WorldWideScience

Sample records for nonlinear wave interactions

  1. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  2. Nonlinear waves in strongly interacting relativistic fluids

    CERN Document Server

    Fogaça, D A; Filho, L G Ferreira

    2013-01-01

    During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...

  3. Nonlinear wave interactions in quantum magnetoplasmas

    CERN Document Server

    Shukla, P K; Marklund, M; Stenflo, L

    2006-01-01

    Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.

  4. Nonlinear Interaction of Waves in Geomaterials

    Science.gov (United States)

    Ostrovsky, L. A.

    2009-05-01

    Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.

  5. Nonlinear interactions between gravity waves and tides

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao; XU JiYao; MA RuiPing

    2007-01-01

    In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.

  6. Nonlinear interactions between gravity waves and tides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.

  7. Nonlinear shallow ocean-wave soliton interactions on flat beaches.

    Science.gov (United States)

    Ablowitz, Mark J; Baldwin, Douglas E

    2012-09-01

    Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.

  8. Parametric interaction and intensification of nonlinear Kelvin waves

    CERN Document Server

    Novotryasov, Vadim

    2008-01-01

    Observational evidence is presented for nonlinear interaction between mesoscale internal Kelvin waves at the tidal -- $\\omega_t$ or the inertial -- $\\omega_i$ frequency and oscillations of synoptic -- $\\Omega $ frequency of the background coastal current of Japan/East Sea. Enhanced coastal currents at the sum -- $\\omega_+ $ and dif -- $\\omega_-$ frequencies: $\\omega_\\pm =\\omega_{t,i}\\pm \\Omega$ have properties of propagating Kelvin waves suggesting permanent energy exchange from the synoptic band to the mesoscale $\\omega_\\pm $ band. The interaction may be responsible for the greater than predicted intensification, steepen and break of boundary trapped and equatorially trapped Kelvin waves, which can affect El Ni\\~{n}o. The problem on the parametric interaction of the nonlinear Kelvin wave at the frequency $\\omega $ and the low-frequency narrow-band nose with representative frequency $\\Omega\\ll\\omega $ is investigated with the theory of nonlinear week dispersion waves.

  9. Kinetic equation for nonlinear resonant wave-particle interaction

    Science.gov (United States)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  10. The Gouy phase shift in nonlinear interactions of waves

    Science.gov (United States)

    Lastzka, Nico; Schnabel, Roman

    2007-06-01

    We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.

  11. Nonlinear interaction of waves in boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.

  12. Numerical method of studying nonlinear interactions between long waves and multiple short waves

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei

    2009-01-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.

  13. Nonlinear interaction of two waves in boundary-layer flows

    Science.gov (United States)

    Nayfeh, A. H.; Bozatli, A. N.

    1980-01-01

    First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.

  14. Nonlinear Acoustic Wave Interactions in Layered Media.

    Science.gov (United States)

    1980-03-06

    Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical

  15. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...

  16. Probabilistic approach to nonlinear wave-particle resonant interaction

    Science.gov (United States)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2017-02-01

    In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.

  17. Nonlinear Wave-Currents interactions in shallow water

    CERN Document Server

    Lannes, David

    2015-01-01

    We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...

  18. Nonlinear processes in the strong wave-plasma interaction

    Science.gov (United States)

    Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei

    2000-10-01

    Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.

  19. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  20. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  1. Inverse problem for multi-body interaction of nonlinear waves

    CERN Document Server

    Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2016-01-01

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.

  2. The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments

    Institute of Scientific and Technical Information of China (English)

    杨永增; 纪永刚; 袁业立

    2003-01-01

    This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.

  3. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter

  4. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  5. Inverse problem for multi-body interaction of nonlinear waves.

    Science.gov (United States)

    Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2017-06-14

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.

  6. Possible second-order nonlinear interactions of plane waves in an elastic solid

    NARCIS (Netherlands)

    Korneev, V.A.; Demcenko, A.

    2014-01-01

    There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The cons

  7. Generation of secondary waves arising from nonlinear interaction between the quasi 2 day wave and the migrating diurnal tide

    Science.gov (United States)

    Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.

    2016-07-01

    Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.

  8. Nonlinear gravity-wave interactions in stratified turbulence

    Science.gov (United States)

    Remmel, Mark; Sukhatme, Jai; Smith, Leslie M.

    2014-04-01

    To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called "fast") gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers ( Fr) considered (0.05 ≤ Fr ≤ 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.

  9. Possible second-order nonlinear interactions of plane waves in an elastic solid.

    Science.gov (United States)

    Korneev, V A; Demčenko, A

    2014-02-01

    There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.

  10. Statistical analysis of nonlinear wave interactions in simulated Langmuir turbulence data

    Directory of Open Access Journals (Sweden)

    J. Soucek

    Full Text Available We present a statistical analysis of strong turbulence of Langmuir and ion-sound waves resulting from beam-plasma interaction. The analysis is carried out on data sets produced by a numerical simulation of one-dimensional Zakharov’s equations. The nonlinear wave interactions are studied using two different approaches: high-order spectra and Volterra models. These methods were applied to identify two and three wave processes in the data, and the Volterra model was furthermore employed to evaluate the direction and magnitude of energy transfer between the wave modes in the case of Langmuir wave decay. We demonstrate that these methods allow one to determine the relative importance of strongly and weakly turbulent processes. The statistical validity of the results was thoroughly tested using surrogated data set analysis.

    Key words. Space plasma physics (wave-wave interactions; experimental and mathematical techniques; nonlinear phenomena

  11. Nonlinear infragravity–wave interactions on a gently sloping laboratory beach

    NARCIS (Netherlands)

    De Bakker, A.T.M.; Herbers, T.H.C.; Smit, P.B.; Tissier, M.F.S.; Ruessink, B.G.

    2015-01-01

    A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra

  12. Nonlinear infragravity-wave interactions on a gently sloping laboratory beach

    NARCIS (Netherlands)

    de Bakker, A. T M; Herbers, T. H C; Smit, P. B.; Tissier, M. F S; Ruessink, B. G.

    2015-01-01

    A high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy tra

  13. Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves

    Science.gov (United States)

    Luk, Onnie

    The convective cells are observed in the auroral ionosphere and they could play an important role in the nonlinear interaction of Alfven waves and disrupt the kinetic Alfven wave (KAW) turbulence. Zonal fields, which are analogous to convective cells, are generated by microturbulence and regulate microturbulence inside toroidally confined plasmas. It is important to understand the role of convective cells in the nonlinear interaction of KAW leading to perpendicular cascade of spectral energy. A nonlinear gyrokinetic particle simulation has been developed to study the perpendicular spectral cascade of kinetic Alfven wave. However, convective cells were excluded in the study. In this thesis project, we have modified the formulation to implement the convective cells to study their role in the nonlinear interactions of KAW. This thesis contains detail description of the code formulation and convergence tests performed, and the simulation results on the role of convective cells in the nonlinear interactions of KAW. In the single KAW pump wave simulations, we observed the pump wave energy cascades to waves with shorter wavelengths, with three of them as dominant daughter waves. Convective cells are among those dominant daughter waves and they enhance the rate of energy transfer from pump to daughter waves. When zonal fields are present, the growth rates of the dominant daughter waves are doubled. The convective cell (zonal flow) of the zonal fields is shown to play a major role in the nonlinear wave interaction, while the linear zonal vector potential has little effects. The growth rates of the daughter waves linearly depends on the pump wave amplitude and the square of perpendicular wavenumber. On the other hand, the growth rates do not depend on the parallel wavenumber in the limit where the parallel wavenumber is much smaller than the perpendicular wavenumber. The nonlinear wave interactions with various perpendicular wavenumbers are also studied in this work. When

  14. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  15. Interacting wave fronts and rarefaction waves in a second order model of nonlinear thermoviscous fluids : Interacting fronts and rarefaction waves

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2011-01-01

    A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...

  16. The effect of crack orientation on the nonlinear interaction of a P wave with an S wave

    Science.gov (United States)

    TenCate, J. A.; Malcolm, A. E.; Feng, X.; Fehler, M. C.

    2016-06-01

    Cracks, joints, fluids, and other pore-scale structures have long been hypothesized to be the cause of the large elastic nonlinearity observed in rocks. It is difficult to definitively say which pore-scale features are most important, however, because of the difficulty in isolating the source of the nonlinear interaction. In this work, we focus on the influence of cracks on the recorded nonlinear signal and in particular on how the orientation of microcracks changes the strength of the nonlinear interaction. We do this by studying the effect of orientation on the measurements in a rock with anisotropy correlated with the presence and alignment of microcracks. We measure the nonlinear response via the traveltime delay induced in a low-amplitude P wave probe by a high-amplitude S wave pump. We find evidence that crack orientation has a significant effect on the nonlinear signal.

  17. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation kno...

  18. Interaction of Tangent Conormal Waves for Higher-Order Nonlinear Strictly Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    尹会成; 仇庆久

    1994-01-01

    In this paper we deal with the interaction of three conormal waves for a class of third-order nonlinear strictly hyperbolic equations, in which two conormal waves are tangent. By the same argument, we may also discuss the similar problem for equation system of compressible fluid flow and obtain similar conclusions.

  19. Nonlinear instability and chaos in plasma wave-wave interactions. II. Numerical methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Kueny, C.S.; Morrison, P.J.

    1995-05-01

    In Part I of this work and Physics of Plasmas, June 1995, the behavior of linearly stable, integrable systems of waves in a simple plasma model was described using a Hamiltonian formulation. It was shown that explosive instability arises from nonlinear coupling between modes of positive and negative energy, with well-defined threshold amplitudes depending on the physical parameters. In this concluding paper, the nonintegrable case is treated numerically. Several sets of waves are considered, comprising systems of two and three degrees of freedom. The time evolution is modelled with an explicit symplectic integration algorithm derived using Lie algebraic methods. When initial wave amplitudes are large enough to support two-wave decay interactions, strongly chaotic motion destroys the separatrix bounding the stable region for explosive triplets. Phase space orbits then experience diffusive growth to amplitudes that are sufficient for explosive instability, thus effectively reducing the threshold amplitude. For initial amplitudes too small to drive decay instability, small perturbations might still grow to arbitrary size via Arnold diffusion. Numerical experiments do not show diffusion in this case, although the actual diffusion rate is probably underestimated due to the simplicity of the model.

  20. Theoretical and Experimental Study on the Acoustic Wave Energy After the Nonlinear Interaction of Acoustic Waves in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦

    2015-01-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  1. Numerical investigation of nonlinear interactions between multimodal guided waves and delamination in composite structures

    Science.gov (United States)

    Shen, Yanfeng

    2017-04-01

    This paper presents a numerical investigation of the nonlinear interactions between multimodal guided waves and delamination in composite structures. The elastodynamic wave equations for anisotropic composite laminate were formulated using an explicit Local Interaction Simulation Approach (LISA). The contact dynamics was modeled using the penalty method. In order to capture the stick-slip contact motion, a Coulomb friction law was integrated into the computation procedure. A random gap function was defined for the contact pairs to model distributed initial closures or openings to approximate the nature of rough delamination interfaces. The LISA procedure was coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized computation on powerful graphic cards. Several guided wave modes centered at various frequencies were investigated as the incident wave. Numerical case studies of different delamination locations across the thickness were carried out. The capability of different wave modes at various frequencies to trigger the Contact Acoustic Nonlinearity (CAN) was studied. The correlation between the delamination size and the signal nonlinearity was also investigated. Furthermore, the influence from the roughness of the delamination interfaces was discussed as well. The numerical investigation shows that the nonlinear features of wave delamination interactions can enhance the evaluation capability of guided wave Structural Health Monitoring (SHM) system. This paper finishes with discussion, concluding remarks, and suggestions for future work.

  2. Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations

    CERN Document Server

    Luk, Jonathan

    2013-01-01

    In this paper, we study the problem of the nonlinear interaction of impulsive gravitational waves for the Einstein vacuum equations. The problem is studied in the context of a characteristic initial value problem with data given on two null hypersurfaces and containing curvature delta singularities. We establish an existence and uniqueness result for the spacetime arising from such data and show that the resulting spacetime represents the interaction of two impulsive gravitational waves germinating from the initial singularities. In the spacetime, the curvature delta singularities propagate along 3-dimensional null hypersurfaces intersecting to the future of the data. To the past of the intersection, the spacetime can be thought of as containing two independent, non-interacting impulsive gravitational waves and the intersection represents the first instance of their nonlinear interaction. Our analysis extends to the region past their first interaction and shows that the spacetime still remains smooth away fro...

  3. Characterizing the nonlinear interaction of S- and P-waves in a rock sample

    CERN Document Server

    Gallot, Thomas; Szabo, Thomas L; Brown, Stephen; Burns, Daniel; Fehler, Michael

    2014-01-01

    The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility the nonlinear characterization of rocks as an imaging tool in a field scenario. The nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump has been studied on a room-dry 15 x 15x 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the ...

  4. Resonant nonlinear interactions between atmospheric waves in the polar summer mesopause region

    Institute of Scientific and Technical Information of China (English)

    LIU; Renqiang; (刘仁强); YI; Fan; (易帆)

    2003-01-01

    Data obtained from the mobile SOUSY VHF radar at And(ya/Norway in summer 1987 have been used to study the nonlinear interactions between planetary waves, tides and gravity waves in the polar mesosphere, and the instability of background atmosphere above the mesopause. It is observed that 35-h planetary wave, diurnal, semidiurnal and terdiurnal tides are the prominent perturbations in the Lomb-Scargle spectra of the zonal wind component. By inspecting the frequency combinations, several triads are identified. By bispectral analysis it is shown that most bispectral peaks stand for quadratic coupling between tidal harmonics or between tide and planetary or gravity wave, and the height dependence of bispectral peaks reflects the variation of wave-wave interactions. Above the mesopause, the occurrence heights of the maximum L-S power spectral peaks corresponding to the prominent wave components tend to increase with their frequencies. This may result from the process in which two low frequency waves interact to generate a high frequency wave. Intensities of the planetary wave and tides increase gradually, arrive at their maxima, and then decay quickly in turn with increasing height. This kind of scene correlates with a "chain" of wave-wave resonant interactions that shifts with height from lower frequency segment to higher frequency segment. By instability analysis, it is observed that above the mesopause, the Richardson number becomes smaller and smaller with height, implying that the turbulent motion grows stronger and stronger and accordingly the background atmosphere more and more instable. It is suggested that the wave-wave sum resonant interaction and the wave dissipation due to instability are two dominant dynamical processes that occur in the mesopause region. The former invokes the energy transfer from lower frequency waves to higher frequency waves. The latter results in the heating of the atmosphere and accelerating of the background flow.

  5. Long-term wave growth and its linear and nonlinear interactions with wind fluctuations

    Directory of Open Access Journals (Sweden)

    Z. Ge

    2008-05-01

    Full Text Available Following Ge and Liu (2007, the simultaneously recorded time series of wave elevation and wind velocity are examined for long-term (on Lavrenov's τ4-scale or 3 to 6 h linear and nonlinear interactions between the wind fluctuations and the wave field. Over such long times the detected interaction patterns should reveal general characteristics for the wave growth process. The time series are divided into three episodes, each approximately 1.33 h long, to represent three sequential stages of wave growth. The classic Fourier-domain spectral and bispectral analyses are used to identify the linear and quadratic interactions between the waves and the wind fluctuations as well as between different components of the wave field.

    The results show clearly that as the wave field grows the linear interaction becomes enhanced and covers wider range of frequencies. Two different wave-induced components of the wind fluctuations are identified. These components, one at around 0.4 Hz and the other at around 0.15 to 0.2 Hz, are generated and supported by both linear and quadratic wind-wave interactions probably through the distortions of the waves to the wind field. The fact that the higher-frequency wave-induced component always stays with the equilibrium range of the wave spectrum around 0.4 Hz and the lower-frequency one tends to move with the downshifting of the primary peak of the wave spectrum defines the partition of the primary peak and the equilibrium range of the wave spectrum, a characteristic that could not be revealed by short-time wavelet-based analyses in Ge and Liu (2007. Furthermore, these two wave-induced peaks of the wind spectrum appear to have different patterns of feedback to the wave field. The quadratic wave-wave interactions also are assessed using the auto-bispectrum and are found to be especially active during the first and the third episodes. Such directly detected wind-wave interactions, both linear and

  6. Nonlinear interaction between the diurnal and semidiurnal tides: Terdiurnal and diurnal secondary waves

    Science.gov (United States)

    Teitelbaum, H.; Vial, F.; Manson, A. H.; Giraldez, R.; Masseboeuf, M.

    1989-01-01

    Many years of measurements obtained using French meteor radars at Garchy (latitude 47 N) and Montpazier (latitude 44 N) are used to show the existence of an 8 hour oscillation. Some examples of the structure of this wave are displayed and compared with measurements performed at Saskatoon (latitude 52 N) and Budrio (latitude 45 N). This wave can be interpreted as the solar driven terdiurnal tide, or as the result of the nonlinear interaction between the diurnal and semidiurnal tides. Both hypotheses are tested with numerical models. Incidentally, the possible existence of a 24 hour wave resulting from this interaction is also studied.

  7. Wavenumber shift due to nonlinear plasma and wave interaction

    Science.gov (United States)

    Gan, Chunyun; Xiang, Nong; Yu, Zhi; Yang, Youlei; Ou, Jing

    2016-06-01

    Wavenumber shift of the ion Bernstein wave has been observed in the particle-in-cell simulations when the input power of the injected wave is sufficiently large. It is demonstrated that the increase of the total kinetic energy of ions, including both the thermal energy related to the random thermal motion and the oscillation energy due to the coherent motion with the wave, gives rise to such change of the wavenumber. However, the velocity distribution function of the ions can approximately be fitted as a Maxwellian distribution function, and thus, the linear dispersion relation still holds, provided that the initial ion temperature is replaced by the effective temperature measured in the simulation.

  8. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence

  9. Characterizing the nonlinear interaction of S- and P-waves in a rock sample

    Science.gov (United States)

    Gallot, Thomas; Malcolm, Alison; Szabo, Thomas L.; Brown, Stephen; Burns, Daniel; Fehler, Michael

    2015-01-01

    The nonlinear elastic response of rocks is known to be caused by the rocks' microstructure, particularly cracks and fluids. This paper presents a method for characterizing the nonlinearity of rocks in a laboratory scale experiment with a unique configuration. This configuration has been designed to open up the possibility of using the nonlinear characterization of rocks as an imaging tool in the field. In our experiment, we study the nonlinear interaction of two traveling waves: a low-amplitude 500 kHz P-wave probe and a high-amplitude 50 kHz S-wave pump in a room-dry 15 × 15 × 3 cm slab of Berea sandstone. Changes in the arrival time of the P-wave probe as it passes through the perturbation created by the traveling S-wave pump were recorded. Waveforms were time gated to simulate a semi-infinite medium. The shear wave phase relative to the P-wave probe signal was varied with resultant changes in the P-wave probe arrival time of up to 100 ns, corresponding to a change in elastic properties of 0.2%. In order to estimate the strain in our sample, we also measured the particle velocity at the sample surface to scale a finite difference linear elastic simulation to estimate the complex strain field in the sample, on the order of 10-6, induced by the S-wave pump. We derived a fourth order elastic model to relate the changes in elasticity to the pump strain components. We recover quadratic and cubic nonlinear parameters: β ˜ = - 872 and δ ˜ = - 1.1 × 10 10 , respectively, at room-temperature and when particle motions of the pump and probe waves are aligned. Temperature fluctuations are correlated to changes in the recovered values of β ˜ and δ ˜ , and we find that the nonlinear parameter changes when the particle motions are orthogonal. No evidence of slow dynamics was seen in our measurements. The same experimental configuration, when applied to Lucite and aluminum, produced no measurable nonlinear effects. In summary, a method of selectively determining the

  10. Nonlinear wave-particle interactions in the outer radiation belts: Van Allen Probes results

    Science.gov (United States)

    Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton; Drake, James; Vasko, Ivan

    2016-10-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. Observations of electron velocity distributions and chorus waves by the Van Allen Probe B provided long-lasting signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. The feedback from trapped particles provides steepening of parallel electric field and development of TDS seeded from initial whistler structure (well explained in terms of Particle-In-Cell model). The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system and are observed by the Van Allen Probes in the radiation belts.

  11. Numerical simulation of nonlinear long waves interacting with arrays of emergent cylinders

    CERN Document Server

    Zainali, Amir; Weiss, Robert; Irish, Jennifer L; Yang, Yongqian

    2016-01-01

    We presented numerical simulation of long waves, interacting with arrays of emergent cylinders inside regularly spaced patches, representing discontinues patchy coastal vegetation. We employed the fully nonlinear and weakly dispersive Serre-Green-Naghdi equations (SGN) until the breaking process starts, while we changed the governing equations to nonlinear shallow water equations (NSW) at the vicinity of the breaking-wave peak and during the runup stage. We modeled the cylinders as physical boundaries rather than approximating them as macro-roughness friction. We showed that the cylinders provide protection for the areas behind them. However they might also cause amplification in local water depth in those areas. The presented results are extensively validated against the existing numerical and experimental data. Our results demonstrate the capability and reliability of our model in simulating wave interaction with emergent cylinders.

  12. Wavenumber resonance in nonlinear wave interactions in the wake of a flat plate

    Science.gov (United States)

    Davila, Jose Benigno

    The spatial traits of nonlinear wave interactions in transitioning flow in the symmetric wake of a flat plate were studied. The study combines the use of hot wire anemometry and digital analysis techniques for extracting frequency and wavenumber information from velocity fluctuation time series measurements. The linear spatial coherence was computed from velocity fluctuation data in order to determine if the frequency modes behave as waves, that is, spatially coherent fluctuations with a well defined dispersion relation. A new method was used to compute the mode triad wavenumber mismatch. The results were used to determine to what extent wavenumber resonance is present among quadratically interacting frequency resonant modes, as predicted by resonant wave interaction theory. The results show that, in the early part of the transition, instability modes interact nonlinearity to generate spatially coherent modes at frequencies above the instability range. Quadratically interacting, frequency resonant mode triads involve the transfer of energy to the harmonics of the fundamental instability exhibit good wavenumber resonance, as predicted by resonant wave interaction theory.

  13. Experimental and theoretical modelling of sand-water-object interaction under nonlinear progressive waves

    Science.gov (United States)

    Testik, Firat Yener

    An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical

  14. Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations

    Science.gov (United States)

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong; Chen, Yong

    2017-04-01

    We investigate the defocusing coupled nonlinear Schrödinger equations from a 3 ×3 Lax pair. The Darboux transformations with the nonzero plane-wave solutions are presented to derive the newly localized wave solutions including dark-dark and bright-dark solitons, breather-breather solutions, and different types of new vector rogue wave solutions, as well as interactions between distinct types of localized wave solutions. Moreover, we analyze these solutions by means of parameters modulation. Finally, the perturbed wave propagations of some obtained solutions are explored by means of systematic simulations, which demonstrates that nearly stable and strongly unstable solutions. Our research results could constitute a significant contribution to explore the distinct nonlinear waves (e.g., dark solitons, breather solutions, and rogue wave solutions) dynamics of the coupled system in related fields such as nonlinear optics, plasma physics, oceanography, and Bose-Einstein condensates.

  15. Transition waves and nonlinear interactions in the near wake of a circular cylinder

    Institute of Scientific and Technical Information of China (English)

    凌国灿; Allen T.Chwang; 牛家玉; 王冬(女菱)

    1997-01-01

    Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method.Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency,i.e.ft/fa~Re0.87 are obtained.The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza’s prediction and some early experimental results ft/fa-Re0.5 given by Bloor et al.The multi-interactions between two kinds of vortex are clearly visualized numerically.The strong nonlinear interactions between the two independent frequencies (ft,fa) leading to spectra broadening to form the coupling mfs±nft are predicted and analyzed numerically,and the characteristics of the transition are described.Longitudinal variations of the transition wave and its coupling are reported.Deta

  16. Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves

    Science.gov (United States)

    2012-09-30

    the Nonlinear Schrodinger equation and its exact solutions. Numerical simulations of the fully nonlinear Euler equation have also been performed in... Schrodinger breathers, Proceedings of ECMWF Workshop on "Ocean Waves" - 25 to 27 June 2012 [published] • Onorato, M. and Proment, D.; Approximate rogue wave

  17. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  18. Cross-polarized wave generation by effective cubic nonlinear optical interaction.

    Science.gov (United States)

    Petrov, G I; Albert, O; Etchepare, J; Saltiel, S M

    2001-03-15

    A new cubic nonlinear optical effect in which a linearly polarized wave propagating in a single quadratic medium is converted into a wave that is cross polarized to the input wave is observed in BBO crystal. The effect is explained by cascading of two different second-order processes: second-harmonic generation and difference frequency mixing.

  19. Noise generation in the solid Earth, oceans, and atmosphere, from non-linear interacting surface gravity waves in finite depth

    CERN Document Server

    Ardhuin, Fabrice

    2012-01-01

    Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...

  20. Study of Nonlinear Interaction and Turbulence of Alfven Waves in LAPD Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boldyrev, Stanislav; Perez, Jean Carlos

    2013-11-29

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracy the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the

  1. Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    Science.gov (United States)

    Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.

    1984-04-01

    Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.

  2. Various Kinds Waves and Solitons Interaction Solutions of Boussinesq Equation Describing Ultrashort Pulse in Quadratic Nonlinear Medium

    Science.gov (United States)

    Guo, Bang-Xing; Gao, Zhan-Jie; Lin, Ji

    2016-12-01

    The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves. Supported by the National Natural Science Foundation of Zhejiang Province under Grant No. LZ15A050001 and the National Natural Science Foundation of China under Grant No. 11675164

  3. Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by Particle-in-Cell simulations

    OpenAIRE

    Camporeale, Enrico; Zimbardo, G.

    2015-01-01

    We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earths radiation belt. By tracking PIC particles, and comparing with test-particle simulations we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi- linear theory routinely used in ...

  4. Effect of nonlinear wave-current interaction on flow fields and hydrodynamic forces

    Institute of Scientific and Technical Information of China (English)

    王涛; 李家春

    1997-01-01

    A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does so by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.

  5. ARTICLES: Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition

    Science.gov (United States)

    Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.

    1984-04-01

    The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.

  6. Numerical Simulations for Nonlinear Waves Interaction with Multiple Perforated Quasi-Ellipse Caissons

    Directory of Open Access Journals (Sweden)

    Xiaozhong Ren

    2015-01-01

    Full Text Available A three-dimensional numerical flume is developed to study cnoidal wave interaction with multiple arranged perforated quasi-ellipse caissons. The continuity equation and the Navier-Stokes equations are used as the governing equation, and the VOF method is adopted to capture the free surface elevation. The equations are discretized on staggered cells and then solved using a finite difference method. The generation and propagation of cnoidal waves in the numerical flume are tested first. And the ability of the present model to simulate interactions between waves and structures is verified by known experimental results. Then cnoidal waves with varying incident wave height and period are generated and interact with multiple quasi-ellipse caissons with and without perforation. It is found that the perforation plays an effective role in reducing wave runup/rundown and wave forces on the caissons. The wave forces on caissons reduce with the decreasing incident wave period. The influence of the transverse distance of multiple caissons on wave forces is also investigated. A closer transverse distance between caissons can produce larger wave forces. But when relative adjacent distance L/D (L is the transverse distance and D is the width of the quasi-ellipse caisson is larger than 3, the effect of adjacent distance is limited.

  7. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  8. Nonlinear interactions in superfluid dynamics: Nonstationary heat transfer due to second sound shock waves

    Science.gov (United States)

    Liepmann, H. W.; Torczynski, J. R.

    1983-01-01

    Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.

  9. Nonlinear phenomena in wave-body interaction: description and theoretical modeling; Les effets non-lineaires en interaction houle-structure et leur modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Molin, B. [Ecole Generaliste d' Ingenieurs de Marseille, 13 (France)

    2006-03-15

    At first approximation, the study of wave interaction with fixed or floating bodies is carried out within a linear frame. However nonlinear effects are numerous and they have diverse origins: mechanical nonlinearities, variation in time of the wetted part of the hull, viscous phenomena (flow separation), nonlinear free surface equations. We focus here on the latter type of nonlinearities. Two different approaches are described, both being based on potential flow theory. Practical applications are given for two basic geometries: a vertical cylinder and a vertical plate, perpendicular to the wave direction. In the first approach, one proceeds through successive approximations, based on a perturbation series development. The first-order of approximation coincides with the linear theory. The main interest of the second-order of approximation, well mastered nowadays, is that it yields excitation loads in an enlarged frequency domain, encompassing most of the natural frequencies of the system considered. At third-order the complexity of the equations becomes dissuasive and few researchers have ventured there. We suggest that third-order (or tertiary) interactions, between incoming waves and reflected waves by the structure, can play a very important role, overlooked so far, in phenomena such as run-up or green water. In the second approach one integrates in time and space the nonlinear equations of the initial boundary value problem, with the free surface equations being exactly satisfied. In this way one obtains numerical equivalents of the physical wave-tanks. They are briefly described and some illustrative results are given. (authors)

  10. Nonlinear interaction of intense electromagnetic waves with a magnetoactive electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S. M.; Rastbood, E.; Zeinaddini Meymand, H. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2013-08-15

    The nonlinear coupling between circularly polarized electromagnetic (CPEM) waves and acoustic-like waves in a magnetoactive electron-positron-ion (e-p-i) plasma is studied, taking into account the relativistic motion of electrons and positrons. The possibility of modulational instability and its growth rate as well as the envelope soliton formation and its characteristics in such plasmas are investigated. It is found that the growth rate of modulation instability increases in the case that ω{sub c}/ω<1 (ω{sub c} and ω are the electron gyrofrequency and the CPEM wave frequency, respectively) and decreases in the case that ω{sub c}/ω>1. It is also shown that in a magnetoactive e-p-i plasma, the width of bright soliton increases/decreases in case of (ω{sub c}/ω)<1/(ω{sub c}/ω)>1 by increasing the magnetic field strength.

  11. Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons

    Science.gov (United States)

    Johansson; Aubry

    2000-05-01

    We investigate the long-time evolution of weakly perturbed single-site breathers (localized stationary states) in the discrete nonlinear Schrodinger equation. The perturbations we consider correspond to time-periodic solutions of the linearized equations around the breather, and can be either (i) spatially localized or (ii) spatially extended. For case (i), which corresponds to the excitation of an internal mode of the breather, we find that the nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather amplitude and frequency. In case (ii), corresponding to interaction between the breather and a standing-wave phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition yields a limit value for the breather frequency above which no further growth is possible. We also discuss another mechanism for breather growth and destruction which becomes important when the amplitude of the perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-wave phonons.

  12. Wave equation with concentrated nonlinearities

    OpenAIRE

    Noja, Diego; Posilicano, Andrea

    2004-01-01

    In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...

  13. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  14. Nonlinear fast magnetoacoustic wave interaction with 2D magnetic X-points in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D

    2012-01-01

    Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...

  15. Nonlinear Fourier analysis with cnoidal waves

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)

    1996-12-31

    Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.

  16. Helical waves and non-linear dynamics of fluid/structure interactions in a tube row

    Energy Technology Data Exchange (ETDEWEB)

    Moon, F.C.; Thothadri, M. [Cornell Univ., Ithaca, NY (United States)

    1997-12-31

    The goal of this study has been to investigate low-dimensional models for fluid-structure dynamics of flow across a row of cylindrical tubes. Four principle results of this experimental-theoretical study are discussed. (i) Experimental evidence has shown that the dynamic instability of the tube row is a subcritical Hopf bifurcation. (ii) The critical flow velocity decreases as the number of flexible cylinders increases. (iii) The linear model exhibits coupled helical wave solutions in the tube dynamics. (iv) A nonlinear model of the tube motions shows a complex subcritical Hopf bifurcation with a secondary bifurcation to a torus or quasi-periodic oscillation. In this analysis the tools of center manifolds, normal forms and numerical simulation are used.

  17. A non-linear wave decomposition model for efficient wave–structure interaction. Part A: Formulation, validations and analysis

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Engsig-Karup, Allan Peter; Bingham, Harry B.;

    2014-01-01

    This paper deals with the development of an enhanced model for solving wave–wave and wave–structure interaction problems. We describe the application of a non-linear splitting method originally suggested by Di Mascio et al. [1], to the high-order finite difference model developed by Bingham et al....... [2] and extended by Engsig-Karup et al. [3] and [4]. The enhanced strategy is based on splitting all solution variables into incident and scattered fields, where the incident field is assumed to be known and only the scattered field needs to be computed by the numerical model. Although this splitting...

  18. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction

    KAUST Repository

    Said-Houari, Belkacem

    2012-09-01

    The goal of this work is to study a model of the viscoelastic wave equation with nonlinear boundary/interior sources and a nonlinear interior damping. First, applying the Faedo-Galerkin approximations combined with the compactness method to obtain existence of regular global solutions to an auxiliary problem with globally Lipschitz source terms and with initial data in the potential well. It is important to emphasize that it is not possible to consider density arguments to pass from regular to weak solutions if one considers regular solutions of our problem where the source terms are locally Lipschitz functions. To overcome this difficulty, we use an approximation method involving truncated sources and adapting the ideas in [13] to show that the existence of weak solutions can still be obtained for our problem. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term, then the solution ceases to exist and blows up in finite time provided that the initial data are large enough.

  19. Nonlinear interaction of instability waves and vortex-pairing noise in axisymmetric subsonic jets

    Science.gov (United States)

    Yang, Hai-Hua; Zhou, Lin; Zhang, Xing-Chen; Wan, Zhen-Hua; Sun, De-Jun

    2016-10-01

    A direct simulation with selected inflow forcing is performed for an accurate description of the jet flow field and far-field noise. The effects of the Mach number and heating on the acoustic field are studied in detail. The beam patterns and acoustic intensities are both varied as the change of the Mach number and temperature. The decomposition of the source terms of the Lilley-Goldstein (L-G) equation shows that the momentum and thermodynamic components lead to distinctly different beam patterns. Significant cancellation is found between the momentum and thermodynamic components at low polar angles for the isothermal jet and large polar angles for the hot jet. The cancellation leads to the minimum values of the far-field sound. Based on linear parabolized stability equation solutions, the nonlinear interaction model for sound prediction is built in combination with the L-G equation. The dominant beam patterns and their original locations predicted by the nonlinear model are in good agreement with the direct simulation results, and the predictions of sound pressure level (SPL) by the nonlinear model are relatively reasonable.

  20. Interaction of linear and nonlinear ion-sound waves with inclusions of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Grimalsky, V V [National Institute for Astrophysics, Optics, and Electronics (INAOE), Z.P. 72000, Puebla (Mexico); Koshevaya, S V [Autonomous University of Morelos (UAEM), FCQeI, CIICAp, Z.P. 62210, Cuernavaca, Mor. (Mexico); Enriquez, R Perez- [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico); Kotsarenko, A N [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico)

    2006-09-15

    Diverse phenomena exist in the ionosphere caused by the presence of dusty plasma objects. These have a bearing on problems of space communication and possibly on the Earth's weather, among others. Therefore, it is very important to study them so that many questions on the subject can be answered. In this paper, the interaction of plasma waves with these objects is studied and some instrumentation to measure such interactions is proposed. In particular, the interaction of ion-sound waves (ISW) by non-soliton and soliton pulses propagating in dusty plasma is investigated. It is shown that inclusions of dusty components of the ionosphere plasma behave as resonators for non-soliton pulses, so that ISW are excited. Korteveg-de Vries (KdV) solitons practically do not resonate with the inclusions of dusty plasma. Instead, the presence of dusty plasma inclusions can lead to the presence of transverse instabilities and the eventual destruction of the KdV solitons.

  1. Wave-particle interactions with parallel whistler waves: Nonlinear and time-dependent effects revealed by particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Enrico, E-mail: e.camporeale@cwi.nl [Center for Mathematics and Computer Science (CWI), 1098 XG Amsterdam (Netherlands); Zimbardo, Gaetano [Department of Physics, University of Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy)

    2015-09-15

    We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.

  2. Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by Particle-in-Cell simulations

    CERN Document Server

    Camporeale, Enrico

    2014-01-01

    We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates. We discuss how the saturation is related to the fact that the domain in which the particles' pitch angle diffuse is bounded, and to the well-known problem of $90^\\circ$ diffusion barrier.

  3. Solitary waves on nonlinear elastic rods. I

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.

    1984-01-01

    Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...

  4. Nonlinear Self-Adjointness, Conservation Laws and Soliton-Cnoidal Wave Interaction Solutions of (2+1)-Dimensional Modified Dispersive Water-Wave System

    Science.gov (United States)

    Xia, Ya-Rong; Xin, Xiang-Peng; Zhang, Shun-Li

    2017-01-01

    This paper mainly discusses the (2+1)-dimensional modified dispersive water-wave (MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlevé analysis and consistent tanh-function expansion (CTE) method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved. Supported by National Natural Science Foundation of China under Grant Nos. 11371293, 11505090, the Natural Science Foundation of Shaanxi Province under Grant No. 2014JM2-1009, Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009 and the Science and Technology Innovation Foundation of Xi’an under Grant No. CYX1531WL41

  5. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...

  6. Nonlinear hyperbolic waves in multidimensions

    CERN Document Server

    Prasad, Phoolan

    2001-01-01

    The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...

  7. Bispectrum Analysis of Non-linear wave-wave Interaction between VLF Transmitter signal and ELF emission on the Basis of DEMETER satellite observations

    Science.gov (United States)

    Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar

    2016-07-01

    Symmetric sidebands are observed in the ionosphere by the DEMETER (Detection of Electromagnetic Radiation Transmitted through Earthquake Region) satellite, when it passes above the Indian VLF transmitter, named VTX (18.2 kHz), located near Kanyakumari, India. The spectral boarding phenomena may be divided into two types: (1) spectrally broadened components occurring without any association with ELF/VLF emissions under disturbed ionospheric condition, (2) Spectrally broadened components with predominant side band structure in association with ELF emission. Generally spectral analysis at second order (Power spectrum) is used to analyze the frequency component of signal, but it losses the phase information among the different Fourier components. To retain this information the bispectrum (third order) and/or the bicoherence (normalized bispectrum) are used. Results suggest a non-linear mode coupling between the transmitter signal and ELF emission which produces sidebands that are quasi-electrostatic in nature. However, faint spectral broadened components in both types 1 and 2 may be connected with Doppler shift of quasi-electrostatic, whistler mode waves with a broad spectrum near resonance cone, due to scattering of the transmitter signals from ionospheric irregularities in the F-region. Keywords: spectral boarding, wave-wave Interaction, whistler mode waves and Doppler shift

  8. Ulysses Observations of Nonlinear Wave-wave Interactions in the Source Regions of Type III Solar Radio Bursts

    Indian Academy of Sciences (India)

    G. Thejappa; R. J. MacDowall

    2000-09-01

    The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50-300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.

  9. The Nonlinear Talbot Effect of Rogue Waves

    CERN Document Server

    Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-01-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  10. Nonlinear Landau damping and Alfven wave dissipation

    Science.gov (United States)

    Vinas, Adolfo F.; Miller, James A.

    1995-01-01

    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  11. Longitudinal nonlinear wave propagation through soft tissue.

    Science.gov (United States)

    Valdez, M; Balachandran, B

    2013-04-01

    strain-rates introduced at the end of the structure where the load is applied. In addition, it is shown that when steep wave fronts are generated in the nonlinear viscoelastic material, energy dissipation is focused in those wave fronts implying deposition of energy in a highly localized region of the material. Novel mechanisms for brain tissue damage are proposed based on the results obtained. The first mechanism is related to the dissipation of energy at steep wave fronts, while the second one is related to the interaction of steep wave fronts with axons encountered on its way through the structure.

  12. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.; Wang, Benlong

    2006-01-01

    and class II Bragg scattering from an undular sea bottom. The computations are verified against measurements, theoretical solutions and numerical models from the literature. Finally, we make a detailed investigation of nonlinear class III Bragg scattering and results are given for the sub-harmonic and super...

  13. Properties of Nonlinear Dynamo Waves

    Science.gov (United States)

    Tobias, S. M.

    1997-01-01

    Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.

  14. Analogy between a 10D model for nonlinear wave-wave interaction in a plasma and the 3D Lorenz dynamics

    Science.gov (United States)

    Letellier, C.; Aguirre, L. A.; Maquet, J.; Lefebvre, B.

    2003-05-01

    This paper investigates nonlinear wave-wave interactions in a system that describes a modified decay instability and consists of three Langmuir and one ion-sound waves. As a means to establish that the underlying dynamics exists in a 3D space and that it is of the Lorenz-type, both continuous and discrete-time multivariable global models were obtained from data. These data were obtained from a 10D dynamical system that describes the modified decay instability obtained from Zakharov’s equations which characterise Langmuir turbulence. This 10D model is equivariant under a continuous rotation symmetry and a discrete order-2 rotation symmetry. When the continuous rotation symmetry is modded out, that is, when the dynamics are represented with the continuous rotation symmetry removed under a local diffeomorphism, it is shown that a 3D system may describe the underlying dynamics. For certain parameter values, the models, obtained using global modelling techniques from three time series from the 10D dynamics with the continuous rotation symmetry modded out, generate attractors which are topologically equivalent. These models can be simulated easily and, due to their simplicity, are amenable for analysis of the original dynamics after symmetries have been modded out. Moreover, it is shown that all of these attractors are topologically equivalent to an attractor generated by the well-known Lorenz system.

  15. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  16. Wave-particle interaction and the nonlinear saturation of the electron temperature gradient mode

    Science.gov (United States)

    Vadlamani, Srinath; Parker, Scott E.; Chen, Yang; Howard, James E.

    2004-11-01

    It has been proposed that the electron temperature gradient (ETG) driven turbulence is responsible for experimentally relevant electron thermal transport in tokamak plasmas. Significant transport levels are possible by the creation of radially elongated vortices or ``streamers" [1,2], which are sustained by the nonlinear saturation of the instability and are not susceptible to shear flow destruction, as is the case with the ion temperature gradient (ITG) mode. We present a dynamical system to explore the dependence of saturation level due to E × B and E_\\| motion, as well as the effect of radial elongation. With this model, we can predict the nonlinear saturation level of the ETG streamers. We compare our theoretical predictions with a 2D shear-less slab gyrokinetic electron code that includes the E_\\| nonlinearity. [1]F. Jenko, W. Dorland, M Kotschenreuther, and B.N. Rogers, Phys. Plasmas 7, 1904 (2000). [2]C. Holland, and P.H. Diamond, Phys. Plasmas 9, 3857 (2002). [3]W. M. Manheimer, Phys. Fluids 14, 579 (1971). [4]R. A. Smith, John A. Krommes, and W. W. Lee, Phys. Fluids 28, 1069 (1985).

  17. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...

  18. Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference

    DEFF Research Database (Denmark)

    Kontos, Stavros; Lindberg, Ole

    indicator that performs as well as the tabulated versions is proposed. Explicit high-order Runge-Kutta time integration and a Lax-Friedrichs-type numerical flux complete the scheme. The solver was tested on the two-dimensional zero speed wave radiation problem and the steady forward speed problem...

  19. DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Hesthaven, Jan; Bingham, Harry B.

    2008-01-01

    We present a high-order nodal Discontinuous Galerkin Finite Element Method (DG-FEM) solution based on a set of highly accurate Boussinesq-type equations for solving general water-wave problems in complex geometries. A nodal DG-FEM is used for the spatial discretization to solve the Boussinesq equ...... and absorbed in the interior of the computational domain using a flexible relaxation technique applied on the free surface variables....

  20. Reconstruction of nonlinear wave propagation

    Science.gov (United States)

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  1. Dynamics of Nonlinear Waves on Bounded Domains

    CERN Document Server

    Maliborski, Maciej

    2016-01-01

    This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...

  2. New approaches to nonlinear waves

    CERN Document Server

    2016-01-01

    The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...

  3. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  4. Nonlinear dynamics of hydrostatic internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)

    2008-11-15

    Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are

  5. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....

  6. Study of the Dependence of Photoenhanced Nonlinear Acoustic Surface Wave Interactions on the Wavelength of Light.

    Science.gov (United States)

    1977-05-10

    CenterRockwell International SC5027.4FR 5.0 APPEND IX a) Participating Sci enti fic Personnel: Dr. Edgar A. Kraut Dr. T. C. Lim Mr. Fran k J. Morin Mr. John...Research Triangle Park, North Carolina 27709 JUN 23 19fl _ / L~. Co-Inve stigators F— 0 . Edgar A. Kraut Dr. Te g C. Lim ___________ 4nr...INTERACTIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ON THE WAVELENGTH OF LIGHT~ I sc~o~i.~ p. /7 QR(a,) ~~~~~O~~TRA~~’T O R GRA NT NUMBER(S) Dr. Edgar A

  7. Hopf Bifurcation in a Nonlinear Wave System

    Institute of Scientific and Technical Information of China (English)

    HE Kai-Fen

    2004-01-01

    @@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.

  8. Wave envelopes method for description of nonlinear acoustic wave propagation.

    Science.gov (United States)

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  9. Nonlinear plasma wave in magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-08-15

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.

  10. Exact solitary wave solutions of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.

  11. Nonlinear wave propagation in constrained solids subjected to thermal loads

    Science.gov (United States)

    Nucera, Claudio; Lanza di Scalea, Francesco

    2014-01-01

    The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.

  12. Shallow water cnoidal wave interactions

    Directory of Open Access Journals (Sweden)

    A. R. Osborne

    1994-01-01

    Full Text Available The nonlinear dynamics of cnoidal waves, within the context of the general N-cnoidal wave solutions of the periodic Korteweg-de Vries (KdV and Kadomtsev-Petvishvilli (KP equations, are considered. These equations are important for describing the propagation of small-but-finite amplitude waves in shallow water; the solutions to KdV are unidirectional while those of KP are directionally spread. Herein solutions are constructed from the 0-function representation of their appropriate inverse scattering transform formulations. To this end a general theorem is employed in the construction process: All solutions to the KdV and KP equations can be written as the linear superposition of cnoidal waves plus their nonlinear interactions. The approach presented here is viewed as significant because it allows the exact construction of N degree-of-freedom cnoidal wave trains under rather general conditions.

  13. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  14. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko;

    1997-01-01

    of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of similar to 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange...... interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay....

  15. Wave-kinetic description of nonlinear photons

    CERN Document Server

    Marklund, M; Brodin, G; Stenflo, L

    2004-01-01

    The nonlinear interaction, due to quantum electrodynamical (QED) effects, between photons is investigated using a wave-kinetic description. Starting from a coherent wave description, we use the Wigner transform technique to obtain a set of wave-kinetic equations, the so called Wigner-Moyal equations. These equations are coupled to a background radiation fluid, whose dynamics is determined by an acoustic wave equation. In the slowly varying acoustic limit, we analyse the resulting system of kinetic equations, and show that they describe instabilities, as well as Landau-like damping. The instabilities may lead to break-up and focusing of ultra-high intensity multi-beam systems, which in conjunction with the damping may result in stationary strong field structures. The results could be of relevance for the next generation of laser-plasma systems.

  16. The periodic wave solutions for two systems of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    王明亮; 王跃明; 张金良

    2003-01-01

    The periodic wave solutions for the Zakharov system of nonlinear wave equations and a long-short-wave interaction system are obtained by using the F-expansion method, which can be regarded as an overall generalization of Jacobi elliptic function expansion proposed recently. In the limit cases, the solitary wave solutions for the systems are also obtained.

  17. Standing waves for discrete nonlinear Schrodinger equations

    OpenAIRE

    Ming Jia

    2016-01-01

    The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  18. Nonlinear physics of shear Alfvén waves

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2014-02-12

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  19. Nonlinear Electron Waves in Strongly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens

    1980-01-01

    dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...

  20. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  1. Analysis of Nonlinear Soil-Structure Interaction Effects on the response of Three-Dimensional Frame Structures using a One-Direction Three-ComponentWave Propagation Model

    CERN Document Server

    d'Avila, Maria Paola Santisi

    2016-01-01

    In this paper, a model of one-directional propagation of three-component seismic waves in a nonlinear multilayered soil profile is coupled with a multi-story multi-span frame model to consider, in a simple way, the soil-structure interaction modelled in a finite element scheme. Modeling the three-component wave propagation enables the effects of a soil multiaxial stress state to be taken into account. These reduce soil strength and increase nonlinear effects, compared with the axial stress state. The simultaneous propagation of three components allows the prediction of the incident direction of seismic loading at the ground surface and the analysis of the behavior of a frame structure shaken by a three-component earthquake. A parametric study is carried out to characterize the changes in the ground motion due to dynamic features of the structure, for different incident wavefield properties and soil nonlinear effects. A seismic response depending on parameters such as the frequency content of soil and structur...

  2. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  3. Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by Particle-in-Cell simulations

    NARCIS (Netherlands)

    Camporeale, E.; Zimbardo, G.

    2014-01-01

    We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasi

  4. Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by Particle-in-Cell simulations

    NARCIS (Netherlands)

    Camporeale, E.; Zimbardo, G.

    2015-01-01

    We present self-consistent Particle-in-Cell simulations of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles, and comparing with test-particles simulations we emphasi

  5. Nonlinear evolution of whistler wave modulational instability

    DEFF Research Database (Denmark)

    Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;

    1995-01-01

    The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...

  6. Nonlinear Plasma Wave in Magnetized Plasmas

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke

    2013-01-01

    Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].

  7. Experimental characterization of nonlinear processes of whistler branch waves

    Science.gov (United States)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.

    2016-05-01

    Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.

  8. Colloquium: Nonlinear Collective Interactions in Dense Plasmas

    CERN Document Server

    Shukla, P K

    2010-01-01

    The current understanding of some important collective processes in dense quantum plasmas is presented. After reviewing the basic properties of dense quantum plasmas with degenerate electrons, we present model equations (e.g. the quantum hydrodynamic and effective nonlinear Schr\\"odinger-Poisson equations) that describe collective nonlinear phenomena at nanoscales. The effects of the electron degeneracy arise due to Heisenberg's uncertainty principle and Pauli's exclusion principle for overlapping electron wave functions that result in a nonlinear quantum electron pressure and tunneling/diffusion of electrons through a nonlinear quantum Bohm potential. Since degenerate electrons have $1/2-$spin due to their Fermionic nature, there also appear a spin electron current and a spin force acting on the electrons due to the Bohr magnetization. The present nonlinear equations do not include strong electron correlations and electron-exchange interactions. The quantum effects caused by the electron degeneracy produce n...

  9. Standing waves for discrete nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Ming Jia

    2016-07-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  10. Two-wave interaction in ideal magnetohydrodynamics

    OpenAIRE

    T. V. Zaqarashvili; Roberts, B.

    2006-01-01

    The weakly nonlinear interaction of sound and linearly polarised Alfv{\\'e}n waves propagating in the same direction along an applied magnetic field is studied. It is found that a sound wave is coupled to the Alfv{\\'e}n wave with double period and wavelength when the sound and Alfv{\\'e}n speeds are equal. The Alfv{\\'e}n wave drives the sound wave through the ponderomotive force, while the sound wave returns energy back to the Alfv{\\'e}n wave through the parametric (swing) influence. As a resul...

  11. Solving Nonlinear Wave Equations by Elliptic Equation

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.

  12. Nonlinear Dispersion Relation in Wave Transformation

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 严以新; 曹宏生

    2003-01-01

    A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over-prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1<kh<1.5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.

  13. Statistical distribution of nonlinear random wave height

    Institute of Scientific and Technical Information of China (English)

    HOU; Yijun; GUO; Peifang; SONG; Guiting; SONG; Jinbao; YIN; Baoshu; ZHAO; Xixi

    2006-01-01

    A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.

  14. Nonlinear Light-Matter Interactions in Metamaterials

    Science.gov (United States)

    O'Brien, Kevin Patrick

    Metamaterials possess extraordinary linear optical properties never observed in natural materials such as a negative refractive index, enabling exciting applications such as super resolution imaging and cloaking. In this thesis, we explore the equally extraordinary nonlinear properties of metamaterials. Nonlinear optics, the study of light-matter interactions where the optical fields are strong enough to change material properties, has fundamental importance to physics, chemistry, and material science as a non-destructive probe of material properties and has important technological applications such as entangled photon generation and frequency conversion. Due to their ability to manipulate both linear and nonlinear light matter interactions through sub-wavelength structuring, metamaterials are a promising direction for both fundamental and applied nonlinear optics research. We perform the first experiments on nonlinear propagation in bulk zero and negative index optical metamaterials and demonstrate that a zero index material can phase match four wave mixing processes in ways not possible in finite index materials. In addition, we demonstrate the ability of nonlinear scattering theory to describe the geometry dependence of second and third harmonic generation in plasmonic nanostructures. As an application of nonlinear metamaterials, we propose a phase matching technique called "resonant phase matching" to increase the gain and bandwidth of Josephson junction traveling wave parametric amplifiers. With collaborators, we demonstrate a best in class amplifier for superconducting qubit readout--over 20 dB gain with near quantum limited noise performance with a bandwidth and dynamic range an order of magnitude larger than alternative devices. In conclusion, we have demonstrated several ways in which nonlinear metamaterials surpass their natural counterparts. We look forward to the future of the field where nonlinear and quantum metamaterials will enable further new

  15. Control methods for localization of nonlinear waves

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  16. A Spectral Element Method for Nonlinear and Dispersive Water Waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes

    The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...

  17. Nonlinear evolution of oblique whistler waves in radiation belts

    Science.gov (United States)

    Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati

    2017-02-01

    Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.

  18. Strongly nonlinear steepening of long interfacial waves

    Directory of Open Access Journals (Sweden)

    N. Zahibo

    2007-06-01

    Full Text Available The transformation of nonlinear long internal waves in a two-layer fluid is studied in the Boussinesq and rigid-lid approximation. Explicit analytic formulation of the evolution equation in terms of the Riemann invariants allows us to obtain analytical results characterizing strongly nonlinear wave steepening, including the spectral evolution. Effects manifesting the action of high nonlinear corrections of the model are highlighted. It is shown, in particular, that the breaking points on the wave profile may shift from the zero-crossing level. The wave steepening happens in a different way if the density jump is placed near the middle of the water bulk: then the wave deformation is almost symmetrical and two phases appear where the wave breaks.

  19. On the polarization of nonlinear gravitational waves

    OpenAIRE

    Poplawski, Nikodem J.

    2011-01-01

    We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.

  20. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  1. Dispersive shock waves with nonlocal nonlinearity

    CERN Document Server

    Barsi, Christopher; Sun, Can; Fleischer, Jason W

    2007-01-01

    We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.

  2. Dispersive shock waves with nonlocal nonlinearity.

    Science.gov (United States)

    Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W

    2007-10-15

    We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.

  3. Nonlinear surface waves over topography

    NARCIS (Netherlands)

    Janssen, T.T.

    2006-01-01

    As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to

  4. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  5. A NUMERICAL METHOD FOR NONLINEAR WATER WAVES

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong

    2009-01-01

    This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.

  6. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  7. Nonlinear surface waves in photonic hypercrystals

    Science.gov (United States)

    Ali, Munazza Zulfiqar

    2017-08-01

    Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.

  8. Nonlinear water waves with soluble surfactant

    Science.gov (United States)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  9. Explicit Traveling Wave Solutions to Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    Linghai ZHANG

    2011-01-01

    First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.

  10. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  11. Development of A Fully Nonlinear Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    陈永平; 李志伟; 张长宽

    2004-01-01

    A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.

  12. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  13. EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.

  14. Nonlinear ship waves and computational fluid dynamics

    National Research Council Canada - National Science Library

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    .... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...

  15. Nonlinear dynamics of resistive electrostatic drift waves

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.

    1999-01-01

    The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...

  16. Quantification and prediction of rare events in nonlinear waves

    Science.gov (United States)

    Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa

    2014-11-01

    The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.

  17. Nonlinear internal wave penetration via parametric subharmonic instability

    CERN Document Server

    Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T

    2016-01-01

    We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.

  18. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    Science.gov (United States)

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-03-22

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  19. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  20. Quasi self-adjoint nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, N H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Torrisi, M; Tracina, R, E-mail: nib@bth.s, E-mail: torrisi@dmi.unict.i, E-mail: tracina@dmi.unict.i [Dipartimento di Matematica e Informatica, University of Catania (Italy)

    2010-11-05

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)

  1. Nonlinear reflection of internal gravity wave onto a slope

    Science.gov (United States)

    Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis

    2016-04-01

    The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of

  2. Explicit solutions of nonlinear wave equation systems

    Institute of Scientific and Technical Information of China (English)

    Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer

    2013-01-01

    We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.

  3. Optics in a nonlinear gravitational wave

    CERN Document Server

    Harte, Abraham I

    2015-01-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  4. Optics in a nonlinear gravitational plane wave

    Science.gov (United States)

    Harte, Abraham I.

    2015-09-01

    Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.

  5. Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency

    Science.gov (United States)

    Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre

    2016-10-01

    We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.

  6. Solitary waves on nonlinear elastic rods. II

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.

    1987-01-01

    In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...

  7. Nonlinear Landau damping of Alfven waves.

    Science.gov (United States)

    Hollweg, J. V.

    1971-01-01

    Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.

  8. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  9. The nonlinear evolution of rogue waves generated by means of wave focusing technique

    Science.gov (United States)

    Hu, HanHong; Ma, Ning

    2011-01-01

    Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.

  10. Computation of nonlinear water waves with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry

    2005-01-01

    -crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...

  11. Interaction nonlinearity in asphalt binders

    Science.gov (United States)

    Motamed, Arash; Bhasin, Amit; Liechti, Kenneth M.

    2012-05-01

    Asphalt mixtures are complex composites that comprise aggregate, asphalt binder, and air. Several research studies have shown that the mechanical behavior of the asphalt mixture is strongly influenced by the matrix, i.e. the asphalt binder. Characterization and a thorough understanding of the binder behavior is the first and crucial step towards developing an accurate constitutive model for the composite. Accurate constitutive models for the constituent materials are critical to ensure accurate performance predictions at a material and structural level using micromechanics. This paper presents the findings from a systematic investigation into the nature of the linear and nonlinear response of asphalt binders subjected to different types of loading using the Dynamic Shear Rheometer (DSR). Laboratory test data show that a compressive normal force is generated in an axially constrained specimen subjected to torsional shear. This paper investigates the source of this normal force and demonstrates that the asphalt binder can dilate when subjected to shear loads. This paper also presents the findings from a study conducted to investigate the source of the nonlinearity in the asphalt binder. Test results demonstrate that the application of cyclic shear loads results in the development of a normal force and a concomitant reduction in the dynamic shear modulus. This form of nonlinear response is referred to as an "interaction nonlinearity". A combination of experimental and analytical tools is used to demonstrate and verify the presence of this interaction nonlinearity in asphalt binders. The findings from this study highlight the importance of modeling the mechanical behavior of asphalt binders based on the overall stress state of the material.

  12. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  13. Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform

    Science.gov (United States)

    Lowman, Nicholas K.

    This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we

  14. Nonlinear Electromagnetic Interactions in Energetic Materials

    CERN Document Server

    Wood, M A; Moore, D S

    2016-01-01

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.

  15. Diffractive optics based four-wave, six-wave, ..., nu-wave nonlinear spectroscopy.

    Science.gov (United States)

    Miller, R J Dwayne; Paarmann, Alexander; Prokhorenko, Valentyn I

    2009-09-15

    A detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface. Dynamics are related to the anharmonicities in this potential that couple different minima and lead to changes in atomic positions (reactions) and correlations. Studies of molecular dynamics can be configured to directly access information on the anharmonic interactions that lead to chemical reactions and are as central to chemistry as structural information. In this regard, nonlinear spectroscopies have distinct advantages over more conventional linear spectroscopies. Because of this potential, nonlinear spectroscopies could eventually attain a comparable level of importance for studying dynamics on the relevant time scales to barrier crossings and reactive processes as NMR has for determining structure. Despite this potential, nonlinear spectroscopy has not attained the same degree of utility as linear spectroscopy largely because nonlinear studies are more technically challenging. For example, unlike the linear spectrometers that exist in almost all chemistry departments, there are no "black box" four-wave mixing spectrometers. This Account describes recent advances in the application of diffractive optics (DOs) to nonlinear spectroscopy, which reduces the complexity level of this technology to be closer to that of linear spectroscopy. The combination of recent advances in femtosecond laser technology and this single optic approach could bring this form of spectroscopy out of the exclusive realm of specialists and into the general user community. However, the real driving force for this research is the pursuit of higher sensitivity limits, which would enable new forms of nonlinear spectroscopy. This Account chronicles the research that has now extended nonlinear spectroscopy to six-wave

  16. Interaction Dynamics of Singular Wave Fronts

    CERN Document Server

    Holm, Darryl D

    2013-01-01

    Some of the most impressive singular wave fronts seen in Nature are the transbasin oceanic internal waves, which may be observed from the Space Shuttle as they propagate and interact with each other, for example, in the South China Sea. The characteristic feature of these strongly nonlinear wavefronts is that they reconnect when two of them collide transversely. We derive the EPDiff equation, and use it to model this phenomenon as elastic collisions between singular wave fronts (solitons) whose momentum is distributed along curves moving in the plane. Numerical methods for EPDiff based on compatible differencing algorithms (CDAs) are used for simulating these collisions among curves. The numerical results show the same nonlinear behavior of wavefront reconnections as that observed for internal waves in the South China Sea. We generalize the singular solutions of EPDiff for other applications, in computational anatomy and in imaging science, where the singular wavefronts are evolving image outlines, whose mome...

  17. Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations

    CERN Document Server

    Li, H; Wendroff, B; Liska, R

    2000-01-01

    (abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...

  18. Study of Linear and Nonlinear Wave Excitation

    Science.gov (United States)

    Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick

    2013-10-01

    We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.

  19. A nonlinear Schroedinger wave equation with linear quantum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)

    2014-07-01

    We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.

  20. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  1. Weak bond detection in composites using highly nonlinear solitary waves

    Science.gov (United States)

    Singhal, Taru; Kim, Eunho; Kim, Tae-Yeon; Yang, Jinkyu

    2017-05-01

    We experimentally investigate a diagnostic technique for identifying a weak bond in composites using highly nonlinear solitary waves (HNSWs). We set up a one-dimensional chain of granular crystals, consisting of spherical particles with nonlinear interactions, to generate HNSWs. These solitary wave packets are transmitted into an inspection area of composites by making a direct contact with the chain. We demonstrate that a strong type of solitary waves injected to the weak bond area can break the weak bond of laminates, thereby causing delamination. Then, to identify the creation of the delamination, we transmit a weak type of solitary waves by employing the same apparatus, and measure the solitary waves reflected from the specimens. By analyzing these reflected solitary waves, we differentiate the weak bond samples with the pristine bond ones in an efficient and fast manner. The diagnostic results based on the proposed method are compared with the strength and energy release rate at bond interfaces, which are measured via standard testing methods such as three point bending and end notched flexure tests. This study shows the potential of solitary wave-based detection of weak bonds for hot spot monitoring of composite-based structures.

  2. Nonlinear waves in waveguides with stratification

    CERN Document Server

    Leble, Sergei B

    1991-01-01

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  3. Nonlinear Dispersion Effect on Wave Transformation

    Institute of Scientific and Technical Information of China (English)

    LI Ruijie; Dong-Young LEE

    2000-01-01

    A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges' empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.

  4. Variational modelling of nonlinear water waves

    Science.gov (United States)

    Kalogirou, Anna; Bokhove, Onno

    2015-11-01

    Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.

  5. A method for generating highly nonlinear periodic waves in physical wave basins

    DEFF Research Database (Denmark)

    Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.

    2006-01-01

    This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....

  6. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  7. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  8. Experimental study of three-wave interactions among capillary-gravity surface waves

    CERN Document Server

    Haudin, Florence; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-01-01

    In propagating wave systems, three or four-wave resonant interactions constitute a classical non-linear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave-trains and we study their interaction. Using two optical methods, a local one (Laser Doppler Vibrometry) and a spatio-temporal one (Diffusive Light Photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wavenumber. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly non-linear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave-trains. Finally, we discuss the relevance of three-w...

  9. 极端波浪与海洋结构物的强非线性作用研究综述%A review on the nonlinear interactions between extreme waves and marine structures

    Institute of Scientific and Technical Information of China (English)

    邓燕飞; 杨建民; 肖龙飞; 李欣

    2016-01-01

    鉴于极端波浪的极大破坏力,其与海洋结构物的强非线性作用研究正日益受到重视。为了评估极端波浪可能带来的严重破坏,有必要对极端波浪作用下海洋结构物的波浪爬升与抨击、强非线性波浪力、结构载荷与运动响应等问题开展深入研究。国内外许多学者采用数值计算、模型实验及小波分析等手段对这些问题开展了探索研究,获得了一些有益的研究结论。该文对极端波浪与海洋结构物相互作用的研究现状和现有结论作了综述,可为进一步开展深入研究提供有益参考。%Considering the potential threats due to extreme waves, interactions between extreme waves and marine structures have been receiving more and more attentions. In order to assess the possible damage in-duced by extreme waves, in-depth investigations on the wave run-ups, slamming, nonlinear wave forces, motion responses and structural loadings due to extreme waves are required. For these issues, a great many studies based on numerical simulations, model tests or wavelet analyses were conducted and some mean-ingful conclusions were achieved. This paper presents a state-of-art review on the nonlinear interactions be-tween extreme waves and marine structures.

  10. Collapse of Nonlinear Gravitational Waves in Moving-Puncture Coordinates

    CERN Document Server

    Hilditch, David; Weyhausen, Andreas; Dietrich, Tim; Bruegmann, Bernd; Montero, Pedro J; Mueller, Ewald

    2013-01-01

    We study numerical evolutions of nonlinear gravitational waves in moving-puncture coordinates. We adopt two different types of initial data -- Brill and Teukolsky waves -- and evolve them with two independent codes producing consistent results. We find that Brill data fail to produce long-term evolutions for common choices of coordinates and parameters, unless the initial amplitude is small, while Teukolsky wave initial data lead to stable evolutions, at least for amplitudes sufficiently far from criticality. The critical amplitude separates initial data whose evolutions leave behind flat space from those that lead to a black hole. For the latter we follow the interaction of the wave, the formation of a horizon, and the settling down into a time-independent trumpet geometry. We explore the differences between Brill and Teukolsky data and show that for less common choices of the parameters -- in particular negative amplitudes -- Brill data can be evolved with moving-puncture coordinates, and behave similarly t...

  11. Long wave-short wave resonance in nonlinear negative refractive index media.

    Science.gov (United States)

    Chowdhury, Aref; Tataronis, John A

    2008-04-18

    We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.

  12. Boundary control of long waves in nonlinear dispersive systems

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten

    2011-01-01

    Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....

  13. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-06-15

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.

  14. NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD

    Institute of Scientific and Technical Information of China (English)

    Liu Zhifang; Zhang Shanyuan

    2006-01-01

    A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.

  15. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  16. Characterizing Electron Trapping Nonlinearity in Langmuir Waves

    CERN Document Server

    Strozzi, D J; Rose, H A; Hinkel, D E; Langdon, A B; Banks, J W

    2012-01-01

    We assess when electron trapping nonlinearities are expected to be important in Langmuir waves. The basic criterion is that the effective lifetime, t_d, of resonant electrons in the trapping region of velocity space must exceed the period of trapped motion for deeply-trapped electrons, tau_B = (n_e/delta n)^{1/2} 2pi/omega_pe. A unitless figure of merit, the "bounce number" N_B = t_d/tau_B, encapsulates this condition and allows an effective threshold amplitude for which N_B=1 to be defined. The lifetime is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code Loki, show trapping nonlinearity increases continuously with N_B for side loss, and is significant for N_B ~ 1. The lifetime due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified way. A simple way to combine convec...

  17. Nonlinear MHD waves in a Prominence Foot

    CERN Document Server

    Ofman, Leon; Kucera, Therese; Schmieder, Brigitte

    2015-01-01

    We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...

  18. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  19. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[

    Institute of Scientific and Technical Information of China (English)

    HUANGDing-Jiang; ZHANGHong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  20. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Ding-Jiang; ZHANG Hong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  1. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  2. 2-D Composite Model for Numerical Simulations of Nonlinear Waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    - A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.

  3. Saturation process of nonlinear standing waves

    Institute of Scientific and Technical Information of China (English)

    马大猷; 刘克

    1996-01-01

    The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.

  4. Three-Wave Resonant Interactions in Self-Defocusing Optical Media

    Institute of Scientific and Technical Information of China (English)

    崔维娜; 黄国翔; 孙春柳

    2003-01-01

    A three-wave resonant interaction for nonlinear excitations created from a continuous-wave background is shown to be possible in an isotropic optical medium with a self-defocusing cubic nonlinearity. Under suitable phasematching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method of multiple-scales. Some explicit three-wave solitary wave and lump solutions are discussed.

  5. Nonlinear dynamics of soliton gas with application to "freak waves"

    Science.gov (United States)

    Shurgalina, Ekaterina

    2017-04-01

    So-called "integrable soliton turbulence" attracts much attention of scientific community nowadays. We study features of soliton interactions in the following integrable systems: Korteweg - de Vries equation (KdV), modified Korteweg - de Vries equation (mKdV) and Gardner equations. The polarity of interacted solitons dramatically influences on the process of soliton interaction. Thus if solitons have the same polarity the maximum of the wave field decreases during the process of nonlinear interactions as well statistical moments (skewness and kurtosis). In this case there is no abnormally large wave formation and this scenario is possible for all considered equation. Completely different results can be obtained for a soliton gas consisted of solitons with different polarities: such interactions lead to an increase of resulting impulse and kurtosis. Tails of distribution functions can grow significantly. Abnormally large waves (freak waves) appear in such solitonic fields. Such situations are possible just in case of mKdV and Gardner equations which admit the existence of bipolar solitons. New effect of changing a defect's moving direction in soliton lattices and soliton gas is found in the present study. Manifestation of this effect is possible as the result of negative phase shift of small soliton in the moment of nonlinear interaction with large solitons. It is shown that the effect of negative velocity is the same for KdV and mKdV equations and it can be found from the kinematic assumption without applying the kinetic theory. Averaged dynamics of the "smallest" soliton (defect) in a soliton gas, consisting of solitons with random amplitudes is investigated. The averaged criterion of velocity sign change confirmed by numerical simulation is obtained.

  6. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  7. Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current

    Institute of Scientific and Technical Information of China (English)

    Wojciech Sulisz; Maciej Paprota

    2013-01-01

    A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.

  8. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  9. Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.

    Science.gov (United States)

    Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco

    2013-01-01

    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.

  10. WAVE INTERACTION WITH PERFORATED CAISSON BREAKWATERS

    Institute of Scientific and Technical Information of China (English)

    Chen Xue-feng

    2003-01-01

    The reflection coefficient of perforated caissons and the total horizontal forces acting on them were experimentally and numerically analyzed and discussed when wave propagates normally. To consider the viscosity effect of fluid and nonlinear action of waves on structures, the VOF (Volume Of Fluid) method combined with the k-ε turbulence model was used to simulate the interaction between waves and structures. Governing equations were solved with the finite difference method. Through 2D experimental study in the wave flume, the empirical relationship between the reflection coefficient of perforated caissons and the main affecting factors were obtained from the experimental data using the least square method. Also the correlation between the ratio of the total horizontal force acting on perforated caisson and the force acting on solid caisson and the main affecting factors were regressed from the experimental data.

  11. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    CERN Document Server

    Faye, Guillaume; Iyer, Bala R

    2014-01-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents: (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits to complete the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. At this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  12. Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order

    Science.gov (United States)

    Faye, Guillaume; Blanchet, Luc; Iyer, Bala R.

    2015-02-01

    This paper is motivated by the need to improve the post-Newtonian (PN) amplitude accuracy of waveforms for gravitational waves generated by inspiralling compact binaries, both for use in data analysis and in the comparison between post-Newtonian approximations and numerical relativity computations. It presents (i) the non-linear couplings between multipole moments of general post-Newtonian matter sources up to order 3.5PN, including all contributions from tails, tails-of-tails and the non-linear memory effect; and (ii) the source mass-type octupole moment of (non-spinning) compact binaries up to order 3PN, which permits completion of the expressions of the octupole modes (3,3) and (3,1) of the gravitational waveform to order 3.5PN. On this occasion we reconfirm by means of independent calculations our earlier results concerning the source mass-type quadrupole moment to order 3PN. Related discussions on factorized resummed waveforms and the occurence of logarithmic contributions to high order are also included.

  13. Modeling the effect of wave-vegetation interaction on wave setup

    Science.gov (United States)

    van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.

    2016-06-01

    Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).

  14. Bifurcation methods of dynamical systems for handling nonlinear wave equations

    Indian Academy of Sciences (India)

    Dahe Feng; Jibin Li

    2007-05-01

    By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.

  15. Extended models of nonlinear waves in liquid with gas bubbles

    CERN Document Server

    Kudryashov, Nikolay A

    2016-01-01

    In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.

  16. The nonlinear standing wave inside the space of liquid

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.

  17. Exact periodic wave solutions for some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2006-08-15

    The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.

  18. Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel

    Directory of Open Access Journals (Sweden)

    J. C. Sánchez-Garrido

    2009-09-01

    Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.

  19. Nonlinear Alfvén wave dynamics at a 2D magnetic null point: ponderomotive force

    Science.gov (United States)

    Thurgood, J. O.; McLaughlin, J. A.

    2013-07-01

    Context. In the linear, β = 0 MHD regime, the transient properties of magnetohydrodynamic (MHD) waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfvén waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfvén speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfvén waves about a 2D magnetic null point in nonlinear, β = 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfvén waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfvén wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. the ponderomotive force). These disturbances are dependent on the Alfvén wave and do not interact with the medium to excite magnetoacoustic waves, although the transverse daughter becomes focused at the null point. Additionally, an independently propagating fast magnetoacoustic wave is generated during the early stages, which transports some of the initial Alfvén wave energy towards the null point. Subsequently, despite undergoing dispersion and phase-mixing due to gradients in the Alfvén-speed profile (∇cA ≠ 0) there is no further nonlinear generation of fast waves. Conclusions: We find that Alfvén waves at 2D cold null points behave largely as in the linear regime, however they sustain transverse and longitudinal disturbances - effects absent in the linear regime - due to nonlinear magnetic pressure gradients.

  20. Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank

    OpenAIRE

    Abbasnia,Arash; Ghiasi,Mahmoud

    2014-01-01

    Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-l...

  1. A scalable method for computing quadruplet wave-wave interactions

    Science.gov (United States)

    Van Vledder, Gerbrant

    2017-04-01

    Non-linear four-wave interactions are a key physical process in the evolution of wind generated ocean waves. The present generation operational wave models use the Discrete Interaction Approximation (DIA), but it accuracy is poor. It is now generally acknowledged that the DIA should be replaced with a more accurate method to improve predicted spectral shapes and derived parameters. The search for such a method is challenging as one should find a balance between accuracy and computational requirements. Such a method is presented here in the form of a scalable and adaptive method that can mimic both the time consuming exact Snl4 approach and the fast but inaccurate DIA, and everything in between. The method provides an elegant approach to improve the DIA, not by including more arbitrarily shaped wave number configurations, but by a mathematically consistent reduction of an exact method, viz. the WRT method. The adaptiveness is to adapt the abscissa of the locus integrand in relation to the magnitude of the known terms. The adaptiveness is extended to the highest level of the WRT method to select interacting wavenumber configurations in a hierarchical way in relation to their importance. This adaptiveness results in a speed-up of one to three orders of magnitude depending on the measure of accuracy. This definition of accuracy should not be expressed in terms of the quality of the transfer integral for academic spectra but rather in terms of wave model performance in a dynamic run. This has consequences for the balance between the required accuracy and the computational workload for evaluating these interactions. The performance of the scalable method on different scales is illustrated with results from academic spectra, simple growth curves to more complicated field cases using a 3G-wave model.

  2. Compactification of nonlinear patterns and waves.

    Science.gov (United States)

    Rosenau, Philip; Kashdan, Eugene

    2008-12-31

    We present a nonlinear mechanism(s) which may be an alternative to a missing wave speed: it induces patterns with a compact support and sharp fronts which propagate with a finite speed. Though such mechanism may emerge in a variety of physical contexts, its mathematical characterization is universal, very simple, and given via a sublinear substrate (site) force. Its utility is shown studying a Klein-Gordon -u(tt) + [phi/(u(x)]x = P'(u) equation, where phi'(sigma) = sigma + beta sigma3 and endowed with a subquadratic site potential P(u) approximately /1-u2/(alpha+1), 0 < or = alpha < 1, and the Schrödinger iZt + inverted delta2 Z = G(/Z/)Z equation in a plane with G(A) = gammaA(-delta) - sigmaA2, 0 < delta < or = 1.

  3. Travelling waves in nonlinear diffusion-convection-reaction

    NARCIS (Netherlands)

    Gilding, B.H.; Kersner, R.

    2001-01-01

    The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu

  4. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  5. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...

  6. Interactive optomechanical coupling with nonlinear polaritonic systems

    CERN Document Server

    Bobrovska, N; Liew, T C H; Kyriienko, O

    2016-01-01

    We study a system of interacting matter quasiparticles strongly coupled to photons inside an optomechanical cavity. The resulting normal modes of the system are represented by hybrid polaritonic quasiparticles, which acquire effective nonlinearity. Its strength is influenced by the presence of the mechanical mode and depends on the resonance frequency of the cavity. This leads to an interactive type of optomechanical coupling, being distinct from the previously studied dispersive and dissipative couplings in optomechanical systems. The emergent interactive coupling is shown to generate effective optical nonlinearity terms of high order, being quartic in the polariton number. We consider particular systems of exciton-polaritons and dipolaritons, and show that the induced effective optical nonlinearity due to the interactive coupling can exceed in magnitude the strength of Kerr nonlinear terms, such as those arising from polariton-polariton interactions. As applications, we show that the higher order terms give...

  7. Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise

    Science.gov (United States)

    Cabot, M. A.

    The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.

  8. Development of a Nonlinear Internal Wave Tactical Decision Aid

    Science.gov (United States)

    2016-06-07

    of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...www.internalwaveatlas.com LONG-TERM GOALS The long term goal of the project is to develop a prediction methodology for the occurrence of nonlinear

  9. Nonlinear science an interactive Mathematica notebook

    CERN Document Server

    Campbell, David K; Tanury, Thomas A

    2012-01-01

    This interactive Mathematica(TM) notebook provides a ready-made tool by which users can undertake their own mathematical experiments and explore the behavior of non-linear systems, from chaos in low-dimensional maps and coupled ordinary differential equations to solitons and coherent structures in nonlinear partial differential equations and "intrisic localized modes" and "discrete breathers" in extended lattice systems.

  10. Nonlinear interactions isolated through scale synthesis in experimental wall turbulence

    Science.gov (United States)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2016-07-01

    An experimental investigation of nonlinear scale interactions in a forced turbulent boundary layer is presented here. A dynamic wall perturbation mechanism was used to externally force two distinct large-scale synthetic modes with well-defined spatial and temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear flow response at triadically consistent wave numbers that arises from the direct interactions of the two synthetic modes. These experimental results isolate triadic scale interactions in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of scale coupling in a systematic and detailed manner. The ideas advanced here are intended to contribute towards modeling efforts of high-Reynolds-number wall turbulence.

  11. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...

  12. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.

    2010-01-01

    In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...

  13. Distribution of the nonlinear random ocean wave period

    Institute of Scientific and Technical Information of China (English)

    HOU Yijun; LI Mingjie; SONG Guiting; SI Guangcheng; QI Peng; HU Po

    2009-01-01

    Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37°27.6′ N, 122°15.1′ E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (υ=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional

  14. Nonlinear evolution of the modulational instability of whistler waves

    DEFF Research Database (Denmark)

    Karpman, V.I.; Hansen, F.R.; Huld, T.

    1990-01-01

    The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...

  15. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  16. Nonlinear ultrasound wave propagation in thermoviscous fluids

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...

  17. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  18. Nonlinear numerical simulation on extreme-wave kinematics

    Institute of Scientific and Technical Information of China (English)

    NING Dezhi; TENG Bin; LIU Shuxue

    2009-01-01

    A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.

  19. Nonlinear Alfvén Waves in a Vlasov Plasma

    DEFF Research Database (Denmark)

    Bell, T.F.

    1965-01-01

    Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...

  20. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  1. The Peridic Wave Solutions for Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De

    2003-01-01

    By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.

  2. LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Yan Xu; Chi-wang Shu

    2004-01-01

    In this paper, we further develop the local discontinuous Galerkin method to solve three classes of nonlinear wave equations formulated by the general KdV-Burgers type equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n)equations, and prove their stability for these general classes of nonlinear equations. The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu and Yan [24] on local discontinuous Galerkin method solving partial differential equations with higher spatial derivatives. Numerical examples for nonlinear problems are shown to illustrate the accuracy and capability of the methods. The numerical experiments include stationary solitons, soliton interactions and oscillatory solitary wave solutions.The numerical experiments also include the compacton solutions of a generalized fifthorder KdV equation in which the highest order derivative term is nonlinear and the fully nonlinear K(n, n, n) equations.

  3. Nonlinear time reversal of classical waves: experiment and model.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M

    2013-12-01

    We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.

  4. Nonlinear interaction of electromagnetic field with quantum plasma

    CERN Document Server

    Latyshev, A V

    2014-01-01

    The analysis of nonlinear interaction of transversal electromagnetic field with quantum collisionless plasma is carried out. Formulas for calculation electric current in quantum collisionless plasma at any temperature are deduced. It has appeared, that the nonlinearity account leads to occurrence of the longitudinal electric current directed along a wave vector. This second current is orthogonal to the known transversal classical current, received at the classical linear analysis. The case of degenerate electronic plasma is considered. It is shown, that for degenerate plasmas the electric current is calculated under the formula, not containing quadratures.

  5. Nonlinear evolution of oblique waves on compressible shear layers

    Science.gov (United States)

    Goldstein, M. E.; Leib, S. J.

    1989-01-01

    The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.

  6. Nonlinear acoustic waves in micro-inhomogeneous solids

    CERN Document Server

    Nazarov, Veniamin

    2014-01-01

    Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m

  7. Wave-particle interactions in the outer radiation belts

    CERN Document Server

    Agapitov, O V; Artemyev, A V; Mourenas, D; Krasnoselskikh, V V

    2015-01-01

    Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {\\bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilities

  8. Rapid energization of radiation belt electrons by nonlinear wave trapping

    Directory of Open Access Journals (Sweden)

    Y. Katoh

    2008-11-01

    Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.

  9. Nonlinear time reversal in a wave chaotic system.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M

    2013-02-01

    Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.

  10. Analysis of Wave Nonlinear Dispersion Relation

    Institute of Scientific and Technical Information of China (English)

    LI Rui-jie; TAO Jian-fu

    2005-01-01

    The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1<kh<1.5 and has sufficient accuracy for practical purposes.

  11. Nonlinear lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-02-09

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  12. On the joint distribution of surface slopes for the fourth order nonlinear random sea waves

    Institute of Scientific and Technical Information of China (English)

    张书文; 孙孚; 管长龙

    1999-01-01

    Based upon the nonlinear model of Longuet-Higgins the joint distribution of wave surface slopes is theoretically investigated. It is shown that in the fourth order approximation, the distribution is given by truncated Gram-Charlier series. The types of wave-wave coupling interactions are related to the order of approximation to nonlinearity of sea surface, which eventually defines the truncated term of the Gram-Charlier series. For each order approximation, the coefficients in the series are modified comparatively to the corresponding ones for the previous order approximation. If the nonlinear effect of the kurtosis is considered, the wave surface must be as accurate at least as to the third order approximation, and with regard to skewness, the wave surface must be as accurate at least as to the fourth order approximation.

  13. Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.

  14. Rogue and shock waves in nonlinear dispersive media

    CERN Document Server

    Resitori, Stefania; Baronio, Fabio

    2016-01-01

    This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...

  15. A nonlinear model for the fluidization of marine mud by waves

    Energy Technology Data Exchange (ETDEWEB)

    Foda, M.A.; Hunt, J.R.; Chou, Hsien-Ter (Univ. of California, Berkeley (United States))

    1993-04-15

    The authors consider the problem of fluidization of mud deposits in shallow waters due to interactions with water waves. This is of increasing interest because of concerns that water pollutants, including heavy metals, pesticides, etc., are often found near surfaces of mud deposits. The authors look at the question of whether the cohesive properties of mud deposits exhibit nonlinear properties when they experience strains from water wave interactions. It is obvious that with large enough wave interactions the deposits become fluidized, and are not in that case truly nonlinear. In their modeling efforts they try to incorporate these ideas into a cohesive model where the magnitude of the water wave-sediment interaction has an influence on the type of response within the system.

  16. Wave-wave interactions and deep ocean acoustics

    CERN Document Server

    Guralnik, Zachary; Bourdelais, John; Zabalgogeazcoa, Xavier

    2013-01-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity o...

  17. A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY

    Institute of Scientific and Technical Information of China (English)

    李瑞杰; 李东永

    2002-01-01

    This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.

  18. Controlling near shore nonlinear surging waves through bottom boundary conditions

    CERN Document Server

    Mukherjee, Abhik; Kundu, Anjan

    2016-01-01

    Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.

  19. Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas

    CERN Document Server

    Timofeev, I V

    2012-01-01

    Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.

  20. Wave-Flow Interactions and Acoustic Streaming

    CERN Document Server

    Chafin, Clifford E

    2016-01-01

    The interaction of waves and flows is a challenging topic where a complete resolution has been frustrated by the essential nonlinear features in the hydrodynamic case. Even in the case of EM waves in flowing media, the results are subtle. For a simple shear flow of constant n fluid, incident radiation is shown to be reflected and refracted in an analogous manner to Snell's law. However, the beam intensities differ and the system has an asymmetry in that an internal reflection gap opens at steep incident angles nearly oriented with the shear. For EM waves these effects are generally negligible in real systems but they introduce the topic at a reduced level of complexity of the more interesting acoustic case. Acoustic streaming is suggested, both from theory and experimental data, to be associated with vorticity generation at the driver itself. Bounds on the vorticity in bulk and nonlinear effects demonstrate that the bulk sources, even with attenuation, cannot drive such a strong flow. A review of the velocity...

  1. Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan

    2004-01-01

    In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.

  2. Nonlinear spin wave coupling in adjacent magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2016-07-25

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  3. Variational principle for nonlinear wave propagation in dissipative systems.

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  4. Remarks on nonlinear relation among phases and frequencies in modulational instabilities of parallel propagating Alfven waves

    CERN Document Server

    Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru

    2006-01-01

    Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.

  5. Computational and theoretical study of the wave-particle interaction of protons and waves

    Energy Technology Data Exchange (ETDEWEB)

    Moya, P.S.; Munoz, V. [Chile Univ., Santiago (Chile). Dept. de Fisica; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Heliophysics Science Div.; Valdivia, J.A. [Chile Univ., Santiago (Chile). Dept. de Fisica; Centro para el Desarrollo de la Nanociencia y Nanotecnologia, CEDENNA (Chile); CEIBA complejidad, Bogota (Colombia)

    2012-11-01

    We study the wave-particle interaction and the evolution of electromagnetic waves propagating through a plasma composed of electrons and protons, using two approaches. First, a quasilinear kinetic theory has been developed to study the energy transfer between waves and particles, with the subsequent acceleration and heating of protons. Second, a one-dimensional hybrid numerical simulation has been performed, with and without including an expanding-box model that emulates the spherical expansion of the solar wind, to investigate the fully nonlinear evolution of this wave-particle interaction. Numerical results of both approaches show that there is an anisotropic evolution of proton temperature. (orig.)

  6. From bell-shaped solitary wave to W/M-shaped solitary wave solutions in an integrable nonlinear wave equation

    Indian Academy of Sciences (India)

    Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang

    2010-01-01

    The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.

  7. GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    戴正德; 杜先云

    2001-01-01

    In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.

  8. Nonlinear waves in the terrestrial quasi-parallel foreshock

    CERN Document Server

    Hnat, B; O'Connell, D; Nakariakov, V M; Rowlands, G

    2016-01-01

    We study the applicability of the derivative nonlinear Schr\\"{o}dinger (DNLS) equation, for the evolution of high frequency nonlinear waves, observed at the foreshock region of the terrestrial quasi-parallel bow shock. The use of a pseudo-potential is elucidated and, in particular, the importance of canonical representation in the correct interpretation of solutions in this formulation is discussed. Numerical solutions of the DNLS equation are then compared directly with the wave forms observed by Cluster spacecraft. Non harmonic slow variations are filtered out by applying the empirical mode decomposition. We find large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency, followed in time by nearly harmonic low amplitude fluctuations. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfv\\'{e}n speed.

  9. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  10. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  11. TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.

  12. NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    冯绍继; 冯德兴

    2003-01-01

    The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.

  13. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  14. Defocusing regimes of nonlinear waves in media with negative dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

    1996-01-01

    Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...

  15. New travelling wave solutions for nonlinear stochastic evolution equations

    Indian Academy of Sciences (India)

    Hyunsoo Kim; Rathinasamy Sakthivel

    2013-06-01

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

  16. Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2010-10-15

    Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters

  17. Nonlinear spin-wave excitations at low magnetic bias fields

    Science.gov (United States)

    Woltersdorf, Georg

    We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.

  18. Nonlinear electron acoustic waves in presence of shear magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  19. Shock wave-droplet interaction

    Science.gov (United States)

    Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan

    2016-11-01

    Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.

  20. Tunable Resonators for Nonlinear Modal Interactions

    KAUST Repository

    Ramini, Abdallah

    2016-10-04

    Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.

  1. Tunable Resonators for Nonlinear Modal Interactions

    Science.gov (United States)

    Ramini, Abdallah H.; Hajjaj, Amal Z.; Younis, Mohammad I.

    2016-10-01

    Understanding the various mechanisms of nonlinear mode coupling in micro and nano resonators has become an imminent necessity for their successful implementation in practical applications. However, consistent, repeatable, and flexible experimental procedures to produce nonlinear mode coupling are lacking, and hence research into well-controlled experimental conditions is crucial. Here, we demonstrate well-controlled and repeatable experiments to study nonlinear mode coupling among micro and nano beam resonators. Such experimental approach can be applied to other micro and nano structures to help study their nonlinear interactions and exploit them for higher sensitive and less noisy responses. Using electrothermal tuning and electrostatic excitation, we demonstrate three different kinds of nonlinear interactions among the first and third bending modes of vibrations of slightly curved beams (arches): two-one internal resonance, three-one internal resonance, and mode veering (near crossing). The experimental procedure is repeatable, highly flexible, do not require special or precise fabrication, and is conducted in air and at room temperature. This approach can be applied to other micro and nano structures, which come naturally curved due to fabrication imperfections, such as CNTs, and hence lays the foundation to deeply investigate the nonlinear mode coupling in these structures in a consistent way.

  2. Laboratory Study of the Nonlinear Transformation of Irregular Waves over A Mild Slope

    Institute of Scientific and Technical Information of China (English)

    于博; 马玉祥; 马小舟; 董国海

    2014-01-01

    This-paper-considers-the-nonlinear-transformation-of-irregular-waves-propagating-over-a-mild-slope-(1꞉40).-Two-cases-of-irregular-waves,-which-are-mechanically-generated-based-on-JONSWAP-spectra,-are-used-for-this-purpose.-The-results-indicate-that-the-wave-heights-obey-the-Rayleigh-distribution-at-the-offshore-location;however,-in-the-shoaling-region,-the-heights-of-the-largest-waves-are-underestimated-by-the-theoretical-distributions.-In-the-surf-zone,-the-wave-heights-can-be-approximated-by-the-composite-Weibull-distribution.-In-addition,-the-nonlinear-phase-coupling-within-the-irregular-waves-is-investigated-by-the-wavelet-based-bicoherence.-The-bicoherence-spectra-reflect-that-the-number-of-frequency-modes-participating-in-the-phase-coupling-increases-with-the-decreasing-water-depth,-as-does-the-degree-of-phase-coupling.-After-the-incipient-breaking,-even-though-the-degree-of-phase-coupling-decreases,-a-great-number-of-higher-harmonic-wave-modes-are-also-involved-in-nonlinear-interactions.-Moreover,-the-summed-bicoherence-indicates-that-the-frequency-mode-related-to-the-strongest-local-nonlinear-interactions-shifts-to-higher-harmonics-with-the-decreasing-water-depth.

  3. Statistical distribution of nonlinear random wave height in shallow water

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.

  4. A nonlinear RDF model for waves propagating in shallow water

    Institute of Scientific and Technical Information of China (English)

    王厚杰; 杨作升; 李瑞杰; 张军

    2001-01-01

    In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti

  5. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  6. Nonlinear volume holography for wave-front engineering.

    Science.gov (United States)

    Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2014-10-17

    The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.

  7. Hamiltonian theory of nonlinear waves in planetary rings

    Science.gov (United States)

    Stewart, G. R.

    1987-01-01

    The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.

  8. Exact travelling wave solutions for some important nonlinear physical models

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-05-01

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.

  9. Exact Nonlinear Internal Equatorial Waves in the f-plane

    Science.gov (United States)

    Hsu, Hung-Chu

    2016-07-01

    We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.

  10. Experimental observations of nonlinear effects of the Lamb waves

    Institute of Scientific and Technical Information of China (English)

    DENG Mingxi; D.C. Price; D.A.Scott

    2004-01-01

    The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.

  11. Elliptic Equation and New Solutions to Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da

    2004-01-01

    The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.

  12. Modeling extreme wave heights from laboratory experiments with the nonlinear Schrödinger equation

    Science.gov (United States)

    Zhang, H. D.; Guedes Soares, C.; Cherneva, Z.; Onorato, M.

    2014-04-01

    Spatial variation of nonlinear wave groups with different initial envelope shapes is theoretically studied first, confirming that the simplest nonlinear theoretical model is capable of describing the evolution of propagating wave packets in deep water. Moreover, three groups of laboratory experiments run in the wave basin of CEHIPAR (Canal de Experiencias Hidrodinámicas de El Pardo, known also as El Pardo Model Basin) was founded in 1928 by the Spanish Navy. are systematically compared with the numerical simulations of the nonlinear Schrödinger equation. Although a little overestimation is detected, especially in the set of experiments characterized by higher initial wave steepness, the numerical simulation still displays a high degree of agreement with the laboratory experiments. Therefore, the nonlinear Schrödinger equation catches the essential characteristics of the extreme waves and provides an important physical insight into their generation. The modulation instability, resulting from the quasi-resonant four-wave interaction in a unidirectional sea state, can be indicated by the coefficient of kurtosis, which shows an appreciable correlation with the extreme wave height and hence is used in the modified Edgeworth-Rayleigh distribution. Finally, some statistical properties on the maximum wave heights in different sea states have been related with the initial Benjamin-Feir index.

  13. Nonlinear resonant absorption of fast magnetoacoustic waves in strongly anisotropic and dispersive plasmas

    CERN Document Server

    Clack, C

    2009-01-01

    The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas, 15, 2310 (2008)] and Alfv\\'en resonance by Clack \\emph{et al.} [A&A,494, 317 (2009)], is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfv\\'{e}n dissipative layer and are partly reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of ener...

  14. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Picozzi, A., E-mail: Antonio.Picozzi@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Garnier, J. [Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13 (France); Hansson, T. [Department of Information Engineering, Università di Brescia, Brescia 25123 (Italy); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS, Université de Lille (France); Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Christodoulides, D.N. [College of Optics/CREOL, University of Central Florida, Orlando, FL 32816 (United States)

    2014-09-01

    The nonlinear propagation of coherent optical fields has been extensively explored in the framework of nonlinear optics, while the linear propagation of incoherent fields has been widely studied in the framework of statistical optics. However, these two fundamental fields of optics have been mostly developed independently of each other, so that a satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory, which provides a nonequilibrium thermodynamic description of the system of incoherent nonlinear waves. We consider the nonlinear Schrödinger equation as a representative model accounting either for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are derived and discussed. In the spatial domain, when the incoherent wave exhibits inhomogeneous statistical fluctuations, different forms of the (Hamiltonian) Vlasov equation are obtained depending on the amount of nonlocality. This Vlasov approach describes the processes of incoherent modulational instability and localized incoherent soliton structures. In the temporal domain, the causality property inherent to the response function leads to a kinetic formulation analogous to the weak Langmuir turbulence equation, which describes nonlocalized spectral incoherent solitons. In the presence of a highly noninstantaneous response, this formulation reduces to a family of singular integro-differential kinetic equations (e.g., Benjamin–Ono equation), which describe incoherent dispersive shock waves. Conversely, a non-stationary statistics leads to a (non-Hamiltonian) long-range Vlasov formulation, whose self-consistent potential

  15. Linear and nonlinear propagation of water wave groups

    Science.gov (United States)

    Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.

    1992-01-01

    Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.

  16. GEOMETRICAL NONLINEAR WAVES IN FINITE DEFORMATION ELASTIC RODS

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-gang; ZHOU Li-jun; ZHANG Shan-yuan

    2005-01-01

    By using Hamilton-type variation principle in non-conservation system, the nonlinear equation of wave motion of a elastic thin rod was derived according to Lagrange description of finite deformation theory. The dissipation caused due to viscous effect and the dispersion introduced by transverse inertia were taken into consideration so that steady traveling wave solution can be obtained. Using multi-scale method the nonlinear equation is reduced to a KdV-Burgers equation which corresponds with saddle-spiral heteroclinic orbit on phase plane. Its solution is called the oscillating-solitary wave or saddle-spiral shock wave.If viscous effect or transverse inertia is neglected, the equation is degraded to classical KdV or Burgers equation. The former implies a propagating solitary wave with homoclinic on phase plane, the latter means shock wave and heteroclinic orbit.

  17. Nonlinear disintegration of sine wave in the framework of the Gardner equation

    Science.gov (United States)

    Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Kurkin, Andrey; Pelinovsky, Efim

    2016-10-01

    Internal tidal wave entering shallow waters transforms into an undular bore and this process can be described in the framework of the Gardner equation (extended version of the Korteweg-de Vries equation with both quadratic and cubic nonlinear terms). Our numerical computations demonstrate the features of undular bore developing for different signs of the cubic nonlinear term. If cubic nonlinear term is negative, and initial wave amplitude is large enough, two undular bores are generated from the two breaking points formed on both crest slopes (within dispersionless Gardner equation). Undular bore consists of one table-top soliton and a group of small soliton-like waves passing through the table-top soliton. If the cubic nonlinear term is positive and again the wave amplitude is large enough, the breaking points appear on crest and trough generating groups of positive and negative soliton-like pulses. This is the main difference with respect to the classic Korteweg-de Vries equation, where the breaking point is single. It is shown also that nonlinear interaction of waves happens similarly to one of scenarios of two-soliton interaction of "exchange" or "overtake" types with a phase shift. If small-amplitude pulses interact with large-amplitude soliton-like pulses, their speed in average is negative in the case when "free" velocity is positive. Nonlinear interaction leads to the generation of higher harmonics and spectrum width increases with amplitude increase independently of the sign of cubic nonlinear term. The breaking asymptotic k 4 / 3 predicted within the dispersionless Gardner equation emerges during the process of undular bore development. The formation of soliton-like perturbations leads to appearance of several spectral peaks which are downshifting with time.

  18. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  19. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  20. Wave Propagation In Strongly Nonlinear Two-Mass Chains

    Science.gov (United States)

    Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.

    2010-05-01

    We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.

  1. Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides

    Institute of Scientific and Technical Information of China (English)

    Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing

    2013-01-01

    We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.

  2. Thermal conductivity of nonlinear waves in disordered chains

    Indian Academy of Sciences (India)

    Sergej Flach; Mikhail Ivanchenko; Nianbei Li

    2011-11-01

    We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We find indications for an asymptotic low-temperature ∼ 4 and intermediate temperature ∼ 2 laws. These findings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).

  3. Nonlinear mixing of laser generated narrowband Rayleigh surface waves

    Science.gov (United States)

    Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.

  4. Time-reversed wave mixing in nonlinear optics.

    Science.gov (United States)

    Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng

    2013-11-19

    Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.

  5. Nonlinear wave propagation in a rapidly-spun fiber.

    Science.gov (United States)

    McKinstrie, C J; Kogelnik, H

    2006-09-04

    Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.

  6. Nonlinear propagation of planet-generated tidal waves

    OpenAIRE

    Rafikov, Roman

    2001-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...

  7. Nonlinear theory of beam-wave interaction in gyro-TWT with spiral waveguide%螺旋波纹波导回旋行波管注波互作用非线性理论

    Institute of Scientific and Technical Information of China (English)

    薛智浩; 刘濮鲲; 杜朝海

    2012-01-01

    螺旋波纹波导回旋行波管与采用光滑圆波导的回旋管相比,有较大的带宽.介绍了该类回旋行波管的非线性注波互作用理论.计算结果表明该理论计算结果与实际实验报道的结果基本符合,相应的电子效率达到29%,饱和增益达到37 dB,工作磁场0.21 T,电压185 kV,电流19A.%Gyro-TWT (traveling wave tube) with helical waveguide has wider instantaneous frequency bandwidth than that with smooth waveguide. This paper introduces the nonlinear theory of its beam-wave interaction. The calculation shows that, the electron efficiency reaches 29% . and the saturated gain is 37 dB, when the working magnetic field is 0. 21 T. the voltage is 185 kV and the current is 19 A. The calculated results accord with that reported in literature.

  8. BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.

  9. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  10. Identifying nonlinear wave interactions in plasmas using two-point measurements a case study of Short Large Amplitude Magnetic Structures (SLAMS)

    CERN Document Server

    Dudok de Wit, T; Dunlop, M; Luehr, H

    1999-01-01

    A framework is described for estimating Linear growth rates and spectral energy transfers in turbulent wave-fields using two-point measurements. This approach, which is based on Volterra series, is applied to dual satellite data gathered in the vicinity of the Earth's bow shock, where Short Large Amplitude Magnetic Structures (SLAMS) supposedly play a leading role. The analysis attests the dynamic evolution of the SLAMS and reveals an energy cascade toward high-frequency waves.

  11. Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan

    2015-11-15

    In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.

  12. Simulation of the interaction of tsunami waves with underwater barriers

    Science.gov (United States)

    Boshenyatov, B. V.; Zhiltsov, K. N.

    2016-10-01

    This article examines the experimental and numerical simulation of the processes of distribution and interaction of tsunami-type gravitational waves with one barrier and a complex of two barriers. Experiments were conducted in a hydrodynamic channel using high-precision sensors for the measurement of the wave processes. Mathematical modelling was carried out using two-dimensional non-stationary Navier-Stokes equations for an incompressible fluid using the freely available software package OpenFOAM. It is shown that for small-amplitude waves, when their advance speed is described by the linear theory of shallow water, the interaction with the underwater barriers has important non-linear and viscous effects. Our results explain why a complex of two barriers spaced at a definite distance from each other has a significant impact on the power of the transmitted wave. The energy of the waves passing through the two barriers can be reduced to 35% of the incident wave.

  13. Nonlinear Pressure Wave Analysis by Concentrated Mass Model

    Science.gov (United States)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro

    A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.

  14. Localized waves in three-component coupled nonlinear Schrödinger equation

    Science.gov (United States)

    Xu, Tao; Chen, Yong

    2016-09-01

    We study the generalized Darboux transformation to the three-component coupled nonlinear Schrödinger equation. First- and second-order localized waves are obtained by this technique. In first-order localized wave, we get the interactional solutions between first-order rogue wave and one-dark, one-bright soliton respectively. Meanwhile, the interactional solutions between one-breather and first-order rogue wave are also given. In second-order localized wave, one-dark-one-bright soliton together with second-order rogue wave is presented in the first component, and two-bright soliton together with second-order rogue wave are gained respectively in the other two components. Besides, we observe second-order rogue wave together with one-breather in three components. Moreover, by increasing the absolute values of two free parameters, the nonlinear waves merge with each other distinctly. These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system. Project supported by the Global Change Research Program of China (Grant No. 2015CB953904), the National Natural Science Foundation of China (Grant Nos. 11275072 and 11435005), the Doctoral Program of Higher Education of China (Grant No. 20120076110024), the Network Information Physics Calculation of Basic Research Innovation Research Group of China (Grant No. 61321064), and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things, China (Grant No. ZF1213).

  15. A Statistical Distribution of Surface Elevation for Nonlinear Random Sea Waves and Its Physical Explanation

    Institute of Scientific and Technical Information of China (English)

    孙孚; 丁平兴

    1994-01-01

    Based upon the nonlinear model of random sea waves,a commonly applicable statisticaldistribution of wave surface elevation exact to the third order is derived through the direct calculations ofeach order moment.The distribution arrived reduces,in the sense of being exact to H6,to the Gram-Charlierseries due to Longuet-Higgins for deep water,provided that only the two simplest kinds of wave-wave inter-actions are taken into account The reason why the agreement of Gram-Charlier series with experimental databecomes worse and worse as the terms of series are increased is explicited for the first time.

  16. Efficient computation method for two-dimensional nonlinear waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.

  17. Nonlinear interactions for massive spin-2 fields

    CERN Document Server

    Schmidt-May, Angnis

    2016-01-01

    We give a basic introduction to ghost-free nonlinear theories involving massive spin-2 fields, focussing on bimetric theory. After motivating the construction of such models from field theoretical considerations, we review the linear theories for massive and massless spin-2 fluctuations propagating on maximally symmetric backgrounds. The structure of general nonlinear spin-2 interactions is explained before we specialise to the ghost-free case. We review the maximally symmetric solutions of bimetric theory, its mass spectrum and the parameter limit which brings the theory close to general relativity. Finally we discuss applications of bimetric theory to cosmology with particular emphasis on the role of the general relativity limit.

  18. Nonhydrostatic effects of nonlinear internal wave propagation in the South China Sea

    Science.gov (United States)

    Zhang, Z.; Fringer, O. B.

    2007-05-01

    It is well known that internal tides are generated over steep topography at the Luzon Strait on the eastern boundary of the South China Sea. These internal tides propagate westward and steepen into trains of weakly nonlinear internal waves that propagate relatively free of dissipation until they interact with the continental shelf on the western side of the South China Sea, some 350 km from their generation point. The rate at which the internal tide transforms into trains of nonlinear waves depends on the Froude number at the generation site, which is defined as the ratio of the barotropic current speed to the local internal wave speed. Large Froude numbers lead to rapid evolution of wave trains while low Froude numbers generate internal tides that may not evolve into wave trains before reaching the continental shelf. Although the evolution into trains of weakly nonlinear waves results from the delicate interplay between nonlinear steepening and nonhydrostatic dispersion, the steepening process is represented quite well, at least from a qualitative standpoint, by hydrostatic models, which contain no explicit nonhydrostatic dispersion. Furthermore, hydrostatic models predict the propagation speed of the leading wave in wave trains extremely well, indicating that its propagation speed depends very weakly on nonlinear or dispersive effects. In order to examine how hydrostatic models introduce dispersion that leads to the formation of wave trains, we simulate the generation and evolution of nonlinear waves in the South China Sea with and without the hydrostatic approximation using the nonhydrostatic model SUNTANS, which can be run in either hydrostatic or nonhydrostatic mode. We show that the dispersion leading to the formation of wave trains in the hydrostatic model results from numerically-induced dispersion that is implicit in the numerical formulation of the advection terms. While the speed of the leading wave in the wave trains is correct, the amplitude and number

  19. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  20. Simulation of Fully Nonlinear 3-D Numerical Wave Tank

    Institute of Scientific and Technical Information of China (English)

    张晓兔; 滕斌; 宁德志

    2004-01-01

    A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.

  1. Time-Reversal of Nonlinear Waves - Applicability and Limitations

    CERN Document Server

    Ducrozet, G; Chabchoub, A

    2016-01-01

    Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configu...

  2. Nonlinear diffraction of water waves by offshore stuctures

    Directory of Open Access Journals (Sweden)

    Matiur Rahman

    1986-01-01

    Full Text Available This paper is concerned with a variational formulation of a nonaxisymmetric water wave problem. The full set of equations of motion for the problem in cylindrical polar coordinates is derived. This is followed by a review of the current knowledge on analytical theories and numerical treatments of nonlinear diffraction of water waves by offshore cylindrical structures. A brief discussion is made on water waves incident on a circular harbor with a narrow gap. Special emphasis is given to the resonance phenomenon associated with this problem. A new theoretical analysis is also presented to estimate the wave forces on large conical structures. Second-order (nonlinear effects are included in the calculation of the wave forces on the conical structures. A list of important references is also given.

  3. Interharmonic modulation products as a means to quantify nonlinear D-region interactions

    Science.gov (United States)

    Moore, Robert

    Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.

  4. In a book "Tsunami and Nonlinear Waves": Numerical Verification of the Hasselmann equation

    CERN Document Server

    Korotkevich, A O; Resio, D; Zakharov, V E; Korotkevich, Alexander O.; Pushkarev, Andrei N.; Resio, Don; Zakharov, Vladimir E.

    2007-01-01

    The purpose of this article is numerical verification of the thory of weak turbulence. We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates pretty good applicability of the weak turbulent approach.

  5. Quasi-periodic and Non-periodic Waves in (2+1)-Dimensional Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-Yan; LOU Sen-Yue

    2005-01-01

    New exact quasi-periodic and non-periodic solutions for the (2 + 1)-dimensional nonlinear systems are studied by means of the multi-linear variable separation approach (MLVSA) and the Jacobi elliptic functions with the space-time-dependent modulus. Though the result is valid for all the MLVSA solvable models, it is explicitly shown for the long-wave and short-wave interaction model.

  6. A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves

    Directory of Open Access Journals (Sweden)

    Justin R. Davis

    2014-02-01

    Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.

  7. Wave propagation properties in oscillatory chains with cubic nonlinearities via nonlinear map approach

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it

    2006-02-01

    Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.

  8. Nonlinear Alfvén wave dynamics in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)

    2015-07-15

    Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.

  9. Nonlinear Alfvén wave dynamics in plasmas

    Science.gov (United States)

    Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans

    2015-07-01

    Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.

  10. Analytical Solutions for the Elastic Circular Rod Nonlinear Wave, Boussinesq, and Dispersive Long Wave Equations

    Directory of Open Access Journals (Sweden)

    Shi Jing

    2014-01-01

    Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.

  11. Nonlinear simplified model to study localization of kinetic Alfvén wave

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)

    2014-04-15

    We have presented the numerical simulation of the coupled equations governing the dynamics of kinetic Alfvén wave (KAW) and ion acoustic wave in the intermediate β plasma, where β is the ratio of thermal pressure to the background magnetic pressure. We have also developed a simplified model for this nonlinear interaction using the results obtained from the simulation to understand the physics of nonlinear evolution of KAW. Localization of magnetic field intensity of KAW has been studied by means of the simplified model.

  12. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    Energy Technology Data Exchange (ETDEWEB)

    Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  13. Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2017-08-01

    The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.

  14. Three-dimensional nonlinear theory of travelling wave tubes and simulation

    Institute of Scientific and Technical Information of China (English)

    李斌; 杨中海

    2003-01-01

    A three-dimensional (3D) nonlinear theory of travelling wave tubes (TWTs) is developed, which includes a fundamental radio frequency (RF) and harmonics. When the instantaneous bandwidth exceeds an octave, the harmonic is generated and the mutual coupling between the harmonic and the fundamental RF can be observed in TWTs due to nonlinear interaction between the electron beam and the RF. At low frequencies the harmonic has an obvious effect.Based upon Tien's disc model, a plastic 3D super-particle model is proposed to improve the nonlinear analysis of TWTs.Numerical results employing a periodic magnetic focusing field are presented.

  15. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces

    CERN Document Server

    Jin, Boyuan

    2016-01-01

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be...

  16. Nonlinear scattering of radio waves by metal objects

    Science.gov (United States)

    Shteynshleyger, V. B.

    1984-07-01

    Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.

  17. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  18. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.

    Science.gov (United States)

    Kumon, R E; Hamilton, M F

    2002-05-01

    Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.

  19. Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alka, W.; Goyal, Amit [Department of Physics, Panjab University, Chandigarh-160014 (India); Nagaraja Kumar, C., E-mail: cnkumar@pu.ac.i [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-01-17

    We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.

  20. Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions

    Science.gov (United States)

    Alka, W.; Goyal, Amit; Nagaraja Kumar, C.

    2011-01-01

    We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.

  1. Nonlinear Alfv\\'en waves in extended magnetohydrodynamics

    CERN Document Server

    Abdelhamid, Hamdi M

    2015-01-01

    Large-amplitude Alfv\\'en waves are observed in various systems in space and laboratories, demonstrating an interesting property that the wave shapes are stable even in the nonlinear regime. The ideal magnetohydrodynamics (MHD) model predicts that an Alfv\\'en wave keeps an arbitrary shape constant when it propagates on a homogeneous ambient magnetic field. However, such arbitrariness is an artifact of the idealized model that omits the dispersive effects. Only special wave forms, consisting of two component sinusoidal functions, can maintain the shape; we derive fully nonlinear Alfv\\'en waves by an extended MHD model that includes both the Hall and electron inertia effects. Interestingly, these \\small-scale effects" change the picture completely; the large-scale component of the wave cannot be independent of the small scale component, and the coexistence of them forbids the large scale component to have a free wave form. This is a manifestation of the nonlinearity-dispersion interplay, which is somewhat differ...

  2. NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS

    Institute of Scientific and Technical Information of China (English)

    L. Borup; M. Nielsen

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.

  3. Nonlinear approximation with general wave packets

    DEFF Research Database (Denmark)

    Borup, Lasse; Nielsen, Morten

    2005-01-01

    We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....

  4. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  5. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.

    Science.gov (United States)

    Jin, Boyuan; Argyropoulos, Christos

    2016-06-27

    Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.

  6. New traveling wave solutions for nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-06-11

    The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.

  7. Propagation of Quasi-plane Nonlinear Waves in Tubes

    Directory of Open Access Journals (Sweden)

    P. Koníček

    2002-01-01

    Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.

  8. Nonlinear fast sausage waves in homogeneous magnetic flux tubes

    Science.gov (United States)

    Mikhalyaev, Badma B.; Ruderman, Michael S.

    2015-12-01

    > We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.

  9. A general theory of two-wave mixing in nonlinear media

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael

    2009-01-01

    A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...

  10. Observation of the nonlinear dispersion relation and spatial statistics of wave turbulence on the surface of a fluid.

    Science.gov (United States)

    Herbert, Eric; Mordant, Nicolas; Falcon, Eric

    2010-10-01

    We report experiments on gravity-capillary wave turbulence on the surface of a fluid. The wave amplitudes are measured simultaneously in time and space by using an optical method. The full space-time power spectrum shows that the wave energy is localized on several branches in the wave-vector-frequency space. The number of branches depends on the power injected within the waves. The measurement of the nonlinear dispersion relation is found to be well described by a law suggesting that the energy transfer mechanisms involved in wave turbulence are restricted not only to purely resonant interaction between nonlinear waves. The power-law scaling of the spatial spectrum and the probability distribution of the wave amplitudes at a given wave number are also measured and compared to the theoretical predictions.

  11. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Science.gov (United States)

    Zhang, Shan-Yuan; Zhang, Tao

    2010-11-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  12. Time-reversal of nonlinear waves: Applicability and limitations

    Science.gov (United States)

    Ducrozet, G.; Fink, M.; Chabchoub, A.

    2016-09-01

    Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.

  13. Nonlinear waves in a fluid-filled thin viscoelastic tube

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan-Yuan; Zhang Tao

    2010-01-01

    In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.

  14. Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves

    Directory of Open Access Journals (Sweden)

    Hongjuan Yan

    2015-01-01

    Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.

  15. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  16. Shallow water modal evolution due to nonlinear internal waves

    Science.gov (United States)

    Badiey, Mohsen; Wan, Lin; Luo, Jing

    2017-09-01

    Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.

  17. Doppler effect of nonlinear waves and superspirals in oscillatory media.

    Science.gov (United States)

    Brusch, Lutz; Torcini, Alessandro; Bär, Markus

    2003-09-01

    Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.

  18. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers

    OpenAIRE

    2011-01-01

    International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...

  19. Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential

    Institute of Scientific and Technical Information of China (English)

    化存才; 刘延柱

    2002-01-01

    For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.

  20. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  1. Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.

  2. Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2010-10-01

    In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.

  3. On the so called rogue waves in nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Y. Charles Li

    2016-04-01

    Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.

  4. Analysis of nonlinear internal waves in the New York Bight

    Science.gov (United States)

    Liu, Antony K.

    1988-01-01

    An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.

  5. Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves

    CERN Document Server

    Driben, Rodislav

    2014-01-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.

  6. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    Science.gov (United States)

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.

  7. Linear and Nonlinear Surface Waves in Electrohydrodynamics

    CERN Document Server

    Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios

    2015-01-01

    The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.

  8. Wave-packet dynamics in one-dimensional nonlinear Schroedinger lattices: local vs. nonlocal nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)

    2014-02-15

    We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.

  9. Transformation and disintegration of strongly nonlinear internal waves by topography in stratified lakes

    Directory of Open Access Journals (Sweden)

    V. I. Vlasenko

    Full Text Available For many lakes the nonlinear transfer of energy from basin-scale internal waves to short-period motions, such as solitary internal waves (SIW and wave trains, their successive interaction with lake boundaries, as well as over-turning and breaking are important mechanisms for an enhanced mixing of the turbulent benthic boundary layer. In the present paper, the evolution of plane SIWs in a variable depth channel, typical of a lake of variable depth, is considered, with the basis being the Reynolds equations. The vertical fluid stratification, wave amplitudes and bottom parameters are taken close to those observed in Lake Constance, a typical mountain lake. The problem is solved numerically. Three different scenarios of a wave evolution over variable bottom topography are examined. It is found that the basic parameter controlling the mechanism of wave evolution is the ratio of the wave amplitude to the distance from the metalimnion to the bottom d. At sites with a gentle sloping bottom, where d is small, propagating (weak or strong internal waves adjust to the local ambient conditions and preserve their form. No secondary waves or wave trains arise during wave propagation from the deep part to the shallow water. If the amplitude of the propagating waves is comparable with the distance between the metalimnion and the top of the underwater obstacle ( d ~ 1, nonlinear dispersion plays a key role. A wave approaching the bottom feature splits into a sequence of secondary waves (solitary internal waves and an attached oscillating wave tail. The energy of the SIWs above the underwater obstacle is transmitted in parts from the first baroclinic mode, to the higher modes. Most crucially, when the internal wave propagates from the deep part of a basin to the shallow boundary, a breaking event can arise. The cumulative effects of the nonlinearity lead to a steepening and

  10. A Numerical Wave Tank for Nonlinear Waves with Passive Absorption

    Institute of Scientific and Technical Information of China (English)

    周宗仁; 尹彰; 石瑞祥

    2001-01-01

    A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectralshapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of theflume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of aLagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the problem is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varyingthe values of the absorption coefficient μ, and studying the time histories of the surface elevations "recorded" on pre-se-lected locations.

  11. Nonlinear and Dissipation Characteristics of Ocean Surface Waves in Estuarine Environments

    Science.gov (United States)

    2010-01-01

    determines the time scale over which the interactions occur, in the manner of Hill and Foda (1998) and Jamali et al. (2003). RESULTS Contrary to...the intermediate-depth work of Hill and Foda (1998) and Jamali et al. (2003), the interactions in this wealky-dispersive, weakly-nonlinear model...The stability of oscillatory internal waves. Journal of Fluid Mechanics, 30, 723-736. Hill, D.F., and Foda , M.A., 1998. Subharmonic resonance of

  12. Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation

    Science.gov (United States)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2017-05-01

    The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.

  13. Simulations of nonlinear continuous wave pressure fields in FOCUS

    Science.gov (United States)

    Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.

    2017-03-01

    The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.

  14. NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Sirendaoreji

    2004-01-01

    Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.

  15. EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    ZhuYanjuan; ZhangChunhua

    2005-01-01

    The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.

  16. Nonlinear wave mechanics from classical dynamics and scale covariance

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr

    2007-10-29

    Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.

  17. Non-Linear Langmuir Wave Modulation in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1977-01-01

    A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...

  18. Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk

    ..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics

  19. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  20. Exact controllability for a nonlinear stochastic wave equation

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.

  1. Stability of planar diffusion wave for nonlinear evolution equation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.

  2. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.;

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....

  3. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    ). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...

  4. NUMERICAL SIMULATIONS OF NONLINEAR WAVE TRANSFORMATION AROUND WAVE-PERMEABLE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Li Xi; YAN Yi-xin

    2005-01-01

    The problem of wave partial/full reflection and transmission by wave-permeable structure is approached by solving the shape-related function with focus on the understanding of wave attenuation.2D depth-averaged Boussinesq type wave equations are given with new damping item in simulating the nonlinear wave transmission through wave-permeable structure.1D wave equation is examined to give the analytical expression of the absorbing coefficient, and is compared with laboratory data in flume to calibrate the coefficients, and the expression is applied directly in modified Boussinesq type equations.Compared with wave basin data for various incident wave conditions,the accurate predictions of combined diffraction-refraction effects in simulating nonlinear wave going through wave-permeable breakwater in the engineering application can be obtained.It shows that wave-permeable breakwaters with proper absorbing effects can be used as an effective alternative to massive gravity breakwaters in reduction of wave transmission in shallow water.

  5. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-04-15

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.

  6. Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types

    Science.gov (United States)

    Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cédric; Ulrich, T. J.

    2016-03-01

    In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.

  7. Nonlinear single Compton scattering of an electron wave-packet

    CERN Document Server

    Angioi, A; Di Piazza, A

    2016-01-01

    In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...

  8. Nearly linear dynamics of nonlinear dispersive waves

    CERN Document Server

    Erdogan, M B; Zharnitsky, V

    2010-01-01

    Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.

  9. Controlling nonlinear waves in excitable media

    Energy Technology Data Exchange (ETDEWEB)

    Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)

    2009-01-30

    A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.

  10. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yubin; Wang Mingliang; Miao Tiande

    2004-03-15

    The periodic wave solutions for a class of nonlinear partial differential equations, including the Davey-Stewartson equations and the generalized Zakharov equations, are obtained by using the F-expansion method, which can be regarded as an overall generalization of the Jacobi elliptic function expansion method recently proposed. In the limit cases the solitary wave solutions of the equations are also obtained.

  11. Evolution of Nonlinear Internal Waves in China Seas

    Science.gov (United States)

    Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.

    1997-01-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.

  12. Nonlinear dynamic behaviors of a floating structure in focused waves

    Science.gov (United States)

    Cao, Fei-feng; Zhao, Xi-zeng

    2015-12-01

    Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.

  13. Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes

    Science.gov (United States)

    Hollweg, J. V.; Jackson, S.; Galloway, D.

    1982-01-01

    Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.

  14. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification

    CERN Document Server

    Bigoni, Daniele; Eskilsson, Claes

    2014-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...

  16. Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates

    Institute of Scientific and Technical Information of China (English)

    CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui

    2011-01-01

    The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.

  17. Nonlinear waves in electromigration dispersion in a capillary

    CERN Document Server

    Christov, Ivan C

    2016-01-01

    We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...

  18. Nonlinear frequency shift of electrostatic waves in general collisionless plasma: unifying theory of fluid and kinetic nonlinearities

    CERN Document Server

    Liu, Chang

    2015-01-01

    The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.

  19. On a nonlinear gravitational wave. Geodesics

    CERN Document Server

    Culetu, Hristu

    2016-01-01

    An exact, plane wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density $\\rho$ and the pressure $p_{z}$ are negative but finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface $t - z = 0$, $Oz$ axis being the direction of propagation. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.

  20. Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2015-01-01

    Full Text Available We study the exact traveling wave solutions of a general fifth-order nonlinear wave equation and a generalized sixth-order KdV equation. We find the solvable lower-order subequations of a general related fourth-order ordinary differential equation involving only even order derivatives and polynomial functions of the dependent variable. It is shown that the exact solitary wave and periodic wave solutions of some high-order nonlinear wave equations can be obtained easily by using this algorithm. As examples, we derive some solitary wave and periodic wave solutions of the Lax equation, the Ito equation, and a general sixth-order KdV equation.

  1. ON INTERACTION OF SHOCK AND SOUND WAVE (I)

    Institute of Scientific and Technical Information of China (English)

    CHENSHUXING

    1996-01-01

    This paper studies the interaction of shock and gradient wave (sound wave) of solutions to the system of inviscid isentropic gas dynamics as a model for the corresponding problems for nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in a wedged dormain, By using the method of constructing asymptotic solutions and Newton'siteration process it is proved that if a weak shock hits a gradient wave, then the grandient wave will split into two gradient waves, while the shock continuses propagating. In this paper the author reduces the problem to a standard form and constructs asymptotic solution of the problem. The existence of the genuine solution will he given in the following paper.

  2. Interactions Between Solitons and Cnoidal Periodic Waves of the Boussinesq Equation

    Science.gov (United States)

    Yang, Duo; Lou, Sen-Yue; Yu, Wei-Feng

    2013-10-01

    The Boussinesq equation is one of important prototypic models in nonlinear physics. Various nonlinear excitations of the Boussinesq equation have been found by many methods. However, it is very difficult to find interaction solutions among different types of nonlinear excitations. In this peper, two equivalent very simple methods, the truncated Painlevé analysis and the generalized tanh function expansion approaches, are developed to find interaction solutions between solitons and any other types of Boussinesq waves.

  3. Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term

    Energy Technology Data Exchange (ETDEWEB)

    Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)

    2006-08-15

    Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.

  4. Generation and propagation of nonlinear internal waves in Massachusetts Bay

    Science.gov (United States)

    Scotti, A.; Beardsley, R.C.; Butman, B.

    2007-01-01

    During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.

  5. Amplitude-dependent contraction/elongation of nonlinear Lamb waves

    Science.gov (United States)

    Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2016-04-01

    Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.

  6. Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.

  7. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  8. Geodesic deviation in a nonlinear gravitational wave spacetime

    CERN Document Server

    Culetu, Hristu

    2016-01-01

    The tidal effects generated by a nonlinear gravitational wave are investigated in double-null v - u coordinates, as an exact solution of Einstein's field equations. The components $\\xi^{v}$ and $\\xi^{u}$ of the separation vector behave as in flat space but the transversal components $\\xi^{x}$ and $\\xi^{y}$ depend nonlinearly on $v$ through the Bessel and Neumann functions, far from the null surface $v = 0$. We show that the same results are obtained by means of the tetrad formalism.

  9. Traveling wave solutions for some factorized nonlinear PDEs

    Science.gov (United States)

    Cornejo-Pérez, Octavio

    2009-01-01

    In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.

  10. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  11. Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops

    Science.gov (United States)

    Mikhalyaev, B. B.; Bembitov, D. B.

    2014-11-01

    We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.

  12. Interaction of Shock Waves in Cement Mortar Plate Investigated by the Digital Speckle Correlation Method

    Institute of Scientific and Technical Information of China (English)

    LI Xu-Dong; LIU Kai-Xin; ZHANG Guang-Sheng; WEN Shang-Gang; TAN Fu-Li

    2008-01-01

    @@ Interaction of shock waves in cement mortar plate is studied by digital speckle correlation method and digital high-speed photography technique. When the plates were destroyed by two detonators exploding at the same time, variation of shock wave field is obtained. Experimental results show that the interaction of shock waves will result in a nonlinear huge increase of local normal strain, leading to large deformation and serious destruction. However, the occurrence of this strongly nonlinear phenomenon sensitively depends on the interval between detonators, and it will only appear when the interval is smaller than the diameter of the region where shock waves exist.

  13. Effect of nonlinear wave collapse on line shapes in a plasma

    Science.gov (United States)

    Hannachi, I.; Stamm, R.; Rosato, J.; Marandet, Y.

    2016-04-01

    The nonlinear interaction of waves can change the structural and radiative properties of plasmas. We describe the main features of a fully ionized unmagnetized plasma affected by strong Langmuir turbulence characterized by nonlinear wave collapse, and propose a simple model for evaluating the changes expected on a hydrogen line shape affected by such conditions. Our model is based on a stochastic renewal model using an exponential waiting time distribution and a half-normal probability density function for the electric-field magnitude of the turbulent wave packet. The first results obtained with a simulation calculation of the hydrogen \\text{L}α line show that strong Langmuir turbulence can provide an additional broadening to a Stark profile.

  14. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    CERN Document Server

    Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan

    2015-01-01

    The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  15. Wave packet dynamics in one-dimensional linear and nonlinear generalized Fibonacci lattices.

    Science.gov (United States)

    Zhang, Zhenjun; Tong, Peiqing; Gong, Jiangbin; Li, Baowen

    2011-05-01

    The spreading of an initially localized wave packet in one-dimensional linear and nonlinear generalized Fibonacci (GF) lattices is studied numerically. The GF lattices can be classified into two classes depending on whether or not the lattice possesses the Pisot-Vijayaraghavan property. For linear GF lattices of the first class, both the second moment and the participation number grow with time. For linear GF lattices of the second class, in the regime of a weak on-site potential, wave packet spreading is close to ballistic diffusion, whereas in the regime of a strong on-site potential, it displays stairlike growth in both the second moment and the participation number. Nonlinear GF lattices are then investigated in parallel. For the first class of nonlinear GF lattices, the second moment of the wave packet still grows with time, but the corresponding participation number does not grow simultaneously. For the second class of nonlinear GF lattices, an analogous phenomenon is observed for the weak on-site potential only. For a strong on-site potential that leads to an enhanced nonlinear self-trapping effect, neither the second moment nor the participation number grows with time. The results can be useful in guiding experiments on the expansion of noninteracting or interacting cold atoms in quasiperiodic optical lattices.

  16. Local numerical modelling of ultrasonic guided waves in linear and nonlinear media

    Science.gov (United States)

    Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.

  17. NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER

    Institute of Scientific and Technical Information of China (English)

    菅永军; 鄂学全; 柏威

    2003-01-01

    In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.

  18. Interpretation of nonlinearity in wind generated ocean surface waves

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    This study attempts to resolve a mix-up between a physical process and its mathematical interpretation in the context of wind waves on ocean surface. Wind generated wave systems, are conventionally interpreted as a result of interaction of a number...

  19. Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.

    Science.gov (United States)

    Kartashova, Elena

    2012-10-01

    A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.

  20. Gravitational-wave tail effects to quartic non-linear order

    CERN Document Server

    Marchand, Tanguy; Faye, Guillaume

    2016-01-01

    Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. Also known are the "tails-of-tails", which are cubically non-linear effects appearing at the 3PN order in the waveform. Here we derive still higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.

  1. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    Science.gov (United States)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  2. Evanescent light-matter Interactions in Atomic Cladding Wave Guides

    CERN Document Server

    Stern, Liron; Goykhman, Ilya; Levy, Uriel

    2012-01-01

    Alkali vapors, and in particular rubidium, are being used extensively in several important fields of research such as slow and stored light non-linear optics3 and quantum computation. Additionally, the technology of alkali vapors plays a major role in realizing myriad industrial applications including for example atomic clocks magentometers8 and optical frequency stabilization. Lately, there is a growing effort towards miniaturizing traditional centimeter-size alkali vapor cells. Owing to the significant reduction in device dimensions, light matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for non-linear interactions. Here, taking advantage of the mature Complimentary Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we construct an efficient and flexible platform for tailored light vapor interactions on a chip. Specifically, we demonstrate light matter interactions in an atomic cladding wave guide (ACWG), consisting of CMOS ...

  3. The Nonlinear Landau Damping Rate of a Driven Plasma Wave

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D; Strozzi, D J; Gremillet, L; Morice, O

    2009-08-04

    In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

  4. Optimal Control Of Nonlinear Wave Energy Point Converters

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten

    2013-01-01

    In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....

  5. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  6. Multisymplectic five-point scheme for the nonlinear wave equation

    Institute of Scientific and Technical Information of China (English)

    WANG Yushun; WANG Bin; YANG Hongwei; WANG Yunfeng

    2003-01-01

    In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.

  7. Collapse of nonlinear electron plasma waves in a plasma layer

    Science.gov (United States)

    Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.

    2016-10-01

    The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.

  8. Modulational development of nonlinear gravity-wave groups

    Science.gov (United States)

    Chereskin, T. K.; Mollo-Christensen, E.

    1985-01-01

    Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.

  9. Nonlinear Interactions Between Oblique Wind Waves

    Science.gov (United States)

    2015-08-01

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 27-Aug-2015 2. REPORT TYPE Final...easy cross-referencing. However, a change occurred for the normalization of variables in the final amplitude equations. In Lee (2012), the variables in...of difference modes when λ = O(1) Equation (87) shows that the amplitudes of the first N − 2 difference modes grow exponentially, Adn = adnexp(κdnt̄

  10. Adaptive modeling of shallow fully nonlinear gravity waves

    CERN Document Server

    Dutykh, Denys; Mitsotakis, Dimitrios

    2014-01-01

    This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.

  11. Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren

    2005-01-01

    Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.

  12. Solitary wave solutions to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas

    2014-10-01

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.

  13. SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.

  14. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

  15. On kinetic complexity in a three-wave interaction

    Energy Technology Data Exchange (ETDEWEB)

    Skoric, M.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Yugoslavia); Sato, T.; Maluckov, A.M.; Jovanovic, M.S.

    1998-06-01

    A stimulated Raman scattering in a plasma represents a resonant three-wave interaction which involves the nonlinear coupling of an electromagnetic pump into a scattered electromagnetic wave plus an electron plasma wave. In this paper, we concentrate on a nonlinear evolution of stimulated Raman backscattering in an open convective weakly confined model. In recent fluid simulations, rich spatio-temporal complexity that exhibits a transition to intermittency and chaos was revealed. However, this model has failed to account for a realistic entropy balance due to an anomalous dissipation. We introduce a hybrid-three-wave interaction model to include a phenomenological kinetic dissipation due to particle trapping and plasma wave breaking. Furthermore, we propose an open plasma model with realistic current-free boundaries to compare with a closed-isolated case. Under a continual free energy supply we vary a transport parameter to study a kinetic self-organization. In simulations, macro and micro scale complexities develop, which saturate and get attracted to definite dynamical states, such as: quasi-steady, quasi-periodic and intermittent ones. At this point, an important consistency of above findings with a general scenario of a self-organization in plasmas can be claimed. (author)

  16. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  17. NONLINEAR DYNAMICS OF MAGNETOHYDRODYNAMIC ROSSBY WAVES AND THE CYCLIC NATURE OF SOLAR MAGNETIC ACTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)

    2015-01-20

    The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.

  18. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  19. Nonlinear Wave in a Disc-Shaped Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan; SHI Yu-Ren; WANG Hong-Yan

    2006-01-01

    @@ We discuss the possible nonlinear wavesof atomic matter wave in a Bose-Einstein condensate. One and two of two-dimensional (2D) dark solitons in the Bose-Einstein condensed system are investigated. A rich dynamics is studied for the interactions between two solitons. The interaction profiles of two solitons are greatly different if the angle between them are different. If the angle is small enough, the maximum amplitude during the interaction between two solitons is even less than that of a single soliton. However, if the angle is large enough, the maximum amplitude of two solitons can gradually attend to the sum of two soliton amplitudes.

  20. Mud-Wave Interaction: A Viscoelastic Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study is devoted to the interaction between water surface waves and a thin layer of viscoelastic mud on the bottom. On the assumption that the mud layer is comparable in thickness with the wave boundary layer and is much smaller than the wavelength, a two-layer Stokes boundary layer model is adopted to determine the mud motions under the waves. Analytical expressions are derived for the near-bottom water and mud velocity fields, surface wave-damping rate, and interface wave amplitude and phase lag. Examined in particular is how these kinematic quantities may depend on the viscous and elastic properties of the mud.

  1. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.

    Science.gov (United States)

    Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi

    2008-03-01

    In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.

  2. Identification and determination of solitary wave structures in nonlinear wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, W.I.; Campbell, D.K.; Hyman, J.M.

    1991-01-01

    Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.

  3. Spectrograms of ship wakes: identifying linear and nonlinear wave signals

    CERN Document Server

    Pethiyagoda, Ravindra; Moroney, Timothy J

    2016-01-01

    A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified three additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. Further, we show that additional features in the experimental data are caused by nonlinearity. Finally, we explain a discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceler...

  4. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  5. Nonlinear Propagation of Planet-Generated Tidal Waves

    Science.gov (United States)

    Rafikov, R. R.

    2002-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.

  6. Nonlinear propagation of planet-generated tidal waves

    CERN Document Server

    Rafikov, R R

    2002-01-01

    The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.

  7. New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves

    CERN Document Server

    Rezzolla, L

    2002-01-01

    In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.

  8. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  9. Analytical description of nonlinear acoustic waves in the solar chromosphere

    Science.gov (United States)

    Litvinenko, Yuri E.; Chae, Jongchul

    2017-02-01

    Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.

  10. Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma

    Science.gov (United States)

    El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.

    2015-08-01

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.

  11. Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2011-01-01

    Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear...... wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared...... with the corresponding forceprofiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found...

  12. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in small wave number region

    CERN Document Server

    Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-01-01

    The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.

  13. Stability of Solitary Waves for Three Coupled Long Wave - Short Wave Interaction Equations

    OpenAIRE

    Borluk, H.; Erbay, S.

    2009-01-01

    In this paper we consider a three-component system of one dimensional long wave-short wave interaction equations. The system has two-parameter family of solitary wave solutions. We prove orbital stability of the solitary wave solutions using variational methods.

  14. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    Science.gov (United States)

    Nafari, F.; Ghoranneviss, M.

    2016-08-01

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperature for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.

  15. Numerical Simulation of Nonlinear Lamb Waves Used in a Thin Plate for Detecting Buried Micro-Cracks

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    2014-05-01

    Full Text Available Compared with conventional linear ultrasonic inspection methods, which are sensitive only to severe defects, nonlinear ultrasonic inspection methods are better for revealing micro-cracks in thin plates. However, most nonlinear ultrasonic inspection methods have only been experimentally investigated using bulk or Rayleigh waves. Numerical studies, especially numerical simulations of Lamb ultrasonic waves, have seldom been reported. In this paper, the interaction between nonlinear S0 mode Lamb waves and micro-cracks of various lengths and widths buried in a thin metallic plate was simulated using the finite element method (FEM. The numerical results indicate that after interacting with a micro-crack, a new wave-packet was generated in addition to the S0 mode wave-packet. The second harmonics of the S0 mode Lamb waves and the new wave-packet were caused by nonlinear acoustic effects at the micro-crack. An amplitude ratio indicator is thus proposed for the early detection of buried micro-cracks.

  16. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner;

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  17. Conservative numerical methods for solitary wave interactions

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A; Lopez-Marcos, M A [Departamento de Matematica Aplicada y Computacion, Facultad de Ciencias, Universidad de Valladolid, Paseo del Prado de la Magdalena s/n, 47005 Valladolid (Spain)

    2003-07-18

    The purpose of this paper is to show the advantages that represent the use of numerical methods that preserve invariant quantities in the study of solitary wave interactions for the regularized long wave equation. It is shown that the so-called conservative methods are more appropriate to study the phenomenon and provide a dynamic point of view that allows us to estimate the changes in the parameters of the solitary waves after the collision.

  18. Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media

    KAUST Repository

    Luna, Manuel

    2011-05-01

    Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.

  19. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.

  20. Excitation of nonlinear ion acoustic waves in CH plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...

  1. Annotated Bibliography on Wave-Current Interaction

    Science.gov (United States)

    1983-03-01

    Rotational Fluid," Journal of Computational Physics, Bruges , Belgium, Vol. 24, No. 1, May 1977, pp. 29-42. Keywords. Currents, Vertical Shear; Numerical...realistic representa- tion of the current field and wave history . 14. GADD, G.E., "An Interaction Between Surface Water Waves and a Turbulent

  2. Nonlinear reflection process of linearly-polarized, broadband Alfv\\'en waves in the fast solar wind

    CERN Document Server

    Shoda, Munehito

    2016-01-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfv\\'{e}n wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfv\\'{e}n wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave-wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfv\\'{e}n wave. In this study we consider a linearly polarized Alfv\\'en wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfv\\...

  3. Three-wave interaction during electron cyclotron resonance heating and current drive

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Jacobsen, Asger Schou; Hansen, Søren Kjer

    2016-01-01

    Non-linear wave-wave interactions in fusion plasmas, such as the parametric decay instability (PDI) of gyrotron radiation, can potentially hamper the use of microwave diagnostics. Here we report on anomalous scattering in the ASDEX Upgrade tokamak during electron cyclotron resonance heating...

  4. Dark Spatial Soliton Interaction in Nonlinear Kerr Medium

    Institute of Scientific and Technical Information of China (English)

    LuchuanWANG; QinliangFAN

    1998-01-01

    The dark spatial soliton interaction in nonlinear Kerr medium has been studied in this paper.The problem has been solved by the use of the slowly varying envelope approximation in solving coupled nonlinear Schroedinger equations.The perturbation nature of dark spatial soliton interaction has been described and some of their key properties has been discussed as well in the paper.

  5. Anomalous interaction of nonlocal solitons in media with competing nonlinearities

    DEFF Research Database (Denmark)

    Esbensen, B. K.; Bache, Morten; Bang, Ole

    2012-01-01

    We theoretically investigate properties of individual bright spatial solitons and their interaction in nonlocal media with competing focusing and defocusing nonlinearities. We consider the general case with both nonlinear responses characterized by different strengths and degrees of nonlocality. We...... and interaction of solitons using numerical simulations of the full model of beam propagation. The numerical simulations fully confirm our analytical results....

  6. Adiabatic Wave-Particle Interaction Revisited

    CERN Document Server

    Dewar, R L; 10.1585/pfr.4.001

    2009-01-01

    In this paper we calculate and visualize the dynamics of an ensemble of electrons trapping in an electrostatic wave of slowly increasing amplitude, illustrating that, despite disordering of particles in angle during the trapping transition as they pass close to X-points, there is still an adiabatic invariant for the great majority of particles that allows the long-time distribution function to be predicted. Possible application of this approach to recent work on the nonlinear frequency shift of a driven wave is briefly discussed.

  7. Nonlinear wave structures in collisional plasma of auroral E-region ionosphere

    Directory of Open Access Journals (Sweden)

    A. V. Volosevich

    Full Text Available Studies of the auroral plasma with small-scale inhomogenieties producing the VHF-radar reflections (radar aurora when observed in conditions of the saturated Farley-Buneman instability within the auroral E region, show strong nonlinear interactions and density fluctuations of 5–15%. Such nonlinearity and high fluctation amplitudes are inconsistent with the limitations of the weak turbulence theory, and thus a theory for arbitrary amplitudes is needed. To this end, a nonlinear theory is described for electrostatic MHD moving plasma structures of arbitrary amplitude for conditions throughout the altitude range of the collisional auroral E region. The equations are derived, from electron and ion motion self-consistent with the electric field, for the general case of the one-dimensional problem. They take into account nonlinearity, electron and ion inertia, diffusion, deviation from quasi-neutrality, and dynamical ion viscosity. The importance of the ion viscosity for dispersion is stressed, while deviation from the quasi-neutrality can be important only at rather low plasma densities, not typical for the auroral E region. In a small amplitude limit these equations have classical nonlinear solutions of the type of "electrostatic shock wave" or of knoidal waves. In a particular case these knoidal waves degrade to a dissipative soliton. A two-dimensional case of a quasi-neutral plasma is considered in the plane perpendicular to the magnetic field by way of the Poisson brackets, but neglecting the nonlinearity and ion inertia. It is shown that in these conditions an effective saturation can be achieved at the stationary turbulence level of order of 10%.

  8. Nonlinear electrostatic waves in inhomogeneous dense dusty magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, S., E-mail: shahzad_mahmoodpk@yahoo.co [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2010-01-25

    The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.

  9. Rotation-induced nonlinear wavepackets in internal waves

    Energy Technology Data Exchange (ETDEWEB)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  10. Rotation-induced nonlinear wavepackets in internal waves

    Science.gov (United States)

    Whitfield, A. J.; Johnson, E. R.

    2014-05-01

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.

  11. Nonlinear effects of inertial Alfvén wave in low beta plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rinawa, M. L., E-mail: motilal.rinawa@gmail.com; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com; Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India)

    2015-02-15

    This paper is devoted to the study of the nonlinear interaction and propagation of high frequency pump inertial Alfvén wave (IAW) with comparatively low frequency IAW with emphasis on nonlinear effects and applications within space plasma and astrophysics for low β-plasma (β≪m{sub e}/m{sub i}). We have developed a set of dimensionless equations in the presence of ponderomotive nonlinearity due to high frequency pump IAW in the dynamics of comparatively low frequency IAW. Stability analysis and numerical simulation have been carried out for the coupled system comprising of pump IAW and low frequency IAW to study the localization and turbulent spectra, applicable to auroral region. The result reveals that localized structures become more complex and intense in nature at the quasi steady state. From the obtained result, we found that the present model may be useful to study the turbulent fluctuations in accordance with the observations of FAST/THEMIS spacecraft.

  12. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.

    Science.gov (United States)

    Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K

    2014-11-03

    Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

  13. Numerical Simulation of Nonlinear Wave Force on a Quasi-ellipse Caisson

    Institute of Scientific and Technical Information of China (English)

    Yongxue Wang; Xiaozhong Ren; Guoyu Wang

    2011-01-01

    A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper.Navier-Stokes equations were solved by the finite difference method,and the volume of fluid (VOF) method was employed to trace the free surface.The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure,and a satisfactory result was obtained.The numerical model was verified and used to investigate the effects of the relative wave height H/d,relative caisson width kD,and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson.It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson.Compared with the non-dimensional inline wave force,the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.

  14. A Numerical Study on Wave Evolution in Interaction with Flexible Vegetation

    Science.gov (United States)

    Tahvildari, N.; Zeller, R. B.; Kaihatu, J. M.

    2016-02-01

    Coastal wetlands are among the natural features with capability to reduce storm damage. Previous numerical studies on wave dissipation effects of aquatic vegetation typically apply some simplifications to vegetation behavior and mostly ignore spectral wave evolution. For instance, vegetation elements are usually assumed rigid or semi-flexible. Similarly, despite laboratory experiments that confirm the evolution of wave spectra over vegetation fields, nonlinear wave-wave interactions are generally ignored and a bulk dissipative measure such as reduction in root-mean-square waveheight is examined. Inadequate representation of wave and vegetation characteristics in numerical models reduce their capability in accurate prediction of coastal processes. To address these shortcomings, a time-domain nonlinear numerical model based on the Boussinesq formulation is developed and coupled with an enhanced vegetation representation that accounts for arbitrary rigidity. The model is validated with laboratory experiments and a frequency-dependent vegetative drag coefficient is obtained. The coefficient is then incorporated in a frequency-domain model to investigate the combined effect of vegetative wave dissipation and nonlinear wave-wave interactions in modulating the surface wave spectra. The effect of vegetation parameters such as rigidity, stem density, and state of submergence on wave characteristics is examined and implications in vegetation benefits in wave energy dissipation are discussed.

  15. Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media

    Directory of Open Access Journals (Sweden)

    Maxim A. Molchan

    2007-08-01

    Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.

  16. Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu

    2010-01-01

    Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.

  17. Nonlinear optical interactions in silicon waveguides

    Science.gov (United States)

    Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.

    2017-03-01

    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  18. Effect of scalar nonlinearity on zonal flow generation by Rossby waves

    NARCIS (Netherlands)

    Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.

    2007-01-01

    Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r

  19. Modeling of fatigue crack induced nonlinear ultrasonics using a highly parallelized explicit local interaction simulation approach

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-04-01

    This paper presents a parallelized modeling technique for the efficient simulation of nonlinear ultrasonics introduced by the wave interaction with fatigue cracks. The elastodynamic wave equations with contact effects are formulated using an explicit Local Interaction Simulation Approach (LISA). The LISA formulation is extended to capture the contact-impact phenomena during the wave damage interaction based on the penalty method. A Coulomb friction model is integrated into the computation procedure to capture the stick-slip contact shear motion. The LISA procedure is coded using the Compute Unified Device Architecture (CUDA), which enables the highly parallelized supercomputing on powerful graphic cards. Both the explicit contact formulation and the parallel feature facilitates LISA's superb computational efficiency over the conventional finite element method (FEM). The theoretical formulations based on the penalty method is introduced and a guideline for the proper choice of the contact stiffness is given. The convergence behavior of the solution under various contact stiffness values is examined. A numerical benchmark problem is used to investigate the new LISA formulation and results are compared with a conventional contact finite element solution. Various nonlinear ultrasonic phenomena are successfully captured using this contact LISA formulation, including the generation of nonlinear higher harmonic responses. Nonlinear mode conversion of guided waves at fatigue cracks is also studied.

  20. Observations of surface waves interacting with ice using stereo imaging

    Science.gov (United States)

    Campbell, Alexander J.; Bechle, Adam J.; Wu, Chin H.

    2014-06-01

    A powerful Automated Trinocular Stereo Imaging System (ATSIS) is used to remotely measure waves interacting with three distinct ice types: brash, frazil, and pancake. ATSIS is improved with a phase-only correlation matching algorithm and parallel computation to provide high spatial and temporal resolution 3-D profiles of the water/ice surface, from which the wavelength, frequency, and energy flux are calculated. Alongshore spatial frequency distributions show that pancake and frazil ices differentially attenuate at a greater rate for higher-frequency waves, causing a decrease in mean frequency. In contrast, wave propagation through brash ice causes a rapid increase in the dominant wave frequency, which may be caused by nonlinear energy transfer to higher frequencies due to collisions between the brash ice particles. Consistent to the results in frequency, the wavelengths in pancake and frazil ices increase but decrease in brash ice. The total wave energy fluxes decrease exponentially in both pancake and frazil ice, whereas the overall energy flux remain constant in the brash ice due to thin layer thickness. The spatial energy flux distributions also reveal that wave reflection occurs at the boundary of each ice layer, with reflection coefficient decaying exponentially away from the ice interface. Reflection is the strongest at the pancake/ice-free and frazil/brash interfaces and the weakest at the brash/ice-free interface. These high resolution observations measured by ATSIS demonstrate the spatially variable nature of waves propagating through ice.

  1. Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma

    CERN Document Server

    Kaplan, A E

    2010-01-01

    An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.

  2. Exact travelling wave solutions of nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-04-15

    An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.

  3. Fourth order wave equations with nonlinear strain and source terms

    Science.gov (United States)

    Liu, Yacheng; Xu, Runzhang

    2007-07-01

    In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.

  4. Critical exponent for damped wave equations with nonlinear memory

    CERN Document Server

    Fino, Ahmad

    2010-01-01

    We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.

  5. Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom

    Science.gov (United States)

    Chen, Y. Y.; Hsu, H. C.; Li, M. S.

    2012-04-01

    In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the

  6. THE INTERACTION BETWEEN SHOCK WAVES AND SOLID SPHERES ARRAYS IN A SHOCK TUBE

    Institute of Scientific and Technical Information of China (English)

    SHI Honghui; Kazuki YAMAMURA

    2004-01-01

    When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array,size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.

  7. Periodic Wave Solutions of Generalized Derivative Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHA Qi-Lao; LI Zhi-Bin

    2008-01-01

    A Darboux transformation of the generalized derivative nonlinear Schr(o)dinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schr(o)dinger equation are explicitly given.

  8. On global attraction to stationary states for wave equations with concentrated nonlinearities

    OpenAIRE

    Kopylova, E.

    2016-01-01

    The global attraction to stationary states is established for solutions to 3D wave equations with concentrated nonlinearities: each finite energy solution converges as $t\\to\\pm\\infty$ to stationary states. The attraction is caused by nonlinear energy radiation.

  9. Experimental observation of long-wavelength dispersive wave generation induced by self-defocusing nonlinearity in BBO crystal

    CERN Document Server

    Zhou, Binbin

    2015-01-01

    We experimentally observe long-wavelength dispersive waves generation in a BBO crystal. A soliton was formed in normal GVD regime of the crystal by a self-defocusing and negative nonlinearity through phase-mismatched quatradic interaction. Strong temporal pulse compression confirmed the formation of soliton during the pulse propagation inside the crystal. Significant dispersive wave radiation was measured in the anomalous GVD regime of the BBO crystal. With the pump wavelengths from 1.24 to 1.4 $\\mu$m, tunable dispersive waves are generated around 1.9 to 2.2 $\\mu$m. The observed dispersive wave generation is well understood by simulations.

  10. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    Science.gov (United States)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  11. Numerical experiment for nonlinear full-wave tomography. 3; Hisenkei full wave tomography no suchi jikken

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, T. [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.

  12. Wave "Coherency" and Implications for Wave-Particle Interactions

    Science.gov (United States)

    Tsurutani, Bruce; Singh Lakhina, Gurbax; Bhanu, Remya; Lee, Lou-Chuang

    2016-07-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency, quasi-coherency and incoherency for a variety of magnetospheric plasma waves. We will show how to measure coherency/quasicoherency quantitatively for electromagnetic whistler mode chorus, electromagnetic ion cyclotron (EMIC) waves, plasmaspheric hiss and linearly polarized magnetosonic waves. If plasma waves are coherent, their interactions with resonant particles will be substantially different. Specific examples will be used to show that the pitch angle scattering rates for energetic charged particles is roughly 3 orders of magnitude faster than the Kennel-Petschek diffusion (which assumes incoherent waves) rate. We feel that this mechanism is the only one that can explain ~ 0.1- 0.5 s bremsstrahlung x-ray microbursts.

  13. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  14. Shock wave interactions with liquid sheets

    Science.gov (United States)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  15. Solitary wave interactions of the GRLW equation

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J.I. [Room I-320-D, E.T.S. Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n 29013 Malaga (Spain)]. E-mail: jirs@lcc.uma.es

    2007-07-15

    An approximate quasilinearization method for the solution of the generalized regularized long-wave (GRLW) equation based on the separation of the temporal and spatial derivatives, three-point, fourth-order accurate, compact difference equations, is presented. The method results in a system of linear equations with tridiagonal matrices, and is applied to determine the effects of the parameters of the GRLW equation and initial conditions on the formation of undular bores and interactions/collisions between two solitary waves. It is shown that the method preserves very accurately the first two invariants of the GRLW equation, the formation of secondary waves is a strong function of the amplitude and width of the initial Gaussian conditions, and the collision between two solitary waves is a strong function of the parameters that appear in the GRLW equation and the amplitude and speed of the initial conditions. It is also shown that the steepening of the leading and trailing waves may result in the formation of multiple secondary waves and/or an undular bore; the former interacts with the trailing solitary wave which may move parallel to or converge onto the leading solitary wave.

  16. Interaction of High Intensity Electromagnetic Waves with Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    G. Shvets

    2008-10-03

    The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

  17. 2D wave-front shaping in optical superlattices using nonlinear volume holography.

    Science.gov (United States)

    Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-07-01

    Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.

  18. On the Amplitude Equations for Weakly Nonlinear Surface Waves

    Science.gov (United States)

    Benzoni-Gavage, Sylvie; Coulombel, Jean-François

    2012-09-01

    Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.

  19. Recent progress in nonlinear kinetic Alfvén waves

    Directory of Open Access Journals (Sweden)

    D. J. Wu

    2004-01-01

    Full Text Available This paper presents a review of recent progress in nonlinear kinetic Alfvén wave (KAW hereafter. We start with the two-fluid theory of KAWs and show how the difference between the motions of electrons and ions in small-scale fields of KAWs modifies the Alfvén wave properties. Then, we focus on nonlinear solitary structures of KAWs. A general criterion of the existence for solitary KAW (SKAW hereafter and its exact analytical solution in a low-β plasma (βe/mi are presented, where the electron drift velocity along the background magnetic field is larger than the thermal speed within a SKAW, and hence can excite, for instance, ion acoustic turbulence as showed by in situ observations of satellites in space plasmas. In consequence, the turbulence results in kinetic dissipation of the SKAW and dynamical evolution in its structure. We further discuss the structure of the dissipated SKAW (DSKAW hereafter that evolves from the SKAW due to the dissipation. The result shows that the DSKAW has a local shock-like structure in its density profile and a net electric potential drop over the shock-like structure. In particular, the electric potential drop of the DSKAW can be expected to accelerate electrons efficiently to the order of the local Alfvén speed. The application of the DSKAW acceleration mechanism to the auroral electron acceleration is also discussed. Finally, a few perspectives of KAW studies in future are presented.

  20. Computational study of nonlinear plasma waves: 1: Simulation model and monochromatic wave propagation

    Science.gov (United States)

    Matda, Y.; Crawford, F. W.

    1974-01-01

    An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.