsulates different types of nonlinearities. The paper proposes a computational scheme for exposing these nonlinearities by uncovering, through direct analysis of any test data, changes experienced by the `relative viscoelastic stiffness'. In general terms, the method is based on simultaneous application of creep and relaxation formulations while preserving the interrelationship between the corresponding time functions. The proposed scheme is demonstrated by analyzing a uniaxial tension test and a uniaxial compression test (separately). Results are presented and discussed, unveiling and contrasting the character of viscoelastic nonlinearities in both cases. A conceptual viewpoint is offered to explain the observations, illustrating the requirements from any candidate constitutive theory.
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
Supradeepa, V R
2010-01-01
We demonstrate a scheme to scale the bandwidth by several times while enhancing spectral flatness of frequency combs generated by intensity and phase modulation of CW lasers using cascaded four-wave mixing in highly nonlinear fiber.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
ZhuYanjuan; ZhangChunhua
2005-01-01
The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.
Nonlinear wave mechanics from classical dynamics and scale covariance
Energy Technology Data Exchange (ETDEWEB)
Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2007-10-29
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Exact controllability for a nonlinear stochastic wave equation
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.
Stability of planar diffusion wave for nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
NUMERICAL SIMULATIONS OF NONLINEAR WAVE TRANSFORMATION AROUND WAVE-PERMEABLE STRUCTURE
Institute of Scientific and Technical Information of China (English)
Li Xi; YAN Yi-xin
2005-01-01
The problem of wave partial/full reflection and transmission by wave-permeable structure is approached by solving the shape-related function with focus on the understanding of wave attenuation.2D depth-averaged Boussinesq type wave equations are given with new damping item in simulating the nonlinear wave transmission through wave-permeable structure.1D wave equation is examined to give the analytical expression of the absorbing coefficient, and is compared with laboratory data in flume to calibrate the coefficients, and the expression is applied directly in modified Boussinesq type equations.Compared with wave basin data for various incident wave conditions,the accurate predictions of combined diffraction-refraction effects in simulating nonlinear wave going through wave-permeable breakwater in the engineering application can be obtained.It shows that wave-permeable breakwaters with proper absorbing effects can be used as an effective alternative to massive gravity breakwaters in reduction of wave transmission in shallow water.
Marangoni mixed convection flow with Joule heating and nonlinear radiation
Directory of Open Access Journals (Sweden)
Tasawar Hayat
2015-07-01
Full Text Available Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.
Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cédric; Ulrich, T. J.
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Theory of Multiwave Mixing within the Superconducting Kinetic-Inductance Traveling-Wave Amplifier
Erickson, Robert P
2016-01-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain vs. signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied DC bias, and four-wave mixing (4WM), without DC. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with DC. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC transmissi...
Nonlinear Acoustic Wave Interactions in Layered Media.
1980-03-06
Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical
Nearly linear dynamics of nonlinear dispersive waves
Erdogan, M B; Zharnitsky, V
2010-01-01
Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.
Controlling nonlinear waves in excitable media
Energy Technology Data Exchange (ETDEWEB)
Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)
2009-01-30
A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Energy Technology Data Exchange (ETDEWEB)
Zhou Yubin; Wang Mingliang; Miao Tiande
2004-03-15
The periodic wave solutions for a class of nonlinear partial differential equations, including the Davey-Stewartson equations and the generalized Zakharov equations, are obtained by using the F-expansion method, which can be regarded as an overall generalization of the Jacobi elliptic function expansion method recently proposed. In the limit cases the solitary wave solutions of the equations are also obtained.
High-efficiency degenerate four wave-mixing in triply resonant nanobeam cavities
Lin, Zin; Loncar, Marko; Johnson, Steven G; Rodriguez, Alejandro W
2013-01-01
We demonstrate high-efficiency, degenerate four-wave mixing in triply resonant Kerr $\\chi^(3)$ photonic crystal (PhC) nanobeam cavities. Using a combination of temporal coupled mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of resonant four-wave mixing processes and demonstrate the possibility of observing high-efficiency limit cycles and steady-state conversion corresponding to $\\approx 100$% depletion of the pump light at low powers, even including effects due to losses, self- and cross-phase modulation, and imperfect frequency matching. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low $\\sim$ 50 mW input powers in silicon micrometer-scale cavities.
Weak bond detection in composites using highly nonlinear solitary waves
Singhal, Taru; Kim, Eunho; Kim, Tae-Yeon; Yang, Jinkyu
2017-05-01
We experimentally investigate a diagnostic technique for identifying a weak bond in composites using highly nonlinear solitary waves (HNSWs). We set up a one-dimensional chain of granular crystals, consisting of spherical particles with nonlinear interactions, to generate HNSWs. These solitary wave packets are transmitted into an inspection area of composites by making a direct contact with the chain. We demonstrate that a strong type of solitary waves injected to the weak bond area can break the weak bond of laminates, thereby causing delamination. Then, to identify the creation of the delamination, we transmit a weak type of solitary waves by employing the same apparatus, and measure the solitary waves reflected from the specimens. By analyzing these reflected solitary waves, we differentiate the weak bond samples with the pristine bond ones in an efficient and fast manner. The diagnostic results based on the proposed method are compared with the strength and energy release rate at bond interfaces, which are measured via standard testing methods such as three point bending and end notched flexure tests. This study shows the potential of solitary wave-based detection of weak bonds for hot spot monitoring of composite-based structures.
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Nonlinear dynamic behaviors of a floating structure in focused waves
Cao, Fei-feng; Zhao, Xi-zeng
2015-12-01
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.
Cho, Yonggeun
2016-05-04
This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification
Bigoni, Daniele; Eskilsson, Claes
2014-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...
Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations
Li, H; Wendroff, B; Liska, R
2000-01-01
(abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Nonlinear waves in electromigration dispersion in a capillary
Christov, Ivan C
2016-01-01
We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...
Institute of Scientific and Technical Information of China (English)
LI Jia-Hua; CHEN Ai-Xi; PENG Ju-Cun
2004-01-01
@@ A nonlinear optical four-wave mixing scheme is presented and analysed for the generation of coherent light in a nearly four-level ladder-type atomic system in the context of electromagnetically induced transparency (EIT).We find that EIT can suppress nonlinear photon absorption and the peak of the generated mixing field is located at the centre of the transparency window where the loss is minimal, though there is a dip in the centre. Such a nonlinear optical process can also be used for generating coherent short-wavelength radiation.
Theory of slow light enhanced four-wave mixing in photonic crystal waveguides
Santagiustina M.; Someda C.G.; Vadala G.; Combrie S.; Rossi A.
2010-01-01
The equations for Four-Wave-Mixing in a Photonic Crystal waveguide are derived accurately. The dispersive nature of slow-light enhancement, the impact of Bloch mode reshaping in the nonlinear overlap integrals and the tensor nature of the third order polarization are therefore taken into account. Numerical calculations reveal substantial differences with simpler models, which increase with decreasing group velocity. We predict that the gain for a 1.3 mm long, unoptimized GaInP waveguide will ...
Popov, A K; George, T F; Shalaev, V M; Bayev, Alexander S.; George, Thomas F.; Shalaev, Vladimir M.
2000-01-01
New feasibity of coherent quantum control of four-wave mixing processes in a resonant Doppler-broadened medium are studied. We propose a technique which enables one to enhance the quantum efficiency of nonlinear optical conversion. At the same time, it allows one to decrease the required intensities of the fundamental beams compared to those necessary in the approach based on coherent population trapping. The major outcomes of the analysis are illustrated with numerical simulation addressed within a practical medium.
Formation of Vector Solitary waves with Mixed Dispersion in Bose-Einstein Condensates
Plaja, L.; Roman, J. San
2005-01-01
We demonstrate the existence of a new class of two-component vector solitary waves in which dispersion coefficients have of opposite signs. Stability is achieved by inclusion of an additional linear coupling between the vector components that counterbalances the instability produced by the mixed dispersion and the non-linearity. In addition, we demonstrate that these solutions are experimentally observable as gap vector solitons in Bose-Einstein condensates located in oscillating optical latt...
Merkel, A; Tournat, V; Gusev, V
2014-08-01
We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.
Efficient calculation of time- and frequency-resolved four-wave-mixing signals.
Gelin, Maxim F; Egorova, Dassia; Domcke, Wolfgang
2009-09-15
"Four-wave-mixing" is the generic name for a family of nonlinear electronic and vibrational spectroscopies. These techniques are widely used to explore dissipation, dephasing, solvation, and interstate coupling mechanisms in various material systems. Four-wave-mixing spectroscopy needs a firm theoretical support, because it delivers information on material systems indirectly, through certain transients, which are measured as functions of carrier frequencies, durations, and relative time delays of the laser pulses. The observed transients are uniquely determined by the three-pulse-induced third-order polarization. There exist two conceptually different approaches to the calculation of the nonlinear polarization. In the standard perturbative approach to nonlinear spectroscopy, the third-order polarization is expressed in terms of the nonlinear response functions. As the material systems become more complex, the evaluation of the response functions becomes cumbersome and the calculation of the signals necessitates a number of approximations. Herein, we review alternative methods for the calculation of four-wave-mixing signals, in which the relevant laser pulses are incorporated into the system Hamiltonian and the driven system dynamics is simulated numerically exactly. The emphasis is on the recently developed equation-of-motion phase-matching approach (EOM-PMA), which allows us to calculate the three-pulse-induced third-order polarization in any phase-matching direction by performing three (with the rotating wave approximation) or seven (without the rotating wave approximation) independent propagations of the density matrix. The EOM-PMA is limited to weak laser fields (its domain of validity is equivalent to the approach based on the third-order response functions) but allows for arbitrary pulse durations and automatically accounts for pulse-overlap effects. As an illustration, we apply the EOM-PMA to the calculation of optical three-pulse photon-echo two
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
On a nonlinear gravitational wave. Geodesics
Culetu, Hristu
2016-01-01
An exact, plane wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density $\\rho$ and the pressure $p_{z}$ are negative but finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface $t - z = 0$, $Oz$ axis being the direction of propagation. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.
Fuzzy Mixed-Sensitivity Control of Uncertain Nonlinear Induction Motor
Directory of Open Access Journals (Sweden)
Vahid Azimi
2014-06-01
Full Text Available In this article we investigate on robust mixed-sensitivity H∞ control for speed and torque control of inductional motor (IM. In order to simplify the design procedure the Takagi–Sugeno (T–S fuzzy approach is introduced to solve the nonlinear model Problem. Loop-shaping methodology and Mixed-sensitivity problem are developed to formulate frequency-domain specifications. Then a regional pole-placement output feedback H∞ controller is employed by using linear matrix inequalities(LMIs teqnique for each linear subsystem of IM T-S fuzzy model. Parallel Distributed Compensation (PDC is used to design the controller for the overall system . Simulation results are presented to validate the effectiveness of the proposed controller even in the presence of motor parameter variations and unknown load disturbance.
Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Lijun Zhang
2015-01-01
Full Text Available We study the exact traveling wave solutions of a general fifth-order nonlinear wave equation and a generalized sixth-order KdV equation. We find the solvable lower-order subequations of a general related fourth-order ordinary differential equation involving only even order derivatives and polynomial functions of the dependent variable. It is shown that the exact solitary wave and periodic wave solutions of some high-order nonlinear wave equations can be obtained easily by using this algorithm. As examples, we derive some solitary wave and periodic wave solutions of the Lax equation, the Ito equation, and a general sixth-order KdV equation.
Four-wave mixing in InAlGaAs quantum dots
DEFF Research Database (Denmark)
Leosson, Kristjan; Birkedal, Dan; Hvam, Jørn Märcher
2001-01-01
The nonlinear optical properties of semiconductor quantum dots are of interest, both fundamentally and for potential device applications. Large optical nonlinearities are predicted due to the three dimensional confinement but the small active volume of the dots and their large inhomogeneous...... broadening strongly reduce the interaction with the electromagnetic field. Until now, four-wave mixing (FWM) in III-V quantum dots has only been reported in optical amplifiers at room temperature, where the interaction length is increased by waveguiding in the quantum dot plane. We have carried out...
Flavour Mixing, Gauge Invariance and Wave-function Renormalisation
Espriu, Doménec; Talavera, P
2002-01-01
We clarify some aspects of the LSZ formalism and wave function renormalisation for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyse the renormalisation of the CKM mixing matrix which is closely related to wave function renormalisation. We critically review earlier attempts to define a set of "on-shell" wave function renormalisation constants. With the aid of an extensive use of the Nielsen identities complemented by explicit calculations we corroborate that the counter term for the CKM mixing matrix must be explicitly gauge independent and demonstrate that the commonly used prescription for the wave function renormalisation constants leads to gauge parameter dependent amplitudes, even if the CKM counter term is gauge invariant as required. We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting wave function renormalisation constants necessarily possess absorptive parts, but we verify that ...
Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...
Degenerate four wave mixing in solid core photonic bandgap fibers
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole
2008-01-01
Degenerate four wave mixing in solid core photonic bandgap fibers is studied theoretically. We demonstrate the possibility of generating parametric gain across bandgaps, and propose a specific design suited for degenerate four wave mixing when pumping at 532nmm. the possibility of tuning the effi...... the efficency of the parametric gain by varying the temperature is also considered. The sults are verified by numerical simultations of pulse propagation....
Energy Technology Data Exchange (ETDEWEB)
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2006-08-15
Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Amplitude-dependent contraction/elongation of nonlinear Lamb waves
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2016-04-01
Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.
Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Geodesic deviation in a nonlinear gravitational wave spacetime
Culetu, Hristu
2016-01-01
The tidal effects generated by a nonlinear gravitational wave are investigated in double-null v - u coordinates, as an exact solution of Einstein's field equations. The components $\\xi^{v}$ and $\\xi^{u}$ of the separation vector behave as in flat space but the transversal components $\\xi^{x}$ and $\\xi^{y}$ depend nonlinearly on $v$ through the Bessel and Neumann functions, far from the null surface $v = 0$. We show that the same results are obtained by means of the tetrad formalism.
Traveling wave solutions for some factorized nonlinear PDEs
Cornejo-Pérez, Octavio
2009-01-01
In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Four wave mixing experiments with extreme ultraviolet transient gratings
Bencivenga, F.; Cucini, R.; Capotondi, F.; Battistoni, A.; Mincigrucci, R.; Giangrisostomi, E.; Gessini, A.; Manfredda, M.; Nikolov, I. P.; Pedersoli, E.; Principi, E.; Svetina, C.; Parisse, P.; Casolari, F.; Danailov, M. B.; Kiskinova, M.; Masciovecchio, C.
2015-01-01
Four wave mixing (FWM) processes, based on third-order non-linear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enables to explore dynamics inaccessible by linear methods.1-7 The coherent and multi-wave nature of FWM approach has been crucial in the development of cutting edge technologies, such as silicon photonics,8 sub-wavelength imaging9 and quantum communications.10 All these technologies operate with optical wavelengths, which limit the spatial resolution and do not allow probing excitations with energy in the eV range. The extension to shorter wavelengths, that is the extreme ultraviolet (EUV) and soft-x-ray (SXR) range, will allow to improve the spatial resolution and to expand the excitation energy range, as well as to achieve elemental selectivity by exploiting core resonances.5-7,11-14 So far FWM applications at these wavelengths have been prevented by the absence of coherent sources of sufficient brightness and suitable experimental setups. Our results show how transient gratings, generated by the interference of coherent EUV pulses delivered by the FERMI free electron laser (FEL),15 can be used to stimulate FWM processes at sub-optical wavelengths. Furthermore, we have demonstrated the possibility to read the time evolution of the FWM signal, which embodies the dynamics of coherent excitations as molecular vibrations. This result opens the perspective for FWM with nanometer spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics.5-7 The theoretical possibility to realize these applications have already stimulated dedicated and ongoing FEL developments;16-20 today our results show that FWM at sub-optical wavelengths is feasible and would be the spark to the further advancements of the present and new sources. PMID:25855456
Four-wave mixing experiments with extreme ultraviolet transient gratings.
Bencivenga, F; Cucini, R; Capotondi, F; Battistoni, A; Mincigrucci, R; Giangrisostomi, E; Gessini, A; Manfredda, M; Nikolov, I P; Pedersoli, E; Principi, E; Svetina, C; Parisse, P; Casolari, F; Danailov, M B; Kiskinova, M; Masciovecchio, C
2015-04-09
Four-wave mixing (FWM) processes, based on third-order nonlinear light-matter interactions, can combine ultrafast time resolution with energy and wavevector selectivity, and enable the exploration of dynamics inaccessible by linear methods. The coherent and multi-wave nature of the FWM approach has been crucial in the development of advanced technologies, such as silicon photonics, subwavelength imaging and quantum communications. All these technologies operate at optical wavelengths, which limits the spatial resolution and does not allow the probing of excitations with energy in the electronvolt range. Extension to shorter wavelengths--that is, the extreme ultraviolet and soft-X-ray ranges--would allow the spatial resolution to be improved and the excitation energy range to be expanded, as well as enabling elemental selectivity to be achieved by exploiting core resonances. So far, FWM applications at such wavelengths have been prevented by the absence of coherent sources of sufficient brightness and of suitable experimental set-ups. Here we show how transient gratings, generated by the interference of coherent extreme-ultraviolet pulses delivered by the FERMI free-electron laser, can be used to stimulate FWM processes at suboptical wavelengths. Furthermore, we have demonstrated the possibility of observing the time evolution of the FWM signal, which shows the dynamics of coherent excitations as molecular vibrations. This result opens the way to FWM with nanometre spatial resolution and elemental selectivity, which, for example, would enable the investigation of charge-transfer dynamics. The theoretical possibility of realizing these applications has already stimulated ongoing developments of free-electron lasers: our results show that FWM at suboptical wavelengths is feasible, and we hope that they will enable advances in present and future photon sources.
NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER
Institute of Scientific and Technical Information of China (English)
菅永军; 鄂学全; 柏威
2003-01-01
In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.
Collapse of Nonlinear Gravitational Waves in Moving-Puncture Coordinates
Hilditch, David; Weyhausen, Andreas; Dietrich, Tim; Bruegmann, Bernd; Montero, Pedro J; Mueller, Ewald
2013-01-01
We study numerical evolutions of nonlinear gravitational waves in moving-puncture coordinates. We adopt two different types of initial data -- Brill and Teukolsky waves -- and evolve them with two independent codes producing consistent results. We find that Brill data fail to produce long-term evolutions for common choices of coordinates and parameters, unless the initial amplitude is small, while Teukolsky wave initial data lead to stable evolutions, at least for amplitudes sufficiently far from criticality. The critical amplitude separates initial data whose evolutions leave behind flat space from those that lead to a black hole. For the latter we follow the interaction of the wave, the formation of a horizon, and the settling down into a time-independent trumpet geometry. We explore the differences between Brill and Teukolsky data and show that for less common choices of the parameters -- in particular negative amplitudes -- Brill data can be evolved with moving-puncture coordinates, and behave similarly t...
Dual-dressed four-wave mixing and dressed six-wave mixing in a five-level atomic system
Institute of Scientific and Technical Information of China (English)
Cuicui Zuo; Yigang Du; Tong Jiang; Zhiqiang Nie; Yanpeng Zhang; Huaibin Zheng; Chenli Gan; Weifeng Zhang; Keqing Lu
2008-01-01
We study the co-existing four-wave mixing (FWM) process with two dressing fields and the six-wave mixing (SWM) process with one dressing field in a five-level system with carefully arranged laser beams. We also show two kinds of doubly dressing mechanisms in the FWM process. FWM and SWM signals propagatingalong the same direction compete with each other. With the properly controlled dressing fields, the FWM signals can be suppressed, while the SWM signals have been enhanced.
Nonlinear waves in stratified Taylor--Couette flow. Part 2. Buoyancy flux
Leclercq, Colin; Caulfield, Colm-Cille P; Dalziel, Stuart B; Linden, Paul F
2016-01-01
This paper is the second part of a two-fold study of mixing, i.e. the formation of layers and upwelling of buoyancy, in axially stratified Taylor--Couette flow, with fixed outer cylinder. In a first paper, we showed that the dynamics of the flow was dominated by coherent structures made of a superposition of nonlinear waves. (Mixed)-ribbons and (mixed)-cross-spirals are generated by interactions between a pair of linearly unstable helical modes of opposite `handedness', and appear to be responsible for the formation of well-mixed layers and sharp density interfaces. In this paper, we show that these structures are also fully accountable for the upwards buoyancy flux in the simulations. The mechanism by which this occurs is a positive coupling between the density and vertical velocity components of the most energetic waves. This coupling is primarily caused by diffusion of density at low Schmidt number Sc, but can also be a nonlinear effect at larger Sc. Turbulence was found to contribute negatively to the buo...
Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction
Directory of Open Access Journals (Sweden)
Wei Li
2016-05-01
Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Multisymplectic five-point scheme for the nonlinear wave equation
Institute of Scientific and Technical Information of China (English)
WANG Yushun; WANG Bin; YANG Hongwei; WANG Yunfeng
2003-01-01
In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Modulational development of nonlinear gravity-wave groups
Chereskin, T. K.; Mollo-Christensen, E.
1985-01-01
Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.
Adaptive modeling of shallow fully nonlinear gravity waves
Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Solitary wave solutions to nonlinear evolution equations in mathematical physics
Indian Academy of Sciences (India)
Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas
2014-10-01
This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.
SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.
Nonlinear mhd simulations of wave dissipation in flux tubes
Poedts, S.; Toth, G.; Belien, A. J. C.; Goedbloed, J. P.
1997-01-01
The phase mixing and resonant dissipation of Alfven waves is studied in both the 'closed' magnetic loops and the 'open' coronal holes observed in the hot solar corona. The resulting energy transfer from large to small length scales contributes to the heating of these magnetic str
Energy Technology Data Exchange (ETDEWEB)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
DEFF Research Database (Denmark)
Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik
2004-01-01
The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...
Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media
Energy Technology Data Exchange (ETDEWEB)
Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique,Université de Tours, 37200 (France); Soft Matter Physics Laboratory, Far Eastern Federal University,Sukhanova 8, Vladivostok (Russian Federation); Department of Physics and Astronomy, University of Gent,Krijgslaan 281, S9, Gent (Belgium)
2016-01-18
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.
Interfering Waves of Adaptation Promote Spatial Mixing
DEFF Research Database (Denmark)
Martens, Erik Andreas; Hallatschek, Oskar
2011-01-01
to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without...... for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only recombination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations. Our conservative estimates of the interference length predict...... prevalent clonal interference in microbial colonies and biofilms, so clonal competition should be a strong driver of both genetic and spatial mixing in those contexts....
Interfering Waves of Adaptation Promote Spatial Mixing
DEFF Research Database (Denmark)
Martens, Erik Andreas; Hallatschek, Oskar
2011-01-01
to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without...... for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only recombination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations. Our conservative estimates of the interference length predict...... prevalent clonal interference in microbial colonies and biofilms, so clonal competition should be a strong driver of both genetic and spatial mixing in those contexts....
Observation of Optical Undular Bores in Multiple Four-Wave Mixing
Directory of Open Access Journals (Sweden)
J. Fatome
2014-05-01
Full Text Available We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing. In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores (dispersive shock waves that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent undular bores to collide elastically.
Observation of Optical Undular Bores in Multiple Four-Wave Mixing
Fatome, J.; Finot, C.; Millot, G.; Armaroli, A.; Trillo, S.
2014-04-01
We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing). In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores (dispersive shock waves) that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our experiment, we are able to clearly observe how the periodic nature of the input modulation forces adjacent undular bores to collide elastically.
Nonlinear signal mixing in a three-terminal molecular wire
Liu, Christopher; Speyer, Joe; Ovchinnikov, Igor V.; Neuhauser, Daniel
2007-01-01
The authors study the electronic response of two simple molecular devices to a bichromatic field, where the device acts as a mixer. Two closely related model systems are considered: one is a benzene molecule and the other is a single grapheme sheet, and in both cases the systems are connected to three polyacetylene chains. The electronic response to the dichromatic alternating electric fields is studied by following the electron density fluctuation along the chain lengths. In both cases the electron transfer follows the field frequency at low electric fields. At higher amplitude, a significant amount of nonlinear mixing resulting in new combinations of the input frequencies is found in the spectrum. The influence of gating on the output frequencies is also shown.
DEFF Research Database (Denmark)
Mecozzi, A.; Mørk, Jesper
1998-01-01
We review the recently proposed heterodyne technique for four-wave mixing experiments with collinear and co-polarized pulses. We discuss issues related to the parameters of the nonlinear dynamics of the sample that can be extracted by this technique....
DEFF Research Database (Denmark)
Hu, Hao; Mulvad, Hans Christian Hansen; Galili, Michael
2010-01-01
Polarization-insensitive 640 Gbit/s demultiplexing for OTDM data signals is demonstrated using a 100 m polarization-maintaining highly non-linear fibre. The scheme is based on four wave mixing (FWM) in a polarization-maintaining fibre loop (PMFL) with bidirectional operation. Less than 0.2 d...
Morichetti, Francesco; Canciamilla, Antonio; Ferrari, Carlo; Samarelli, Antonio; Sorel, Marc; Melloni, Andrea
2011-01-01
Wave mixing inside optical resonators, while experiencing a large enhancement of the nonlinear interaction efficiency, suffers from strong bandwidth constraints, preventing its practical exploitation for processing broad-band signals. Here we show that such limits are overcome by the new concept of travelling-wave resonant four-wave mixing (FWM). This approach combines the efficiency enhancement provided by resonant propagation with a wide-band conversion process. Compared with conventional FWM in bare waveguides, it exhibits higher robustness against chromatic dispersion and propagation loss, while preserving transparency to modulation formats. Travelling-wave resonant FWM has been demonstrated in silicon-coupled ring resonators and was exploited to realize a 630-μm-long wavelength converter operating over a wavelength range wider than 60 nm and with 28-dB gain with respect to a bare waveguide of the same physical length. Full compatibility of the travelling-wave resonant FWM with optical signal processing applications has been demonstrated through signal retiming and reshaping at 10 Gb s−1 PMID:21540838
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
Identification and determination of solitary wave structures in nonlinear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.
Spectrograms of ship wakes: identifying linear and nonlinear wave signals
Pethiyagoda, Ravindra; Moroney, Timothy J
2016-01-01
A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified three additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. Further, we show that additional features in the experimental data are caused by nonlinearity. Finally, we explain a discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceler...
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
Energy Technology Data Exchange (ETDEWEB)
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.
Nonlinear Propagation of Planet-Generated Tidal Waves
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Nonlinear propagation of planet-generated tidal waves
Rafikov, R R
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Rezzolla, L
2002-01-01
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Analytical description of nonlinear acoustic waves in the solar chromosphere
Litvinenko, Yuri E.; Chae, Jongchul
2017-02-01
Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2011-01-01
Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear...... wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared...... with the corresponding forceprofiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found...
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber.
Brès, Camille-Sophie; Zlatanovic, Sanja; Wiberg, Andreas O J; Radic, Stojan
2011-12-12
We present the experimental demonstration of broadband four-wave mixing in a 2.5 cm-long segment of AsSe Chalcogenide microstructured fiber. The parametric mixing was driven by a continuous-wave pump compatible with data signal wavelength conversion. Four-wave mixing products over more than 70 nm on the anti-stoke side of the pump were measured for 345 mW of pump power and 1.5 dBm of signal power. The ultrafast signal processing capability was verified through wavelength conversion of 1.4 ps pulses at 8 GHz repetition rate. © 2011 Optical Society of America
Deymier, Pierre
2017-01-01
This book offers an essential introduction to the notions of sound wave topology, duality, coherence and wave-mixing, which constitute the emerging new science of sound. It includes general principles and specific examples that illuminate new non-conventional forms of sound (sound topology), unconventional quantum-like behavior of phonons (duality), radical linear and nonlinear phenomena associated with loss and its control (coherence), and exquisite effects that emerge from the interaction of sound with other physical and biological waves (wave mixing). The book provides the reader with the foundations needed to master these complex notions through simple yet meaningful examples. General principles for unraveling and describing the topology of acoustic wave functions in the space of their Eigen values are presented. These principles are then applied to uncover intrinsic and extrinsic approaches to achieving non-conventional topologies by breaking the time revers al symmetry of acoustic waves. Symmetry brea...
Four-wave-mixing in the loss low submicrometer Ta₂O₅ channel waveguide.
Wu, Chung-Lun; Chiu, Yi-Jen; Chen, Cong-Long; Lin, Yuan-Yao; Chu, Ann-Kuo; Lee, Chao-Kuei
2015-10-01
A degenerate four-wave-mixing (FWM) operation in the Ta2O5 submicrometer channel waveguide has been successfully demonstrated. The propagation loss of 1.5 dB/cm and total insertion loss of 5.1 dB are realized in a 12.6 mm long waveguide with inverse taper structure. The wavelength and quadratic pumping power-dependent measurements on optical transmission confirm FWM performance and characterize the nonlinearity of waveguide. The conversion efficiency of -50 dB at coupled pump power of 40 mW is observed, suggesting that the nonlinear refractive index of Ta2O5 waveguide at 1550 nm is estimated to be 1×10(-14) cm2/W. Our primary results indicate that the Ta2O5 submicrometer channel waveguide has great potential in developing nonlinear waveguide applications.
Rational design of metallic nanocavities for resonantly enhanced four-wave mixing
Almeida, Euclides
2015-01-01
Optimizing the shape of nanostructures and nano antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near infra-red to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear opti...
Rational design of metallic nanocavities for resonantly enhanced four-wave mixing
Almeida, Euclides; Prior, Yehiam
2015-01-01
Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell’s equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed. PMID:25974175
Rational design of metallic nanocavities for resonantly enhanced four-wave mixing.
Almeida, Euclides; Prior, Yehiam
2015-05-14
Optimizing the shape of nanostructures and nano-antennas for specific optical properties has evolved to be a very fruitful activity. With modern fabrication tools a large variety of possibilities is available for shaping both nanoparticles and nanocavities; in particular nanocavities in thin metal films have emerged as attractive candidates for new metamaterials and strong linear and nonlinear optical systems. Here we rationally design metallic nanocavities to boost their Four-Wave Mixing response by resonating the optical plasmonic resonances with the incoming and generated beams. The linear and nonlinear optical responses as well as the propagation of the electric fields inside the cavities are derived from the solution of Maxwell's equations by using the 3D finite-differences time domain method. The observed conversion-efficiency of near-infrared to visible light equals or surpasses that of BBO of equivalent thickness. Implications to further optimization for efficient and broadband ultrathin nonlinear optical materials are discussed.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
Metastability of the Nonlinear Wave Equation: Insights from Transition State Theory
Newhall, Katherine A.; Vanden-Eijnden, Eric
2017-06-01
This paper is concerned with the longtime dynamics of the nonlinear wave equation in one-space dimension, u_{tt} - κ ^2 u_{xx} +V'(u) =0 \\quad x\\in [0,1] where κ >0 is a parameter and V( u) is a potential bounded from below and growing at least like u^2 as |u|→ ∞. Infinite energy solutions of this equation preserve a natural Gibbsian invariant measure, and when the potential is double-welled, for example when V(u) = 1/4 (1-u^2)^2, there is a regime such that two small disjoint sets in the system's phase-space concentrate most of the mass of this measure. This suggests that the solutions to the nonlinear wave equation can be metastable over these sets, in the sense that they spend long periods of time in these sets and only rarely transition between them. Here, we quantify this phenomenon by calculating exactly via transition state theory (TST) the mean frequency at which the solutions of the nonlinear wave equation with initial conditions drawn from its invariant measure cross a dividing surface lying in between the metastable sets. We also investigate numerically how the mean TST frequency compares to the rate at which a typical solution crosses this dividing surface. These numerical results suggest that the dynamics of the nonlinear wave equation is ergodic and rapidly mixing with respect to the Gibbs invariant measure when the parameter κ in small enough. In this case, successive transitions between the two regions are roughly uncorrelated and their dynamics can be coarse-grained to jumps in a two-state Markov chain whose rate can be deduced from the mean TST frequency. This is a regime in which the dynamics of the nonlinear wave equation displays a metastable behavior that is not fundamentally different from that observed in its stochastic counterpart in which random noise and damping terms are added to the equation. For larger κ , however, the dynamics either stops being ergodic, or its mixing time becomes larger than the inverse of the TST frequency
Metastability of the Nonlinear Wave Equation: Insights from Transition State Theory
Newhall, Katherine A.; Vanden-Eijnden, Eric
2017-01-01
This paper is concerned with the longtime dynamics of the nonlinear wave equation in one-space dimension, u_{tt} - κ^2 u_{xx} +V'(u) =0 quad xin [0,1] where κ >0 is a parameter and V(u) is a potential bounded from below and growing at least like u^2 as |u|→ ∞. Infinite energy solutions of this equation preserve a natural Gibbsian invariant measure, and when the potential is double-welled, for example when V(u) = 1/4 (1-u^2)^2 , there is a regime such that two small disjoint sets in the system's phase-space concentrate most of the mass of this measure. This suggests that the solutions to the nonlinear wave equation can be metastable over these sets, in the sense that they spend long periods of time in these sets and only rarely transition between them. Here, we quantify this phenomenon by calculating exactly via transition state theory (TST) the mean frequency at which the solutions of the nonlinear wave equation with initial conditions drawn from its invariant measure cross a dividing surface lying in between the metastable sets. We also investigate numerically how the mean TST frequency compares to the rate at which a typical solution crosses this dividing surface. These numerical results suggest that the dynamics of the nonlinear wave equation is ergodic and rapidly mixing with respect to the Gibbs invariant measure when the parameter κ in small enough. In this case, successive transitions between the two regions are roughly uncorrelated and their dynamics can be coarse-grained to jumps in a two-state Markov chain whose rate can be deduced from the mean TST frequency. This is a regime in which the dynamics of the nonlinear wave equation displays a metastable behavior that is not fundamentally different from that observed in its stochastic counterpart in which random noise and damping terms are added to the equation. For larger κ, however, the dynamics either stops being ergodic, or its mixing time becomes larger than the inverse of the TST frequency
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.
Excitation of nonlinear ion acoustic waves in CH plasmas
Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T
2016-01-01
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...
Nonlinear electrostatic waves in inhomogeneous dense dusty magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Mahmood, S., E-mail: shahzad_mahmoodpk@yahoo.co [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2010-01-25
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.
Rotation-induced nonlinear wavepackets in internal waves
Energy Technology Data Exchange (ETDEWEB)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation-induced nonlinear wavepackets in internal waves
Whitfield, A. J.; Johnson, E. R.
2014-05-01
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Evolution of nonlinear internal waves in the East and South China Seas
Liu, Antony K.; Chang, Y. Steve; Hsu, Ming-K.; Liang, Nai K.
1998-04-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves northeast and south of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. On the basis of the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water by a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by the nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a "turning point" of approximately equal layer depths that has been observed in the SAR image and simulated by the numerical model. The importance of the dissipation effect in the coastal area is also discussed and demonstrated.
Monitoring Gold Nanoparticle Growth in Situ via the Acoustic Vibrations Probed by Four-Wave Mixing.
Wu, Jian; Xiang, Dao; Gordon, Reuven
2017-02-21
We monitor in situ gold nanoparticle growth in aqueous solution by probing the acoustic vibrations with four-wave mixing. We observe two acoustic vibrational modes of gold nanoparticles from the nonlinear optical response: an extensional mode with longitudinal expansion and transverse contraction and a breathing mode with radial expansion and contraction. The mode frequencies, which show an inverse dependence on the nanoparticle diameter, allow one to monitor the nanoparticle size and size distribution during synthesis. The information about the nanoparticle size and size distribution calculated on the basis of the mode frequencies agrees well with the results obtained from the electron microscopy analysis, validating the four-wave mixing technique as an accurate and effective tool for in situ monitoring of colloidal growth.
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Directory of Open Access Journals (Sweden)
Maxim A. Molchan
2007-08-01
Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.